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Abstract

The problem of over-smoothing has emerged as a fundamental issue for Graph
Convolutional Networks (GCNs). While existing efforts primarily focus on en-
hancing the discriminability of node representations for node classification, they
tend to overlook the over-smoothing at the graph level, significantly influencing
the performance of graph classification. In this paper, we provide an explanation of
the graph-level over-smoothing phenomenon and propose a novel Adaptive Multi-
Viewed Subgraph Convolutional Network (MultiNet) to address this challenge.
Specifically, the MultiNet introduces a local subgraph convolution module that
adaptively divides each input graph into multiple subgraph views. Then a number
of subgraph-based view-specific convolution operations are applied to constrain the
extent of node information propagation over the original global graph structure, not
only mitigating the over-smoothing issue but also generating more discriminative
local node representations. Moreover, we develop an alignment-based readout
that establishes correspondences between nodes over different graphs, thereby
effectively preserving the local node-level structure information and improving
the discriminative ability of the resulting graph-level representations. Theoretical
analysis and empirical studies show that the MultiNet mitigates the graph-level
over-smoothing and achieves excellent performance for graph classification.

1 Introduction

Graph data analysis has become an important research area for deep learning, and has been widely
employed in various fields, including bioinformatics [36, 17], social networks [21, 22], and recom-
mendation systems [33, 9]. However, traditional neural networks are originally designed for grid-like
data, such as images or sequences. They struggle to handle graphs due to the irregular structures
and non-Euclidean properties of graph data. To address these limitations, Graph Neural Networks
(GNNs) have emerged as powerful tools for learning on graph-structured data.

In recent years, Graph Convolutional Networks (GCNs) have become the most popular architecture
in GNN research. The early spectral-based GCNs, such as the Spectral GNN [7], ChebNet [13],
and Vanilla GCN [18], interpret graphs as signals and define convolution operations in the spectral
domain. However, these methods are computationally expensive and rely on the eigenvalue spectrum
of the graph Laplacian matrix, making them less scalable. To improve the efficiency, an alternative
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line of spatial-based GCNs has been introduced recently, such as the GraphSAGE [16] and GIN [34]
that perform convolutions by aggregating the information from neighboring nodes without spectral
decomposition. While these spatial GCN approaches are usually computationally efficient, they still
suffer from several challenges.

One notable challenge for most existing GCNs is the over-smoothing phenomenon [20, 24, 8], where
an increasing number of layers leads to excessive propagation of node features across the global
graph structure. Since the information diffuses through multiple hops, the initially discriminative
local node-level structural features tend to lose their discriminative power, resulting in increasingly
similar node representations. This homogenization weakens the ability of GCNs to capture local
node differences and ultimately degrades the performance on node classification. To overcome the
shortcoming, a variety of mitigation strategies have been developed, including the normalization [25],
regularization [40], dynamic connections [26, 27], and residual connections [19, 10].

Nevertheless, most existing studies mainly investigate the convergence of node representations
within a single graph structure. The impact of over-smoothing at the graph level has not been
sufficiently explored by now. In this paper, we argue that deep GCNs also tend to generate extremely
similar representations for different graphs, leading to the graph-level over-smoothing and ultimately
influencing the performance of graph classification. This issue is due to the following two key factors.
First, when the node information propagates over multiple layers, the resulting node representations
tend to be increasingly similar, leading to a significant information loss of local distinct nodes.
For graphs with similar node information distributions, this will cause the node representations
over all graphs to converge. Second, the unordered nature of graph nodes forces GNNs to employ
permutation-invariant global readout functions, such as summation, mean, or max pooling, for
generating graph-level representations. However, the simplicity of these operations treats all nodes
equally, thereby further ignoring the distinct structural information of local nodes associated with
similar node representations. As a result, the graphs with structurally distinct local-level node features
may still produce similar graph-level representations, thereby decreasing the discriminative power of
graph classification models.

To indicate how the graph-level over-smoothing phenomenon influences the performance of GCNs,
Figure 1 reports the graph classification accuracy and the average cosine distance between graph
representations (defined in Section 5.3) with varying network depths, associated with three popular
GCN models. The results reveal that both the classification accuracies and the representation
diversities simultaneously degrade with the deeper network layers (i.e., more than eight layers), and
indicate that the models struggle to distinguish between different graph structures. This observation
provides empirical evidence that the graph-level over-smoothing arising in GCNs has a negative
influence on graph classification.

(a) The graph classification accuracy. (b) The average distance.

