
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EMERGENT SYMBOL-LIKE NUMBER VARIABLES IN AR-
TIFICIAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

There is an open question of what types of numeric representations can emerge
in neural systems. To what degree do neural networks induce abstract, mutable,
slot-like numeric variables, and in what situations do these representations emerge?
How do these representations change over the course of learning, and how can we
understand the neural implementations in ways that are unified across different
models’ implementations? In this work, we approach these questions by first
training sequence based neural systems using Next Token Prediction (NTP) objec-
tives on numeric tasks. We then seek to understand the neural solutions through
the lens of causal abstractions or symbolic algorithms. We use a combination of
causal interventions and visualization methods to find that artificial neural models
do indeed develop analogs of interchangeable, mutable, latent number variables
purely from the NTP objective. We then ask how variations on the tasks and model
architectures affect the models’ learned solutions to find that these symbol-like
numeric representations do not form for every variant of the task, and transformers
solve the problem in a notably different way than their recurrent counterparts. We
then show how the symbol-like variables change over the course of training to find
a strong correlation between the models’ task performance and the alignment of
their symbol-like representations. Lastly, we show that in all cases, some degree
of gradience exists in these neural symbols, highlighting the difficulty of finding
simple, interpretable symbolic stories of how neural networks perform numeric
tasks. Taken together, our results are consistent with the view that neural networks
can approximate interpretable symbolic programs of number cognition, but the
particular program they approximate and the extent to which they approximate it
can vary widely, depending on the network architecture, training data, extent of
training, and network size.

1 INTRODUCTION

Both biological and artificial Neural Networks (NNs) have powerful modeling abilities. We can see
an example of this in biological NNs (BNNs) from the impressive capabilities of human cognition,
and we can see this in artificial NNs (ANNs) where recent advances have had such great success that
ANNs have been crowned the “gold standard” in many machine learning communities (Alzubaidi
et al., 2021). The inner workings of NNs, however, are still often opaque. This is, in part, due to their
representations being highly distributed. Individual neurons can play multiple roles within a network
(Rumelhart et al., 1986; McClelland et al., 1986; Smolensky, 1988; Olah et al., 2017; 2020; Elhage
et al., 2022; Scherlis et al., 2023; Olah, 2023).

Symbolic Algorithms/programs (SAs), in contrast, defined as processes that manipulate distinct, typed
entities according to explicit rules and relations, can have the benefit of consistency, transparency,
and generalization when compared to their neural counterparts. A concrete example of an SA is
a computer program, where the variables are abstract, mutable entities, able to represent many
different values, processed by well defined functions. There are many existing theories that posit
the necessity of algorithmic, symbolic, processing for higher level cognition (Do & Hasselmo,
2021; Fodor & Pylyshyn, 1988; Fodor, 1975; 1987; Newell, 1980; 1982; Pylyshyn, 1980; Marcus,
2018; Lake et al., 2017). Human designed symbolic cognitive systems, however, can lack the
expressivity and performance of NNs. This is apparent in the field of natural language processing
where neural architectures trained on vast amounts of data (Vaswani et al., 2017; Brown et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

BOS D D T R R EOS BOS D D T R R EOS

0 1 2 2 1 0 1+1-1 1+1-1-1

GRU/LSTM NPE Transformer

1+11+110

GRU/LSTM Transformer

Figure 1: Visual depiction of different architecture’s solutions achieving the same accuracy on the
same numeric equivalence task. The rectangles represent token types for a task in which the model
must produce the same number of R tokens followed by the EOS token as it observed D tokens before
the occurence of the T token (see Methods 3.1 for more details). The thought bubbles represent
causally discovered, neural variables encoded within subspaces of the models’ representations. The
recurrent models encode a representation of the count of the sequence that increments up before the
T token and then back down after the T token to indicate the end of the task. Transformers learn a
solution in which they recompute the task relevant information from their context at each step in
the sequence. All NoPE transformers align with the displayed solution, where they assign opposite
numeric values to the D and R tokens and then recompute their sum at each step in the sequence,
knowing to stop when the difference equals 0. RoPE transformers can partially rely on positional
information unless they are trained on a variant of the task that breaks number-positional correlations.
In both cases, the transformers avoid using a cumulative representation of the count that is transmitted
to the next step and incremented.

2020; Kaplan et al., 2020) have swept the field, surpassing the pre-existing symbolic approaches.
Despite the differences between NNs and SAs, it might be argued that NNs actually implement
simplified SAs; or, they may approximate them well enough that seeking neural analogies to these
simplified SAs would be a powerful step toward an accessible, unified understanding of complex
neural behavior. In one sense, this pursuit is trivial for ANNs, in that ANNs are implemented via
computer programs. The complexity of these programs, however, can be so great that simplified SAs
become be useful for understanding them. This approach of seeking to characterize neural systems
in terms of simplified SAs is, in some sense, the goal of most cognitive science, neuroscience, and
mechanistic interpretability.

In this work, we narrow our focus to numeric cognition and ask, how we can understand neural
implementations of numeric concepts at the level of symbolic algorithms? Numeric reasoning has the
advantage of being well studied in humans of different ages and experience levels, which provides a
powerful domain for comparisons between BNNs and ANNs (Di Nuovo & Jay, 2019). We focus on a
numeric equivalence task that was used to test the numeric abilities of humans whose language lacks
explicit number words (Gordon, 2004). The task is formulated as a sequence of tokens, requiring the
subject to produce the same number of response tokens as a quantity of demonstration tokens initially
observed at the beginning of the task. This task is interesting for computational settings because the
training labels vary in both type and length, and the numeric structures of interest are never explicitly
labeled. Similar versions of this task have also been used in previous theoretical and computational
work (El-Naggar et al., 2023; Weiss et al., 2018; Behrens et al., 2024), which provides a platform to
expand upon in an effort to understand these seemingly disparate systems in unified ways.

What sorts of representations do ANNs use to solve such a task and how do they arrive at these
representations? Do the networks represent numbers in a single number system? Do they use different
solutions for different situations? Do the answers to these questions change over the course of training,
and do the answers vary based on task and architectural details? How can we unify these solutions
in satisfying ways for cognitive scientists, neuroscientists, and computer scientists alike? We wish
to understand the degree to which a neural system might implement a mutable, abstract numeric
variable, similar to the kind we might assign to an allocated storage location in a computer program.

In this work, we pursue these questions by first training recurrent and attention based ANNs on
number related Next Token Prediction (NTP) tasks. We then perform both causal and correlative
analyses to understand their neural representations and solutions. Our contributions are as follows:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1. We find causal alignments between neural variables (subspaces of the activations) and
symbolic/causal variables from a counting program that increments and decrements a count
variable.

2. We show that transformer architectures solve the task by referencing and recomputing
information from the context at each step in the sequence, contrasted against the recurrent
solution of storing a cumulative, Markovian state.

3. We show the importance of using causal interventions to substantiate claims about neural
solutions, and we show the importance of finding aligned neural subspaces for the causal
interventions, rather than operating directly on raw activations.

4. We show that the recurrent models’ alignment to the counting program can be strongly
influenced by task details that are seemingly unrelated to the underlying numeric principles.

5. We show that the symbol-like neural variables are graded, with inferior interchangeability
between larger numbers and between numbers that have a greater difference in magnitude.

6. We examine the neural variables over the course of training to find a correlation between
task accuracy and strength of the alignment.

7. Lastly, we show an effect of model size, where models of minimal size have a greater degree
of gradience in their alignment, while larger models have more precise neural variables.

