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Abstract

Recent advances in tabular question answering (QA) with large language models
are constrained in their coverage and only answer questions over a single table.
However, real-world queries are complex in nature, often over multiple tables in
a relational database or web page. Single table questions do not involve com-
mon table operations such as set operations, Cartesian products (joins), or nested
queries. Furthermore, multi-table operations often result in a tabular output, which
necessitates table generation capabilities of tabular QA models. To fill this gap,
we propose a new task of answering questions over multiple tables. Our model,
MultiTabQA, not only answers questions over multiple tables, but also generalizes
to generate tabular answers. To enable effective training, we build a pre-training
dataset comprising of 132,645 SQL queries and tabular answers. Further, we
evaluate the generated tables by introducing table-specific metrics of varying strict-
ness assessing various levels of granularity of the table structure. MultiTabQA
outperforms state-of-the-art single table QA models adapted to a multi-table QA
setting by finetuning on three datasets: Spider, Atis and GeoQuery.

1 Introduction

Question answering (QA) over multiple tables aims to provide exact answers to natural language
questions with evidence from one or more tables (14). This is in contrast to single-table QA, which
has been the focus of tabular QA research to date (16; 19; 36; 10). Even though groups of related
tables are ubiquitous in real-world corpora, such as relational databases or tables in a web page,
multi-table QA remains a largely unexplored area. To address this gap, we propose a new task of
answering questions over multiple tables1. Our multi-table QA model, MultiTabQA, addresses novel
challenges introduced by multi-table context. These include complex queries involving chains of
reasoning, disambiguation of relevant table names at each reasoning step, and generating a final
table as answer. It also leads to novel question-types that are unnatural in a single-table setting. For
instance, questions involving operations specific to multiple tables, such as Cartesian products (outer
joins, inner joins) and set operations (such as intersect, union, in), are unique to and common in a
multi-table scenario. Furthermore, such multi-table operations often result in a tabular answer and
they necessitate table generation capabilities of the QA model.

Figure 1 depicts an example of a question involving two tables, I would like to know the zip code of
trips taken above 200 with humidity below 70, and its associated input tables, Weather and trip. A

1Originally published at the Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers)(21)
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	 SELECT zip_code FROM weather GROUP BY zip_code HAVING avg 
( mean_humidity ) < 70  INTERSECT
	 SELECT zip_code FROM trip GROUP BY zip_code HAVING count ( * ) >= 200

Weather
cloud_cover min_humidity zip_code

trip
duration end_date zip_code

What is the zip code of trips made which are above 200 with humidity   
        below 70

Multi-Table
QA 97010

92231

zip_code

Figure 1: Multi-table QA. The QA model generates a tabular answer from either a natural language
question or an SQL query and one or more tables as input context.

multi-table QA model is expected to disambiguate records from different tables (the question phrase
zip code of trips grounds the column zip_code of Table trip; the question phrase humidity below
70 grounds column min_humidity of Table Weather), learn associations among inter-table columns
(zip_code in both tables) and intra-table columns (min_humidity and zip_code in the Weather table),
and finally compute the required operations (intersect, count) and generate the tabular answer.

Recent work on tabular QA can be categorized into two major directions:

(i) Semantic parsing-based techniques (22; 33; 3), which have been the dominant approach to
answering multi-table complex questions. Such methods transform a natural question to a
logical form, which is used to query a relational database to extract the answer. However,
these techniques are restricted to relational databases and cannot be applied to tables from
other sources such over web tables, tables in text documents, and any non-normalized tables.
Additionally, they require expensive and expert human annotations (30; 15) formulating
SQL queries from natural questions.

(ii) Modeling the problem as a sequence generation/classification task (28; 32; 10; 36; 16;
6; 19; 18; 20; 14), where an end-to-end trained neural model is not only responsible for
question/query understanding but also table reasoning. Existing end-to-end neural models
are either classification-based (10; 36), where the model detects the answer span and
classifies one table operator associated with the span, or they are sequence generation-based
(19; 32; 16), where the model generates the answer as a span of text in an auto-regressive
manner.

