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ABSTRACT

Multimodal instruction tuning has proven to be an effective strategy for achiev-
ing zero-shot generalization by fine-tuning pre-trained Large Multimodal Mod-
els (LMMs) with instruction-following data. However, as the scale of LMMs
continues to grow, fully fine-tuning these models has become highly parameter-
intensive. Although Parameter-Efficient Fine-Tuning (PEFT) methods have been
introduced to reduce the number of tunable parameters, a significant performance
gap remains compared to full fine-tuning. Furthermore, existing PEFT approaches
are often highly parameterized, making them difficult to interpret and control. In
light of this, we introduce Multimodal Representation Tuning (MRT), a novel
approach that focuses on directly editing semantically rich multimodal represen-
tations to achieve strong performance and provide intuitive control over LMMs.
Empirical results show that our method surpasses current state-of-the-art baselines
with significant performance gains (e.g., 1580.40 MME score) while requiring
substantially fewer tunable parameters (e.g., 0.03% parameters). Additionally, we
conduct experiments on editing instrumental tokens within multimodal represen-
tations, demonstrating that direct manipulation of these representations enables
simple yet effective control over network behavior.

1 INTRODUCTION
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Figure 1: MRT (ours) v.s. concurrent arts. Our
method yields significant performance gains over
state-of-the-art multimodal PEFT approaches on
MME and MMAvg benchmarks with consider-
ably lower parameter usage (see Table 1).

In this transformative era, artificial intelli-
gence is undergoing a groundbreaking revolu-
tion, driven by the rapid rise of Large Multi-
modal Models (LMMs) (Dumas et al., 2009;
Alayrac et al., 2022; Yin et al., 2023; Khattak
et al., 2023). These models have demonstrated
impressive capabilities across various multi-
modal tasks, spanning remarkable capacities in
natural language processing, computer vision,
and beyond. Imagining future development, a
key objective in advancing LMMs is enhancing
their zero-shot generalization ability to novel
multimodal tasks. In this pursuit, multimodal
instruction tuning has been introduced (Liu
et al., 2024), full fine-tuning pre-trained models
with diverse multimodal instruction-following
datasets, thereby enabling zero-shot generaliza-
tion to previously unseen multimodal tasks.

However, LMMs continue to grow in parameter size and complexity (e.g., LLaVA (Liu et al., 2024)
leverages 7B and 13B backbone LLMs and Flamingo (Alayrac et al., 2022) employs 70B LLM).
The standard approach of full fine-tuning LMMs from scratch presents significant challenges, as
researchers encounter difficulties in fine-tuning these pre-trained models both effectively and ef-
ficiently. A promising solution, similar to vision and language domains, is to utilize Parameter-
Efficient Fine-Tuning (PEFT) strategies (Han et al., 2023; 2024a; Shen et al., 2024). Despite achiev-
ing promising effectiveness and efficiency, there are two main limitations in existing parameter-
efficient methods. First, they typically require a substantial number of parameters to attain sub-par
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performance to full fine-tuning. Meanwhile, the potential of fine-tuning rich semantic multimodal
representations has been largely overlooked; Second, The parameters introduced in the PEFT proce-
dure are abstract and independent of the physical characteristics of the problem being modeled (An-
gelov & Soares, 2020). Consequently, they are challenging to interpret in a manner that aligns with
human understanding (Li et al., 2018b).

This perspective raises two key questions: ❶ How can we achieve the effectiveness and efficiency
of fine-tuning large-scale multimodal models? ❷ How can we explore the controllability of PEFT
methods? These two questions form the foundation of our work. Our intuition is that instead of
merely modifying parameters in a black-box manner, as has been done in previous PEFT methods,
we should explicitly investigate the potential of linearly interpretable representation engineering
during the multimodal fine-tuning process. By doing so, we can not only improve the parameter ef-
ficiency but also foster a deeper understanding of the model’s behavior, paving the way for advanced
LMM efficiency and controllability.

In response to question ❶, we propose an efficient and effective representation fine-tuning strategy
— Multimodal Representation Tuning (MRT), to explore the extreme of tunable parameters (e.g.,
up to 21 times fewer parameters compared to LoRA) while achieving superior performance (e.g.,
verses 4.7% higher performance on the MME benchmark (Fu et al., 2023b) compared to the state-of-
the-art baseline MixLoRA (Shen et al., 2024)) (see Figure 1). To the best of our knowledge, MRT is
the first work studying parameter-efficient multimodal representation tuning, inspired by the current
representation fine-tuning for language models (Wu et al., 2024a;b; Turner et al., 2023).

To address question ❷, we demonstrate that directly editing multimodal representations can ef-
fectively control model behavior (see §3.3). Moreover, our findings indicate that precise behavior
control offers valuable insights into the transparency and interpretability of PEFT methods, a topic
that has been largely underexplored. We believe these insights establish foundational setup and
perspectives for future research on multimodal representation understanding.

2 RELATED WORK

Multimodal Instruction Tuning. Transformers-based architectures currently dominate in LMMs,
enabling breakthroughs in tasks such as visual question answering (Hu et al., 2024; Antol et al.,
2015; Guo et al., 2023), image captioning (Özdemir & Akagündüz, 2024), and visual commonsense
reasoning (Chen et al., 2024; Park et al., 2024). A general structure of LMMs includes three main
components (Liu et al., 2024; Li et al., 2023b): a pre-trained modality encoder to encode modal
features, a pre-trained LLM to reason fused multimodal data and perform prediction, and a cross-
modality layer to align different modalities (e.g., a linear projector in LLaVA (Liu et al., 2024)
and MiniGPT4 (Zhu et al., 2024), a GATED XATTN-DENSE layer in Flamingo (Alayrac et al.,
2022)). An effective tuning method in improving the zero-shot capability of LMMs is multimodal
instruction tuning (Liu et al., 2024; Zhu et al., 2024; Dai et al., 2023). It refines LMMs by fine-tuning
diverse instruction-following datasets that embrace both user intent and desired responses, including
machine-generated and human-annotated data. In this work, we explore parameter-efficient multi-
modal instruction tuning on LLaVA.
Parameter-Efficient Fine-Tuning. Parameter-Efficient Fine-Tuning (PEFT) has emerged to solve
the computational challenges of adapting large-scale models (e.g., LLMs, LMMs) to downstream
tasks (Wang et al., 2024; Liu et al., 2024), aiming to achieve comparable performance to full fine-
tuning while updating only a small fraction of model parameters or training customized learnable
modules. Current PEFT strategies can be generally categorized into three groups: reparameteriza-
tion, layer insertion and prompt tuning. Reparameterization methods (e.g., LoRA (Hu et al., 2022),
IA3 (Liu et al., 2022)) mainly focus on the reparameterization of attention mechanism, offering a
balance between efficiency and performance. However, these methods still require a great amount of
parameters while leaving noticeable performance gap compared to full fine-tuning. Layer insertion
methods (e.g., Adapters (Long et al., 2024)) generally insert learnable modules (e.g., fully-connected
layers) between attention or MLP. Nevertheless, they typically have higher parameter usage and ad-
ditional burden during inference. Prompt-tuning (Jia et al., 2022) adds learnable soft tokens as
a prefix to guide pre-trained models for specific tasks. While prompt tuning is more parameter-
efficient than Reparameterization and Layer insertion methods, training only the prompt embedding
could lead to sub-optimal performance when encountering more complicated tasks.
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Figure 2: Overview of MRT. Representation editors ψ ∈ {ψV , ψc, ψP , ψS} are the only tunable
parameters while the entire model remains completely frozen. During fine-tuning, we jointly edit
the visual representations in the vision encoder, the cross-modality layer, and the prefix and suffix
of textual-oriented fraction in the multimodal representations in the LLM. These editors efficiently
and effectively optimize the model representations during multimodal instruction tuning.

