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Abstract

Alongside the need for advanced reasoning ca-
pabilities, there is growing interest in augment-
ing LL.Ms with knowledge. The standard ap-
proach is supervised fine-tuning; however, stud-
ies have identified the “reversal curse”, where
models trained on texts with “A=B” fail to in-
fer “B=A". In this study, we focus on broader
cases and conduct a comprehensive evaluation
of LLMs’ ability to learn and generalize re-
lational knowledge — particularly knowledge
with symmetric, antisymmetric, one-to-many,
and transitive properties. We observe a signif-
icant gap between supervised fine-tuning and
in-context learning paradigms, and to address
these limitations, we further propose a method
that incorporates transformation noise and logi-
cal rules into the training process. Through ex-
tensive experiments, we show that our method
significantly improves the model’s generaliza-
tion and reasoning capabilities over such rela-
tions. With these insights, we hope our semi-
nal work sheds lights on the understanding of
LLMSs’ behavior in knowledge learning and pro-
vides practical solutions to enhance their per-
formance in real-world applications.Our code
and data will be available at http.

1 Introduction

Large language models (LLMs) can be considered
as “soft” knowledge bases due to their ability to
perform knowledge-intensive tasks (Petroni et al.,
2019; Han et al., 2023; Lester et al., 2021; Salari
et al., 2018; Ju et al., 2024). The knowledge in
their parameters is derived from the textual data
on which LLMs are trained (Liu et al., 2019; Sing-
hal et al., 2023). However, it remains unclear how
LLMs learn and generalize such knowledge (Raffel
et al., 2020; Dai et al., 2021; Zheng et al., 2024).
For instance, can LLMs figure out that “A is the
father of B” from a piece of text “B is the child of
A”? Studies have uncovered a counter-intuitive phe-
nomenon called the reversal curse, as illustrated in
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Figure 1: The reversal curse and evaluations on general-
izing broader relational knowledge.

Figure 1 (top), where LLMs trained on texts like “A
= B” just fail to infer the reverse “B = A” (Berglund
et al., 2023; Zhu et al., 2024). This highlights the
need for checking more general cases.

In this work, we conduct a comprehensive eval-
uation on LLMs with relational knowledge, as
shown in Figure 1. By drawing insights from
knowledge graph embedding (KGE), we align “re-
lations” with a real knowledge base and categorize
them into symmetric, antisymmetric, one-to-many,
and transitive properties (Wang et al., 2017; Sun
et al., 2019; Zhang et al., 2018; Liu et al., 2019).
Our goal is to assess whether LLMs trained on texts
describing such relations can effectively general-
ize based on their properties. For example, given
a fact expressing an anti-symmetric relation (A,
employer_of, B), we train the model with the state-
ment “A is the employer of B” and test its ability
to correctly answer “Who is the employee of B?”.
Here, “employer_of” and “employee_of” form an
antisymmetric relation pair. To ensure a robust
evaluation, we compare four learning paradigms
including supervised fine-tuning (SFT) (Wei et al.,
2021), retrieval-augmented generation (RAG)(Gao
et al., 2023), in-context learning (Min et al., 2022),



and chain-of-thought (CoT) settings (Wei et al.,
2022).

According to the results, there is a significant
gap between standard SFT and other learning
paradigms — SFT can barely generalize relational
knowledge and is highly sensitive to surface-level
linguistic patterns. In light of this, we propose a
simple and scalable method that introduces trans-
formation noises and logical rules into the training
process, which demonstrates significant improve-
ments in all four relations. Furthermore, we ob-
serve complementary phenomena between our ap-
proach and other “online” learning paradigms in
certain relations, such as one-to-many or transitive
relations. These observations may provide deeper
insights for robust learning of relational knowledge
in real-world cases.

In summary, our contributions are threefold:

* We conduct a comprehensive evaluation of
LLMs in learning and generalizing relational
knowledge, assessing performance across four
learning paradigms.

* We propose a method incorporating structural
transformation noises and logical rules, which
significantly enhances standard SFT for learn-
ing relational knowledge.

* We release our evaluation benchmarks and
code to the research community, enabling fur-
ther exploration and reproducibility.