Figure 1: The impact of increasing layers on the MUTAG dataset.

The aim of this paper is to develop a novel Adaptive Multi-Viewed Subgraph Convolutional
Network (MultiNet), that can mitigate the influence of the graph-level over-smoothing problem
for graph classification tasks. The key innovation lies in a local subgraph convolution module as
well as an alignment-based readout mechanism. The former can restrict the excessive message
propagation, preserving local distinct node features and alleviating the feature homogenization.
The latter maintains the local information and structural information for the resulting graph-level
representations, enhancing the ability to distinguish different graphs. The main contributions of this
work are summarized as follows:
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• We propose a local subgraph convolution module that can adaptively divide the original input
graph into multiple structurally distinct subgraph views. Within each subgraph view, we define an
attention-based convolution operation to capture the discriminative local node features. Then we
introduce a feature fusion strategy that integrates the complementary information from different
subgraph perspectives. This design can effectively preserve the local distinct node information and
alleviate the node-level over-smoothing within each individual graph.

• We develop an alignment-based readout mechanism to overcome the limitations of traditional
global readout functions in preserving local features and structural information. By establishing
consistent cluster-level correspondences across different graphs, our method enables the use of a
more expressive readout function during graph aggregation, thereby enhancing the discriminative
capability of the learned graph representations. This mechanism effectively preserves local features
and structural distinctions extracted from the local subgraph convolution modules within the
graph-level representation, thus alleviating the graph-level over-smoothing problem.

• We provide both theoretical and empirical analyses, and demonstrate that the proposed MultiNet
can effectively alleviate the graph-level over-smoothing. Experiments on benchmark datasets
indicate that the MultiNet can outperform state-of-the-art methods on graph classification tasks.

This paper is organized as follows. Section 2 discusses the node-level and the graph-level over-
smoothing problem. Section 3 details the MultiNet model. Section 4 analyzes the mitigation effect of
the MultiNet. Section 5 presents experiments and results. Section 6 concludes this work.

2 The Over-smoothing Problem for GCNs

2.1 The Node-level Over-Smoothing Phenomenon

The over-smoothing phenomenon is a fundamental challenge in GCNs, where repeated message
passing causes node representations to become indistinguishable, ultimately impairing performance
on node-level tasks and potentially affecting graph-level tasks. Various works provide different
perspectives on the underlying mechanisms of the node-level over-smoothing. For example, [20]
models graph convolutional layers as a form of Laplacian smoothing, showing that deep networks
drive the node representations toward a space where they become indistinguishable. From a spectral
viewpoint, [24] interprets each graph convolution layer as a low-pass filter that attenuates the high-
frequency components of the graph signal. While effective for noise reduction, excessive filtering
blurs discriminative information, thereby hindering effective classification.

To address this issue, various strategies have been introduced. DropEdge [25] applies stochastic edge
removal as a form of implicit regularization. PairNorm [40] stabilizes feature diversity by preserving
pairwise distances between node embeddings. GraphCON [26] reformulates message passing as a
nonlinear dynamical system to enhance representation stability. G2 [27] introduces a gradient-based
gating mechanism that adaptively halts message propagation per node. Residual-based methods
like Res-GCN[19] and GCNII [10] incorporate skip connections to retain initial features throughout
the network. However, these approaches primarily target the node-level representations and do not
explicitly restrict information diffusion. In this work, we revisit the over-smoothing problem from a
graph-level perspective and present a method that effectively alleviates this phenomenon.

2.2 The Graph-Level Over-smoothing Phenomenon

While prior studies have primarily focused on the node-level over-smoothing problem, the graph-level
over-smoothing phenomenon remains underexplored. Although [31] introduces a strategy to alleviate
over-smoothing and applies it to graph classification tasks, it still primarily targets the node-level
issue and lacks experiments that characterize the graph-level over-smoothing. We argue that excessive
convolution across same-domain graphs can lead to indistinguishable graph representations, where
the representations of different graphs become excessively similar after the readout stage, making
it difficult for the model to differentiate between graphs and thereby impairing graph classification
performance. Here we begin with a formal definition, followed by theoretical analysis.

Definition 1 (The Graph-Level Over-Smoothing) Let G = {G1, G2, . . . , GN} denote a set of
undirected and connected graphs, and let H ∈ RN×d be the graph representation matrix after readout
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operation and Hi ∈ Rd be the graph representation of graph Gi. Define a similarity measure
µ : RN×d → R≥0 satisfying the following properties:

• a) ∃c ∈ Rd s.t. Hi = c for all graphs i ∈ {1, · · ·N} ⇔ µ(H) = 0, for H ∈ RN×d;

• b) µ(H + Z) ≤ µ(H) + µ(Z), for all H,Z ∈ RN×d.