From a different perspective, recent advances in representation engineering (Turner et al., 2023; Zou
et al., 2023; Geiger et al., 2021) raise the exploration into representation tuning in nature language
processing (NLP) and computer vision (CV) fields, demonstrating promising results and superior
parameter efficiency in comparison to existing PEFT methods. Specifically, RED (Wu et al., 2024a)
proposes a direct representation editing, utilizing element-wise scaling and a bias for the entire
representation of Transformers-based layers. ReFT (Wu et al., 2024b) introduces intervention-based
representation editing, steering partial representations of Transformers-based layers via a low-rank
projection matrix with orthonormal rows and a linear projector. Although representation tuning
has shown its exceptional capability on single modality (i.e., language), its effectiveness on multi-
modalities is largely unexplored. Our method is the pioneering work to investigate the feasibility
of multimodal intervention-based representation tuning via rigorous structural design. Additionally,
our experiments on instrumental token editing demonstrate that modifications within multimodal
representations are highly effective, enabling precise counterfactual control over network behavior
in the multimodal PEFT approach—an area that has not yet been sufficiently explored.

3 METHODOLOGY

In this section, we introduce MRT, a pioneer multimodal representation tuning approach for effec-
tive and efficient LMM fine-tuning. We first introduce the preliminary of LMMs and notations in
§3.1. The effective representation tuning with the designing of editors in visual, cross-modality, and
multimodal representation are presented in §3.2. The overall framework is shown in Figure 2.

3.1 PRELIMINARY

Given a vision-text Transformers-based LMM F , which has been pre-trained on a substantial corpus
of data and tasks, the model architecture is composed of three major components: a vision encoder
V with hidden dimensionality dv , a large language model T with hidden dimensionality dt and a
linear cross-modality projector C that aligns the dimensionality of visual features from dv to dt. The
input of the model F is an image I and text instruction T.

The processing of these inputs proceeds through the following steps: firstly, the vision encoder
V transforms the image I into a dv-dimensional visual tokens, denoted as Tv = V(I) =
{T 1

v , T
2
v , . . . , T

m
v }, where m is the number of visual tokens generated by the encoder. Sec-

ondly, the cross-modality projector C maps the visual representation I to the dimensional-
ity of the language model, producing a dt-dimensional visual embedding Xv = C(Tv) =
{C(T 1

v ), C(T 2
v ), . . . , C(Tm

v )} = {x1v, x2v, . . . , xmv }. Parallelly, the text instruction T is tokenized
into a sequence of textual tokens, Xt = tokenize(T) = {x1t , x2t , . . . , xnt }, where n represents the
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number of tokens with dt-dimensional space, forming a textual embedding from the text instruc-
tion. Lastly, the visual representation Xv and the textual representation Xt are combined through
a fusion mechanism, yielding a joint multimodal representation X = Concat(Xv, Xt). Based
on this fused representation, the large language model T generates a relevant linguistic response
y = F(I,T) = T (Concat(Xv, Xt)).

In our study, the primary objective is to fine-tune the pre-trained model, to enhance its zero-shot per-
formance. While prior research has explored full fine-tuning strategies as well as parameter-efficient
fine-tuning methods (see §2), we propose Multimodal Representation Tuning (MRT) that offers a
more computationally efficient approach. MRT has the potential to enhance performance signifi-
cantly while minimizing resource consumption (see §4.2), presenting an advantageous alternative to
existing fine-tuning techniques from a representation view.

3.2 MULTIMODAL REPRESENTATION TUNING

MRT is inspired by the linear representation hypothesis (Wu et al., 2024b) and interchange interven-
tions (Geiger et al., 2021). As shown in Figure 2, we apply representation editors for each layer of
the vision encoder, LLM, and cross-modality layer, optimizing visual representation, cross-modality
representation, and multimodal representation simultaneously. Notably, during multimodal instruc-
tion tuning, MRT only updates these editors, while the entire model remains completely frozen.

Representation Editor. We introduce a representation editor ψ formulated via the simple yet
effective representation hypothesis. The editor modifies the original feature representation xwithin a
specific subspace to reflect the desired intervention obtained from a linear projectionWx+b, where
both W and b are learnable parameters. The editing operation is then confined to the subspace
spanned by the rows of a low-rank matrix U with orthonormal rows, so only targeted aspects of the
representation are adjusted while preserving the remaining information. The editor ψ is:

ψ(x) = x+ U
⊺

(Wx+ b− Ux), (1)

where U and W ∈ Rdl×dt are low-rank matrices (i.e., dl ≪ dt); dl represents the rank of the
subspace. U

⊺
denotes the transpose of U . Specifically, Ux projects the original representation

onto the subspace U , where Wx + b provides the target values within that subspace via linear
transformation from the original feature representation x. The difference Wx + b − Ux computes
the necessary interventions, which are then mapped back into the original space via U

⊺
(·). By

adding this intervention to the originals, we obtain the edited representation ψ(x) that incorporates
the desired modifications while maintaining the components orthogonal to the subspace U .

This editor facilitates controlled manipulation of representations by targeting linear subspaces, as
multiple studies have shown that human-interpretable concepts are encoded linearly (Smolensky,
1986; Rumelhart et al., 1986; Lasri et al., 2022; Guerner et al., 2023; Mikolov et al., 2013). Con-
sequently, linear subspace interventions can correspond to specific semantic attributes and modal-
ities, thereby advancing research in LMM interpretability and controllability (see §3.3). Utilizing
a low-rank subspace with orthonormal rows not only enhances computational efficiency but also
contributes to the stability and effectiveness of the intervention process.

Visual Representation. Without loss of generality, we maintain consistency with the previously
established notation and recall the vision encoder V , which extracts visual features from a given
image I . For visual representation intervention, we define a set of visual representation editors,
denoted as ψV = {ψ1

v , ψ
2
v , . . . , ψ

i
v}, where each individual editor ψi

v corresponds to a distinct visual
low-rank representation editor that operates at the i-th layer of the encoder V . These editors function
to modify the hidden visual representations Tv,i at their respective layers within the encoder.

Specifically, each editor ψi
v edits the complete set of hidden visual representations produced at its

corresponding layer, expressed as:

Tv,1 = {ψ1
v(T

1
v,1, T

2
v,1, · · · , Tm

v,1)},
...

Tv,i = {ψi
v(T

1
v,i, T

2
v,i, · · · , Tm

v,i)},

(2)
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where T i
v represents the set of visual representations at i-th layer. They are sequentially edited by the

corresponding editor ψi
v . The process is applied across all m hidden representations at each layer,

ensuring that each layer’s output receives a layer-specific intervention. Finally, the edited visual
representation from the second last layer is fed into the cross-modal projection layer C (See §S2).

Cross-modality Representation. In multimodal models, aligning visual representations within a
unified representation space is crucial. The cross-modality projector C plays an important role in
this process. Consequently, we introduce an intervention in the cross-modality projector C, aiming
to improve the alignment between visual and textual features.

Specifically, we define a cross-modality editor, denoted as ψc. The visual features Xv are first
processed by the cross-modality projector C, which integrates representations from each layer of the
visual encoder V . The editor ψc is then applied to the output of C, yielding an optimized visual
representation Xv , defined as:

Xv = ψc(C({T 1
v , T

2
v , · · · , Tm

v })), (3)

where Tv represents the hidden visual representations from the final layer of the encoder V . This
edited visual representation, Xv , is subsequently combined with the corresponding textual repre-
sentation Ht, producing a unified multimodal representation. The refined visual representation Xv ,
incorporating the output of the cross-modality editor ψc, is concatenated with the textual represen-
tation Xt, ensuring effective alignment of both modalities.