2 Related Work
2.1 LLMs with Knowledge

Alongside the need for knowledge-aware tasks,
there is growing interest in augmenting LLMs
with knowledge (Petroni et al., 2019; Mruthyun-
jaya et al., 2023; Wang et al., 2023b). Super-
vised fine-tuning (SFT) and retrieval-augmented
generation (RAG) are two approaches to building
knowledgeable LLMs. In particular, SFT injects
knowledge through standard auto-regressive train-
ing (Wei et al., 2021), and recent work has explored
enhancing LLMs with external knowledge using
tabular or tree-structured representations (Wang
et al., 2020b; Chen et al., 2024b; Jiang and Bansal,
2019; Yang et al., 2023), aiming to improve entity
and relation identification (Yasunaga et al., 2022;
Badaro et al., 2023). RAG is another approach
to introducing knowledge into LLMs, which first
retrieves knowledge and then uses in-context learn-
ing for generation (Lewis et al., 2020; Gao et al.,

2023; Niu et al., 2023). Currently, effective in-
tegration of knowledge into LLMs is still in its
early stages, and comprehensive evaluations are
still lacking (Wang et al., 2020a; Lewis et al., 2020;
Kassner et al., 2023).Recent studies further high-
light challenges in modeling transitivity and inverse
relations during knowledge integration(Jang and
Lukasiewicz, 2023; Mitchell et al., 2022; Xu et al.,
2024b). In this work, we focus on more general
relational knowledge and perform a comprehensive
evaluation.

2.2 The “Reversal Curse” of LLM

In the context of LLM-knowledge integration, the
reversal curse is a prominent phenomenon showing
that LLMs struggle to learn and generalize “Is-
A” (or “equal to”) relationships (Berglund et al.,
2023; Zhu et al., 2024). One potential cause is
the auto-regressive training objective adopted by
LLMs, which may lead models to only learn a feed-
forward prediction and limit their ability to capture
deeper logical structures within textual data (Xu
et al., 2024a; Han et al., 2025; Chen et al., 2024a).
This limitation also manifests in inconsistencies
across QA answers, where models violate logical
constraints such as symmetry and entailment(Liu
et al., 2023; Aly et al., 2023; Mehrafarin et al.,
2024) This issue, compounded by challenges like
the factorization curse, significantly impairs the
generalization performance of LLMs on reasoning
tasks (Toroghi et al., 2024; Malach, 2023).

To address these limitations, several solutions
have been proposed, including sentence reconstruc-
tion (Guan et al., 2021; Cripwell et al., 2022), ex-
plicit modeling of reasoning steps (Zhao et al.,
2023; Wang et al., 2023a; Yeo et al., 2024), and
prompt engineering (Lin et al., 2021; Chen et al.,
2023). Nevertheless, many of these approaches
focus on specific relations/scenarios and still de-
pend on manual prompt templates. In this work,
we explore more general relational knowledge and
propose a simple yet effective method to enhance
knowledge learning and generalization.

3 Evaluation Protocols

3.1 Relation Categorization

To comprehensively evaluate LLMs with relational
knowledge, we draw insights from KGE (Wang
et al., 2017) and analogically categorize relational
knowledge into four properties: symmetric, anti-
symmetric, one-to-many, and transitive.



Symmetric Property (SYM). For an entity set
X, arelation R is said to be symmetric if, for any

entity pair A, B € X, the fact that A 2, B holds

(expressed as R(A, B)) implies that B B, Aalso
holds. This is formally expressed as:

VA,BE€ X, R(AB)= R(B,A) (1)

An example of a symmetric relation is the friend_of
relation: if A is a friend of B, then B is also a friend
of A.

Antisymmetric Property (ASYM). Compared
to symmetric relations, a relation R is said to be an-
tisymmetric if, forany A, B € X, R(A, B) implies
that R(B, A) never holds but there exists a com-
plementary relation R’ such that R'(B, A) holds
(R # R'). This is formally defined as:

VA,B€ X,R(A,B)= R (B,4) (2

In other words, the relationship is strictly unidirec-
tional. For example, the parent_of and child_of
form an antisymmetric relation pair: if A is the
parent of B, then B is always the child of A.

One-to-Many Property (O2M). A relation R is
said to have the one-to-many property if, for A €
X, there can exist multiple entities B; € X such
that R(A, B;) holds, while each B; is uniquely
linked back to A via R'. Formally:

VA€ X, 3By,....,ByeX (3
Viel,...,k: R(A, B;) = R(Bi, A),

For example, the teacher_of relationship forms a
one-to-many relation: a teacher can have multiple
students, and each student is associated with only
one teacher .

Transitive Property (TRAN). A set of three re-
lations Ry, Rs, and Rj3 are said to exhibit the tran-
sitive property if, for entities A, B,C' € X, the
existence of Ry (A, B) and Ry(B, C) implies that
R3(A,C) holds. Let R3 = R; o Ry denote the
composition of 1?1 and Ry. Formally:

VA, B,C € X,

Rl(A,B)/\RQ(B,C)?Rg(A,C). @

For example, if R; and R» both represent the fa-
ther_of relation, then R3 corresponds to the grand-
father_of relation, This property enables the deriva-
tion of indirect relations through composition.