2 RELATED WORK

We wish to highlight the importance of using causal manipulations for interpreting neural functions in
this work. Causal inference broadly refers to methods that isolate the particular effects of individual
components within a larger system (Pearl, 2010). An abundance of causal interpretability variants
have been used to determine what functions are being performed by the models’ activations (or
circuits) (Olah et al., 2018; 2020; Wang et al., 2022; Geva et al., 2023; Merrill et al., 2023; Bhaskar
et al., 2024; Wu et al., 2024). Vig et al. (2020) provides an integrative review of the rationale for and
utility of causal mediation in neural model analyses. We rely heavily on DAS for our analyses. This
method can be thought of as a specific type of activation patching (also referred to as causal tracing)
(Meng et al., 2023; Vig et al., 2020).

Many publications explore ANNs’ abilities to perform counting tasks (Di Nuovo & McClelland,
2019; Fang et al., 2018; Sabathiel et al., 2020; Kondapaneni & Perona, 2020; Nasr et al., 2019;
Zhang et al., 2018; Trott et al., 2018). Our tasks and modeling paradigms differ from many of these
publications in that numbers are only latent in the structure of our tasks without explicit teaching of
distinct symbols for distinct numeric values. El-Naggar et al. (2023) provided a theoretical treatment
of Recurrent Neural Network (RNN) solutions to a parentheses closing task, and Weiss et al. (2018)
explored Long Short-Term Memory RNNs (LSTMs) (Hochreiter & Schmidhuber, 1997) and Gated
Recurrent Units (GRUs) (Cho et al., 2014) in a similar numeric equivalence task looking at the
activations. These works showed correlates of a magnitude scaling solution in both theoretical and
practically trained ANNs. Our work builds on their findings by using causal methods for our analyses,
and by expanding the models considered. Lastly, we mention Behrens et al. (2024), who explored
transformer counting solutions in a task similar to ours. Our work builds upon their findings by
including positional encodings in our transformers, avoiding explicit labels of the numeric concepts,
and providing causal analyses.

Figure 2: The activation values for each neuron (denoted by color) at each step in the trial with a
object quantity of 15. Values are averaged over 15 trials. In the rightmost panel, we label the specific
neurons used in a one-off causal intervention described in Sections 3.5 and 4.1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODS

In this work, we train models on numeric equivalence tasks and then use interpretability methods
such as Distributed Alignment Search (DAS) (Geiger et al., 2021; 2023) to understand the manner in
which the models solve the task.

3.1 NUMERIC EQUIVALENCE TASKS

Each task we consider is defined by varying length sequences of tokens. Each sequence starts with a
Beginning of Sequence (BOS) token and ends with an End of Sequence (EOS) token. Each sequence
is defined by a uniformly sampled object quantity from the inclusive range of 1 to 20. The sequence
is constructed as the combination of two phases. The first phase, called the demonstration phase
(demo phase), starts with the BOS token and continues with a series of demo tokens equal in quantity
to the sampled object quantity. Following the demo tokens is the Trigger token (T), indicating the
end of the demo phase and the beginning of the response phase (resp phase). The resp phase consists
of a series of resp tokens equal in number to object quantity. The EOS token follows the resp tokens,
denoting the end of the sequence.

During the initial model training, we include all tokens in the autoregressive loss. During model
evaluation and DAS trainings, we only consider tokens in the resp phase—which are fully determined
by the demo phase. During model trainings, we hold out the object quantities 4, 9, 14, and 17. A trial
is considered correct when all resp tokens and the EOS token are correctly predicted by the model
after the trigger. We include three variants of this task differing only in their demo and resp token
types.

Multi-Object Task: there are 3 demo token types {D1, D2, D3} with a single response token type,
R. The demo tokens are uniformly sampled from the 3 possible token types. An example
sequence with a object quantity of 2 could be: "BOS D3 D1 T R R EOS"

Single-Object Task: there is a single demo token type, D, and a single response token type, R. An
example with a object quantity of 2 is: "BOS D D T R R EOS"

Same-Object Task: there is a single token type, C, used by both the demo and resp phases. An
example with a object quantity of 2 would be: "BOS C C T C C EOS".

For some transformer trainings, we include Variable-Length (VL) variants of each task to break
count-position correlations. In these variants, each token in the demo phase has a 0.2 probability of
being sampled as a unique "void" token type, V, that should be ignored when determining the object
quantity of the sequence. The number of demo tokens will still be equal to the object quantity when
the trigger token is presented. As an example, consider the possible sequence with a object quantity
of 2: "BOS V D V V D T R R EOS".

3.2 MODEL ARCHITECTURES

The recurrent models in this paper consist of Gated Recurrent Units (GRUs) (Cho et al., 2014),
and Long Short-Term Memory networks (LSTMs) (Hochreiter & Schmidhuber, 1997). These
architectures both have a Markovian, hidden state vector that bottlenecks all predictive computations
following the structure:

ht+1 = f(ht, xt) (1)
x̂t+1 = g(ht+1) (2)

Where ht is the hidden state vector at step t, xt is the input token at step t, f is the recurrent function
(either a GRU or LSTM cell), and g is a multi-layer perceptron (MLP) used to make a prediction,
denoted x̂t+1, of the token at step t+ 1. We contrast the recurrent architectures against transformer
architectures (Vaswani et al., 2017; Touvron et al., 2023; Su et al., 2023) in that the transformers use
a history of input tokens, Xt = [x1, x2, ..., xt], at each time step, t, to make a prediction:

x̂t+1 = f(Xt) (3)

Where f now represents the transformer architecture. We show results from 2 layer, single attention
head transformers that use RoPE positional encodings (Su et al., 2023). Refer to Supplement A.4
and Figure 6 for more model and architectural details. We consider transformers with No Positional

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Encodings (NoPE) in Supplemental section A.4. Except for in the training curves in Figure 5, we
first train the models to >99.99% accuracy on their respective tasks before performing analyses.
The models are evaluated on 15 sampled sequences of each of the 16 trained and 4 held out object
quantities. We train 6 model seeds for each training condition. Model seeds that failed to achieve
this standard were dropped from the analyses, including 3 model seeds from the LSTM models in
the Same-Object task and one seed from the transformer models in each of the Single-Object and
Same-Object tasks.

3.3 SYMBOLIC ALGORITHMS (SAS)

In this work, we examine the alignment of 3 different SAs to the models’ distributed representations.

1. Up-Down Program: uses a single numeric variable, called the Count, to track the difference
between the number of demo tokens and resp tokens at each step in the sequence. It also
contains a Phase variable to determine whether it is in the demo or resp phase. The program
ends when the Count is equal to 0 during the resp phase.

2. Up-Up Program: uses two numeric variables—the Demo Count and Resp Count—to
track quantities at each step in the sequence. It uses a Phase variable to track which phase it
is in. This program increments the Demo Count during the demo phase and increments the
Resp Count during the resp phase. It ends when the Demo Count is equal to the Resp Count
during the resp phase.

3. Context Distributed (Ctx-Distr) Program: queries a history of inputs at each step in the
sequence to determine when to stop rather than encoding a cumulative quantity variable.
A more specific version of this program (that appears to emerge under some conditions)
is is one in which the program assigns a value of 1 to each demo token and a -1 to each
resp token (or visa-versa) and computes their combined sum at each step in the sequence to
determine the count. This program outputs the EOS token when the sum is 0.

We include Algorithms 1, 2, and 3 in the supplement which show the pseudocode used to implement
the Up-Down, Up-Up, and Ctx-Distr programs in simulations. Refer to Figure 1 for an illustration of
the Up-Down strategy and the more specific version of the Ctx-Distr strategy that is only observed in
some transformers.

It is important to note that there are an infinite number of causally equivalent implementations of
these programs. For example, the Up-Down program could immediately add and subtract 1 from
the Count at every step of the task in addition to carrying out the rest of the program as previously
described. We do not discriminate between programs that are causally indistinct from one another in
this work.