Our work focuses on the latter direction of research. We train a neural model to mimic a semantic
parser and generate the answer. A clear distinction of our work compared to existing end-to-end
models is that our proposed model, MultiTabQA, does not operate in the constrained setting of a
single input table, but can accommodate one or more tables in the input and the associated multi-table
operators. Additionally, MultiTabQA performs the task of structured table generation, which imposes
structure aspects to the generated output such as table schemas, alignments of rows and columns,
relationships between column-headers and column values. Generating structured tables as output
requires table-specific evaluation metrics which we define and use to evaluate the generated tables.
To effectively train the model, we generate a pre-training dataset with multi-table SQL queries and
tabular answers built over an existing semantic parsing dataset, Spider (30). Our dataset consists of
132, 645 samples comprising of SQL queries, associated natural language questions, input tables, and
tabular answers. To the best of our knowledge, this is the first work to address the task of multi-table
QA and generate tabular output.

Our main contributions can be summarized as:

(1) We fill-in the gap of existing tabular QA methods, which operate only on single tables, by
proposing a new task of answering questions over multiple tables. Our work increases the breadth
of question types that can be handled by single tabular QA methods.

(2) Our proposed multi-table QA model generates structured tables imposed by multi-table operations.
Table generation introduces generation challenges such as maintaining row-column alignment,
table-header generation, etc.

(3) We release a multi-table pre-training dataset comprising of 132, 645 samples of SQL queries and
tabular answers.

(4) We introduce table generation metrics that capture different levels of granularity and strictness to
evaluate our proposed model.
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Figure 2: Architecture of MultiTabQA model. Given a natural language question/SQL query and the
associated tables as an input sequence, the seq2seq model performs tabular reasoning and generates a
tabular answer. Start of an input table is identified with keyword <table_name> which also indicates
that the next tokens comprises the table name. col: indicates that the next tokens are table headers.
Rows in a table are identified with keyword row i:, columns are separated by |.

2 Methodology

We frame multi-table question answering as a sequence-to-sequence task and train an auto-regressive
transformer encoder-decoder model to generate the tabular answer. Given a question Q consisting of
a sequence of k tokens q1, q2, . . . , qk and a set of N tables, TN = {t1, t2, . . . , tn}, the goal of the
multi-table QA model is to perform chains of operations over TN , constrained by Q, and generate a
table Tout. The model always generates a table, Tout, which can be single celled for scalar answers,
single rowed or columned for list-based answers, and multiple rows and columns for tabular answers.
In all cases, the model also generates column headers revealing important semantics associated with
the generated values.

Training approach. We follow a curriculum learning approach (2) by sequentially increasing the
complexity of tasks to train MultiTabQA. The first stage of training is a pre-training step where
the training objective is two-fold: a) learn to generate correct tabular answers from SQL, and b)
understand the associations between related input tables. The final training stage is fine-tuning where
the model learns to understand natural language questions with their inherent ambiguity in addition to
retaining its ability of reasoning over tables and generating a tabular answer. We discuss the training
process in detail in Section 4.

Model input/output. The input to the model is a sequence comprised of the query or the
natural language question, followed by a sequence of input tables, represented by the ta-
ble name and the corresponding flattened table. Table names are important for disambiguat-
ing tables in multi-table QA setting. Specifically, the input sequence is represented as
question [table1 rep] [table2 rep] . . . [tablen rep] where [tablei rep] is the representation of the
i-th table. As depicted in Figure 2, the i-th table is flattened in row-major format and represented as

<table_name>: n1 n2 | col: h1 | h2 | . . . | hk row 1: r11 | . . . | rm1 . . . row k: r1k | . . . | rmk ,

where n1, . . . , n2 is the sequence of table name tokens, hj is j-th column header, rim is the i-th row
and m-th column cell. The boldface words are keywords specifying semantics of the next tokens.
The output of the model is also a flattened table in row-major format, i.e., [tableans rep], but without
a table name. As depicted in Figure 2, the generated table, [tableans rep], is of the form:

col: h1 | h2 | . . . | hk row 1: r11 | . . . | rm1 row 2: r12 | . . . | rm2 . . . row k: r1k | . . . | rmk .