Type Template
TT {A}isthe {R} of {B}.
Q1 {A}isthe {R}of __ 2
SYM Q2 Whois the {R} of {A} ?
Q3 (B}isthe {R}of __ ?
Q4 Whois the {R} of {B} ?
TT {A} is the {R} of {B}.
ASYM 1 {A}isthe {R}of ___?
Q2 {B}isthe {R'}of __ ?
o (Alisthe {R} of {B1}.
{A} is the {R} of {B2}.
oM Q1 {A}isthe {R}of 2
Q2 {B1} and {B2} are the {R’} of __?
o (Alisthe {R1} of (B).
{B} is the {R2} of {C}.
TRANS

Ql {A}isthe {R3}of __ ?
Q2 ({C}isthe {R3’}of __?

Table 1: Templates for constructing the training data
(TT) and evaluation (Q1-Q4).

3.2 Evaluation Setups

Datasets. We follow Table 1 to construct the
datasets for training and evaluation. Specifically,
for each type, we selected 10 relations from the
widely used knowledge base Freebase (Bollacker
et al., 2008) and instantiated 200 templates for
each relation by randomly sampling from a person
name list'. We then used ChatGPT to rephrase the
training data into well-formatted sentences, while
strictly preserving the order of entities and rela-
tions to mitigate potential issues related to auto-
regressive learning (Berglund et al., 2023). After
training, we tested the model on Q1-Q4 to evaluate
knowledge generalization.

Please refer to Appendix A for more details on
dataset construction, including relation selection
and quality control.

Learning Paradigms and LLM Backbones. We
considered four learning paradigms:(i) Supervised
fine-tuning (SFT). This is the standard approach
for training LLMs on textual data. Here, we
employed full-parameter training.(ii) Retrieval-
augmented generation (RAG). In this paradigm,
the model first retrieves evidence sentences from
all training sentences, and then concatenates them
with the query for inference.(iii) In-context learn-
ing (ICL). ICL can be seen as RAG with golden
evidence. Here, we augment the prompt with few-
shot examples to ensure the answer follows a spe-

"The US Baby Names dataset from Kaggle
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Texts

John is a meticulous father who takes great care of
Mark, while Mark, who is Clara's father, is equally
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Figure 2: An overview of our approach, where we propose structural transformation noise (e.g., bidirectional and
intra-sentence transformations) and explicit reasoning rules to enhance learning.

cific format for parsing.(iv) Chain-of-thought rea-
soning (CoT). CoT enhances prediction by encour-
aging step-by-step reasoning. We augment the
prompt by adding the instruction, ‘“Please think
step by step”.

For LLM backbones, we consider LLama3-8B,
LLama3.2-1B (Dubey et al., 2024), and Mistral-7B
(Jiang et al., 2023) to ensure diversity in parameter
scale and architecture. We report 5-run average.

4 Learning with Transformation Noises
and Reasoning Rules

A key issue behind LLMs’ weak knowledge gen-
eralization is their rigid auto-regressive objective
(Berglund et al., 2023). To address this, we pro-
pose (1) structural transformation noise, including
bidirectional and advanced intra-sentence transfor-
mations, and (2) the incorporation of explicit rea-
soning rules to enhance learning.

4.1 Bi-directional Transformations

Let a training sentence be x = [wi,...,wy],
where w; is the i word. We first set up a bidi-
rectional transformation objective to either pre-
dict the reversed representation of x, denoted as
x' = [wy, ..., w;], or recover x from x’. We de-
sign two independent supervised fine-tuning tasks,
as shown below.

Backward Prediction. In this backward predic-
tion task, the goal is to predict x’ conditioned on x
with a special instruction token [REV]. The input
is denoted as I = x& [REV]. Then, at time step ¢,

the probability to be modeled is:

PéREV) (1) , Wn—t42)
(5

where 6 represents the model parameters. The train-
ing loss for the entire sentence can be defined as:

= Do (wn—t—&-llijnv'”

Lrev = Z log py V(1) (6)
t=1

In practice, we achieve the training by construct-
ing a sequence [x @ [REV] & x'] and performing
standard next-word prediction.

Forward Restoration. In this forward restora-
tion task, the goal is to reconstruct the original
sequence x, conditioned on the reversed represen-
tation x’ and an instruction token [RET], denoted
by I’ = x’® [RET]. Similar to the previous task, the
probability to model at time step ¢ and the training
loss are:

(RET) )

Dy = Do (’lUt‘X,,wl,..-,QUt_l) (7)

Lrer=—Y logpy " (t) ®)
=1

In practice, the training can also be achieved by
constructing a sequence [x’ & [RET] & x]. Here,
the introduction of instruction tokens [REV] and
[RET], along with the two learning tasks, enables
the model to learn bidirectional context.