3.4 DISTRIBUTED ALIGNMENT SEARCH (DAS)

DAS is a hypothesis testing framework for finding alignments between distributed systems and
SAs (also referred to as causal abstractions) by performing interchange interventions (equivalently
referred to as causal interventions, patches, or substitutions) (Geiger et al., 2021; 2023). For all DAS
experiments, we freeze the model weights before performing the analysis.

In general, DAS measures the degree of alignment between the best subspace of a distributed model’s
representations with the variables from a specified SA. The method uses causal interventions to both
train the alignment and to make claims about the degree of alignment. For a given variable from the
SA, DAS learns an orthogonal rotation matrix,R ∈ Rm×m, that orients a subspace of the distributed
representations along a subset of the dimensions in the representation, allowing the subspace to
be freely interchanged between representations. The method relies on the notion of counterfactual
behavior to train the rotation matrix. For a given SA, we know what the program’s behavior should
be after performing a causal intervention. This counterfactual behavior can be used as the training
signal for the rotation matrices. The matrices are trained to convergence and are then validated on
unseen causal interventions to determine the success of the alignment.

Concretely, we uniformly sample a time point from two separate sequences respectively. These time
points are t for what we will call the target sequence and u for the source sequence, where target
refers to the sequence and representations that will be intervened upon, and source refers to the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Overlap Decision 
Boundary

Overlap 
Solution

Nonlinear 
2D Solution

Nonlinear 2D 
Decision 
Boundary

1D Solution

2D Solution

1D Decision 
Boundary

2D Decision 
Boundary

(a) (b) (c)

(d) (e)

(f)

PC 0

P
C

 1

PC 0

P
C

 1

Figure 3: (a) and (b) Theoretical neural solutions to the numeric tasks. The purple arrows represent
incoming demo tokens, the darker arrows indicate the trigger token, the lighter colored arrows indicate
increments to the response tokens, the green dot indicates the starting point. (d) and (e) show the
first two principal components of a Same-Object and Multi-Object GRUs. Multiple trajectories are
shown, each point is a projected latent state in a trajectory. The lines trace individual trajectories.
(See Appendix 17 and 15 for details.) (c) IIA for the full hidden state substitutions described for
the Ctx-Distr program, and the DAS IIA for the Last Value alignment (see Figure 9 for expanded
details). VL stands for the Variable-Length variants of the task in the x-labels. (f) IIA for the attention
interventions. Results from the two layers in each model seed are sorted based on superior IIA and
then averaged over seeds.

sequence and representations that will be harvested from for the intervention. We run the model on
each sequence until time point t and u respectively. We then take the latent representations from
a prespecified layer in the model at these points t and u. We refer to these representations as the
target and source vectors, htrg

t ∈ Rm and hsrc
u ∈ Rm, where m is the number of neurons in each

distributed representation. We then rotate htrg
t and hsrc

u usingR resulting in rtrgt and rsrcu , and then
we replace a pre-specified number of dimensions in rtrgt with the same dimensions from rsrcu . Lastly
we apply the inverse of the rotation to rtrgu resulting in a new vector, denoted hv

t . This can be written
formally as:

hv
t = R−1((1−D)Rhtrg

t +DRhsrc
u ) (4)

Where D ∈ Rm×m is a diagonal, binary matrix used to isolate the desired set of dimensions to
replace. In this work, we pre-specify the number of non-zero entries in D to be half of m. The indices
of these non-zero dimensions in D are unimportant as the orthogonal matrix can equivalently learn
each basis in any row order. Finally, we discard hsrc

u and allow the model to continue making token
predictions from point t in the target sequence using hv

t . We use the counterfactual behavior (tokens)
of the SA as the training sequence in the autoregressive loss to train the rotation matrix.

Once our rotation matrix has converged, we can evaluate the quality of the alignment using the
accuracy of the model’s predictions on the counterfactual outputs in held out causal interventions.
This accuracy has been referred to as the Interchange Intervention Accuracy (IIA) in previous work
(Geiger et al., 2023).

For the LSTM architecture, we perform DAS on a concatenation of the h and c recurrent state vectors.
In the GRUs, we operate on the recurrent hidden state. In the transformers, we operate on the hidden
state following the first transformer layer (see Figure 6). Unless otherwise stated, we use 10000
intervention samples for training and 1000 samples for validation and testing. We uniformly sample
object quantities and intervention time points, t and u, for both the original and source sequences
in the training, validation, and testing sets. We orthogonalize the rotation matrix using PyTorch’s
orthogonal parameterization with default settings. We train the rotation matrix for 1000, with a batch
size of 512, selecting the checkpoint with the best validation performance for analysis. We use a
learning rate of 0.003 and an Adam optimizer.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Interchange intervention accuracy (IIA) on variables from different symbolic programs for
different tasks faceted by architecture type. The displayed IIA in the Up-Down program is taken
from the Count variable. The IIA in the Up-Up program is taken as the better performing of the two
possible count variables for each model type respectively. All IIA measurements show the proportion
of trials in which the model successfully predicts all counterfactual R and EOS tokens following a
causal intervention.

3.5 ADDITIONAL INTERVENTIONS

A sufficient experiment to demonstrate the lack of use of a cumulative count variable is to look
for unchanged behavior after performing a full activation vector substitution on relevant hidden
representations. Concretely, our main test for the Ctx-Distr strategy is to replace a full hidden state at
time step t with the full hidden state at time step u from a different set of inputs. We provide further
detail in Supplement A.5 as to why this experiment is sufficient for the claim of a time-distributed
solution. We trivially apply these interventions on the recurrent hidden states in the RNNs, and we
apply these interventions to the hidden states from Layer 1 in the transformer architectures. Results
are displayed as Ctx-Distr in Figure 4. If the model is using the Ctx-Distr program, we would expect
the models’ subsequent token predictions to be unaffected by this intervention. We include a further
DAS analysis to align the Last Value variable in the Ctx-Distr program (representing the increment
value of the previous input token). These alignments are applied to the embeddings in the GRUs
and to the embeddings that are projected into the k and v vectors in the Transformers. We leave the
pre-query embeddings unperturbed, further demonstrating the anti-Markovian hidden states.

In an attempt to localize the transformers’ computations to a single attention layer, we include
attention interventions that directly substitute the outputs of the self-attention module from time u to
time t. We perform two intervention variants and report the average of their results in Figure 3(f).
Intervention 1: Replace the attention output at a non-terminal step in the resp phase with the attention
output taken from a terminal step. The expected counterfactual output is the EOS token. Intervention
2: Replace the attention output at an EOS step with the output from a non-terminal step in the resp
phase. The expected prediction is a resp token.

We also explore a direct substitution of individual artificial neuron activations in the Multi-Object
trained models. In these experiments, we directly substitute the activation value of a specific neuron
at time step t with the value of the same neuron at time step u from a different sequence. We
include an additional, single model activation intervention on the activations of neurons 12 and 18
from the LSTM shown in Figure 2, where we substitute both values in the interventions. In all
direct interventions detailed in this section, we evaluate the model’s IIA on counterfactual behavior
assuming a transfer of the Count.

4 RESULTS

4.1 SYMBOLIC ALGORITHMS

Figure 4 shows DAS performance as a function of the SA used in the alignment. In the Multi-Object
recurrent models, we see that the most aligned SA is the Up-Down program. The results are compared
against the Up-Up program and the Ctx-Distr program which have significantly lower IIAs. We use

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

this as evidence in favor of the interpretation that the recurrent models develop a count up, count
down strategy to track quantities within the task.