If the representations of different graphs after multiple graph convolution layers tend to become
indistinguishable, i.e., µ(H) → 0, we say that the graph-level over-smoothing has occurred.

Assumption 1 (The Node Feature Distribution Consistency) Given any two graphs Gi, Gj ∈ G
with initial node feature matrices Xi and Xj , we assume that their feature distributions are statistically
consistent, especially in datasets drawn from a shared domain or labeling space. Specifically, the
average node feature vectors xi, xj of Xi and Xj satisfy xi ≈ xj , indicating that the node features
across graphs follow similar distributions.

In graph classification datasets, samples typically originate from similar domains, and node features
are represented as sparse one-hot encodings. Hence, it is reasonable to assume that the distributions
of node features across different graphs are largely consistent. In subsection 5.3 and Table 2, we
provide empirical evidence showing that node features in graph classification datasets from a specific
domain exhibit distributional consistency, thereby supporting the validity of Assumption 1.

Theorem 1 Under Assumption 1, excessive and unconstrained message passing, together with overly
simple readout functions, tends to lead to the graph-level over-smoothing.

Proof: According to the analysis in [20], the spectral radius of the normalized adjacency matrix
Ãi is 1, and its eigenvalues {λk}ni

k=1 satisfy λk ∈ (−1, 1] [18], where ni is the number of nodes in
graph Gi. Therefore, as the number of layers L increases, the terms corresponding to eigenvalues
with |λk| < 1 decay exponentially. As L → ∞, only the spectral component corresponding to
the dominant eigenvalue λk = 1 remains, leading to the over-smoothing problem. In this case,
considering the simplest form of a graph convolution layer, where the activation functions are linear
and the weight matrix is assumed to be the identity matrix, the node representations X(L)

i after L
layer convolutions will eventually converge to the direction related to the average feature vectors, i.e.,

lim
L→∞

X
(L)
i = 1ni

x⊤
i , (1)

where 1ni
is the all-ones vector. This convergence indicates that the feature differences between

nodes are smoothed out, leading to the loss of local-level information. Moreover, common readout
functions (such as summation, averaging, or maximizing) treat all nodes in the graph equally, losing
the ability to capture the structural information of the graph. For instance, consider the averaging
readout used to obtain the graph-level representations:

Hi =
1

ni

ni∑
k=1

X
(L)
ik , (2)

where k is the node index. Since node features tend to converge, using such a global readout function
is equivalent to directly averaging the original features, rendering the convolution operation ineffective
for distinguishing different graphs. According to Assumption 1, xi ≈ xj , we have Hi ≈ Hj , which
leads to µ(H) → 0. Therefore, the graph representations tend to become indistinguishable, and the
graph-level over-smoothing has occurred.

3 MultiNet: The Adaptive Multi-Viewed Subgraph Convolutional Network

3.1 The Overall Framework

In this paper, we propose a novel MultiNet to alleviate the graph-level over-smoothing problem.
As shown in Figure 2, the overall framework of the MultiNet consists of three main components:
the Global Graph Convolution, the Local Graph Convolution, and the Alignment-Based Readout.
First, the Global Graph Convolution layer performs initial feature abstraction. Then, the Local
Subgraph Convolution Module divides the graph into multiple subgraph views and applies adaptive
subgraph convolutions to extract discriminative local features, followed by integrating information
across views. Finally, the Alignment-Based Readout module aligns nodes across different graphs to
generate a more discriminative graph-level representation.
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Figure 2: Overall framework of the proposed MultiNet.

3.2 The Global Graph Convolution Operation

Let G(A,X) denote the input sample graph with n nodes, where A ∈ Rn×n is the adjacency matrix
and X ∈ Rn×d is the node feature matrix. For attributed graphs, the node features are initialized
using one-hot encodings of node labels. For unattributed graphs, we use one-hot encodings of node
degrees instead. In our proposed MultiNet, we begin by applying a global graph convolution layer
to the input graph G(A,X) to perform initial feature extraction, producing the initial node features.
For notational convenience, we denote the output of the global graph convolution as X(0) ∈ Rn×d(0)

.
Here we employ the basic convolution operation of the Vanilla GCN defined by [18], i.e.,

X(0) = σ
(
ÃXWG

)
. (3)

Here WG ∈ Rd×d(0)

is the learnable weight matrix of the graph convolution layer, and σ(·) is a
non-linear activation function (e.g., ReLU). The normalized adjacency matrix Ã is computed as
Ã = D̂−1/2ÂD̂−1/2, where Â = A+ I includes self-loops and D̂ is the degree matrix of Â.