3 Dataset

To effectively train a multi-table QA model, the dataset needs to cover three aspects: a) multi-table
context, b) tabular answers, and c) natural questions.

3.1 Single table pre-training dataset

One of the sub-tasks of pre-training is to generate tabular answers. We hypothesize that tuning the
model to generate tables may lead to a warm-start and better convergence in a multi-table QA setting.
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To enable such experiments, we modify the large-scale single-table QA Tapex pre-training dataset
(16) to accommodate tabular answers. The dataset contains 1, 834, 419 samples of query, input table
and factoid answers. Transforming the factoid answers to tables leads to single-celled or single-rowed
tables. The modified dataset helps the model to understand simple tables and reason over semi-formal
queries to generate simple tables.

3.2 Multi-table pre-training dataset

We develop a multi-table pre-training dataset over the database of Spider (30). Spider is a cross-
domain complex semantic parsing dataset for text-to-SQL translation. It consists of 10, 181 questions
and 5, 693 SQL queries. The questions are over 200 databases of multiple tables covering 138
different domains. The training, development and test splits do not contain overlapping databases to
test a model’s generalizability to new databases.

We use the ground-truth SQL queries of Spider as input query for pre-training over multiple tables.
We automatically extract all input table names from the SQL query and retrieve the input tables from
the relational database. We extract the answer table with the SQL query by querying the relational
database. Answer table headers reveal important semantics of the associated column values such
as the numeric operation, numeric scales, or entity facets. This process generates 3816 samples
comprising of query, question, table_names, tables and answer.

We further augment the modified Spider dataset with 132, 645 samples of synthetic queries. This
leads to an augmented multi-table pre-training dataset of 136, 461 unique training samples comprising
of 3816 Spider samples and 132, 645 synthetic samples. The validation set comprises of 536 samples.

Existing work on semantic parsing (25; 29) have utilized hand-crafted templates to generate large-
scale corpora of synthetic queries, but are constrained in their coverage with no multi-table operations
(25) or limited coverage with no table joins and lacking diversity in set operations (29). This motivates
us to generate our augmented pre-training dataset for multi-table QA using multi-table SQL templates.

Our synthetic queries are generated from 45 manually crafted templates over the Spider database
and hand-crafted rules for operation types. The query templates have placeholders for aggregation,
relational operations, table name and headers which are randomly assigned during query generation
process. For example, to generate multi-table join queries, we instantiate the templates by randomly
choosing tables from a database with at least one common header. For set operations, all tables
participating in a multi-table query requires all table headers to match. We design SQL templates
in increasing order of complexity starting with simple SQL templates and progressively adding
components which increases its complexity. For example, for single-table queries, we use the
simplest template “SELECT * FROM {table_name}” whereas for multi-table templates such as joins,
the simplest template is “SELECT T1.{table1_cols}, T2.{table2_cols} FROM {table_name1} as
T1 JOIN {table_name2} as T2 ON T1.{common_col} = T2.{common_col}”. We progressively add
SQL components such as aggregations, where conditions, group by and having clauses to generate
templates of increasing complexity. This process results in 14 templates for joins, 4 templates for
each set operation: intersect, union and except. To avoid catastrophic forgetting for single table
queries, we also instantiate 14 single-table queries with increasing complexity.

Quality control. We ensure correctness of the synthetic samples by discarding SQL queries that
executes to an error or empty table. We also apply the process on the modified Spider, Atis and
GeoQuery data to discard SQL query and the corresponding natural language question to ensure that
all questions are answerable.