Multimodal Representation. In the previous discussion, the visual representation has been com-
prehensively processed through ψv and ψc. In this part, we shift toward the textual-oriented em-
bedding tokens within the multimodal representations, where the visual and textual embeddings are
concatenated together (see §3.1).

We concentrate on editing solely the textual-oriented representations, as the image representations
have already been extensively modified through ψV and ψc. We manipulate two consecutive seg-
ments of the textual embeddings, corresponding to a prefix tokens and b suffix tokens. This process
is facilitated by two sets of multimodal representation editors: ψp = {ψ1

p, ψ
2
p, . . . , ψ

j
p} for the pre-

fix tokens and ψs = {ψ1
s , ψ

2
s , . . . , ψ

j
s} for the suffix tokens. Here, ψi

p and ψi
s denote the low-rank

multimodal representation editors responsible for modifying the textual-oriented prefix and suffix
embeddings, respectively, at the i-th layer of the textual encoder T . Formally, the process of editing
the multimodal representations across the j layers is defined as:

X1 = {x1v,1, · · · , xmv,1, ψ1
p(x

1
t,1, · · · , xat,1), xa+1

t,1 , · · · , xn−b−1
t,1 , ψ1

s(x
n−b
t,1 , · · · , xnt,1)},

...

Xj = {x1v,j , · · · , xmv,j , ψj
p(x

1
t,j , · · · , xat,j), xa+1

t,j , · · · , xn−b−1
t,j , ψj

s(x
n−b
t,j , · · · , xnt,j)},

(4)

where x1v,j , . . . , x
m
v,j represent the visual tokens at j-th layer , and x1t,j , . . . , x

n
t,j represent the textual

tokens. The prefix editors ψj
p and suffix editors ψj

s apply the targeted intervention to the a prefix
and b suffix textual tokens, following common practice (Geiger et al., 2021; Wu et al., 2024b).
Altogether, by concatenating edited visual and textual tokens, we are able to adjust the intricate
relationships between visual and textual information across layers. Further, as the visual and textual
editing are decoupled, we are then able to facilitate accurate LMM controllability (see §3.3).

3.3 CONTROLLABILITY: THE BUTTERFLY EFFECT.

Controllable Text Generation (CTG) has been a recent surge of interest in the field of NLP for
high-quality or task-oriented generation, covering several conditions related to lexical, structural,
and semantic aspects (Zhang et al., 2022; Khalifa et al., 2020; Erdem et al., 2022). However, many
efforts (Zhang et al., 2023; Zeldes et al., 2020; Gao et al., 2020) designed to control the model in
an implicit way to drive the generation of text satisfying specific conditions; the transparency and
simplicity of CTG, however, remain problematic and misleading (Rudin, 2019; Rudin et al., 2022;
Laugel et al., 2019; Arrieta et al., 2020). Existing methods for generation control can be broadly
categorized into post-processing and model behavior adjustment (Zhang et al., 2023; Liang et al.,
2024). Post-processing re-ranks the original next-token distributions in the textual decoder as a filter
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to control the desired type of text while keeping the model completely frozen. Though intuitive, it
remains challenging to achieve better control performance. Even worse, in the multimodal scenario,
the visual representation becomes entirely uncontrollable due to its decoder-oriented design. Model
behavior adjustment utilizes strategies such as full fine-tuning, prompt tuning, and adapter to satisfy
the controlled conditions. While effective, the behavior adjustment remains implicit, relying solely
on full or partial parameter updates. The semantic meanings of representations within models,
however, have largely gone unexplored.

In light of this view, we investigate the LMM controllability from a representation perspective,
aiming to edit the actual semantics directly in a flexible and explicit manner. We draw upon current
research in LLM interpretability (Geiger et al., 2021; Wu et al., 2024b), where training a set of low-
rank causal interventions on selected residual streams can effectively induce a base LLM to follow
human-desired instructions. Namely, given a singular set of representations, our design is able to
manipulate them in a targeted manner to achieve generalized control. In §4.3, we demonstrate
that, even within complex multimodal settings, it remains feasible to interpret individual neurons
and representations in isolation. We believe that this represents a significant advancement towards
multimodal interpretability and controllability.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Implementation details. Following common practice (Liu et al., 2024; Wang et al., 2024), we
employ stage-one LLaVA (Liu et al., 2024) with CLIP-L (i.e., 24 Transformers-based encoder
layers) as the vision encoder, a pre-trained cross-modality projector and Vicuna-7B-v1.3 (Chiang
et al., 2023) (i.e., 32 Transformers-based decoder layers) as the backbone LLM in our pre-trained
LMM (see §3.1). For both visual representation editing and multimodal representation editing, we
implement the same editor structure (see §3.2). For visual representations, we edit the entire visual
representation in CLIP-L and the cross-modality layer. For multimodal representations, we apply
editing for both textual-oriented prefixes and suffixes in Vicuna-7B-v1.3. More implementation
details and discussion on inference time are included in Appendix §S2.
Datasets. We conduct multimodal instruction tuning on Vision-Flan (Xu et al., 2024), a human-
annotated multimodal instruction tuning dataset with 191 diverse tasks. Following common
practice (Shen et al., 2024), we employ the scaled-down version containing up to 1, 000 instances
per task, resulting in a total of 191, 105 instances. For evaluation, we examine our method on
the multimodal evaluation benchmark MME (Fu et al., 2023a), measuring both perception and
cognition abilities across 14 subtasks (see §S1). We further investigate the model’s capabilities
using 7 multimodal datasets. Specifically, we utilize the Text-VQA (Singh et al., 2019) for Optical
Character Recognition, and the Visual Spatial Reasoning (VSR) (Liu et al., 2023) for reasoning.
The perception capability is tested on CIFAR-10/100 (Krizhevsky et al., 2009) and MNIST (Deng,
2012). Moreover, the SNLI-VE dataset (Xie et al., 2019) evaluates Visual Entailment capabilities,
while the POPE (Li et al., 2023c) dataset examines the object hallucination tendencies.
Evaluation Metrics. The MME incorporates both Perception and Cognition metrics1 for evalu-
ation. For other multimodal datasets, we use Vicuna-13B-v1.5 (Zheng et al., 2024) to assess the
accuracy of each prediction compared to the groundtruth, as suggested by common practice (Shen
et al., 2024; Wang et al., 2024; Han et al., 2024a).

4.2 MAIN RESULTS

In Table 1, we report a comprehensive zero-shot evaluation of MRT on eight multimodal datasets,
comparing with several baselines. Specifically, we consider seven state-of-the-art PEFT methods, in-
cluding LoRA (Hu et al., 2022), APrompt (Wang et al., 2023a), PTUM (Yang et al., 2023), VPT (Han
et al., 2024a), M2PT (Wang et al., 2024), MixLoRA (Shen et al., 2024) and ReFT (Wu et al., 2024b).
Here LoRA and MixLoRA are reparameterized methods, initializing and updating extra low-rank
decomposition matrices within attention blocks; APrompt, VPT, PTUM, and M2PT are prompt
tuning methods. Differently, APrompt and VPT consider only inserting tunable soft prompts to

1https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Evaluation
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Table 1: Zero-shot Multimodal Evaluation. LLaVAAlign is the stage-one LLaVA without end-
to-end fine-tuning, and LLaVAFT indicates the fully fine-tuned LLaVA. The MMAvg represents
the average score on the right seven tasks. Vision-Flan dataset is used for all fine-tuning processes.
The best performance except LLaVAFT is shown in bold, and the second best in underline. MRT
outperforms current state-of-the-art methods with far fewer trainable parameters (i.e., 0.03%).