3.3 The Local Subgraph Convolution Module

We define a novel local subgraph convolution module to adaptively capture local structural patterns
from multiple subgraph views. Specifically, the proposed local subgraph convolution module consists
of three key components, i.e., the Multi-View Division, the Adaptive Subgraph Convolution, and the
Cross-View Feature Fusion.

3.3.1 The Multi-View Subgraph Division

We propose a multi-view division strategy that adaptively assigns the graph into multiple local
subgraphs. Specifically, we use a graph convolution layer to learn an attention weight matrix
P ∈ Rn×m, where each element Pij represents the attention weight that softly assigns node i of the
original graph to the j-th subgraph view. A larger value of Pij implies that node i is more important
in the j-th subgraph view. This process enables diverse local substructure modeling and emphasizes
the relative importance of nodes across different perspectives. Formally,

P = softmax(ÃX(0)WP ), (4)

where WP ∈ Rd(0)×m is a learnable weight matrix for view assignment. The row-wise softmax
function ensures that the attention weights across all views for each node sum to 1.

In the l-th layer of subgraph convolution, we maintain a three-dimensional node representation tensor
H(l) ∈ Rn×m×d(l)

. We denote the slice corresponding to view j by H
(l)
j = H(l)

:,j,: ∈ Rn×d(l)

, so

that the tensor can be written compactly as H(l) = [H
(l)
1 , . . . ,H

(l)
m ]. To initialize the view-specific
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feature matrices, we weight the original node features using the learned attention matrix:

H
(0)
j = (diag(Pj))X

(0), j = 1, . . . ,m, (5)

where Pj ∈ Rn denotes the j-th column of the assignment matrix P , and diag(Pj) is the diagonal
matrix of Pj .

3.3.2 The Adaptive Subgraph Convolution Operation

Unlike the standard aggregation scheme of GCNs, we adopt a constrained message-passing strategy,
where the information propagation of each node is regulated by its attention score. While this
operation shares similarities with the Graph Attention Network (GAT, [32]), the attention scores
here are learned globally, reflecting the overall importance of each node within this view, rather than
computed from local neighborhoods. The updated representation is computed as

H
(l+1)
j = σ

(
Ã (diag(Pj))H

(l)
j W (l)

)
, (6)

where W (l) ∈ Rd(l)×d(l+1)

denotes the convolution weight at the l-th layer. The convolution weight
is shared across subgraph views. Here, we use the normalized adjacency of the original graph, Ã, and
the view-specific effect is realized via the node-wise gating matrix diag(Pj).

3.3.3 The Cross-View Feature Fusion

After L convolutions, we fuse features from all subgraph views to obtain comprehensive node
representations. Specifically, we concatenate all view-specific node features along the feature
dimension, resulting in a matrix of size n × md(L), which is then passed through a Multi-Layer
Perceptron (MLP) to produce a unified node feature matrix Z ∈ Rn×d′

, i.e.,

Z = MLP([H(L)
1 ∥H(L)

2 ∥ · · · ∥H(L)
m ]). (7)

3.4 The Alignment-based Readout

Inspired by some works that study node alignment mechanisms in graphs [2, 1, 12], we propose
a structure-aware graph readout mechanism based on alignment. This mechanism helps avoid the
limitations of simple global readout functions, which tend to neglect the distinct structural information
and local differences between nodes, thus alleviating the graph-level over-smoothing phenomenon.
By establishing a reliable ordered correspondence for node clusters, this mechanism leverages a more
expressive MLP for graph-level readout.

Specifically, we first assign nodes to s clusters. To ensure that clusters are consistently aligned
across different graph samples, we learn a shared cluster assignment function parameterized by
WS ∈ Rd′×s, which generates an assignment probability matrix S ∈ Rn×s for each graph through a
graph convolution layer, i.e.,

S = softmax(Ã Z WS). (8)
Then, we use this matrix to perform alignment for node features, i.e.,

Z̃ = S⊤Z. (9)

Since the aligned node features Z̃ ∈ Rs×d′
are now order-consistent across samples, we first flatten

Z̃ into a vector of dimension s d′ and then apply a Multi-Layer MLP to assign different importance
weights to the aligned clusters, producing the graph-level representation y, i.e.,

y = MLP(flatten(Z̃)). (10)