Target CountHidden SizeTraining Epoch Intervention Count Distance(a) (b) (c) (d)

Figure 5: In all panels, the IIA comes from DAS using the Count variable in the Up-Down program
on held out data. The models are all Multi-Object GRUs. (a) Both task accuracy and IIA over the
course of training for different sizes of the recurrent state. (b) Converged IIA for the GRUs as a
function of increasing hidden state sizes. (c) The DAS IIA where the x-axis shows the target count
(the count before the intervention) and the colors denote the source count (the count that is transferred
into the representation during the intervention). The curves are averaged over all models considered
in panel (b). The cyan, dashed line represents the mean IIA over all interventions for a given target
count—highlighting the greater number of samples for interventions on smaller numbers. (d) DAS
IIA as a function of the absolute difference between the target and source counts. The line styles
indicate different model sizes. Both panels (c) and (d) show that the contents of the interventions
smoothly affect the IIA.

To determine how the RoPE transformers perform the task, we first look at the attention weights for
both of its two layers (see Figure 10). The resp and EOS queries give surprisingly little attention
to the resp tokens. We perform substitutions of non-terminal hidden states in the response phase
to find that the model’s predictions are largely unaffected. The results of these interventions are
the Ctx-Distr bars in Figure 4. We include an additional DAS analysis on the Last Value variable
from the specific version of the Ctx-Distr program in the GRUs and RoPE Transformers. The
resulting IIA for these Multi-Object transformers was a value of 0.827. We also examine a set of
transformers trained on the Variable-Length variant of the Multi-Object task to break count-position
correlations. These Variable-Length transformers achieved an IIA of 0.960 for the same DAS analysis
(see Figure 9). The lower IIA of the Multi-Object transformers is consistent with the notion that they
rely, in part, on a positional readout to solve the task. In an attempt to elucidate the processing layer
in which the distributed counting operation occurs, we included direct attention interventions (see
Figure 3(f)). These interventions show the degree to which the EOS decision can be localized to
a single attention head. The lower IIAs for the Variable-Length transformers is consistent with an
interpretation that they have a stronger tendency to spread their EOS decision across both layers. We
provide an additional theoretical analysis with simulations of 1 layer No Positional Encoding (NoPE)
transformers in Supplement A.4 where we show that we can add and subtract from the transformer’s
predicted count using the strength-value of the demo tokens to add and the resp tokens to subtract.

We performed direct substitutions of individual activation values in the models’ representations. Of
all the neurons and models we analyzed, the best IIA was 0.399. This IIA was achieved in the LSTM
model where we intervened on both the activations for neurons 12 and 18 shown in Figure 2. We
use Figure 2 to highlight the difficulty of directly analyzing neural activations, and the importance of
learning the rotation in DAS. Interpreting and intervening on the raw activations can be difficult and
be misleading.

4.2 TASKS

An interesting result is the impact of demonstration token type on the resulting alignment of the
recurrent models with the Up-Down program. Figure 4 shows that recurrent models trained on
the Same-Object task—in which the demo tokens are the same type as the resp tokens—have poor
alignment with any of the proposed SAs. We use this result to highlight the significance of the unified,
interchangeable numeric representations found in the Multi-Object and Single-Object tasks.

We present a number of theoretical neural solutions to the counting task in Figure 3 as examples of
possible neural solutions to each of the tasks. The Overlap Solution, shown in blue in Panel 3(a), is an

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

example of how some solutions may fail to align with the Up-Down solution. In the Overlap Solution,
we see that the Count is entangled with the phase of the trial due to the overlap of the trajectory on
the vertical axis. In this model, we would be unable to distinguish between a count of n in the demo
phase and a count of n+ 1 in the response phase at the overlapping points in the trajectories. We do
not make claims that this is how the Same-Object models are solving the task, but merely provide the
theoretical models as ways that it could solve the task.

4.3 MODEL SIZE, LEARNING TRAJECTORIES, AND SYMBOLIC GRADIENCE

Figure 5 shows that although many model sizes can solve the Multi-Object task, increasing the
number of dimensions in the hidden states of the GRUs improves IIA in alignments with the Up-
Down program. We can also see in Figure 5 that the larger models tend to have less graded alignments.
We examine the symbolic alignments over the course of training in Figure 5. Of note is the correlation
between alignment and performance. This is especially pronounced in the larger models. And we
note the relatively flat curves of the alignment trajectories after the models solve the task.

We now provide a deeper analysis of the symbolic alignments with neural systems, where we
highlight the graded nature of the neural symbols. Figure 5 shows that the GRU models trained on
the Multi-Object task have worse IIA when the quantities involved in the intervention are larger,
and when the intervention quantities have a greater absolute difference. We point out that the task
training data forces the models to have more experience with smaller numbers, as they necessarily
interact with smaller numbers every time they interact with larger numbers. This is perhaps a causal
factor for the more graded representations at larger numbers. The DAS training data suffers from
a similar issue, where we use a uniform sampling of the object quantities that define the training
sequences and then we uniformly sample the intervention indices from these sequences. This results
in a disproportionately large number of training interventions containing smaller values.

5 DISCUSSION/CONCLUSION

In this work we used causal methods to demonstrate the existence of symbol-like number variables
within NN solutions to numeric equivalence tasks. We showed that these numeric neural variables
emerge purely from an NTP objective and represent abstract information that is only latent in the task
structure. These findings are a proof of principle that neural systems do not need explicit exposure to
discrete numeric symbols nor built in counting principles for symbol-like representations of number
to emerge.

We also demonstrated differences in the high-level solutions used by different model architectures
in different tasks. Namely, we showed that increasing the dimensionality of the GRUs improved
their symbolic alignment, we showed that transformers solved the tasks by recomputing relevant
information at each step in the sequence—contrasted against the cumulative count variables in the
recurrent models—and we showed that different solutions arise in the Same-Object Task compared to
the Multi-Object and Single-Object variants. An interesting phenomenon in the LLM literature is
the effect of model scale on performance (Brown et al., 2020; Kaplan et al., 2020). Although our
scaling results are for GRUs on toy tasks, they are provocative for understanding why size might
improve autoregressive results. Perhaps increased dimensionality allows the models to find more
symbol-like, disentangled solutions when solving their NTP objectives. This is consistent with the
early learning and strong correlation between performance and symbolic alignment demonstrated
in larger models in Figure 5. We conjecture the possibility that this result can be explained by the
lottery ticket hypothesis (Frankle & Carbin, 2019) combined with lazy learning dynamics (Jacot et al.,
2020). Perhaps the majority of what these models learn are linear functions of their initial features,
and increasing the dimensionality of the model increases the number of potential pathways/features
that the model can use to solve the task.

We are unsure if the "stateless", time-distributed solution exhibited by the transformers generalizes
beyond the counting tasks presented in this work. It is possible that this finding is representative of
a more general principle—that transformers avoid solutions that use cumulative, Markovian state
variables. We provide an analysis in Supplement A.4 of a one-layer transformer without positional
encodings trained on a variant of the Single-Object task without a BOS token, and without a T
token. We experimentally and mathematically support the idea that this model solves the task by

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

assigning opposite numeric values to the demo and resp tokens and averaging their values at each
step in the attention. From the relatively low alignment with the Last Value variable in Figure 3(c), it
seems as though the Multi-Object RoPE transformers might rely, in part, on a positional readout. We
managed to get a much higher alignment when using transformers trained on a variant of the task that
breaks correlations between the position and Count of the sequence. We find it worth noting that the
Ctx-Distr solution exhibited by the transformers lends itself to the type of solutions that might be
predicted by RASP-L (Zhou et al., 2023).

GRUs and LSTMs trained on the Same-Object Task failed to align with any of the SAs that we
presented in this paper. To address this, we included Figure 3 showing the first two principal
components of a Same-Object GRU model over different trial trajectories. We included theoretical
models as examples of why some neural solutions might align with some SAs whereas others might
not. We note that SAs that use memorization could trivially align with each of the recurrent models.
One such solution might consist of a single variable that maps a tuple of the Count-Phase combination
to a prediction. In this case, DAS would simply learn to transfer the complete state at each causal
intervention. We are only concerned with solutions that are causally distinct from one another. We
leave a more thorough, causal analysis of the Same-Object models to future work.