3.3 Multi-table QA dataset

We fine-tune and evaluate our model on the natural language questions of semantic parsing datasets:
Spider, GeoQuery (31), and Atis (23; 7). GeoQuery is a semantic parsing dataset to query into a
database of United States geography. Atis is a semantic parsing dataset with a collection of 4, 379
questions, corresponding SQL queries and a relational database to a flight booking system (11).
Similar to the Spider dataset processing described in Section 3.2, we first extract the input table
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names from the available SQL queries and query the relational database for the input tables.2 We
also extract the tabular answers using the SQL queries. We discard any samples that executes to an
error or empty table. We use the corresponding natural language question for each SQL query as the
user utterance for fine-tuning. This results in 6, 715 training samples and 985 validation samples for
Spider. We also process the 600 GeoQuery samples provided in (11) to create a subset of 530 training
samples, 49 validation samples and 253 test samples. We process and generate an Atis subset of
384 training samples, 45 evaluation samples and 86 test samples. We discard Atis queries with very
large input tables (with > 10, 000 rows). This restriction enables us to correctly evaluate question
answering capabilities of a model by ignoring samples with truncated input sequences including
entire input tables from the second table onward. Truncation of tables leads to incorrect answers for
any numeric operation such as average, intersect and the evaluation scores would no longer reflect
reasoning capabilities of the model.

4 Training

We follow a curriculum learning approach by sequentially training the model on sub-tasks of increas-
ing complexity as depicted in Figure 3a.

Augmented Dataset

Tapex-Pretraining
Corpus 

Spider-SQL


Synthetic SQL

 (our data)

Pre-Training

Single
table

Context

Table
Output

SQL queries

Multi-table Context Tabular Output

Stage 2

Stage 3

Stage 1

Multi-table Context

Table Output

Natural Language 
Questions

Fine-tuning

(a) Four stage training procedure. The first three stages
are pre-training, followed by fine-tuning.
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(b) Validation table exact match scores of
MultiTabQA vs. tapex-base on Spider
evaluation set natural language questions dur-
ing fine-tuning. The points are highest vali-
dation scores for each model.

Broadly, we first pre-train the seq2seq model to mimic a SQL parser and further fine-tune it on
the downstream multi-table QA task. Pre-training the model on unambiguous SQL queries leads
to better convergence and warm-start for the closely related downstream multi-table QA task. We
further segregate the pre-training by first addressing the simpler sub-task of generating tables from
single table queries. This is immediately followed by pre-training on multi-table query answering
where complex SQL queries are utilized to train the model to learn multi-table associations from
unambiguous complex queries, reason over the tables and generate tabular answer. The final stage
of training is the downstream multi-table QA from natural language questions. Natural language
introduces ambiguity, ellipses and co-references which increases complexity and is thus the final
stage of training. For each stage, we choose the model with the best table exact match accuracy on
the corresponding validation set, defined in Section 5, as the initialization for training the next stage.

4.1 Pre-training

Pre-training of MultiTabQA is conducted in two stages in a curriculum learning fashion: Stage 1
is single table QA where the model learns to generate tabular answers from relatively simple SQL
queries. Stage 2 is multi-table QA where the model trained in Stage 1 is further tuned for multi-table
SQL QA.

Stage 1. We first train MultiTabQA on the task of generating tables from SQL queries over single
tables. The tabular answer to be generated is simple and single-columned. For this stage, we use
the modified Tapex pre-training corpus described in Section 3.1. We train the model on 1, 834, 419

2We preprocess the Atis and GeoQuery data samples available at https://github.com/sriniiyer/
nl2sql/tree/master/data.
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Dataset Model Table
EM (%)

Row EM (%) Column EM (%) Cell EM (%)
P R F1 P R F1 P R F1

Spider tapex-base 18.99 17.28 19.83 18.27 19.75 19.39 19.57 23.15 27.71 25.03
MultiTabQA 25.19* 22.88† 24.64* 23.70* 26.86* 26.76* 26.81* 28.07† 31.23* 29.55*

GeoQ tapex-base 39.84 22.43 30.74 24.89 39.48 39.76 39.62 21.98 30.88 24.67
MultiTabQA 52.22* 72.39* 46.90* 41.38* 52.10* 52.22* 52.16* 37.16† 46.92* 41.33*