Method # para MME Text-VQA VSR SNLI-VE CIFAR-10 CIFAR-100 MNIST POPE MMAvg

LLaVAAlign (Liu et al., 2024) - 1110.82 32.62 50.16 34.51 80.00 58.04 52.79 59.10 52.46
LLaVAFT (Liu et al., 2024) 100% 1587.26 37.26 53.76 43.35 92.97 63.73 94.27 80.82 66.59

LoRA (Hu et al., 2022) 0.63% 1393.67 39.20 52.95 44.56 90.10 45.90 83.42 72.33 61.21
APrompt (Wang et al., 2023a) 0.23% 1406.63 35.26 53.12 45.58 85.74 50.27 84.63 76.16 61.52

PTUM (Yang et al., 2023) 0.12% 1354.62 34.28 53.75 30.86 82.88 57.63 94.29 80.31 62.00
VPT (Han et al., 2024a) 0.06% 1398.74 33.68 53.93 32.62 76.49 52.31 94.73 79.60 60.48
ReFT (Wu et al., 2024b) 0.03% 1473.25 36.34 49.75 39.66 90.43 57.53 88.21 78.35 62.90

M2PT (Wang et al., 2024) 0.09% 1503.98 34.48 53.19 32.89 89.29 59.14 95.54 81.26 63.68
MixLoRA (Shen et al., 2024) 0.85% 1509.61 40.42 49.18 36.69 91.40 59.27 87.68 78.48 63.30

MRT 0.03% 1580.40 40.62 51.47 33.34 96.96 57.20 95.63 79.30 64.93

a single modality (i.e., textual and visual space, respectively) while PTUM and M2PT are multi-
modal prompt tuning approaches; ReFT is the most recent representation tuning approach for textu-
ral modality. We do not include layer insertion methods in this comparison, as they typically require
significantly higher parameter usage (Wu et al., 2024b; Balne et al., 2024), rendering them unsuit-
able under the multimodal PEFT settings. Consequently, we have several key observations. First,
MRT outperforms all PEFT methods with substantial performance gains. For example, our ap-
proach achieves 4.70% and 5.08% improvements on MME compared to two state-of-the-art PEFT
baselines, MixLoRA and M2PT, respectively. MRT can be further considered as a qualified alter-
native to full fine-tuning, as it reaches 99.56% of the overall full fine-tuning performance on MME
while introducing only 0.03% of the model parameters, demonstrating both its effectiveness and
efficiency for large-scale multimodal model adaptation. Diving into the per-task performance, we
also want to highlight that MRT outperforms the full fine-tuning LLaVA on Text-VQA, CIFAR-10,
and MNIST tasks with a large performance gap (i.e., 3.36%, 5.99%, 3.36%). Second, we observe
that PEFT approaches focusing on multimodality (i.e., M2PT, MRT) generally outperform other
methods that consider only a single modality (i.e., APrompt, VPT, ReFT, MixLoRA). This indicates
the significance of introducing cross-modality interactions within MRT. The ablation study on com-
ponent ablation in §4.4 further proves that exploiting multimodal representation editing can result in
higher performance. Third, similar to other PEFT approaches (e.g., PTUM, M2PT), MRT does not
perform very well on visual entailment task, SNLI-VE. We hypothesize it’s due to the complexity of
logical relationship understanding, which might require a more sophisticated task-oriented design.

4.3 CONTROLLABLILTY RESULTS

We design our experiment on several image classification tasks, where we take an image-question
pair as inputs. The LMM further answers the question based on the class prediction. As discussed
in §3.3, our objective is to design targeted representation tuning that effectively intervenes in a few
selected instrumental visual-based (i.e., visual and cross-modality tokens), and multimodal tokens
to generate semantically counterfactual outputs.

Specifically, regarding that both visual-based features and textual-oriented target indicators in mul-
timodal representations are rich in semantic information and play crucial roles in the image clas-
sification task (Parekh et al., 2024), we decouple and study the LMM controllability via a set of
representation editors ψ = {ψ1

v , ψc, ψ
1
t } from both modalities. Here ψ1

t indicates the multimodal
representation editor for the targeted textual-oriented token at the first layer of the LLM (i.e., not ψp

or ψs, but rather the specific token position we intend to control).

Shown in Figure 3, for visual-based representation (i.e., Tv, Xv) editing, given that all images are
represented as visual-based token patches of fixed length, our analysis here concentrates on the
semantically salient Regions of Interest (RoI), specifically the most informative visual-based patches
(e.g., objects for image classification). Note that we consider only RoIs as candidates in this setting,
which is different from §3.2. The reason is that, during instruction fine-tuning, it is essential to
consider all visual-based tokens for effective feature editing, whereas in targeted semantic control,
only the RoIs align the most to the paired question. Thus, editors ψ1

v and ψc are trained to edit only
RoIs to control the most important semantic information.

7
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Is the in the ?

“Yes”

Counterfactual “No”

RoI

object image

Next Layer Next Layer

a truck

truck

Image-question Pair

a in

... ...
LMM w/o Intervention
LMM with Intervention

cv  /1

Target Indicator

1

t

Figure 3: Controllabilty Pipeline. MRT offers LMM con-
trollability from a representation perspective, allowing for di-
rect editing of representations with semantic meanings and
enabling counterfactual interference with the results. Details
are shown in §4.3.

For editing of textual-oriented target
indicators in multimodal representa-
tions, we control the textual ques-
tions to a fixed template (More tem-
plates are shown in Appendix §S6):
“Is the object an [indicator] in the
image?” The representation editor
ψ1
t is trained to modify only the to-

ken corresponding to “[indicator]”
within this sequence (i.e., the 5-th
token). Given an image of class e,
and the question “Is the object an
e in the image?”, an affirmative re-
sponse (i.e., “Yes”) represents a cor-
rect classification, while a negative
response (i.e., “No”) refers to the in-
correct one.

Specifically, we target two differ-
ent scenarios of counterfactual out-
puts: i) Misclassification. Coun-
terfactual output of misclassification
on a specific class e while achiev-
ing high classification accuracy for
other classes. For training editors ψ1, we change the training data where all labels of the targeted
class e to counterfactual “No” while keeping the groundtruth labels “Yes” of other classes. ii) Mis-
alignment. Counterfactual output of misaligning a specific class e into another class ē. We train
our editor ψ2 with misaligned image class e with groundtruth of ē. Note that ψ1 and ψ1 are two
independent sets for each scenario.

Table 2: Controlled Counterfact Rate is evaluated on two sce-
narios: misclassification and misalignment.

Class e Misclassification Misalignment
(LLaVAAlign) Misclassfication on e Others Misalignment to ē Others

(a) cat 18.8% 100% 0% 100% 0%
(b) dog 17.3% 100% 0% 100% 0%
(c) ship 21.8% 100% 0% 100% 0%
(d) frog 22.5% 100% 0% 100% 0%
(e) truck 21.4% 100% 0% 100% 0%

In Table S9, we conduct and
report the results of control
over counterfactual output on 5
randomly selected classes from
CIFAR-10 (Krizhevsky et al.,
2009) (i.e., cat, dog, ship,
frog and truck). For i), the
trained representation editors ψ
can modify the representation
to produce a counterfactual re-
sponse (i.e., from “Yes” to “No”) with 100% success rate, effectively causing the model to misclas-
sify all class e images when presented with the same template question prompts. Notably, interfering
with class e does not prevent the model from classifying other classes correctly. For ii), the result
demonstrates that the representation editors can fully control (i.e., 100%) the model to misalign all
images from class e into the targeted class ē, while maintaining the capability of accurate classifi-
cation of other classes. All together, our results clearly show that by simple yet intuitive token-wise
representation editing, one can directly control the complex decision-making process, even consid-
ering multimodal information as inputs. Furthermore, our insights may significantly advance LMM
interpretability research, as the editing process is directly applied to both visual and multimodal rep-
resentations, thereby regularizing trackable representations with certain properties (i.e., in our case,
linear projection). By further designing explicitly the casual model, MRT can show potential as a
promising solution for achieving ad-hoc interpretability (Wang et al., 2023b; Subramanian et al.,
2018; Chen et al., 2016).