An important contribution of our work is in demonstrating the potential for misleading conclusions in
the absence of causal analysis methods. We can see this in Figure 2 where a subset of the activations
for the LSTM might be mistaken as sufficient causal features to change the model’s count. Similarly,
the PCA projections in Figure 3 might fail to provide predictions of neural alignment, and the attention
weights shown in Figures 10- 13 might mislead on token value interchangeability. We wish to be
clear, however, that these non-causal techniques are still fruitful as tools for scientific exploration and
conceptualization, complementing causal methods.

We now expand upon the learning trajectories displayed in Figure 5. We can see from the performance
curves that both the models’ task performance and IIA begin a transition away from 0% at similar
epochs and plateau at similar epochs. This result can be contrasted with an alternative result in which
the alignment curves significantly lag behind the task performance of the models. Alternatively,
there could have been a stronger upward slope of the IIA following the initial performance jump
and plateau. In these hypothetical cases, a possible interpretation could have been that the network
first develops more complex solutions or unique solutions for many different input-output pairs and
subsequently unifies them over training. The pattern we observe instead is consistent with the idea
that the networks are biased towards the simplest, unified strategies early in training. Perhaps our
result is expected from works like Saxe et al. (2019) and Saxe et al. (2022) which show an inherent
tendency for NNs trained via gradient descent to find solutions that share network pathways. This
would provide a driving force towards the demo and resp phases sharing the same representation of a
Count variable.

We demonstrated that the neural variables illuminated by DAS are not always perfectly symbolic,
often exhibiting a smooth, graded influence from the content of the variables being intervened
upon. We interpret these results as a reminder that representations in distributed systems exist on a
continuum despite seemingly discrete, symbolic performance on tasks. These results have an analogy
to children’s number cognition in which children may appear to possess a symbol-like understanding
of exact numbers and their associated principles, but when probed deeper, the symbol-like picture
falls apart (Wynn, 1992; Davidson et al., 2012). Perhaps the graded nature of the neural variables
reinforces the utility of thinking about network solutions as trajectories in a dynamical system. We
use our findings as a reminder that although NNs may discover approximations to interpretable,
symbol-like solutions, their representations are still ultimately graded—adding nuance to the effort of
SA alignment.

We conclude by noting that it is, by definition, always possible to represent an ANN with a SA due
to the fact that ANNs are implemented using computer (symbolic) programs. Our goal of NN-SA
alignment is to find simplified, unified ways of understanding complex ANNs. If an ANN has poor
alignment for a specific region of the symbolic variables, we argue that the SA simply needs to be
refined. In our case, any lack of alignment for numbers beyond the training range of 20 can be solved
by adding a limit to the Count variable in the Up-Down program. Any choice of SA refinement is
dependent on the goals of the work. We leave further refinements to the algorithms presented in this
work to future directions.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma,
J Santamaría, Mohammed A Fadhel, Muthana Al-Amidie, and Laith Farhan. Review of deep
learning: concepts, CNN architectures, challenges, applications, future directions. Journal of
Big Data, 8(1):53, 2021. ISSN 2196-1115. doi: 10.1186/s40537-021-00444-8. URL https:
//doi.org/10.1186/s40537-021-00444-8.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Freya Behrens, Luca Biggio, and Lenka Zdeborová. Counting in small transformers: The delicate
interplay between attention and feed-forward layers, 2024. URL https://arxiv.org/abs/
2407.11542.

Adithya Bhaskar, Dan Friedman, and Danqi Chen. The heuristic core: Understanding subnetwork
generalization in pretrained language models, 2024. URL https://arxiv.org/abs/2403.
03942.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine
translation. CoRR, abs/1406.1078, 2014. URL http://arxiv.org/abs/1406.1078.

Kathryn Davidson, Kortney Eng, and David Barner. Does learning to count involve a semantic
induction? Cognition, 123(1):162–173, 2012. ISSN 0010-0277. doi: https://doi.org/10.1016/j.
cognition.2011.12.013.

Alessandro Di Nuovo and Tim Jay. Development of numerical cognition in children and ar-
tificial systems: a review of the current knowledge and proposals for multi-disciplinary re-
search. Cognitive Computation and Systems, 1(1):2–11, 2019. doi: https://doi.org/10.1049/ccs.
2018.0004. URL https://ietresearch.onlinelibrary.wiley.com/doi/abs/
10.1049/ccs.2018.0004.

Alessandro Di Nuovo and James L. McClelland. Developing the knowledge of number
digits in a child-like robot. Nature Machine Intelligence, 1(12):594–605, 2019. ISSN
2522-5839. doi: 10.1038/s42256-019-0123-3. URL http://dx.doi.org/10.1038/
s42256-019-0123-3.

Quan Do and Michael E. Hasselmo. Neural Circuits and Symbolic Processing. Neurobiology of
learning and memory, 186:107552, December 2021. ISSN 1074-7427. doi: 10.1016/j.nlm.2021.
107552. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121157/.

Nadine El-Naggar, Andrew Ryzhikov, Laure Daviaud, Pranava Madhyastha, and Tillman Weyde.
Formal and empirical studies of counting behaviour in relu rnns. In François Coste, Faissal
Ouardi, and Guillaume Rabusseau (eds.), Proceedings of 16th edition of the International Con-
ference on Grammatical Inference, volume 217 of Proceedings of Machine Learning Research,
pp. 199–222. PMLR, 10–13 Jul 2023. URL https://proceedings.mlr.press/v217/
el-naggar23a.html.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse,
Sam McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah.
Toy models of superposition. Transformer Circuits Thread, 2022. https://transformer-
circuits.pub/2022/toy_model/index.html.

11

https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2407.11542
https://arxiv.org/abs/2407.11542
https://arxiv.org/abs/2403.03942
https://arxiv.org/abs/2403.03942
http://arxiv.org/abs/1406.1078
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ccs.2018.0004
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ccs.2018.0004
http://dx.doi.org/10.1038/s42256-019-0123-3
http://dx.doi.org/10.1038/s42256-019-0123-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121157/
https://proceedings.mlr.press/v217/el-naggar23a.html
https://proceedings.mlr.press/v217/el-naggar23a.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

M. Fang, Z. Zhou, S. Chen, and J. L. McClelland. Can a recurrent neural network learn to count
things? Proceedings of the 40th Annual Conference of the Cognitive Science Society, pp. 360–365,
2018.

Jerry A. Fodor. The Language of Thought. Harvard University Press, 1975. ISBN 978-0-674-51030-2.
Google-Books-ID: XZwGLBYLbg4C.

Jerry A. Fodor. Psychosemantics: The Problem of Meaning in the Philosophy of Mind. MIT Press,
1987.

Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1):3–71, March 1988. ISSN 0010-0277. doi: 10.
1016/0010-0277(88)90031-5. URL https://www.sciencedirect.com/science/
article/pii/0010027788900315.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019. URL https://arxiv.org/abs/1803.03635.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural
networks. CoRR, abs/2106.02997, 2021. URL https://arxiv.org/abs/2106.02997.

Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah D. Goodman. Finding
alignments between interpretable causal variables and distributed neural representations, 2023.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
associations in auto-regressive language models, 2023. URL https://arxiv.org/abs/
2304.14767.

Peter Gordon. Numerical cognition without words: Evidence from Amazonia. Science, 306(5695):
496–499, 2004. ISSN 00368075. doi: 10.1126/science.1094492.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https:
//doi.org/10.1162/neco.1997.9.8.1735.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks, 2020. URL https://arxiv.org/abs/1806.07572.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020.