4.2 Intra-Sentence Transformation

The bi-directional transformation is mainly for sin-
gle training sentences. Here, we also consider intra-
sentence transformation.

Overlap-based Transformation. The overlap-
based transformation aims to merge the com-
mon parts shared by two sentences and con-
catenates the in-between parts to generate new
training samples. For instance, consider the
example in Figure 3. In this case, wy, ws,
and wg are common subsequences (or more pre-
cisely, tokens). Here, we merge two sentences
based on these tokens and concatenate the dis-
continuous parts in between to build a new se-
quence: [,wg,wg,w4,,w6,wg,w7,].
Intuitively, this transformation helps the model
learn which tokens tend to appear in a common
context, such as those on the right-hand side of
one-to-many relationships. In practice, we use the
Longest Common Subsequence (LCS) algorithm
to identify common subsequences. With dynamic
programming, this results in a highly efficient algo-
rithm with a time complexity of O(N?), where N
is proportional to the length of the sentence.

IS-A Substitution. The motivation for is-a sub-
stitution is to identify semantically equivalent parts
between sentences and generate new training ex-
amples by substituting these parts. Consider two
training examples: 1) A is the R1 of B; 2) B is
the R2 of C'. We generate a new example: A is the
R1 of (the R2 of '), where B serves as a proxy
for substitution and is resolved across the two sen-
tences. Through this approach, we aim to achieve
the simplest chain based prediction. Note that we
use only text matching and avoid complex parsing
tools to ensure a simple and generalizable strategy.

4.3 Learning with Explicit Reasoning Rules

Different from format transformations, we also pro-
pose directly injecting reasoning rules into LLMs
to improve generalization. To achieve this, we
construct a rule set expressed in first-order logic
(FOL) to capture the properties of different relation
types (§ 3.1). For example, the FOL rule for the
anti-symmetric relation (parent_of, child_of) is:

parent_of(X,Y) = child_of(Y,X) (9)

Here, the rule is translated into plain text sym-
bols for training, and we only instantiate the re-
lations—not the entities—to eliminate the possibil-
ity of learning shortcuts. We train these reasoning

€,
£,

Figure 3: Example of the overlap patterns of two train-
ing examples E1 and E2.

Methods Ql Q2 Q3 Q4
LLama3-8B
SFT 0.888 0.580 0.000 0.000
RAG 0.820 0.612 0.384 0.554
Ours 0.900 0.782 0.892 0.688
ICL 0.850 0910 0.936 0.854
ICL + CoT 0.882 0.922 0.986 0.886
LLama3.2-1B
SFT 0.566 0.410 0.000 0.000
RAG 0.438 0.628 0.346 0.636
Ours 0.902 0.748 0.562 0.648
ICL 0.552 0.750 0.760 0.748
ICL + CoT 0.682 0.738 0.782 0.788
Mistral-7B
SFT 0.720 0.450 0.000 0.000
RAG 0.228 0.468 0.320 0.488
Ours 0982 0.830 0.942 0.856
ICL 0.344 0.698 0.950 0.942
ICL + CoT 0.684 0.760 0.958 0.962

Table 2: Results for addressing symmetric relations.

rules separately from the relation texts to avoid
inter-effects between them.

5 [Evaluation Results

In this section, we give a detailed analysis of the
results on LLMs learning and generalizing across
four types of relational knowledge.

5.1 Results on SYM relations

Table 2 presents the results on addressing symmet-
ric relations, where Q1 and Q2 are settings with
queries in the forward direction, and Q3 and Q4
are settings in the reverse direction. Here, Q2 and
Q4 adopt queries with more natural expressions but
with different word orders compared to Q1 and Q3
(see § 3.2 for details).

According to the results: (1) The standard SFT
achieves good performance only in Q1, where the
word orders of the query and the training exam-
ples match; it struggles with unmatched ones (Q2).
Additionally, SFT fails to generalize symmetric re-



Methods Ql Q2 Avg. Methods Qlei Qlez Qlon Q2
LLama3-8B LLama3-8B
SFT 0.754 0.000 0.377 SFT 0.784 0.010 0.000 0.000
RAG 0.714 0.510 0.726 RAG 0.339 0497 0.017 0.126
Ours 0.958 0.738 0.734 Ours 0.930 0.810 0.748 0.416
ICL 0.864 0.908 0.886 ICL 0.488 0.652 0.188 0.280
ICL + CoT 0.964 0.988 0.976 ICL + CoT 0.608 0.782 0.564 0.688
LLama3.2-1B LLama3.2-1B
SFT 0.882 0.000 0.441 SET 0.324 0.012 0.000 0.000
RAG 0.768 0.718 0.743 RAG 0.042 0.292 0.000 0.179
Ours 0.956 0.786 0.871 Ours 0.770 0.488 0.328 0.326
ICL 0.888 0.878 0.883 ICL 0.230 0422 0.046 0.230
ICL + CoT 0.980 0.008 0.494 ICL + CoT 0.438 0.678 0.686 0.488
Mistral-7B Mistral-7B
SFT 0.416 0.000 0.208 SFT 0.798 0.004 0.000 0.000
RAG 0.406 0.308 0.449 RAG 0.595 0.161 0.026 0.110
Ours 0.590 0.714 0.560 Ours 0.980 0.936 0918 0.268
ICL 0.546 0.904 0.725 ICL 0.762 0.290 0.128 0.246
ICL + CoT 0.648 0.980 0.814 ICL + CoT 0.868 0.560 0.588 0.556