4 Theoretical Analysis: How the MultiNet Works?

In this section, we theoretically analyze why the proposed MultiNet effectively mitigates the graph-
level over-smoothing phenomenon. The proposed MultiNet mitigates the graph-level over-smoothing
phenomenon from two aspects: First, the local subgraph convolution module limits the extent of
node information propagation, reducing the loss of local node-level information and alleviating the
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Figure 3: Toy examples to compare the conventional GCNs (left) and our MultiNet (right).

node-level over-smoothing problem. Second, the structure-aware readout mechanism aligns nodes
across different graphs and employs a more expressive MLP for graph readout, thereby reducing the
loss of structural information and mitigating the graph-level over-smoothing phenomenon.

Specifically, in the local subgraph convolution module, the propagation kernel in the j-th view defined
in Equation 6 can be equivalently expressed as:

Ãj = Ã (diag(Pj)). (11)

Since Pj is not a vector with all ones, the spectral radius of Ãj is smaller than that of Ã, i.e.,

ρ(Ãj) < ρ(Ã) = 1, (12)
where the spectral radius is denoted by ρ(·). As the number of layers increases, node features do
not collapse to the dominant eigenvector direction, and instead retain contributions from multiple
eigenvector components. From the perspective of information propagation, this design effectively
limits the extent of feature diffusion, allowing the model to focus on specific local regions with
higher attention weights, thus mitigating uncontrolled propagation and preserving distinct local node
information. Information propagation through low-attention nodes is significantly suppressed by the
attention weights, limiting its influence. While deeper layers may reduce feature magnitudes, this
scaling issue can be addressed by normalization methods such as LayerNorm. Moreover, distinct
attention vectors Pj in each view guide the model to focus on different local regions. Fusing these
diverse perspectives further enhances the expressiveness and robustness of node representations.

Moreover, unlike global readout functions and traditional matrix decomposition or low-rank approxi-
mation methods, the alignment-based readout mechanism does not simply compress node features.
Instead, it adaptively establishes correspondences between node clusters, enabling the use of a more
expressive readout function such as an MLP. This design preserves permutation invariance while
maintaining distinct structural information, thereby enhancing the discriminative power of graph
representations and effectively mitigating the graph-level over-smoothing problem.

Here we select two representative toy examples of molecular graphs, ethanol and dimethyl ether,
to compare the conventional GCNs with our proposed MultiNet model (see Figure 3). As shown
on the left, in the traditional GCNs, multi-layer message passing causes node features to become
homogenized, resulting in the loss of crucial local-level information. Subsequent readout operations
(e.g., sum or mean pooling) further overlook structural differences between molecules, ultimately
rendering the two distinct molecular graphs indistinguishable. In contrast, as shown on the right,
our MultiNet leverages a subgraph convolution module that adaptively identifies and focuses on
discriminative functional groups, guiding the convolutional process toward structurally distinct local
regions and effectively reducing the similarity among node features. Furthermore, by incorporating a
structure-aware node alignment strategy and employing a more expressive MLP, our method enhances
the discriminative power of the final graph representations.

5 Experiments

5.1 The Experimental Setup

We evaluate the proposed MultiNet model on several benchmark graph classification datasets, in-
cluding MUTAG, PTC_MR, ENZYMES, PROTEINS, DD, IMDB-B, and IMDB-M. These datasets
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Table 1: Classification accuracy (In % ± standard error) on benchmark datasets.
Method MUTAG PTC_MR ENZYMES PROTEINS DD IMDB-B IMDB-M Rank