4.4 DIAGNOSTIC EXPERIMENTS

Impact of Rank. In MRT, the number of ranks directly determines the number of tunable parame-
ters. To further analyze the impact of rank w.r.t. model performance, we conduct a comprehensive
study on the number of ranks of visual-based and multimodal editors on Vision-Flan. Specifically,
we use grid search to consider different combinations of ranks for visual-based, and multimodal

8
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Figure 4: Impact of Rank. Each cell in the map corresponds to the evaluation score of a model
with a multimodal rank (row) and a visual rank (column). A darker hue represents a higher score,
whereas a lighter hue indicates a lower score.

editors, ranging from rank 2 to 8, respectively. We propose altering the visual and cross-modality
editors to maintain the same rank count, eliminating the need for an additional manually set value,
in alignment with §4.3. The results are reported in Figure 4. As seen, the optimal configuration,
yielding a peak score of 1580.40, is achieved with visual-based rank 6, and multimodal rank 4. We
stop at rank 8 because performance saturation is observed around this point. Further increasing the
rank would result in increased parameter usage without significant performance improvement (e.g.,
1505.32 on MME with visual-based and multimodal rank 8, and 1452.12 with visual-based rank 4
and multimodal rank 8). This may result from slower convergence or overparameterization (Han
et al., 2023; Hu et al., 2022; Shen et al., 2024).

MRT MixLoRA M
2
PT

Figure 5: Loss Landscape along two random direc-
tions. The top three surfaces represent the loss land-
scape, while the bottom three are the 2-d heat maps.

Discussion on Optimization. We further
investigate why MRT exhibits superior per-
formance and generalizes effectively across
different tasks from an optimization per-
spective. Previous studies (Li et al., 2018a;
Ma et al., 2022) have shown that the geom-
etry of the loss landscape plays a crucial
role in model generalization. Building on
this insight, we depict the loss landscape
in Figure 5. Here, we randomly choose
two parameter directions, as the choice of
random directions has been shown to have
minimal impact on the results (Li et al.,
2018a). As seen, MRT provides a larger
connected region around the local mini-
mum (e.g., the yellow square area in the
heat map, where the larger dark blue area in MRT offers more optimization choices) and a smoother
edge of the loss landscape for mitigating chaotic landscape (e.g., ▲ in the heat map, where the sharp-
ness in MixLoRA and M2PT is sensitive to loss fluctuations, leading to worse generality), indicating
that MRT achieves a flatter loss landscape, which consistently corresponds with lower test error.

Impact of Editing Position. We further investigate the impact of editing positions in MRT (i.e.,
visual, multimodal, and cross-modality representations) in Figure 6 left, removing each component
individually from MRT’s best rank combination to assess its contribution to the overall model per-
formance. The results demonstrate that the model performance degrades when any tunable editors
are excluded, which is consistent with our expectations. Moreover, we observe that the importance
of different components is varied. For example, removing the cross-modality editor has the smallest
impact on performance for both MME and MMAvg, while taking away either visual or multimodal
editor leads to more significant performance drops.

Impact of Editing Length. In Figure 6 right, we explore representation editing length. We focus on
the variance of textual-oriented representation lengths, as visual representations generally lack the
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Figure 6: Impact of Editing Position & Editing Length. The left figure shows model performance
under the different settings of representation editing position, while the right figure indicates the
influence of different representation editing lengths.

semantic segmentability characteristic (i.e., it is ineffective to include only partial visual patches for
editing, as image features are typically encoded and evaluated from a holistic perspective). We thus
do not change the editing of visual representation as mentioned in §3.2. By extending the range of
both prefixes and suffixes length from 2 to 10, our findings reveal a non-linear relationship between
intervention length and performance efficacy. Specifically, we observed optimal results with editing
lengths of 4 and 6 for both prefixes and suffixes (i.e., 1580.40 and 1571.32 on MME), while the trend
on MMAvg is also consistent with this observation. Shorter lengths (e.g., 2) appear to be insuffi-
cient to capture the necessary contextual information or to adequately modify the representation.
Conversely, longer lengths (e.g., 8, 10) result in slower convergence or over-interference, potentially
over-disrupting the pre-trained LMM.

Table 3: Impact of Editing Depth.

Editing Depth MME MMAvg

(a) First Layer 1329.84 60.57
(b) Odd Layers 1468.21 63.35
(c) First Half 1440.32 61.89
(d) Latter Half 1447.41 62.65
(e) All Layers 1580.40 64.93

Impact of Editing Depth. (expand to Q L) Following
common practice (Han et al., 2024a; Wang et al., 2024;
Jia et al., 2022), we examine the influence of editing
depth for visual and multimodal representation editors
to the overall model performance under 5 different set-
tings: (a) the first layer; (b) every even-number layer (i.e.,
i ∈ [2, 4, . . . , 22], j ∈ [2, 4, . . . , 32]); (c) the first half of
the layers (i.e., i ∈ [1, 2, . . . , 12], j ∈ [1, 2, . . . , 16]);
(d) the latter half of the layers (i.e., i ∈ [12, 13, . . . , 23],
j ∈ [16, 17, . . . , 32]); and (e) all layers. Each setting
reports the best rank combination selected by MME. As seen, MRT’s performance is positively cor-
related with editing depth. Additionally, we find that even with minimal editing depth (i.e., setting
(a)), MRT demonstrates relatively strong performance, surpassing VPT on MMAvg (i.e., 60.57 v.s.
60.48). Editing only the latter half of the layers yields better performance compared to editing the
first half (i.e., 1447.41 v.s. 1440.32 on MME). We also observe that editing at every odd layer out-
performs both the “first half” and “latter half” configurations (i.e., 1468.21 v.s. 1447.41 on MME),
suggesting that distributing representation edits across the model in a sparse manner can be more
beneficial than focusing on a continuous block of layers.

5 CONCLUSION

We introduce Multimodal Representation Tuning (MRT), an efficient and effective solution for
parameter-efficient multimodal instruction tuning. It enjoys several advantages: i) MRT achieves
remarkable parameter efficiency, utilizing up to 21 times fewer parameters than existing methods
while achieving outstanding performance on multimodal evaluation benchmarks. It leverages the
power of the semantically rich multimodal representations during PEFT, which have been largely
overlooked in previous approaches; and ii) The accurate token-level multimodal representation con-
trol reveals the potential for enhanced controllability of multimodal models, paving the way for more
transparent and interpretable text generation. As a whole, we conclude that the outcomes elucidated
in this paper impart essential understandings and necessitate further exploration within this realm.
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ETHICS STATEMENT

We conform to the ICLR Code of Ethics and further show the consent to our work below. All
the datasets and benchmarks included in our study are publicly available (i.e., Vision-Flan, MME,
Text-VQA, Visual Spatial Reasoning (VSR), CIFAR-10/100, MNIST, SNLI-VE, POPE), and all
the models are publicly available (see Appendix §S7 for Asset License and Consent). We would
like to state that the contents in the dataset do NOT represent our views or opinions and our paper
does not involve crowdsourcing or research with human subjects. More discussions are presented in
Appendix §S10.