Table 3: Results for addressing anti-symmetric relations.

lations, achieving zero accuracy in Q3 and Q4. (2)
In contrast, ICL, though adopting a “no learning”
paradigm, still yields relatively good performance,
and CoT further enhances learning. This indicates
that LLMs may be better at leveraging evidence
provided in the context. However, as expected,
the more realistic setting RAG yields worse perfor-
mance as it cannot retrieve golden evidence. (3)
Our approach significantly outperforms SFT and
RAG, and its strong performance in the reverse di-
rection demonstrates its effectiveness in learning
and generalizing symmetric relation knowledge.

5.2 Results on ASYM relations

Table 3 presents the results for addressing anti-
symmetric relations, where Q1 and Q2 are settings
with queries for the forward and reverse direction.
We also report the average performance.
According to the results, SFT still cannot per-
form reasoning in the reverse direction, showing
a lack of generalization. In contrast, our approach
significantly outperforms SFT, especially in the
reverse direction. This demonstrates the ability
of our approach to handle anti-asymmetric rela-
tional knowledge. However, it is worth noting that
the performance in the reverse direction is lower
than in the forward direction. A possible reason
is that for a relation R, its complementary relation
R’ may never appear in the training data, and the
model must learn it from other knowledge, mak-
ing it more challenging. Interestingly, we observe

Table 4: Results for addressing one-to-many relations.

that ICL-like approaches do not exhibit this issue.
This suggests that when LLMs reason from context,
they naturally generalize the content. For the same
reason, our method lags behind RAG on several
metrics, particularly in the reverse direction.

5.3 Results on O2M relations

Table 4 presents the results on addressing one-to-
many relations. Here, Q1 and Q2 denote the set-
tings for querying in the forward and backward
directions respectively. However, considering that
the forward direction involves multiple answers, we
further divide Q1 into the following cases: whether
B1 is correctly answered (Qlg;), whether B2 is
correctly answered (Qlp»), or whether both are
correctly answered (Q1lpo)-

Our approach significantly outperforms SFT on
both Qlpem and Q2, highlighting its strength in
generalizing one-to-many relational knowledge.
Two key observations emerge when comparing
other learning paradigms: (1) ICL-like methods
perform poorly, especially on Qlpon, likely due
to confusion caused by one-to-many relations that
may resemble conflicting knowledge. (2) We also
observe architectural differences: LLaMA models
prefer earlier entities (higher Q1p;), while Mistral
favors later ones (higher Q1g,), suggesting distinct
inductive biases in how evidence is processed.



Methods Ql Q2 Ave.
LLama3-8B
SFT 0.004 0.000 0.002
RAG 0.232 0.046 0.139
Ours 0.720 0.424  0.572
ICL 0.332 0.146  0.239
ICL + CoT 0.488 0.466 0.477
LLama3.2-1B
SFT 0.002 0.000 0.001
RAG 0.420 0.080 0.250
Ours 0984 0.570 0.777
ICL 0.520 0.280  0.400
ICL + CoT 0.688 0.480 0.584
Mistral-7B
SFT 0.000 0.000  0.000
RAG 0.380 0.000 0.190
Ours 0.538 0.706 0.622
ICL 0.480 0.200 0.340
ICL + CoT 0.638 0.484 0.561

Table 5: Results for addressing transitive relations.

5.4 Results on TRAN relations

Table 5 presents the results for transitive relation
tasks, where Q1 denotes forward compositional rea-
soning and Q2 denotes the more challenging back-
ward direction. Overall, this setting is significantly
difficult.The standard SFT method fails in both
directions, showing limited generalization ability.
ICL-based methods also perform poorly, especially
on Q2, with accuracy below 0.3. Adding CoT im-
proves results to around 0.5.In contrast, our method
consistently outperforms others in both directions,
demonstrating strong capability in handling com-
positional transitive knowledge. Among model
backbones, Mistral performs best overall, and the
strong performance of the LLaMA-1B model sug-
gests that medium-sized LLMs can be effective for
transitive reasoning.