DGCNN 84.0±6.7 58.3±7.0 38.9±5.7 72.9±3.5 76.6±4.3 69.2±3.0 45.6±3.4 12.40
DiffPool 79.8±7.1 60.8±7.0 59.5±5.6 73.7±3.5 75.0±3.5 68.4±3.3 45.6±3.4 10.80
ECC 75.4±6.2 55.7±3.3 29.5±8.2 72.3±3.4 72.6±4.1 67.7±2.8 43.5±3.1 15.60
GIN 84.7±6.7 58.8±5.5 59.6±4.5 73.3±4.0 75.3±2.9 71.2±3.9 48.5±3.3 7.40
GraphSAGE 83.6±9.6 60.1±4.7 58.2±6.0 73.0±4.5 72.9±2.0 68.8±4.5 47.6±3.5 10.80
DGK 82.66±1.45 57.32±1.13 53.4±0.9 71.68±0.50 78.50±0.22 66.96±0.56 44.55±0.52 10.57
1-RWNN 89.2±4.3 — 56.7±5.2 74.7±3.3 77.6±4.7 70.8±4.8 47.8±3.8 6.33
2-RWNN 88.1±4.8 — 57.4±4.9 74.1±2.8 76.9±4.6 70.6±4.4 48.8±2.9 7.16
3-RWNN 88.6±4.1 — 57.6±6.3 74.3±3.3 77.4±4.9 70.7±3.9 47.8±3.5 6.50
GKNN-WL 85.73±2.70 59.29±2.54 — 74.94±1.10 — 69.70±2.20 47.87±1.78 7.00
GKNN-GL 85.24±2.28 60.13 ±1.94 — 75.36±1.12 — 69.90±2.20 45.67±1.22 7.40
RWGK 80.77±0.72 55.91±0.37 22.37±0.35 74.20±0.40 71.70±0.47 67.94±0.77 46.72±0.30 13.14
SPGK 83.38±0.31 56.55±0.53 29.00±0.48 75.10±0.50 78.45±0.26 71.26±1.04 51.33±0.57 6.71
GK 81.66±0.11 — 24.87±0.22 71.67±0.55 78.45±0.26 65.87±0.98 45.42±0.87 14.17
WLSK 82.88±0.57 56.05±0.51 52.75±0.44 73.52±0.43 79.78±0.36 71.88±0.77 49.50±0.49 7.14
JTQK 85.50±0.55 57.39±0.46 56.41±0.42 72.86±0.41 79.49±0.32 72.45±0.81 50.33±0.49 6.00
ASK 87.50±0.65 — — — 70.38±0.22 — 50.12±0.51 9.33
EDBMK 86.35 56.75 36.85 — 78.19 — — 8.25
QBMK 88.55±0.43 59.38±0.36 — — 77.60±0.47 — — 5.00
MultiNet 89.81±1.46 62.65±0.88 54.83±1.55 76.40±0.87 78.90±0.51 76.49±0.60 51.93±0.25 2.28

cover two primary domains: bioinformatics (Bio) and social networks (SN). All experiments are
implemented in PyTorch and PyTorch Geometric, and executed on an NVIDIA GeForce RTX 3090
GPU (24GB VRAM). For all datasets, we use a local subgraph convolution module with 3 to 4 layers,
set the number of views to 8, the node embedding dimension to 32, and the number of aligned nodes
during readout to 8, with ReLU as the activation function. The model is trained using the Adam
optimizer, with hyperparameters such as learning rate and number of epochs tuned via validation. To
ensure statistical robustness, we perform ten runs of 10-fold cross-validation and report the mean
classification accuracy along with the standard deviation 2.

5.2 Experiments on Graph Classification

We compare the MultiNet with several advanced GNNs and graph kernels. Specifically, The
advanced GNNs include: five baseline models (the DGCNN [39], DiffPool [38], ECC [30], GIN [34],
and GraphSAGE [16]) as well as six additional advanced models (the DGK [37], p-RWNN [23]
(with p = 1, 2, 3), GKNN-WL, and GKNN-GL [11]). The graph kernels include: the RWGK [15],
SPGK [6], GK [29], WLSK [28], JTQK [4] (where q = 2), ASK [5], EDBMK [35], and QBMK [3].
The classification accuracy and standard error are reported in Table 1, and the last column represents
the average rank. For the baseline deep learning methods, we report the results from the fair
comparison [14] or reproduce them following its evaluation protocol. For other models, we adapt
their best results from their original papers.

The MultiNet achieves the best or near-best classification accuracy on most benchmark datasets,
demonstrating the effectiveness of the proposed multi-view adaptive propagation mechanism in
enhancing the performance of graph classification. The advantages of the MultiNet are summarized
as follows: 1) Compared with the graph kernel methods, the MultiNet provides an end-to-end
framework that adaptively extracts features from different views, eliminating the need for handcrafted
kernel design and feature engineering. 2) Compared to the traditional GNN-based methods, our
MultiNet restricts the extent of message propagation through node-level attention weights, enabling
the model to focus on view-specific critical local features. This effectively suppresses redundant
neighbor information and reduces noise. Moreover, MultiNet maintains multiple parallel subgraph
convolutions, allowing information to propagate adaptively in different directions. This design
captures diverse structural patterns and improves generalization across various types of graph data.
3) Compared to the models that use simple readout functions (e.g., the GIN), the MultiNet
introduces an alignment-based readout strategy that considers local node features and the overall
graph structure when generating graph representations, thereby further enhancing the expressiveness.

