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Abstract

This paper studies the problem of learning an
agent policy that can follow various forms of in-
structions. Specifically, we focus on multi-modal
instructions: the policy is expected to accomplish
tasks specified in 1) a reference video, a.k.a. one-
shot demonstration; 2) a textual instruction; 3)
an expected return. Canonical goal-conditioned
imitation learning pipelines require strong super-
vision (labeled data) in the form of ⟨τ, c⟩ (τ de-
notes a trajectory (s1, a1, . . . ) and c denotes an
instruction) from all modalities, which can be
hard to obtain. To this end, we propose GROOT-
1.5 to learn from mostly unlabeled data τ plus
a relatively small amount of data with strong
supervision ⟨τ, c⟩. The key idea is a novel al-
gorithm to learn a shared intention space from
the trajectories τ themselves and labels c, i.e.,
semi-supervised learning. We evaluate GROOT-
1.5 on various benchmarks including open-world
Minecraft, Atari games, and robotic manipulation
and it has demonstrated strong steerability and
performance on these tasks.

1. Introduction
Developing policies that can follow multi-modal instruc-
tions to solve open-ended tasks in open-world environments
is a long-standing challenge both in robotics and AI re-
search. With the development of large-scale pre-training
(Brown et al., 2020; Baker et al., 2022; Brohan et al., 2022),
the research paradigm for instruction-following policies has
shifted from reinforcement learning to supervised learning.
As a major approach within supervised learning, researchers
collect extensive demonstration data and annotate each
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demonstration with multi-modal instructions, such as videos
(Duan et al., 2017; Jang et al., 2022) and texts (Padalkar
et al., 2023; Lynch et al., 2023), through hindsight relabeling.
The performance of such policies can increase with the size
of the dataset. However, annotating demonstration data with
high-quality, diverse instructions is prohibitively expensive,
making it difficult to scale up these methods. In contrast,
another line of work (Lynch et al., 2020b; Ajay et al., 2020;
Cai et al., 2023b) avoids collecting any additional anno-
tated data and instead learns from the demonstration data
in a self-supervised manner, such as by jointly learning
an encoder and an instruction-following policy through a
(variational) auto-encoding framework (Kingma & Welling,
2013). The learned policy typically conditions on the target
image (Lynch et al., 2020b) or the reference video (Cai et al.,
2023b). On the surface, a reference video can represent any
task, but due to the ambiguity of the video, the learned latent
space may collapse into a specific meaning. For example,
the encoder model might capture the dynamics between
adjacent frames in a video, thus learning a latent repre-
sentation of the action sequence, a process we refer to as
"mechanical imitation." While this can significantly reduce
the final action reconstruction objective, such a latent space
is not desired. Some efforts mitigate this issue by imposing
constraints on the latent space using techniques such as dis-
cretization (Van Den Oord et al., 2017) and KL divergence
to a prior distribution. However, these still cannot guaran-
tee consistency of human and agent’s video interpretations,
which may hurt the agent’s steerability.

In this paper, we advocate for learning of a latent inten-
tion space that aligns with human priors by utilizing both
instruction-labeled and pure demonstration data. Intuitively,
observing the instruction labels yields a deterministic inten-
tion distribution rather than merely observing demonstration
data. Hence, we propose an uncertainty-driven intention
learning framework that aligns instruction data with demon-
stration data within the intention space, thereby reducing
the degrees of freedom in learning the latent intention space.
Furthermore, this framework also supports learning behav-
iors from extensive unlabeled demonstration data. We have
tested this methodology across three representative envi-
ronments, including Atari Games, Language Table, and
Minecraft, demonstrating its robust capability to follow
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multi-modal instructions. Our experiments further show
that extensive unsupervised demonstration data can signifi-
cantly enhance the agent’s steerability and performance.