6 Discussion

We provide a series of qualitative analysis to better
understand the effectiveness of our approach.

6.1 Ablation Study

Different model components influence relation
types differently. We conducted an ablation study
using Llama-8B (Figure 4), where improvements
from each component were normalized as relative
scores.Results show that: (1) Bi-directional trans-
formation (BT) benefits symmetric relations (SYM)
by modeling reversibility, but is less effective on

BT“ 0.16 0.24 0.11

oT 0.08 0.14 0.47 0.31

IS 0.06 0.06 0.56 i
Rule 0.20 0.24 0.26 0.30

SYM ASYM o2m TRAN

Figure 4: Ablation study on module impact across
relation types. BT: bidirectional transformation; OT:
overlap-based transformation; IS: IS-A substitution;
Rule: reasoning rules.

ICL Method Comparison Our Method Comparison

= icL
0.8 EE ICL+CoT

B Ours
T _Ours+CoT

Performance Score

SYM ASYM oM TRAN SYM ASYM oM TRAN

Figure 5: Effect of adopting CoT.

ASYM ones due to their directional nature. (2)
Overlap-based transformation (OT) excels in O2M
relations, likely due to its ability to model shared
contexts. (3) IS-A substitution (IS) is most im-
pactful for TRAN relations by constructing com-
positional structures. (4) Explicit reasoning rules
help across all relation types, with especially strong
effects on transitive relations.

6.2 Effect of Adopting Reasoning Rules

We conduct a deeper exploration of adopting rea-
soning rules by examining whether they can im-
prove SFT and ICL. For SFT, we consider two
settings: one follows our original approach, where
reasoning rules are trained separately, and the other
involves concatenating relevant rules with each
training example for model training. The results
are shown in Table 7, where we use LLaMA-3B
and transitive relations for evaluation. Accordingly,
incorporating rules improves performance in both
SFT and ICL, suggesting their effectiveness. More-
over, in SFT, adding relevant rules for each training
sentence is more effective, though this is not a real-
istic setting for real-world training.
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Case Train Exp. Query Answer SFT ICL ICL + CoT Ours Ours + CoT
. . ... John’s John is the father of Michael.
...John is the Who is . e . Michael. . . .
1 s Michael William son is . Michael Michael is
father... John’s son? . Therefore, Michael s
Michael. . S John’s son...
is John’s son.
~—-Sam is the Who are Emily - the ...the students of -~-Emily ... students are
teacher of . student . and the .

2 . the students  and Emily . Sam are Emily and . Emily and
Emily....of of Sam?  Michael of Sam is - yfichgel student s \; chael
Michael... ’ Michael ’ Michael...
...John is Mark’s Who is the Tom ’1s John is Mark’s . Elizabeth  Tom. Tom is

3 nephew of Tom James  John’s brother ... so Tomis . R
brother ...uncle.... s is the... John’s.....

John? nephew... John’s nephew.

Table 6: A case study comparing the outputs of different learning paradigms, where red represents incorrect

predictions, and green represents correct predictions.

Methods Q1 Q2 Avg

SFT 0.004 0.000 0.002
+ Sep. Training 0.212 0.112 0.162
+ Relev. Rules 0.244 0.248 0.228

ICL 0.332  0.146  0.239
+ Relev. Rules 0.438 0.256 0.396

Table 7: Effect of learning with reasoning rules.

Question Who  is the nephew of John? Tom

Base

SFT

Token Attribution

Ours

]

O

Figure 6: Attention attribution analysis on anti-

symmetric relations for LLaMA3-8B.

6.3 Effect of Adopting CoT

In Figure 5, we measure the average absolute im-
provement achieved by incorporating CoT into the
prediction process. The results show that CoT is
universally effective and compatible with both ICL
and our method. This suggests that CoT may serve
as a “free lunch” for relational reasoning.

6.4 Attribution Analysis

Here, we conduct an attribution analysis on the
Llama3-8B model under anti-symmetric relations,
examining how attention is distributed across each
word in the input when generating the predefined
correct answer “Tom.” The results show that both
the base model and the SFT model appear confused,
failing to focus on informative parts of the input.

In contrast, our model assigns higher attention to
the relevant entity “John,” and under the ICL set-
ting, the model attends to both the relational cue
“nephew” and the entity “John.” This suggests that
improved attention allocation plays a crucial role
in helping the model adapt its output expression
correctly.