Neehar Kondapaneni and Pietro Perona. A Number Sense as an Emergent Property of the Manipulat-
ing Brain. arXiv, pp. 1–23, 2020. URL http://arxiv.org/abs/2012.04132.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:e253, January
2017. ISSN 0140-525X, 1469-1825. doi: 10.1017/S0140525X16001837. URL https:
//www.cambridge.org/core/journals/behavioral-and-brain-sciences/
article/building-machines-that-learn-and-think-like-people/
A9535B1D745A0377E16C590E14B94993.

Gary Marcus. Deep learning: A critical appraisal, 2018. URL https://arxiv.org/abs/
1801.00631.

J. L. McClelland, D. E. Rumelhart, and PDP Research Group (eds.). Parallel Distributed Processing.
Volume 2: Psychological and Biological Models. MIT Press, Cambridge, MA, 1986.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2023. URL https://arxiv.org/abs/2202.05262.

William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as competition
of sparse and dense subnetworks, 2023. URL https://arxiv.org/abs/2303.11873.

12

https://www.sciencedirect.com/science/article/pii/0010027788900315
https://www.sciencedirect.com/science/article/pii/0010027788900315
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/2106.02997
https://arxiv.org/abs/2304.14767
https://arxiv.org/abs/2304.14767
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1806.07572
http://arxiv.org/abs/2012.04132
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/building-machines-that-learn-and-think-like-people/A9535B1D745A0377E16C590E14B94993
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/building-machines-that-learn-and-think-like-people/A9535B1D745A0377E16C590E14B94993
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/building-machines-that-learn-and-think-like-people/A9535B1D745A0377E16C590E14B94993
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/building-machines-that-learn-and-think-like-people/A9535B1D745A0377E16C590E14B94993
https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/1801.00631
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2303.11873


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Khaled Nasr, Pooja Viswanathan, and Andreas Nieder. Number detectors spontaneously emerge in a
deep neural network designed for visual object recognition. Science Advances, 5(5):1–11, 2019.
ISSN 23752548. doi: 10.1126/sciadv.aav7903.

Allen Newell. Physical symbol systems. Cognitive Science, 4(2):135–183, April 1980. ISSN
0364-0213. doi: 10.1016/S0364-0213(80)80015-2. URL https://www.sciencedirect.
com/science/article/pii/S0364021380800152.

Allen Newell. The knowledge level. Artificial Intelligence, 18(1):87–127, January 1982. ISSN
0004-3702. doi: 10.1016/0004-3702(82)90012-1. URL https://www.sciencedirect.
com/science/article/pii/0004370282900121.

Chris Olah. Distributed representations: Composition superposition. https://
transformer-circuits.pub/2023/superposition-composition, 2023.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017. doi:
10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi: 10.23915/distill.
00010. https://distill.pub/2018/building-blocks.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. CoRR, abs/1912.01703, 2019. URL http://arxiv.org/abs/1912.
01703.

Judea Pearl. An Introduction to Causal Inference. The International Journal of Biostatistics, 6(2):7,
February 2010. ISSN 1557-4679. doi: 10.2202/1557-4679.1203. URL https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC2836213/.

Zenon W. Pylyshyn. Computation and cognition: Issues in the foundations of cognitive sci-
ence. Behavioral and Brain Sciences, 3(1):111–169, 1980. ISSN 1469-1825. doi: 10.1017/
S0140525X00002053. Place: United Kingdom Publisher: Cambridge University Press.

D. E. Rumelhart, J. L. McClelland, and PDP Research Group (eds.). Parallel Distributed Processing.
Volume 1: Foundations. MIT Press, Cambridge, MA, 1986.

Silvester Sabathiel, James L. McClelland, and Trygve Solstad. Emerging Representations for
Counting in a Neural Network Agent Interacting with a Multimodal Environment. Artificial Life
Conference Proceedings, ALIFE 2020: The 2020 Conference on Artificial Life:736–743, 07 2020.
doi: 10.1162/isal_a_00333. URL https://doi.org/10.1162/isal_a_00333.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116
(23):11537–11546, May 2019. ISSN 1091-6490. doi: 10.1073/pnas.1820226116. URL http:
//dx.doi.org/10.1073/pnas.1820226116.

Andrew M. Saxe, Shagun Sodhani, and Sam Lewallen. The neural race reduction: Dynamics of
abstraction in gated networks. 2022.

Adam Scherlis, Kshitij Sachan, Adam S. Jermyn, Joe Benton, and Buck Shlegeris. Polysemanticity
and capacity in neural networks, 2023. URL https://arxiv.org/abs/2210.01892.

Paul Smolensky. On the proper treatment of connectionism. 1988.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023.

13

https://www.sciencedirect.com/science/article/pii/S0364021380800152
https://www.sciencedirect.com/science/article/pii/S0364021380800152
https://www.sciencedirect.com/science/article/pii/0004370282900121
https://www.sciencedirect.com/science/article/pii/0004370282900121
https://transformer-circuits.pub/2023/superposition-composition
https://transformer-circuits.pub/2023/superposition-composition
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836213/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836213/
https://doi.org/10.1162/isal_a_00333
http://dx.doi.org/10.1073/pnas.1820226116
http://dx.doi.org/10.1073/pnas.1820226116
https://arxiv.org/abs/2210.01892


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Alexander Trott, Caiming Xiong, and Richard Socher. Interpretable counting for visual question
answering. 6th International Conference on Learning Representations, ICLR 2018 - Conference
Track Proceedings, pp. 1–18, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sakenis, Jason
Huang, Yaron Singer, and Stuart Shieber. Causal mediation analysis for interpreting neural nlp:
The case of gender bias, 2020. URL https://arxiv.org/abs/2004.12265.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite precision
rnns for language recognition, 2018. URL https://arxiv.org/abs/1805.04908.

Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah D. Goodman. Inter-
pretability at scale: Identifying causal mechanisms in alpaca, 2024. URL https://arxiv.
org/abs/2305.08809.

Karen Wynn. Children’s acquisition of the number words and the counting system. Cognitive
psychology, 24(2):220–251, 1992.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Learning to count objects in natural images
for visual question answering. 6th International Conference on Learning Representations, ICLR
2018 - Conference Track Proceedings, pp. 1–17, 2018.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization.
In ICLR, NeurIPS Workshop, 2023. URL https://arxiv.org/abs/2310.16028.

14

http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/1805.04908
https://arxiv.org/abs/2305.08809
https://arxiv.org/abs/2305.08809
https://arxiv.org/abs/2310.16028


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 ADDITIONAL FIGURES

Residual Stream 0

Attention Outputs

Residual Stream 1

Hidden States

FFN Outputs

Norm & 
RoPE &

Single Head Self Attn

Add

Norm & 
Feed Forward Network

Add

Residual Stream 0

Attention Outputs

Residual Stream 1

Hidden States

FFN Outputs

Norm & 
RoPE &

Single Head Self Attn

Add

Norm & 
Feed Forward Network

Add

Logits

Norm &
Linear

Identity

Layer 1

Layer 2

Embeddings

Identity

Figure 6: Diagram of the main transformer architecture used in this work. The white rectangles
represent activation vectors. The arrows represent model operations. Unless otherwise stated, all
interchange interventions were performed on the Hidden State activations from Layer 1 or the
Residual Stream 0 within Layer 1 for the key and value projections. All normalizations are Layer
Norms (Ba et al., 2016).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Object Quantity Object Quantity

Figure 7: Left: The model performance on the tasks. This result includes the Multi-Object, Single-
Object, and Same-Object tasks. Each object quantity includes 15 sampled sequences (even when
only one configuration exists for that object quantity). 3 model seeds were dropped from the LSTM
models in the Same-Object task due to lower than 99% accuracy. One seed was dropped from the
transformer models in each the Single-Object and Same-Object tasks for the same reason. Right: The
GRU performance on the tasks facetted by model size (hidden dimensionality). This result is only for
GRUs train on the Multi-Object task.