2. Preliminaries and Problem Formulation
We explore the development of instructable agents capable
of following open-ended instructions to interact with envi-
ronments and accomplish diverse tasks. An instruction may
take various forms, such as text, image, video, audio, or
expected returns, and is intended to convey behavioral in-
tentions or specify tasks within the environment. Following
common practice, we model the environment as a Markov
Decision Process (MDP) ⟨S,A,P, I,R, γ⟩. Formally, the
objective is to learn a policy π : S ×I×A → R+ that max-
imizes the expected cumulative reward Ei∼I [

∑∞
t=0 γ

trt],
where rt denotes the reward obtained at each time step t.
Given the complexity of designing effective reward func-
tions, deriving such a policy from play data presents a more
scalable approach.

We can collect two types of data from the web: a large set
of unlabeled demonstrationsDdem = {τi}M and a relatively
small set of annotated demonstrations Dins = {(τi, ci)}N ,
where N ≪M . An annotated demonstration refers to one
that is accompanied by a label, such as text or cumulative
episode rewards, which explains the behavior or outcome
of the demonstration. Our goal is to learn a shared latent
intention space Z , a multimodal instruction encoder e(z|c),
and an intention-conditioned policy π(a|s, z). Note that,
c can also be a video instruction. We define intention as
a minimum succinct representation that can guide the pol-
icy to reconstruct the next action given past states. And
an instruction c of a demonstration can contain multiple
intentions. Prior works have demonstrated the feasibility
of learning these components for image and video instruc-
tions from Ddem using self-supervised techniques such as
latent variable generative models (Cai et al., 2023b) and
the hindsight relabeling trick (Lifshitz et al., 2023). How-
ever, the resulting intention space often lacks sufficient con-
straints, offering no semantic guarantees. To address this
challenge, it is advantageous to introduce auxiliary knowl-
edge about human biases, which can help structure the inten-
tion space more effectively. This paper explores the problem
of jointly learning a semantically rich intention space from
both annotation-free and annotated demonstrations.

3. Uncertainty-driven Intention Learning
Framework

We begin with an illustrative example on the language table
platform (Lynch et al., 2023), depicted in Figure 1. Here,
a demonstration is annotated with the instruction slide
the red pentagon below the blue moon. From the

initial state of the demonstration, multiple potential inten-
tions can be inferred. Because it is possible to manipulate
each pair of objects. Observing the full state sequence signif-
icantly reduces the uncertainty in the intention distribution,
although ambiguities remain. However, any possible in-
tention, whether object-centric or position-centric, could
independently reconstruct the action sequence. When the
textual annotation is also considered, the intention distribu-
tion is expected to converge sharply, aligning closely with
the specific semantic intention we seek to capture. Based on
these insights, we propose a novel uncertainty-driven inten-
tion learning framework. This framework is predicated on
two main principles: (1) a more deterministic intention dis-
tribution should influence the shaping of a more uncertain
one; (2) the intention distribution characterized by greater
uncertainty should, in turn, constrain the learning of the
more deterministic one. We find that the Kullback–Leibler
(KL) divergence metric aptly fulfills these criteria. Further
details on the dataset and training pipeline will be discussed
subsequently.

We seek to build a dataset Dunc = {(τ, ca ≺ cb)} where
each data point contains two different views ca and cb of
the demonstration τ , ca ≺ cb indicates that ca is a subset
of cb in terms of the induced underlying intentions. We
show that such data points can be generated from both the
demonstration-only data and the annotated demonstration
data. As for each demonstration τ from Ddem or Dins, we
can always create a training sample (τ, s1:|τ | ≺ s1). This is
because one can infer more deterministic intentions when
observing the whole states s1:|τ | (video) compared with only
observing the start state s1. As for the annotated demonstra-
tion (τ, c) from Dins, we can additionally create a sample
(τ, c ≺ s1:|τ |) for training, where c can either be a language
instruction or the cumulative rewards of

∑|τ |
t=0 rt. Generally,

a demonstration may owe many reasonable explanations
while the annotated instruction is only one of them, which
makes c ≺ s1:|τ | satisfied.