REPRODUCIBILITY STATEMENT

MRT is implemented in Pytorch (Paszke et al., 2019). Experiments are conducted on NVIDIA
A100-40GB GPUs. For full reproducibility, our full implementation will be publicly released. We
include implementation details in §4.1 and Appendix §S2.
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SUMMARY OF THE APPENDIX

This supplementary contains additional details for the thirteenth International Conference on Learn-
ing Representations submission, titled “Re-Imagining Multimodal Instruction Tuning: A Represen-
tation View”. The supplementary is organized as follows:

• §S1 provides an additional introduction of the datasets used, including the number of
examples and task categories.

• §S2 explains more implementation details on training and controllability experiments.
• §S3 presents the evaluation metrics used to assess the performance of the models.
• §S4 includes an additional ablation study on applying MRT to single modality.
• §S5 shows a comparison of the inference time across different models, emphasizing the

inference efficiency of MRT.
• §S6 provides extended controllability experiments and analysis.
• §S7 presents related asset license and consent to our work.
• §S8 is the claim of reproducibility.
• §S9 discusses the social impact and potential limitations of our research.
• §S10 includes additional discussions on ethics concerns.
• §S11 reflects on the findings and provides potential future directions for improving and

extending our work.

S1 DATA STATISTICS

Table S1: Multimodal Dataset Details.

Dataset Examples Task Categories

Vision-Flan 191K Diverse
MME 2374 Diverse

Text-VQA 5000 OCR
VSR 1222 Spatial Reasoning

SNLI-VE 17K Visual Entailment
CIFAR-10 10K Visual Perception

CIFAR-100 10K Visual Perception
MNIST 10K Visual Perception
POPE 9000 Object Hallucination

Details of 9 multimodal datasets for model in-
struction fine-tuning and multimodal evaluation
are illustrated in Table S1. Vision-Flan (Xu
et al., 2024) covers 191 distinct multimodal
tasks which is ideal for our instruction fine-
tuning process. To reduce computational cost,
we leverage a scaled-down version with up
to 1,000 instances per task, resulting in a to-
tal of 191,105 instances. MME (Fu et al.,
2023a) is our comprehensive multimodal eval-
uation benchmark, measuring both multimodal
perception and cognition capabilities across 14
subtasks. In addition, we further utilize 7 multi-
modal datasets for our evaluation. Specifically,
for Optical Character Recognition, we utilize
the Text-VQA (Singh et al., 2019), and for reasoning, we employ the Visual Spatial Reasoning
(VSR) (Liu et al., 2023). Following (Zhai et al., 2023; Shen et al., 2024), the perception capabil-
ity is tested on CIFAR-10/100 (Krizhevsky et al., 2009) and MNIST (Deng, 2012). SNLI-VE (Xie
et al., 2019) evaluates Visual Entailment capabilities, while the POPE (Li et al., 2023c) dataset ex-
amines the tendency towards object hallucination. The MME metric is the sum of accuracy values
across all subtasks, while for the other 7 multimodal evaluation datasets, the metric used is just
accuracy based on the assessment from Vicuna-13B-v1.5.

S2 IMPLEMENTATION DETAILS

Following established practices in recent studies (Liu et al., 2024; Wang et al., 2024), we utilize
the stage-one LLaVA (Liu et al., 2024) framework, incorporating CLIP-L (which consists of 24
Transformer-based encoder layers) as the vision encoder, along with a pre-trained cross-modality
projector and Vicuna-7B-v1.3 (Chiang et al., 2023) (comprising 32 Transformer-based decoder lay-
ers) as the backbone LLM for our pre-trained LMM (refer to §3.1). The same editor architecture is
implemented for both visual and multimodal representation editing (see §3.2). For visual represen-
tation editing, the entire visual representation in CLIP-L and the cross-modality projector layer is
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modified. Notably, the visual representation from the second last vision encoder layer of CLIP-L is
selected for fusion with textual representation in the stage-one LLaVA; thus, we omit the represen-
tation editor on the final vision encoder layer. In the case of multimodal representations, we apply
edits to both textual-oriented prefixes and suffixes in Vicuna-7B-v1.3. For weights initialization, we
initialize the low-rank matrix U with orthogonal initialization, while the linear projector Wx + b
uses standard linear layer initialization in Pytorch (Paszke et al., 2019). For controllability experi-
ment 4.3, we trained our two sets of representation editors ψ1 and ψ2 on the CIFAR-10 (Krizhevsky
et al., 2009) training dataset for 1 epoch and evaluate the control performance on the testing dataset.

Table S2: Hyperparameters and Configurations.

Learning Rate 6e−4

Batch Size 128
Epoch 3
Lr Scheduler linear
Warmup Ratio 0.03
Activation Type bfloat16
Optimizer Adam

Additionally, during the fine-tuning, we focus on fine-tuning specific segments of the textual em-
beddings, particularly the prefix and suffix tokens, rather than the entire set of tokens. This decision
is motivated by the role of these segments in Transformer-based decoder models. Prefix tokens are
crucial for establishing the task-specific context early in the generation process, thereby condition-
ing the model’s output effectively. Similarly, suffix tokens also play an important role in guiding
and controlling generations due to the autoregressive training paradigm. To validate this design
choice, we conducted an ablation study comparing different segment editing strategies in Table S3.

Table S3: Edited Segments on
Multimodal Representations.

Segments MME

Prefix Only 1465.32
Suffix Only 1497.35
Prefix & Suffix 1580.40
All 1233.90

The results clearly demonstrate that fine-tuning both the pre-
fix and suffix tokens yields the best performance, significantly
outperforming the setting of fine-tuning all tokens. Specifi-
cally, we observe a substantial drop in the MME score when
the entire textual embedding is edited (1233.90 v.s. 1580.40).
This suggests that over-editing the embeddings can lead to re-
sponse drift, negatively impacting performance. This observa-
tion aligns with recent studies on prompt tuning (Han et al.,
2024a; Lester et al., 2021; Oh et al., 2023; Mao et al., 2023),
which indicate that larger adjustments (i.e., longer inserted
prompts in prompt tuning) do not necessarily lead to better
performance and can, in fact, be less effective than smaller edits.

S3 EVALUATION METRICS

For a comprehensive evaluation, we utilize the MME benchmark (Fu et al., 2023b) alongside 7
additional multimodal datasets (see §S1). For MME, we employ the official evaluation tool (Yin
et al., 2023), which includes both Perception and Cognition metrics. Specifically, MME covers ex-
istence, count, position, color, poster, celebrity, scene, landmark, artwork and OCR for perception
and commonsense reasoning, numerical calculation, text translation and code reasoning for cogni-
tion. For the other 7 multimodal datasets, following (Shen et al., 2024), we use a consistent prompt
template. This template incorporates the prompt, the model’s prediction, and the ground truth for
each test instance to guide Vicuna-13B-v1.5 (Zheng et al., 2024) in evaluating the accuracy of each
prediction. We calculate the final accuracy on each multimodal dataset based on the percentage of
Vicuna-13B-v1.5 judging “Yes.”

Moreover, to further evaluate the effectiveness of MRT, we include two more multimodal bench-
marks for comparison with two strong baselines on SEED (Li et al., 2023a) and GQA (Hudson &
Manning, 2019) in Table S4, indicating that MRT consistently outperforms other PEFT approaches.
We have also extended MRT to MiniGPT-v2 with EVA (Fang et al., 2023) as the vision encoder
and LLaMA2-chat (7B) (Touvron et al., 2023) as the LLM, differing from the components of
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Method SEED-Bench GQA

LLaVAFT 57.4 53.5

LoRA 56.3 51.3
MixLoRA 55.9 52.2
M2PT 57.1 50.3
MRT 57.6 52.7

Table S4: More Zero-shot Evaluation.

MiniGPT-v2 MME

LLaVAFT 1464.88

LoRA 1358.14
ReFT 1346.65
MixLoRA 1418.48
M2PT 1421.02
MRT 1439.73

Table S5: Performance Comparison on
MiniGPT-v2.