2Code is available at https://github.com/Xiaoqin0421/MultiNet
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Table 2: AD of initial node features for different datasets.
Dataset MUTAG PTC_MR ENZYMES PROTEINS DD IMDB-B IMDB-M

AD 0.0331 0.1608 0.1315 0.1857 0.1437 0.6320 0.7328

(a) MUTAG(Acc). (b) PTC_MR(Acc). (c) PROTEINS(Acc). (d) IMDB-B(Acc).

(e) MUTAG(AD). (f) PTC_MR(AD). (g) PROTEINS(AD). (h) IMDB-B(AD).

Figure 4: Classification accuracies (%) and the AD values on the four datasets.

5.3 Evaluations on Mitigating the Over-Smoothing

We conduct experiments to validate the effectiveness of MultiNet in mitigating the graph-level over-
smoothing. To quantify the differences between graph representations, we adopt the Average Cosine
Distance (AD). Given the graph-level representation matrix H , AD is defined as:

µ(H) =
1

N2

N∑
i=1

N∑
j=1

(
1− H⊤

i Hj

∥Hi∥∥Hj∥

)
. (13)

Although this metric does not satisfy conditions a) and b) in Definition 1, our primary concern
is whether graph representations converge to similar directions. Therefore, we choose a metric
that emphasizes directionality rather than vector magnitudes, which is similar to those used in the
node-level over-smoothing analysis. A higher AD value indicates greater diversity among graph
representations, suggesting that over-smoothing is less severe. To analyze the impact of initial
features, we compute the average node features for each dataset and calculate their corresponding
AD values (see Table 2). The results show that the AD values for the Bio datasets are below 0.2,
supporting Assumption 1 that the initial node features in these datasets are highly similar.

Subsequently, we compare the proposed MultiNet with three standard GCNs (including the Vanilla
GCN, GIN, and GraphSAGE) on three Bio datasets (including the MUTAG, PTC_MR, and PRO-
TEINS datasets) and an SN dataset: the IMDB-B dataset. We set the number of convolutional layers
to 2, 4, 8, 16, 32, and 64, and report both classification accuracy (%) and the AD values in Figure 4.
In the MultiNet, the number of layers refers to the depth of the local subgraph convolution module.
The results show that our model already outperforms other baselines under shallow configurations
(e.g., L = 2 ∼ 4), demonstrating that the proposed subgraph convolution and the alignment-based
readout are inherently effective without requiring deeper networks. As the network depth increases,
the MultiNet experiences a smaller drop in accuracy and consistently maintains a higher AD value.
In contrast, the AD values of the baseline models decrease significantly, indicating a more severe
over-smoothing problem. These findings demonstrate that the MultiNet effectively mitigates the
over-smoothing problem on the graph level. Even though Assumption 1 does not hold clearly on the
IMDB-B dataset, the graph-level over-smoothing remains evident. This suggests that local node-level
features and structural information play a crucial role in graph classification, which are effectively
captured by the MultiNet. Notably, under deeper configurations (e.g., L=16 or L=32), the MultiNet
achieves competitive or even superior classification accuracy compared to its shallower variants on
certain datasets, which further demonstrates its ability to mitigate over-smoothing while preserving
the advantages of deeper propagation.
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5.4 Ablation Studies

We conduct ablation studies by removing individual modules to evaluate the contribution of each
component in the proposed MultiNet. Specifically, we compare the performance of the following three
variants: (1) w/o L: removing the local subgraph convolution module; (2) w/o F: replacing the feature
fusion module with simple feature addition; (3) Avg. Readout: replacing the alignment module with
an average readout function; and (4) Sum Readout: replacing the alignment module with a sum
readout function. The results in Table 3 indicate that the MultiNet consistently outperforms all ablated
variants across benchmark datasets. These findings demonstrate the effectiveness of each component
in our framework. The local subgraph convolution module enables adaptive multi-view feature
extraction. The feature fusion module effectively integrates information from diverse perspectives.
Meanwhile, the alignment module enhances the expressiveness of the graph-level representations.
Together, these modules collectively contribute to the superior classification performance.