6.5 Case study

In Table 6, we show specific cases for analysis. In
Case 1, due to a lack of explicit contextual clues,
SFT generates wrong answers, while both ICL and
our method generate correct answers. In Case 2,
ICL recognizes only “Michael” but misses “Emily”
as the answer. By introducing CoT, the model gen-
erates a complete answer. Our method identifies
both entities but delivers redundant expressions.
When combined with CoT, it generates a clean out-
put. In Case 3, for the compositional query, both
SFT and our method fail to answer correctly. How-
ever, with a brief CoT prompt, our model can figure
out the answer. This suggests that CoT activates
latent reasoning capabilities in LLMs.

7 Conclusion

In this study, we evaluate LLMs’ ability to learn
and generalize relational knowledge—focusing on
symmetric, antisymmetric, one-to-many, and tran-
sitive relations—and identify a clear gap between
supervised fine-tuning and in-context learning. To
address this, we propose a method that integrates
transformation noise and logical rules, substantially
improving model robustness and generalization.
Our work provides both theoretical insights and
practical strategies for enhancing LLMs in real-
world knowledge-driven tasks.



Limitations

Our work has two primary limitations: (1) The
data used is synthetic rather than real-world, while
real-world data is more complex and can involve
mixed properties, making it challenging to study
and analyze their impact. (2) Empirical validation
is currently limited to relations from Freebase, pri-
marily focusing on person-related entities. Future
work should test a broader range of entity types,
including non-personal entities, to assess general-
izability. Additionally, exploring theoretical expla-
nations and establishing cross-domain evaluation
benchmarks will be crucial to expand the applica-
bility of our work.
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A Dataset Construction

In this section, we describe how we construct the
training and test sets for our Relational Reasoning
Evaluation Dataset. Our goal is to ensure diver-
sity in entity names, linguistic templates, and rela-
tion instantiations while preventing the model from
memorizing the test data in advance, thereby rigor-
ously assessing its generalization ability in learning
relational structures.

A.1 Training Data Construction

Defining Common Relationships. We select ten
frequently used relationships for each of the four re-
lation types described in Table 8. These are drawn
from common social or familial roles and from
typical hierarchical scenarios.

Entity Names and Privacy. To ensure diversity
and fairness in the training data, we balanced male
and female names in the original dataset, which
were drawn from culturally neutral common name
lists. Additionally, we avoided using any person-
ally identifiable information or widely recognized
public figures during the selection process to main-
tain anonymity.

Constructing Samples. For each relation type, we
use multiple statement templates and correspond-
ing question forms (see Table 1). Each template
is instantiated with the selected relationships (e.g.,
"Alice is the friend of Bob"), thereby construct-
ing our training data samples. Within the same
relational experiment, each name corresponds to a
unique relationship.

Quality Control. We perform grammar and syn-
tax checks on all generated samples and ensure
the consistency of entity names and gender-related
relationships to maintain semantic coherence. Ad-
ditionally, we remove ambiguous or contradictory
sample pairs to enhance data quality.

A.2 Test Data Construction

Constructing Samples.According to the rules, we
generate corresponding test data for each training
sample. By using the same entity names and corre-
sponding templates, we instantiate each template
with the selected relationships to construct our test
dataset. Pre-Training Test for Zero-Shot Accu-
racy. Before training, we perform a zero-shot ac-
curacy test on the model using the test dataset to
ensure it cannot answer correctly without training.
The goal is to verify that the model’s baseline per-
formance is low enough so that any improvements
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Symmetric Relations

friend, classmate, neighbor, colleague, room-
mate, teammate, partner, ally, cofounder, sibling

Anti-Symmetric Property

father-son, teacher-student, mother-daughter,
grandfather-grandson, husband-wife, uncle-
nephew, aunt-niece, boss-employee, doctor-
patient, nurse-patient

One-to-Many Property

coach-athlete, doctor-patient, nurse-patient,
landlord-tenant, buyer-seller, client-consultant,
host-guest, mentor-mentee, driver-passenger,
editor-writer

Transitive Property

grandparent-parent-child, sibling-sibling-child,
mentor-mentee-mentee, coach-athlete-athlete,
doctor-patient-patient, landlord-tenant-tenant,
buyer-seller-seller, host-guest-guest, uncle-
nephew-child, aunt-niece-child

Table 8: The detailed sub-relation tables for the four
relation types illustrate common real-world relational
structures. Through subsequent relation definitions and
reasoning processes, they reveal different logical char-
acteristics of relation inference.

after training are due to actual learning rather than
pre-existing knowledge. Our experiments confirm
that the accuracy on all test data is 0 with the pre-
trained model.

B Details of Reasoning-Rules

In this section, we present a detailed explanation
of the process used to construct our rule-based rea-
soning data. Our data is derived from the Wiki-
data database, a structured, open-source knowledge
graph that contains entities and their relationships
across diverse domains.We leverage this resource
to extract relationships and build a comprehensive
dataset of reasoning rules.