Atis tapex-base 72.20 57.07† 57.69 55.08 72.20† 72.20 72.20 57.07† 57.69 54.48
MultiTabQA 73.88† 38.29 92.19* 54.36 69.55 75.24† 72.29 38.16 92.56* 54.16

Table 1: Average scores of models fine-tuned on 5 different seeds with Multitable-Natural Questions
(NQ) datasets. tapex-base is used as baseline while MultiTabQA is our fine-tuned model. Table
EM indicates table exact match accuracy. For all other table units (row, column, and cell), P is
Precision, R is Recall, and F1 is F1 score for exact match metric. An (*) denotes significance at p <
0.005 and an (†) denotes a significance at p < 0.05 for t-test.

samples for two epochs. This stage provides a good initialization for multi-table QA in the next
stages.

Stage 2 + Stage 3. We further pre-train the model on multi-table QA. For this, we tune our model
on SQL queries from the modified Spider and synthetic dataset. We tune with only the modified
Spider SQL samples Stage 2, and tuning with only the synthetic dataset Stage 3. We utilize the
larger augmented dataset comprising of the modified Spider SQL (Stage 2) and our synthetic samples
(Stage 3) as described in Section 3.2 to train the final pre-trained model for 30 epochs. We call this
setting Stage 2+3. We compare these three multi-table pre-training settings in Section 6.

4.2 Fine-tuning

The final stage of training is fine-tuning the pre-trained model on natural language questions. Natural
questions are ambiguous compared to formal SQL and used at the last stage of training. We fine-tune
the pre-trained model on the 6, 715 natural questions, extracted input and output tables for Spider as
described in Section 3 and evaluate on 985 samples of the validation set. To observe the performance
of the pre-trained model on out-of-domain database tables, we also fine-tune the pre-trained model
on Atis and GeoQuery datasets. For all the fine-tuning datasets, we train for 60 epochs.

5 Evaluation metrics

While denotation accuracy has been widely used in semantic parsing (22; 33; 3), it is not directly
applicable for our task where tabular input encoding, reasoning, and generation are performed by the
same model. Evaluating the answer table not only requires matching the generated values but also
the table structure. Moreover, table components such as rows, columns and cells are standalone units
which capture different levels of semantics and relationships with the surrounding table component.

Table exact match. We define table exact match Accuracy (Table EM) as the percentage of predicted
tables which exactly matches the target tables. Table exact match evaluates ordering of rows, columns
and table headers and exact lexical matching of table values. It is a strict binary measure which treats
partial matches as incorrect. However, many queries do not impose ordering among columns or rows,
and strict table exact match may not be the ideal indication of model efficacy. To measure partial
correctness, we treat rows, columns and cells as units at varying levels of granularity which have
ordered associations among the values within the unit. We evaluate partial correctness with exact
match of rows, columns and cells.

Row exact match. To relax the strict criterion of table exact match, we first measure correctness on
table rows. Row exact match does not consider ordering of rows in the generated table but requires
ordering of values within the row. We define a correctly generated row to be a predicted row that
exactly matches any target rows in the target table. Row exact match precision is the percentage of
correctly generated rows among all the predicted rows in the evaluation dataset. Row exact match
recall is the percentage of correctly generated rows among all the target rows in the evaluation dataset.
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Column exact match. Unlike rows, which represent records in relational databases, columns
represent attributes where column header provides semantic meaning to the values. Hence, a correct
column is defined as a generated column that first exactly matches a target column header and further
the column values. Column exact match measures ordering of values within a column. Column exact
match precision is the percentage of correctly generated columns among all generated columns in the
evaluation set. Column exact match recall is the percentage of correctly generated columns among all
target columns in the evaluation set.