Mult
i-O

bje
ct

Sin
gle

-Obje
ct

Sa
me-O

bje
ct

Task

0.0

0.5

1.0

Al
ig

nm
en

t A
cc

ur
ac

y

GRU
Count
Demo Count
Phase
Resp Count

Mult
i-O

bje
ct

Sin
gle

-Obje
ct

Sa
me-O

bje
ct

Task

LSTM

Mult
i-O

bje
ct

Sin
gle

-Obje
ct

Sa
me-O

bje
ct

Task

Transformer

Figure 8: Interchange intervention accuracy (IIA) on variables from different symbolic programs for
different tasks faceted by architecture type. The y-axis shows the proportion of trials in which the
model predicts all counterfactual tokens correctly after a causal intervention for the corresponding
variable on held out data.

A.2 MODEL DETAILS

All artificial neural network models were implemented and trained using PyTorch (Paszke et al., 2019)
on Nvidia Titan X GPUs. Unless otherwise stated, all models used an embedding and hidden state size
of 20 dimensions. To make the token predictions, each model used a two layer multi-layer perceptron
(MLP) with GELU nonlinearities, with a hidden layer size of 4 times the hidden state dimensionality
with 50% dropout on the hidden layer. The GRU and LSTM model variants each consisted of a single
recurrent cell followed by the output MLP. Unless otherwise stated, the transformer architecture
consisted of two layers using Rotary positional encodings (Su et al., 2023). Each model variant used
the same learning rate scheduler, which consisted of the original transformer (Vaswani et al., 2017)
scheduling of warmup followed by decay. We used 100 warmup steps, a maximum learning rate of

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 9: Interchange intervention accuracy (IIA) comparing the Ctx-Distr results from the GRU and
Transformer architectures displayed in Figure 4 with the DAS alignment to the Last Value variable.
We include results from a transformer trained on the Variable-Length version of the Multi-Object
Task. The Ctx-Distr interventions consist of full replacements of the hidden states to determine the
degree to which the models accumulate a state encoding of the important information for the task.
The Last Value variable is a value of +1, -1, or 0 assigned to each incoming token. We apply DAS on
the model embeddings, and only to the embeddings leading into the key and value projections in the
transformers. We can see that although the Variable-Length and Multi-Object transformers both use
an anti-Markovian solution (they avoid using a cumulative state) as demonstrated by the Ctx-Distr
interventions, the Variable-Length transformers align much better to the Last Value variable. This is
consistent with an interpretation in which the Multi-Object transformers rely, to some degree, on a
positional encoding readout. This reliance is broken when the task breaks the correlation between
position and count. We include the GRU results to show that the GRUs also, to some degree, assign a
numeric value to each incoming embedding independent of the phase.

0.001 , a minimum of 1e-7, and a decay rate of 0.5. We used a batch size of 128, which caused each
epoch to consist of 8 gradient update steps.

A.3 DAS TRAINING DETAILS

A.3.1 ROTATION MATRIX TRAINING

To train the DAS rotation matrices, we applied PyTorch’s default orthogonal parametrization to a
square matrix of the same size as the model’s state dimensionality. PyTorch creates the orthogonal
matrix as the exponential of a skew symmetric matrix. In all experiments, we selected the number
of dimensions to intervene upon as half of the dimensionality of the state. We chose this value
after an initial hyperparameter search that showed the number of dimensions had little impact on
performance between 5-15 dimensions. We sampled 10000 sequence pairs and for each of these
pairs, we uniformly sampled corresponding indices to perform the interventions. We excluded the
BOS, and EOS tokens from possible intervention sample indices. When intervening upon a state in
the demo phase, we uniformly sampled 0-3 steps to continue the demo phase before changing the
phase by inserting the trigger token. We used a learning rate of 0.003 and a batch size of 512.

A.3.2 SYMBOLIC PROGRAM ALGORITHMS

A.4 SIMPLIFIED TRANSFORMER

The self-attention calculation for a single query qr ∈ Rd from a response token, denoted by the
subscript r, is as follows:

Attention(qr,K, V ) = V
(
softmax(

K⊤qr√
d

)
)
=

n∑
i=1

e
q⊤r ki√

d∑n
j=1 e

q⊤r kj√
d

vi =

n∑
i=1

sri∑n
j=1 s

r
j

vi (5)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 1 One sequence step of the Up-Down Program

q ← Count
p← Phase
y ← input token
if y == BOS then ▷ BOS is beginning of sequence token

q ← 0, p← 0
return sample(D) ▷ sample a demo token

else if y ∈ D then ▷ D is set of demo tokens
q ← q + 1
return sample(D)

else if y == T then ▷ T is trigger token
p← 1

else if y == R then ▷ R is response token
q ← q − 1

end if
if (q == 0) & (p == 1) then

return EOS ▷ EOS is end of sequence token
end if
return R

Algorithm 2 One sequence step of the Up-Up Program

d← Demo Count
r ← Resp Count
p← Phase
y ← input token
if y == BOS then ▷ BOS is beginning of sequence token

d← 0, r ← 0, p← 0
return sample(D) ▷ sample a demo token

else if y ∈ D then ▷ D is set of demo tokens
d← d+ 1
return sample(D)

else if y == T then ▷ T is trigger token
p← 1

else if y == R then ▷ R is response token
r ← r + 1

end if
if (d == r) & (p == 1) then

return EOS ▷ EOS is end of sequence token
end if
return R

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 3 One sequence step of the specific Ctx-Distr Program

v ← list of previous values excluding the most recent step
ℓ← Last Value ▷ The value of the most recent token
p← Phase ▷ 0 indicates the demo phase, 1 is the response phase
y ← input token

v.append(ℓ)
s← SUM(v)
if y == BOS then ▷ BOS is beginning of sequence token

ℓ← 0, p← 0
return sample(D) ▷ sample a demo token

else if s ≤ 0 and p == 1 then ▷ Sum is 0 or less in the response phase
return EOS ▷ EOS is end of sequence token

else if y == T or y == R then ▷ T is trigger token, R is response token
p← 1
ℓ← −1
return R

else if y ∈ D then ▷ D is set of demo tokens
ℓ← 1

end if

if p == 1 then
return R

else
return sample(D)

end if

BO
S D1 D3 D1 D3 D2 T R R R R R

EO
S

BOS
D1
D3
D1
D3
D2

T
R
R
R
R
R

EOS

Layer 0

BO
S D1 D3 D1 D3 D2 T R R R R R

EO
S

BOS
D1
D3
D1
D3
D2

T
R
R
R
R
R

EOS

Layer 1

Figure 10: Attention weights for a single transformer with two layers using rotary positional encodings
trained on the Multi-Object Task. Queries are displayed on the vertical axis in order of their
appearance starting at the top. Keys are displayed on the horizontal axis starting from the left. Queries
are only able to attend to themselves and preceding keys.

Where d is the dimensionality of the model, n is the sequence length, K ∈ Rd×n is a matrix of

column vector keys, V ∈ Rd×n is a matrix of column vector values, and sri = e
q⊤r ki√

d , using r to
denote the token type that produced q. We refer to sri vi as the strength value of the ith token for the
query qr.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

BO
S D2 D1 D3 D1 D2 T R R R R R

EO
S

BOS
D2
D1
D3
D1
D2

T
R
R
R
R
R

EOS

Layer 0

BO
S D2 D1 D3 D1 D2 T R R R R R

EO
S

BOS
D2
D1
D3
D1
D2

T
R
R
R
R
R

EOS

Layer 1

Figure 11: Attention weights for a single transformer with two layers using rotary positional encodings
trained on the Variable-Length variant of the Multi-Object Task. Queries are displayed on the vertical
axis in order of their appearance starting at the top. Keys are displayed on the horizontal axis starting
from the left. Queries are only able to attend to themselves and preceding keys.