Table 3: Ablation experimental accuracy (In % ± standard error).
Method MUTAG PTC_MR ENZYMES PROTEINS DD IMDB-B IMDB-M

MultiNet 89.81±1.46 62.65±0.88 54.83±1.55 76.40±0.87 78.90±0.51 76.49±0.60 51.93±0.25
w/o L 83.39±1.04 58.83±0.54 27.33±1.05 75.01±0.40 78.60±0.45 74.73±0.61 50.61±0.43
w/o F 88.13±2.13 59.51±2.19 50.17±1.20 74.83±0.90 78.58±0.36 72.20±1.06 50.80±1.45

Avg. Readout 86.11±1.97 61.79±1.51 52.33±2.09 74.83±0.42 78.63±0.25 73.52±1.05 50.13±0.32
Sum Readout 85.55±0.96 62.53±0.58 29.17±1.77 73.51±1.42 78.42±0.32 73.50±1.92 47.13±1.43

5.5 Impact of the Number of Subgraphs

We evaluate the impact of the number of subgraphs on model performance by conducting extensive
experiments on the MUTAG, PROTEINS, and IMDB-B datasets, varying the number of subgraphs
among 2, 4, 8, 16, and 32. The results in Figure 5 show that setting the number to 8 yields the
highest accuracy across all three datasets, suggesting that a moderate division effectively captures
rich structural information and consistently enhances performance. However, further increasing the
number of subgraphs (to 16 and 32) leads to performance degradation, possibly due to the introduction
of noise or overfitting from excessive division.

(a) MUTAG. (b) PROTEINS. (c) IMDB-B.

Figure 5: The experimental results of different numbers of subgraphs.

6 Conclusions

In this paper, we propose a novel MultiNet to mitigate the graph-level over-smoothing issue en-
countered in graph classification tasks. By incorporating a local subgraph convolution module, the
MultiNet adaptively divides the input graph into multiple subgraph views. The proposed method
extracts more discriminative local features by focusing on view-specific regions with higher attention
weights, followed by cross-view node feature fusion to obtain comprehensive node representations.
Additionally, we introduce an alignment-based readout mechanism that enhances the quality of the
graph representations. Through theoretical analysis and experimental results, we demonstrate that the
MultiNet effectively mitigates the graph-level over-smoothing and consistently outperforms existing
state-of-the-art methods on graph classification tasks. In future work, we aim to extend our model to
explore the over-smoothing problem in node classification tasks and investigate sparsification-based
approaches to further reduce its spatial complexity.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This work introduces a novel MultiNet, as highlighted in the abstract and
introduction, which aims to improve the performance of graph classification and address the
graph-level over-smoothing.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [NA]

Justification: This paper aims at mitigating the influence of the graph-level over-smoothing
problem for graph classification tasks. Therefore, this paper does not refer to any limitations
of the proposed work.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Section 2.2 provides rigorous theoretical analysis of the graph-level over-
smoothing.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5.1 details key experimental parameters, and we provide complete
code for reproducibility.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release full code and replication guidelines.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 5.1 details key experimental parameters, with additional details pro-
vided in the released code.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard errors, which are commonly used in graph classification
experiments to reflect the variability and reliability of the results.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the GPU resources (type and
memory) used to reproduce the experiments.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: This work adheres to NeurIPS ethical guidelines.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This foundational research has no direct societal implications.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk assets are involved.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Only publicly available graph classification datasets are used.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.
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• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[NA]

Justification: This study does not involve human participants.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLMs are used in methodology development.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for

what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Statistics of the Datasets

In Table 4, we summarize the statistics of the benchmark graph classification datasets used in this
work, including the maximum (Max #Nodes) and average number of nodes (Mean #Nodes), total
number of graphs (#Graphs), number of classes (#Classes), and the domain of each dataset.

Table 4: Statistics of the datasets used in our experiments
Dataset MUTAG PTC_MR ENZYMES PROTEINS DD IMDB-B IMDB-M

Max #Nodes 28 64 126 620 5748 136 89
Mean #Nodes 17.93 14.29 32.63 39.06 284.3 19.77 13
#Graphs 188 344 600 1113 1178 1000 1500
#Classes 2 2 6 2 2 2 3
Domain Bio Bio Bio Bio Bio SN SN

A.2 Visualization

To intuitively demonstrate the effectiveness of multi-view subgraph division, we showcase examples
from real-world datasets in Figure 6, including MUTAG, PROTEINS, and IMDB-B. Each row
corresponds to the same graph instance, while each column shows a specific subgraph view. The
intensity of the node color represents the attention weights. The variation in color across different
subgraphs suggests that the model adaptively regulates information propagation between subgraphs
by capturing features from distinct local regions. This helps preserve local information and mitigates
the over-smoothing of node features.

Figure 6: Examples of multi-view subgraph division from different datasets.
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