LLaVA (Liu et al., 2024) in Table S5. Preliminary results on the MME benchmark demonstrate
that MRT consistently achieves performance gains compared to other PEFT approaches.

S4 MORE DIAGNOSTIC EXPERIMENT

To evaluate the significance of each component within MRT, we conduct comprehensive ablation
experiments. In §4.4, we analyze the impact of removing each individual component from MRT.
The results demonstrated that omitting any single component resulted in a noticeable performance
drop (e.g., a decrease to 1376 on MME when the visual editor was excluded), highlighting the
importance of each part of the MRT framework. To further validate the effectiveness of MRT, we
performed additional experiments by applying MRT to only a single component at a time (i.e., LLM,
Cross-modality, and Vision encoder). This approach allows us to understand the isolated impact of
representation tuning on each modality component. As seen in Table S6, the best performance
is achieved when MRT is applied to all components of the base Large Multimodal Model (LMM)
simultaneously. This confirms that leveraging MRT across multiple components rather than focusing
on a single modality leads to optimal improvements.

Table S6: Impact of Components.

Component MME MMAvg

LLM 1473.25 62.90
Cross-modality 1165.33 53.67
Vision encoder 1342.46 60.83
All (MRT) 1580.40 64.93

S5 TRAINING AND INFERENCE TIME COMPARISON

As discussed in §2, although PEFT methods have generally been proven to be much more parameter-
efficient compared to full fine-tuning in training, the burden of inference plays an important role in
overall efficiency. Therefore, some studies (Lei et al., 2023; Han et al., 2024b) touch upon compu-
tational efficiency and potential impact on inference speed of PEFT methods. To further investigate
the inference efficiency of our method, we conduct a comparison of PEFT methods in Table S7.
Specifically, LoRA adds the minimum computational burden to inference with 12.5% incremental
time, while MixLoRA introduces dynamic factor selection modules, which are more computational-
intensive. Prompt-tuning (i.e., M2PT, VPT) employs extra prompts prepended with input sequences,
costing significant inference overhead. It is worth highlighting that, our method represents a trade-
off between inference time and performance, achieving significantly lower inference time increment
(e.g., 72.73% and 42.86% faster than the two most performance-competitive methods, M2PT and
MixLoRA) while reaching the highest performance on MME benchmark.

In addition, we include the memory usage and training time comparison in Table S8. It can be seen
that MRT enjoys competitive training efficiency compared to existing PEFT approaches. We also
want to highlight that both GPU memory usage and training time are lower than several baselines
(i.e., LoRA, MixLoRA).
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Table S7: Inference Time Comparison.

Method MME Inference Time Increment

LLaVAAlign 1110.82 8 min -

M2PT 1503.98 44 min 450.0%
MixLoRA 1509.61 21 min 162.5%

VPT 1398.74 17 min 112.5%
LoRA 1393.67 9 min 12.5 %

MRT 1580.40 12 min 50.0%

Table S8: Training Efficiency Comparison.

Method MME # para Memory Usage (GB) Training Time (Hours)
LLaVAAlign 1110.82 - - -
LLaVAFT 1587.26 100% 39 47

VPT 1398.74 0.06% 12 7
LoRA 1393.67 0.63% 19 16
M2PT 1503.98 0.09% 17 9

MixLoRA 1509.61 0.85% 23 24

MRT 1580.40 0.03% 16 9

S6 EXTENDED CONTROLLABILITY EXPERIMENTS AND ANALYSIS

In this section, we provide further experimental analysis to evaluate the robustness and general-
izability of our controllability framework. We present two key aspects: robustness of token-wise
control and extension to the Text-VQA dataset. Additionally, we discuss potential directions for
generalizing the framework using prompt engineering techniques.

S6.1 ROBUSTNESS OF TOKEN-WISE CONTROL

Considering the textual question formats with the same semantic meaning can be vary. To achieve ro-
bust control, we introduce another multimodal representation editor by changing the textual prompt
format from “Is the object an e in the image?” into “Is the object in the image an e?”, trained un-
der a similar setting as described in §4.3. Table S10 demonstrates that the new editors can achieve
equally effective and robust control over counterfactual outputs. Additionally, to further enhance the
generalizability of adapting various textual question formats, we leverage a lightweight rephraser to
normalize different formats with the same semantic meaning into an expected template in §S6.3.

Table S9: Controlled Counterfact Rate with changed prompt format.

Class e Misclassification Misalignment
(LLaVAAlign) Misclassfication on e Others Misalignment to ē Others

(a) cat 18.8% 100% 0% 100% 0%
(b) dog 17.3% 100% 0% 100% 0%
(c) ship 21.8% 100% 0% 100% 0%
(d) frog 22.5% 100% 0% 100% 0%
(e) truck 21.4% 100% 0% 100% 0%

S6.2 EXTENSION TO OTHER MULTIMODAL TASKS

Table S10: Controlled Counter-
fact Rate on Text-VQA.

Attribute (n) Indeterminate

(a) name 100%
(b) color 100%
(c) brand 100%

We further extend MRT’s controllability to tasks beyond im-
age classification. We apply a similar strategy as outlined in
§4.3 for Text-VQA (Antol et al., 2015). Specifically, we select
8,017 instances as the training set and 1,189 instances as the
validation set on textual tokens beginning with “what is the
n”, where n represents an image attribute (e.g., name, color,
brand). We aim to generate counterfactual outputs for Text-
VQA. Different from the scenarios (i.e., misclassification and
misalignment §4.3) of counterfactual outputs on image classi-
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fication task, we target the scenario of Indeterminate by al-
tering the labels of all questions related to n in the training set to “Not sure”. We train three distinct
sets of representation editors ψ = {ψ1

v , ψc, ψ
1
t } for the attributes “name”, “color”, and “brand”.

Here, ψ1
v and ψc are designed to edit only the image RoI (i.e., the same setting in image classifi-

cation), focusing on controlling key visual semantic information, while ψ1
t is trained to modify the

token corresponding to n (specifically, the 4th token in the sequence). The results in Table S10
indicate that our method successfully controls counterfactual outputs across various attributes. For
instance, a question asking about the image “what is the name of this product?”, the correct answer
is “gum plus”, our control leads the model to respond with “Not sure”, indicating indeterminacy of
the attribute. In addition, Figure S1 shows some qualitative examples of counterfactual controls on
Text-VQA.

Question: what is the name of this 
product?

Counterfactual Prediction:  Not sure        

Groundtruth：Gum plus

Question: what is the color of number 
23?

Counterfactual Prediction:  Not sure        

Groundtruth：Red

Figure S1: Qualitative Examples on Text-VQA.

S6.3 GENERALIZABILITY DISCUSSION

Our current representation editors are effective in scenarios with fixed prompt formats. Considering
the success of prompt engineering (White et al., 2023), crafting effective prompts to guide the output
can further generalize the control across an even broader range of input queries, reducing sensitiv-
ity to variations in phrasing, and enhancing the robustness of MRT’s controllability. For instance,
different phrasings of a question (e.g., “Is there an e object visible in the image?” and “Does the
image contain an object that is an e?”) can be normalized into a standardized template (e.g., “Is the
object an e in the image?”), making it possible for applying output control with our trained editors.
Specifically, we leverage a lightweight rephraser based on T5-small (Raffel et al., 2020) (i.e., 60M
parameters), and customize a dataset for fine-tuning the rephraser, containing 6 different variant
templates with the same semantic meaning of the expected input sequence. Table S11 shows that
MRT can successfully achieve robust control on various input sequences with a single set of editors,
even if they differ in lengths and structures.

Table S11: Control Rate with Rephraser on variant prompt formats.