BO
S D2 D2 D3 D1 D3 T R R R R R

EO
S

BOS
D2
D2
D3
D1
D3

T
R
R
R
R
R

EOS

Layer 0
BO

S D2 D2 D3 D1 D3 T R R R R R
EO

S

BOS
D2
D2
D3
D1
D3

T
R
R
R
R
R

EOS

Layer 1

Figure 12: Attention weights for a single transformer model seed with two layers and no positional
encodings (NPE) trained on the Multi-Object Task. Queries are displayed on the vertical axis in order
of their appearance starting at the top. Keys are displayed on the horizontal axis starting from the left.
Queries are only able to attend to themselves and preceding keys.

In a transformer without positional encodings, each of the queries for the response tokens will produce
equal strength values to one another for a given key-value pair. Thus, under the assumption that the
attention mechanism is performing a sum of the count contributions from each token in the sequence,
we should be able to use the sri vi to increment and decrement the number of tokens the model will
produce for a given sequence in the following way:

IncrementedAttention(qr,K, V ) =
1

srr +
∑n

j=1 s
r
j

(
srrvr +

n∑
i=1

sivi
)

(6)

Where the subscript r denotes the strength sr and value vr were calculated from a response key-value
pair. Similarly, we can decrement the count using a key-value pair from a demonstration token, D, in

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

BO
SD3 D2 D2 D1 D2 T R R R R R

EO
S

BOS
D3
D2
D2
D1
D2

T
R
R
R
R
R

EOS

Layer 0

D3 D2 D1 D3 D2 R R R R R
EO

S

D3
D2
D1
D3
D2

R
R
R
R
R

EOS

Layer 0

Figure 13: Left: Attention weights for a single transformer model seed with one layer and no
positional encodings. Right: Attention weights for a single transformer seed with one layer and no
positional encodings trained without the BOS and trigger token types. In both figures, queries are
displayed on the vertical axis in order of their appearance in the sequence starting at the top. Keys are
displayed on the horizontal axis starting from the left. Queries are only able to attend to themselves
and preceding keys.

the following way.

DecrementedAttention(qr,K, V ) =
1

srD +
∑n

j=1 s
r
j

(
srDvD +

n∑
i=1

sivi
)

(7)

As a sanity check we use single layer transformers without positional encodings and add and subtract
from the transformer’s count using the strength values as described in this section. We are able to
change the position at which it produces the EOS token with 100% accuracy.

A.5 ADDITIONAL INTERVENTIONS CONTINUED

We detail in this section why our activation transfers are sufficient to demonstrate that the transformers
use a solution that re-references/recomputes the relevant information to solve the tasks at each step
in the sequence. The hidden states in Layer 1 are a bottleneck at which a cumulative counting
variable must exist if it were to use a strategy like the Up-Down or Up-Up programs. This is because
the Attention Outputs of Layer 1 are the first activations that have had an opportunity to cross
communicate between token positions. This means that the representations between the Residual
Stream 1 of Layer 1 up to the Residual Stream 0 of Layer 2 cannot have read off a cumulative state
from the previous token position other than reading off the positional information from the previous
positional encodings. The 2-layer architecture is then limited in that it has only one more opportunity
to transfer information between positions—the attention mechanism in Layer 2. Thus, if a hidden
state at time t were to have encoded a cumulative representation of the count that will be used by the
model at time t+ 1, that cumulative representation must exist in the activation vectors between the
Residual Stream 1 in Layer 1 and the Residual Stream 0 of Layer 2. If it is using such a cumulative
representation, then when we perform a full activation swap in the Layer 1 hidden states then the
resulting predictions should be influenced by the swap. As Figures 4 and 14 indicate, the resulting
transformer predictions are mostly unchanged by the intervention, demonstrating a recomputing of
information at each step in the task.

A.6 VARIABLE-LENGTH TASK VARIANTS

Here we include additional tasks to prevent the transformers with positional encodings from learning
a solution that relies on reading out positional information. We introduce Variable-Length variants of

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

each of the Multi-Object, Single-Object, and Same-Object tasks. In the Variable-Length versions,
each token in the demo phase has a 0.2 probability of being sampled as a unique "void" token type,
V, that should be ignored when determining the object quantity of the sequence. The number of
demo tokens will still be equal to the object quantity when the trigger token is presented. We include
these void tokens as a way to vary the length of the demo phase for a given object quantity, thus
breaking correlations between positional information and object quantities. As an example, consider
the possible sequence with a object quantity of 2: "BOS V D V V D T R R EOS".

We show the transformer performance and the IIA for the Ctx-Distr interventions in Figure 14.
Although we do not make strong claims about the manner in which these transformers solve these
new tasks, we do highlight the fact that the transformers can no longer use a direct positional
encoding readout to achieve 100% accuracy. These results are consistent with the hypothesis that the
transformers are using the more specific, summing version of the Ctx-Distr strategy to solve these
tasks, much as the no-positional encoding transformers do.

Object Quantity
Figure 14: Left: The transformer performance on variable length variants of the 3 tasks. Right: The
interchange intervention accuracy using the Ctx-Distr program for the transformer models on the
variable length tasks. In both panels, 4 model seeds were dropped from the models in the variable
length Same-Object task due to lower than 99% accuracy, and one seed was dropped from the variable
length Single-Object task for the same reason.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.7 PRINCIPLE COMPONENTS ANALYSIS

pc1

pc
0

Multi-Object GRU

BOS
D0
D1
D2
EOS
R
T

Figure 15: Principal Components Analysis of a single GRU model seed including hidden state
representations over 10 trials for each object quantity from 1 to 20 in the Multi-Object task variant.
Green points indicate the start of a plotted trajectory, black points indicate an intermediate step, and
red points indicate the end of a plotted trajectory. The blue line plots a single trajectory from start to
finish with a object quantity of 3. Similarly, the orange and green lines follow single trajectories of 7
and 15 respectively.

pc1

pc
0

Single-Object GRU
BOS
D0
EOS
R
T

Figure 16: Principal Components Analysis of a single GRU model seed including hidden state
representations over 10 trials for each object quantity from 1 to 20 in the Single Object task variant.
Green points indicate the start of a plotted trajectory, black points indicate an intermediate step, and
red points indicate the end of a plotted trajectory. The blue line plots a single trajectory from start to
finish with a object quantity of 3. Similarly, the orange and green lines follow single trajectories of 7
and 15 respectively.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

pc1

pc
0

Same-Object GRU

BOS
C (Phase 0)
C (Phase 1)
EOS
T

Figure 17: Principal Components Analysis of a single GRU model seed including hidden state
representations over 10 trials for each object quantity from 1 to 20 in the Same-Object task variant.
Green points indicate the start of a plotted trajectory, black points indicate an intermediate step, and
red points indicate the end of a plotted trajectory. The blue line plots a single trajectory from start to
finish with a object quantity of 3. Similarly, the orange and green lines follow single trajectories of 7
and 15 respectively.

24


	Introduction
	Related Work
	Methods
	Numeric Equivalence Tasks
	Model Architectures
	Symbolic Algorithms (SAs)
	Distributed Alignment Search (DAS)
	Additional Interventions

	Results
	Symbolic Algorithms
	Tasks
	Model Size, Learning Trajectories, and Symbolic Gradience

	Discussion/Conclusion
	Appendix / supplemental material
	Additional Figures
	Model Details
	DAS Training Details
	Rotation Matrix Training
	Symbolic Program Algorithms

	Simplified Transformer
	Additional Interventions Continued
	Variable-Length Task Variants
	Principle Components Analysis