Cell exact match. Cell exact match is the most relaxed measure of model efficacy at the lowest
level of granularity (cells) where table structure is not measured. A cell is correct if it matches any cell
in the corresponding target table. Cell exact match precision is the percentage of correctly predicted
cells among all predicted cells in the dataset. Cell exact match recall is the percentage of correctly
predicted cells among all target cells in the dataset.

6 Experimental setup and results

We use tapex-base (16) as the base model for all our experiments. tapex-base is a single table
question answering model (140M parameters) trained to approximate table reasoning by pre-training
to mimic an SQL parser. For both the pre-training and fine-tuning process, we use a batch size of 8
and gradient accumulation of 32 to emulate an effective batch size of 256, a learning rate is 1e−9. The
maximum sequence length of both encoder and decoder is set to 1024. We run all our pre-training
experiments on four A6000 48GB GPUs and fine-tuning on one A6000 GPU.

The three stage pre-training leads to a warm-start for fine-tuning and better convergence compared to
the baseline tapex-base. For our experiments, we compare the effectiveness of the MultiTabQA
model with fine-tuned tapex-base on the 6, 715 natural questions from Spider. The fine-tuned
tapex-base acts as baseline for studying the adaptability of state-of-the-art single table model to
a multi-table setting. We report the mean scores of 5 training runs initialized with different seeds
in Table 1. We conduct statistical significance test (t-test) on the mean scores of the 5 runs and
report the significance with p < 0.05 and p < 0.005. We observe that our multi-stage training
process leads to improvement in scores on all table exact match accuracy across all datasets compared
to fine-tuned tapex-base. The difference in table exact match is highest for GeoQuery where
MultiTabQA outperforms tapex-base by 12.38%, Spider by 6.20% and Atis by 1.68%. For F1 and
Recall scores on row, column and cell exact match, a similar pattern is observed where MultiTabQA
outperforms tapex-base on all datasets. MultiTabQA outperforms tapex-base by 5.43% on row
F1, 7.24% on column F1, and 4.52% on cell F1 for Spider. On GeoQuery, MultiTabQA outperforms
by 16.49% on row F1, 12.54% on column F1 and 16.66% on cell F1 scores. All results on Spider
and GeoQuery are significant with a p-value less than a critical value of 0.05 indicating strong
evidence that MultiTabQA is a superior model. On Atis, we observe that MultiTabQA underperforms
on precision but outperforms on recall by a large margin. The difference in recall is larger than
precision indicating that MultiTabQA generates more target rows, columns and cells of Atis correctly
(higher recall) and hallucinates spurious rows and cells (lower precision). However, the F1 scores are
better for MultiTabQA. tapex-base is unable to correctly generate target rows, cells and columns
(lower recall), but the few generated ones are correct (higher precision). The low number of test
samples (85) of Atis and variations in the hallucinations in different runs makes the precision scores
statistically non-significant. However, the recall scores provide very strong evidence (p < 0.005) of
the superiority of MultiTabQA in generating correct table units compared to tapex-base.

Impact of the number of input tables. The number of input tables increases the complexity
of the questions and directly impacts the effectiveness of the models. We segregate evaluation on
Spider validation set on the basis of number of input tables and compare the results to study the
impact of input table number. We observe from Figure 4 that effectiveness reduces as the number
of tables increases for both MultiTabQA and tapex-base. However, MultiTabQA fares better than
tapex-base when the number of input tables increases. MultiTabQA generates whole tables, rows,
columns and cells better than tapex-base as observed in Figure 4a, 4b, 4c and 4d. The gain of
MultiTabQA in table exact match for one-table context is around 8.81%, for two-tables context around
4.37%, and it performs similar to tapex-base for three-tables context. It also has a significant higher
score on rows, columns and cells, on both single and multi-tabular context.
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Pre-training
stages

Query
type

Table
EM(%)

Row (%) Column (%) Cell (%)
P R F1 P R F1 P R F1

2
SQL

21.46 18.60 18.88 18.74 21.98 21.90 21.94 24.19 25.89 25.01
1+2 20.52 14.13 20.06 16.58 18.87 20.87 19.82 19.24 25.83 22.05
1+2+3 29.10 23.15 25.62 24.32 31.66 31.50 31.58 29.95 32.92 31.36
2