Our framework comprises two learnable modules: an en-
coder eϕ(z|c) that maps the instruction to an intention distri-
bution, and an intention-conditioned policy πθ(a|s, z) that
interacts with the environment, with ϕ and θ denoting the
parameters. We optimize the modules by targeting the con-
straint behavior cloning objective in an end-to-end manner:

minE(τ,ca≺cb)∼Dunc [LBC + βLKL] , (1)

LBC = Ez∼eϕ(·|ca)

 |τ |∑
t=1

− log πθ(at|s1:t, z)

 , (2)

LKL = DKL (eϕ(z|ca) ∥ eϕ(z|cb)) (3)

where β is the balancing coefficient. This formulation links
the behavior, intention, and instruction through the gra-
dient from the action reconstruction loss. The KL diver-
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“slide	the	red	pentagon below	the	blue	moon.”

“slide	the	red	pentagon
below	the	blue	moon.”

𝑝(𝑧|𝑡𝑒𝑥𝑡) 𝑝(𝑧|𝑠!:#) 𝑝(𝑧|𝑠!)

“slide	the	red	pentagon
below	the	blue	moon.”

“push	the	red	pentagon
to	bottom	left.”

“point	the	arm	at	the	
yellow	star.”

“separate	the	green	cube
and	the	yellow	star.”

𝑧! 𝑧! 𝑧$

𝒛𝟐𝒛𝟏 𝒛𝟑 𝒛𝟒
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Figure 1: An example to illustrate the uncertainty of intention space given different conditions. We present an example of a
text-annotated demonstration in the language table. From this example, we have three types of instructions: text, video, and the initial
state. When observing the text and video, one can infer the intentions z1 and {z1, z2}, respectively. Given only the initial state, a broader
range of potential intentions, such as z3 and z4, can be inferred. For clarity, we use text to approximately describe an intention z in the
language table, although it is important to note that the intention itself is not textual.

gence ensures that knowledge is transferred from eϕ(z|ca)
to eϕ(z|cb), enhancing the generalization and improving
the shared intention space. It is important to note that our
objective, while similar, is inherently different from the
frameworks of VAE and CVAE. In the traditional VAE
framework, the latent variable z is always sampled from
the posterior conditioned on the complete state sequence
s1:|τ |. In contrast, our framework allows for sampling from
a distribution conditioned on text if the text specifies more
deterministic intentions than the states of the corresponding
demonstration. In such cases, the encoding distributions
conditioned on text and states are represented in the KL
divergence as DKL(eϕ(z|text) ∥ eϕ(z|s1:|τ |)). Details of
model architecture can be found in Appendix B.

4. Capabilities and Analysis
Environment and Benchmarks. We conduct experiments
across three types of representative environments: clas-
sical 2D game-playing benchmarks on Atari (Bellemare
et al., 2013), 3D open-world game-playing benchmarks
on Minecraft (Johnson et al., 2016; Lin et al., 2023), and
Robotics benchmarks on language table simulators (Lynch
et al., 2023). These three simulators are used to assess
whether GROOT-1.5 can be effectively steered by re-
turns (Chen et al., 2021; Mnih et al., 2015), reference videos,
and textual instructions, respectively. Note that a key chal-
lenge in the language table environment is its significant
ambiguity in the intention that may arise from the given
demonstration, shown in Figure 1;

Training Datasets. We leverage existing datasets from

Table 1: Evaluation results of GROOT-1.5 on Robotics lan-
guage table tasks (Lynch et al., 2023) and open-world Minecraft
tasks (Guss et al., 2019) with instructions on different modalities.

Group Type Task Description Success Rate (%)

Language
Table text

block to block 44
block to absolute location 42
block to block relative location 40
block to relative location 46
separate 92

overall 53

Open-world
Minecraft video

Chop tree 100
Mine stone 100
Collect seeds 100
Build pillar 100
Hoe and plant wheat 100
Hunt animals 90
Cross the river by boat 90
Dig down three fill one up 60
Craft furnace with crafting_table 60

overall 89

Agarwal et al. (2020) in the d4rl (Fu et al., 2020) format
for Atari games containing approximately 10M frames per
Atari game. We further normalize the returns across the
whole datasets with µ = 0, σ = 1. For the language table,
we utilize a dataset (Lynch et al., 2023) comprising 181k
trajectories across six different types of tasks. In Minecraft,
we employ the contractor dataset collected by Baker et al.
(2022) consisting of about 160M frames, albeit without any
annotations.