Prompt Formats Output Control Rate

“Is there an e object visible in the image?” 100%
“Does the image contain an object that is an e?” 100%
“Is the object shown in the image an e?” 100%
“Is the object in the picture an e?” 100%
“Do you recognize the object in the image as an e?” 100%
“Can you tell if the object shown in the image is specifically an e?” 100%

S7 ASSET LICENSE AND CONSENT

The majority of VPT (Jia et al., 2022) is licensed under CC-BY-NC 4.0. Portions of (Jia et al., 2022)
are available under separate licenses: google-research/task adaptation, huggingface/transformers,
LLaVA and Vicuna are licensed under Apache-2.0; ViT-pytorch (Dosovitskiy et al., 2021) are li-
censed under MIT; LoRA is licensed under Contributor License Agreement (CLA). All the datasets
included in our study are publicly available (i.e., Vision-Flan, MME, Text-VQA, Visual Spatial Rea-
soning (VSR), CIFAR-10/100, MNIST, SNLI-VE, POPE), and all the models are publicly available.
We would like to state that the contents in the dataset do NOT represent our views or opinions.
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https://github.com/meta-llama/llama/blob/main/LICENSE
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S8 REPRODUCIBILITY

MRT is implemented in Pytorch (Paszke et al., 2019). Experiments are conducted on NVIDIA
A100-40GB GPUs. To guarantee reproducibility, our full implementation shall be publicly released
upon paper acceptance.

MME

VSR

SNLI-VE

CIFAR-10

CIFAR-100

MNIST

POPE Text-VQA

MRT (Ours) LoRA M PT2 MixLoRA

1580.40

96.96

95.63

1509.61
40.42

49.18

32.89

91.40
59.27

87.68

78.48

1393.67

39.20

52.95

44.5690.10

45.90

83.42

72.33

1503.98

34.48

53.19

89.29
59.13

95.54

81.26

33.34

40.62

51.47

57.20

79.30
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Figure S2: Performance Comparison.

S9 SOCIAL IMPACT AND LIMITATIONS

This study presents MRT, demonstrating significant performance enhancements (see Figure S2) with
low parameter usage and fundamental insights into LMM controllability. Our approach is partic-
ularly valuable in real-world, computation-sensitive applications, e.g., training machine learning
models on edge devices. MRT investigates LMM controllability from a casual model perspec-
tive (Geiger et al., 2021). One step further, if the MRT’s causal structure can be explicitly defined,
we may pave the way towards ad-hoc interpretability, which is crucial for the continuous develop-
ment of PEFT across a wider spectrum of trustworthy applications.

For potential limitations, our method brings a hyperparameter — rank (i.e., low-rank matrix U in
Eq. 1), which directly determines the number of tunable parameters. Similar to other low-rank ap-
proaches (Hu et al., 2022; Shen et al., 2024), it notably correlated to the MRT’s performance (see
§4.4). Though during the experiment, we found that the optimal results fall into a relatively small
range (i.e., rank 2-8 for both visual-based and multimodal editors), current manual searching on
ranks might be time insufficient. Introducing a small network within the MRT to autonomously
search for optimal combinations might enhance training efficiency and facilitate additional perfor-
mance improvements (Han et al., 2023).

S10 ETHICS CONCERNS

The inherent design of MRT, characterized by the utilization of semantic representations, alongside
with the token-wise controllablity, implies its capability of manipulating the model generation. Our
approach offers promising avenues for enhancing large multimodal models (LMMs). However,
the real-world application of such models necessitates careful consideration of ethical implications,
including the potential for misinformation, privacy violations, harmful content generation, and the
amplification of biases. Therefore, the appropriate employment of MRT is crucial to equip LMMs
with the ability to generate reliable, controllable, and high-quality content.

Additionally, there are possible misuse scenarios and corresponding mitigation strategies. First, at-
tackers can manipulate models to produce misinformation (e.g., misclassification) via intentionally
altering the model’s understanding of an input image (Chen et al., 2021). Second, biased informa-
tion can be produced or amplified. Attackers can edit the textual tokens related to sensitive attributes
in the multimodal representation, leading to harmful or discriminatory outputs (D’Incà et al., 2024).
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In order to mitigate possible misinformation, we suggest performing adversarial robustness test-
ings (Dong et al., 2022) that explicitly check for consistency in object recognition across varying
queries. For mitigating bias generation or amplification, one solution can be bias detection and cor-
rection procedure on generated content, monitoring the representation for bias patterns and applying
corrective measures if detected (D’Incà et al., 2024). Another solution lies in clearly documenting
any controlled editing made to the model’s representation and disclosing any potential biases intro-
duced during this process (Shah & Sureja, 2024). In conclusion, while MRT exhibits strong output
controllability, applying MRT to realistic applications still requires ethical safeguarding, robust test-
ing, and transparency measuring. From a security perspective, MRT presents significant potential,
as it may facilitate the development of white-box attack and defense strategies tailored to LMMs.

S11 DISCUSSION AND FUTURE WORK

While representation tuning has been explored in the NLP field (Wu et al., 2024a;b), we would like
to highlight three key technical contributions of MRT specifically tailored to the multimodal domain.

First, intuitive yet effective control. MRT is the first attempt to enable token-wise control over
LMMs through representation editing. By directly editing the semantic information of the image
RoI and the textual target class indicator token, MRT offers an interpretable and intuitive mechanism
for adjusting model predictions. This level of fine-grained controllability is difficult to achieve with
existing baselines.

Second, loss optimization. From an optimization perspective, we provide a detailed analysis of
why MRT outperforms other PEFT methods. By visualizing the loss landscape, we demonstrate that
multimodal representation tuning enhances the generalization capabilities of LMMs, highlighting a
promising direction for future PEFT research.

Third, joint multimodal learning. Unlike single-modality research, multimodal settings require
consideration of two additional factors: multimodal integration and vision modality editing. To
address this, we designed a framework that optimizes the cross-modality layer to effectively bridge
the gap between the two modalities. While current PEFT approaches (Shen et al., 2024; Wang
et al., 2024; Hu et al., 2022; Han et al., 2024a) for LMMs typically unfreeze the cross-modality
projector during stage-2 tuning, we adhere to the principle of representation editing by introducing
a lightweight cross-modality editor, achieving significantly lower parameter usage while delivering
substantial performance gains. For vision modality editing, MRT takes a markedly different ap-
proach from current NLP practices by focusing on editing all visual representations. This method
highlights the sparsity of visual information and suggests that broader editing strategies should be
explored in the vision domain.

Despite MRT’s systemic efficiency and effectiveness, it also comes with new challenges and unveils
some intriguing questions. For example, as mentioned in Appendix §S9, the ranking for MRT is cur-
rently governed by manually defined values (see §4.4), although we do not need to specify prompt
lengths as required by prompt tuning methods (e.g., M2PT, VPT). Another essential future direction
deserving of further investigation is the LMM controllability. In §3.3 and §4.3, we demonstrate
that effectively intervening in only a few targeted instrumental visual-based and multimodal tokens
can generate semantically counterfactual outputs. This intriguing observation is inherently linked to
network attacks (Li et al., 2022; Guo et al., 2022; Saha et al., 2020), as one can readily compromise
the model’s performance, indicating that the multimodal framework may be susceptible to disrup-
tion. The applicability of this direction needs further investigation. Moreover, although we have
conducted the optimization analysis based on loss landscape (Li et al., 2018a; Ma et al., 2022), cur-
rently the community does not have a standard evaluation metric that we can follow. Therefore, we
plan to conduct further theoretical analysis, including how the incorporation of representation edit-
ing influences the attention module (e.g., attention activation pattern analysis (Wang et al., 2024))
and gradient flow analysis (Bambhaniya et al., 2024).
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