NL
19.41 16.51 19.48 17.87 20.13 20.11 20.12 21.12 26.55 23.52

1+2 20.12 11.67 21.09 15.03 19.54 19.97 19.76 16.26 29.22 20.90
1+2+3 24.49 24.95 24.87 24.91 26.80 26.91 26.86 28.44 31.06 29.69

Table 2: Ablation on datasets in our multi-stage pre-training processes for 1 run of experiments. The
two sections show scores for different question types: SQL queries (top) and natural language (NL)
questions (bottom). In a section each row shows a training process with different stages: Pre-training
on Stage 2, pre-training on Stages 1+2, and all pre-training Stages 1+2+3. Table EM is table exact
match accuracy; P is Precision; R is Recall; and F1 is F1 score for exact match of row, column, and
cell.
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(a) Table EM Accuracy

27.39
20.11

33.11

17.28 17.55

25.67

1 table 2 tables 3 tables

(b) Row EM F1

40.18

11.49

1.27

29.48

5.45
1.26

1 table 2 tables 3 tables

(c) Column EM F1

30.97
26.74

39.45

23.49 24.27

31.9

1 table 2 tables 3 tables

(d) Cell EM F1

Figure 4: Evaluation results on Spider evaluation samples segregated by number of input tables.

We also observe that while the column and table EM decreases dramatically when using several
tables (Figure 4a and 4c), the row and cell EM does not (Figure 4b and 4d). This indicates that
MultiTabQA can generate rows and cells as effectively in single and multiple input tables settings but
fail to do so for columns and consequently for the whole table. This is due to the fact that certain
columns in the answer, particularly ones with numbers such as floats, are challenging to generate.
The error from the incorrect columns propagates and are accumulated in the table EM leading to a
significant drop in performance for multi-table queries.

Ablation on training stages. We perform ablation on the pre-training stages to analyse the contri-
bution of each dataset. The simplest setting is to pre-train with Spider SQL queries, i.e., Stage 2. To
evaluate the effectiveness of single table Tapex pre-training samples, the next setting comprises of
stages 1 and 2, i.e., pre-train with Tapex pre-training and Spider SQL dataset. The final comparison is
with the three-stage pre-training as described in Section 4.1. The results for one run of the experiments
are displayed in Table 2. We observe that table exact match is highest for both pre-training and
fine-tuning for the three-stage training. Stage 2 fares better than Stage 1+2 on table exact match, and
generally has better precision and F1 scores but lower recall. The three-stage pre-training with our
synthetic data augmented with Spider outperforms the other settings and confirms the effectiveness
of our synthetic data samples in boosting model efficacy.

7 Related work

Tabular QA is a research direction in the broader topic of table understanding (13; 26) in natural
language processing. Recent advances in table representation (8) and pre-training (5; 17; 5), table
fact verficiation (9; 35), table numeric reasoning (24; 34), table-to-text generation (1), text-to-table
generation (27), table summarization (12; 4; 32), and table question answering (28; 32; 10; 36; 16; 6;
19; 18; 20; 14; 34) have shown the adaptability of language models to table processing.
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8 Conclusion

In this work, we propose a new task of multi-table question answering without intermediate logical
forms to fill the gap of existing end-to-end table QA research which focused only on single-table QA.
We release a pre-training dataset of 132, 645 samples to effectively train a seq2seq model. We fine-
tune and evaluate our model, MultiTabQA, on natural language questions of three datasets: Spider,
GeoQuery and Atis, to test the efficacy in a multi-table setting. As many multi-table questions result
in tables, we train the model to generate tables. This necessitates table-specific metrics at various
levels of granularity which we design to evaluate the effectiveness of our model. We demonstrate
that such metrics is insightful in understanding model behavior. MultiTabQA outperforms existing
state-of-the-art single table QA model fine-tuned to adapt to a multi-table QA setting.
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