Evaluation Methods. We will test two evaluation methods:
(1) conditioning the intention distribution on a reference
video, and (2) conditioning the intention distribution on in-
structions from other modalities, such as text and returns.
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Figure 2: Ablation study on the training dataset in Atari games. “A”, an abbreviation for “annotation”, refers to a dataset containing
30% demonstrations, each associated with a returns label. The dataset “S”, standing for “semi-supervised”, extends “A” by including a
large number of label-free demonstrations. We evaluate the performance of each trained policy when conditioned on both returns and
reference videos. When conditioning on returns, the normalized returns are directly input into the encoder. When conditioning on video,
we first retrieve a demonstration labeled with similar returns (error < 0.1) and then input the state sequence.

“put	blue	moon	next	to	
the	blue	pentagon”

“push	the	green	cube	
towards	the	blue	cube”

“slide	the	green	star	
next	to	the	green	cube”

Reference	Video Rollout	Trajectory

Figure 3: GROOT-1.5 can infer the intention behind the reference video and follow it to complete tasks. The left visualizes three
reference videos along with their textual descriptions. The right figure displays the policy’s rollout trajectories when conditioned on the
reference videos. The white dashed line represents the arm’s movement trajectory, the red dashed circle highlights the arm’s final position.

The first method is applicable across all environments. Ad-
ditionally, in the language table environment, we can sample
intentions from a text-conditioned distribution, and in Atari
games, from a returns-conditioned distribution.

Experimental Results. The steerability of GROOT-1.5 in
different contexts is shown in Figure 2, Figure 3 and Table 1.

On Atari Atlantis and Breakout games, we first use the
labeled dataset (have returns, with about 30% of the full
demonstrations) to train GROOT-1.5-A. We further use the
left unlabeled 70% demonstration to joint train GROOT-
1.5-S. As depicted in Figure 2, GROOT-1.5-S significantly
outperforms GROOT-1.5-A, which indicates that incorpo-
rating additional label-free demonstrations can enhance both
the performance and the steerability of GROOT-1.5.

GROOT-1.5 is capable of inferring the underlying intention
from a reference video and using it to complete tasks. As
depicted in Figure 3, GROOT-1.5 with different reference
videos (annotated with different texts) in language table
accurately infers intentions and successfully executes tasks
to “put the blue moon to the blue pentagon” and “push
the green cube towards the blue cube”. Upon viewing the
third reference video, GROOT-1.5 seems like inferring the

intention “move the green star to the middle left”, diverging
from the original explanation of the reference video. This
discrepancy, although somewhat expected, highlights the
inherent ambiguity within the inferred intention space.

Experimental results in Table 1 also show GROOT-1.5 can
achieve lots of basic skills in 3D open-world Minecraft.
We also list the GROOT-1.5’s capability to follow lan-
guage instructions on robotics tasks. GROOT-1.5 can fol-
low instructions with different modality and show great
generalization performance on different types of tasks and
environments.