We adopt different strategies for various rela-
tionship categories. For symmetric property, we
search for property descriptions that include the
term symmetric. For antisymmetric property, we
look for descriptions containing the term “inverse”
and manually pair inverse properties by consulting
the Inverse Property field (e.g., father <+ child). For
one-to-many property, we select those with an ob-
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ject cardinality specified as “multiple”. Finally, for
transitive property, we identify properties that sup-
port path expressions (e.g., ID/ID) or are explicitly
designated as transitive.

For each relationship category, we determine the
number of entities required for each target relation.
Specific entities are replaced with a predefined
set of placeholders (e.g., PersonA, Mr.B, Mrs.C),
which facilitates substitution during sentence gen-
eration and enhances the model’s generalization ca-
pabilities. The relationships are then represented as
tuples (relationl,relation2, objectl, object2, .. .);
for example, (employer, employee,PersonA, Per-
sonB,). By flexibly substituting these placeholders,
we generate diverse sentence structures, further im-
prove the model’s understanding of inter-entity rela-
tionships during training.Additional. We construct
the training data using predefined language struc-
ture templates. These templates follow a condition-
result reasoning format, where the condition de-
scribes the relationship between entities and the
result denotes the logical conclusion derived from
that relationship. A sample of these templates is
provided in Table 9.

For each template, we synthesize appropriate
conditions and results that reflect the characteris-
tics of the relationships. The substitution process
entails selecting suitable predicates and articles for
connection and modification. For instance, in the
case of symmetric relations, we generate two se-
mantically equivalent templates for the condition,
such as “A is the R of B” and “The R of B is A.”” For
each condition template, we iterate through various
relationships within each category. Template slots
are dynamically filled using a type-aware align-
ment module that maps entity and relation types to
lexical patterns. This process generates a dataset of
200 explainable rules, each pairing a formal logic
expression with its natural language equivalent, en-
abling joint training of large language models on
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No. Language Structure Templates

Given the [condition], then [result].
If [condition], then [result].

When [condition], then [result].
Once [condition] is met, then [result].
If [condition] holds true, then
[result].

Provided that [condition], then
[result].

In case [condition], then [result].
Assuming [condition], then [result].

N B~ W N =

o0

If [condition] is satisfied, then
[result].
When [condition] occurs, then
[result].

10

Table 9: List of language structure templates with place-
holders for conditions and results.

both symbolic and textual representations of rela-
tional knowledge. To prevent repetition in instanti-
ated relationships, we randomly select appropriate
names to fill entity placeholders, completing the
instantiation.

C Hyperparameters Setting

We fine-tune the base model using supervised learn-
ing. During training, we set the number of epochs
to 5, the learning rate to 2e-5, and the batch size to
32 for the LLaMA3-8B and LLaMA3.2-1B models.
For the Mistral-7B model, we set the number of
epochs to 5, the learning rate to 4e-5, and the batch
size to 16. During inference, we utilize the vLLM
framework (Kwon et al., 2023) to efficiently handle
large-scale model evaluations. All experiments are
conducted on NVIDIA A100 GPUs with 80GB of
memory.



D Epoch Analysis for Relational
Understanding

In this section,we investigate the correlation be-
tween training epochs and the model’s knowledge
internalization. We employ a consistent forward-
oriented training template and evaluate perfor-
mance through both forward and backward reason-
ing metrics. The experimental results for four rela-
tional patterns are presented in Figure 7 .Our em-
pirical evidence indicates that the model’s forward
reasoning capability demonstrates a statistically sig-
nificant ascending trajectory with increasing train-
ing epochs, despite minor fluctuations observed in
certain epochs. However, the model shows mini-
mal improvement in backward tasks, one-to-many
recognition, and multi-hop reasoning tasks. Our
method achieves consistent performance improve-
ments across all evaluation metrics, further reflect-
ing the framework’s effectiveness in facilitating
comprehensive knowledge acquisition.

14



	Introduction
	Related Work
	LLMs with Knowledge
	The ``Reversal Curse'' of LLM

	Evaluation Protocols
	Relation Categorization
	Evaluation Setups

	Learning with Transformation Noises and Reasoning Rules
	Bi-directional Transformations
	Intra-Sentence Transformation
	Learning with Explicit Reasoning Rules

	Evaluation Results
	Results on SYM relations
	Results on ASYM relations
	Results on O2M relations
	Results on TRAN relations

	Discussion
	Ablation Study
	Effect of Adopting Reasoning Rules
	Effect of Adopting CoT
	Attribution Analysis
	Case study

	Conclusion
	Dataset Construction
	Training Data Construction
	Test Data Construction

	Details of Reasoning-Rules
	Hyperparameters Setting 
	Epoch Analysis for Relational Understanding