5. Conclusions
In this paper, we investigate how to jointly learn a latent
intention space and a multi-modal instruction-following
policy under a weak supervision setting. We propose an
uncertainty-driven intention learning framework, imple-
mented using the Transformer architecture for GROOT-1.5.
We demonstrate the ability of GROOT-1.5 to comprehend
three modalities—text, video, and returns—across three
representative environments.
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A. Related Works
Learning Policy in Diverse Domains. Learning policies to address sequential control problems in both real and virtual
environments presents a significant challenge. Researchers have devised numerous algorithms across varied domains such
as robotic manipulation (Yu et al., 2019; Lynch et al., 2023), video games (Bellemare et al., 2013; Guss et al., 2019), and
embodied navigation (Hong et al., 2020; Savva et al., 2019; Huang et al., 2023). These algorithms are typically categorized
based on their reliance on the reward function, falling into two main categories: reinforcement learning (RL) and imitation
learning (IL). In the case of video games offering dense rewards, such as those on the ALE platform (Bellemare et al., 2013),
practitioners often deploy online RL-based algorithms capable of surpassing human performance (Mnih et al., 2015; Badia
et al., 2020). Nonetheless, the primary limitations of this approach include low training efficiency, risky environmental
interactions, and limited generalization to new tasks. These issues make it challenging to apply such methods in physical
(Padalkar et al., 2023) or embodied environments (Guss et al., 2019), where both a reliable rewards function and inexpensive
environment interactions are absent. Under these constraints, imitation learning becomes the predominant research approach.
As a form of supervised learning, IL benefits from the efficiency of batch processing and the capability to scale up with
large datasets, leveraging the computational power of Transformers (Zhang & Chai, 2021; Pashevich et al., 2021; Jang et al.,
2022). The RT-X series (Brohan et al., 2022; 2023; Padalkar et al., 2023) has made strides in addressing robotic manipulation
tasks by fitting a Transformer to a vast corpus of expert demonstrations through imitation learning, showcasing remarkable
zero-shot generalization. (Baker et al., 2022) has developed a Transformer-based policy in Minecraft using internet-scale
gameplay videos and refined it to tackle the diamond challenge successfully. Riding on this momentum, (Schmidhuber,
2019) suggests framing the reinforcement learning problem within a supervised learning context. Furthermore, (Chen et al.,
2021; Lee et al., 2022) have introduced the "decision transformer", designed to model the joint distribution of rewards, states,
and actions derived from offline experiences, underscoring the potential for unified policy learning within the Transformer
architecture.

Learning Policy to Follow Instructions. Equipping a policy with the capability to follow instructions is crucial for
developing a generally capable agent. A common approach involves collecting language annotations from offline demon-
strations and training a language-conditioned policy (Abramson et al., 2020; Brohan et al., 2022; 2023; Padalkar et al.,
2023; Lynch et al., 2023; Reed et al., 2022; Cai et al., 2023a; Huang et al., 2023; Raad et al., 2024; Wang et al., 2023a;b;
2024). Given the compositional nature of natural language, this strategy enables the policy to generalize to some unseen
tasks. However, acquiring and processing high-quality language annotations can be prohibitively expensive. Alternatively,
some researchers advocate using anticipated future outcomes as instructions to guide the policy. (Majumdar et al., 2022)
proposed learning an image-goal conditioned navigation policy using the hindsight relabeling trick (HER) (Andrychowicz
et al., 2017), and subsequently aligning the goal space with the textual modality. (Lifshitz et al., 2023) employed a similar
strategy in Minecraft environments to train a policy that addresses open-ended tasks. Diverging from the use of the HER
trick, (Lynch et al., 2020a; Ajay et al., 2020) utilize generative latent variable models to process label-free demonstrations,
thereby enabling a plan-conditioned policy. (Cai et al., 2023b) extends this approach within the Minecraft setting by
directly employing a posterior encoder to interpret reference videos during inference. Compared with these methodologies,
fewer studies have investigated policy learning under weak supervision. (Lynch & Sermanet, 2020) suggests learning a
shared latent space, conditioning the decoder on both languages and goal images, with the latter being generated using the
HER trick. In contrast, (Jang et al., 2022) substitutes the goal image with a video label under a fully supervised learning
framework. Our work focuses on developing a universally instructable policy learning framework under weak supervision
settings.

B. Model Architecture
This section outlines the architectural design choices employed in our approach. GROOT-1.5 utilizes a Transformer
encoder-decoder architecture, augmented with a probabilistic latent space. We detail the components of the model in a
structured sequence: extract representations, encode instructions, and decode actions. More details on model selection are
provided in the Appendix.

Extract Representations. This paragraph elaborates on the backbone networks used to extract representations from various
data modalities. We denote the modalities of image observation, language instruction, and expected returns as oi, ow, and or,
respectively. For vision inputs, we utilize a pre-trained Vision Transformer (ViT) (Dosovitskiy et al., 2020) initialized with
CLIP (Radford et al., 2021) weights. Specifically, the t−step image observation oi

t is resized to 224× 224 and processed to
extract 7× 7 patch embeddings xi

t =
〈
xi
t,[1], · · · , x

i
t,[49]

〉
. The video representation xv is then composed of the averages of
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these embeddings across the video frames, denoted as xv =
〈
avg(xi

1), · · · , avg(xi
T )

〉
, where avg(·) refers to spatial average

pooling to minimize computational overhead and T represents the video length. Textual inputs are processed using the
BERT encoder (Devlin et al., 2019) of the CLIP model. Rather than utilizing the [CLS] token as the final representation, we
retain all word embeddings generated by BERT as xw =

〈
xw
[1], · · ·

〉
. The BERT model parameters are kept frozen during

training. For the scalar-form modality of expected returns, we employ a simple Multi-Layer Perceptron (MLP) to process
these values, represented as xr ← MLP(or). These embeddings are then forwarded to subsequent modules.

Encode Multimodal Instructions with Non-Causal Transformer. Recent works (Reed et al., 2022; Lu et al., 2023; Team
et al., 2023) have demonstrated the Transformer’s effectiveness in capturing both intra-modal and inter-modal relationships,
which inspires us to adopt a unified Transformer encoder for encoding multi-modal instructions. This approach offers two
significant advantages: (1) It eliminates the need for designing separate architectures and tuning hyperparameters for each
modality. (2) It promotes the sharing of underlying representations across different modalities. Instructions are represented
as a sequence of embeddings. Prior to encoding, each embedding is augmented with a modality-specific marker. For instance,
video instructions are represented as ⟨xv

1 + [VID], · · · , xv
T + [VID]⟩, and textual instructions as ⟨xw

1 + [TXT], · · · ⟩. Both
[VID] and [TXT] are distinct learned embeddings. The encoder outputs a set of parameters defining an intention distribution,
denoted as Φ ← eϕ(c). Given that the desired intention distribution may be multimodal, we utilize a Gaussian mixture
model for the encoder’s output, represented as Φ = {π, µ, σ}, where π refers to a categorical distribution, and µ and σ are
the parameters for Gaussian components. We apply the Monte-Carlo sampling method with the implicit reparameterization
trick (Figurnov et al., 2018) to calculate the behavior cloning loss and KL loss in Equation 1 for stable gradients.

Decode Action with Causal Transformer. Given an intention z ∼ p(z|Φ) and a temporal sequence of perceptual
observations oi

1:t, the policy aims to decode the next action at. Following prior works (Baker et al., 2022; Cai et al., 2023b;
Raad et al., 2024), we employ the Transformer-XL model (Dai et al., 2019) in our policy network, which enables causal
attention to past memory states and facilitates smooth predictions. Additionally, we utilize the shared vision backbone to
extract vision representations, thereby representing perceptual inputs as xi

1:t. A significant challenge with this approach is
low efficiency: each new observation xi

t adds up to 49 tokens to the input sequence, substantially increasing memory and
computational demands. To address this issue, we introduce a pre-fusion mechanism inspired by (Abramson et al., 2020;
Lynch et al., 2023; Alayrac et al., 2022). Specifically, we deploy a lightweight cross-attention module XATTN(q = ·; kv = ·)
to perform spatial pooling on xi

t, using z as the query and
〈
xi
t,[1], · · · , x

i
t,[49]

〉
as the keys and values:

xz
t ← XATTN(q = z; kv = xi

t,[1], · · · , x
i
t,[49]). (4)

This pre-fusion mechanism not only reduces the sequence length but also enhances the integration of perceptual and intention
representations. Utilizing the intention-fused representations xz

1:t as the input sequence, we articulate the action decoding
process in an autoregressive manner:

at ← TransformerXL(xz
1, · · · , xz

t ). (5)
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