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Abstract001

Alongside the need for advanced reasoning ca-002
pabilities, there is growing interest in augment-003
ing LLMs with knowledge. The standard ap-004
proach is supervised fine-tuning; however, stud-005
ies have identified the “reversal curse”, where006
models trained on texts with “A=B” fail to in-007
fer “B=A”. In this study, we focus on broader008
cases and conduct a comprehensive evaluation009
of LLMs’ ability to learn and generalize re-010
lational knowledge — particularly knowledge011
with symmetric, antisymmetric, one-to-many,012
and transitive properties. We observe a signif-013
icant gap between supervised fine-tuning and014
in-context learning paradigms, and to address015
these limitations, we further propose a method016
that incorporates transformation noise and logi-017
cal rules into the training process. Through ex-018
tensive experiments, we show that our method019
significantly improves the model’s generaliza-020
tion and reasoning capabilities over such rela-021
tions. With these insights, we hope our semi-022
nal work sheds lights on the understanding of023
LLMs’ behavior in knowledge learning and pro-024
vides practical solutions to enhance their per-025
formance in real-world applications.Our code026
and data will be available at http.027

1 Introduction028

Large language models (LLMs) can be considered029

as “soft” knowledge bases due to their ability to030

perform knowledge-intensive tasks (Petroni et al.,031

2019; Han et al., 2023; Lester et al., 2021; Salari032

et al., 2018; Ju et al., 2024). The knowledge in033

their parameters is derived from the textual data034

on which LLMs are trained (Liu et al., 2019; Sing-035

hal et al., 2023). However, it remains unclear how036

LLMs learn and generalize such knowledge (Raffel037

et al., 2020; Dai et al., 2021; Zheng et al., 2024).038

For instance, can LLMs figure out that “A is the039

father of B” from a piece of text “B is the child of040

A”? Studies have uncovered a counter-intuitive phe-041

nomenon called the reversal curse, as illustrated in042
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Figure 1: The reversal curse and evaluations on general-
izing broader relational knowledge.

Figure 1 (top), where LLMs trained on texts like “A 043

= B” just fail to infer the reverse “B = A” (Berglund 044

et al., 2023; Zhu et al., 2024). This highlights the 045

need for checking more general cases. 046

In this work, we conduct a comprehensive eval- 047

uation on LLMs with relational knowledge, as 048

shown in Figure 1. By drawing insights from 049

knowledge graph embedding (KGE), we align “re- 050

lations” with a real knowledge base and categorize 051

them into symmetric, antisymmetric, one-to-many, 052

and transitive properties (Wang et al., 2017; Sun 053

et al., 2019; Zhang et al., 2018; Liu et al., 2019). 054

Our goal is to assess whether LLMs trained on texts 055

describing such relations can effectively general- 056

ize based on their properties. For example, given 057

a fact expressing an anti-symmetric relation (A, 058

employer_of, B), we train the model with the state- 059

ment “A is the employer of B” and test its ability 060

to correctly answer “Who is the employee of B?”. 061

Here, “employer_of” and “employee_of” form an 062

antisymmetric relation pair. To ensure a robust 063

evaluation, we compare four learning paradigms 064

including supervised fine-tuning (SFT) (Wei et al., 065

2021), retrieval-augmented generation (RAG)(Gao 066

et al., 2023), in-context learning (Min et al., 2022), 067

1



and chain-of-thought (CoT) settings (Wei et al.,068

2022).069

According to the results, there is a significant070

gap between standard SFT and other learning071

paradigms — SFT can barely generalize relational072

knowledge and is highly sensitive to surface-level073

linguistic patterns. In light of this, we propose a074

simple and scalable method that introduces trans-075

formation noises and logical rules into the training076

process, which demonstrates significant improve-077

ments in all four relations. Furthermore, we ob-078

serve complementary phenomena between our ap-079

proach and other “online” learning paradigms in080

certain relations, such as one-to-many or transitive081

relations. These observations may provide deeper082

insights for robust learning of relational knowledge083

in real-world cases.084

In summary, our contributions are threefold:085

• We conduct a comprehensive evaluation of086

LLMs in learning and generalizing relational087

knowledge, assessing performance across four088

learning paradigms.089

• We propose a method incorporating structural090

transformation noises and logical rules, which091

significantly enhances standard SFT for learn-092

ing relational knowledge.093

• We release our evaluation benchmarks and094

code to the research community, enabling fur-095

ther exploration and reproducibility.096

2 Related Work097

2.1 LLMs with Knowledge098

Alongside the need for knowledge-aware tasks,099

there is growing interest in augmenting LLMs100

with knowledge (Petroni et al., 2019; Mruthyun-101

jaya et al., 2023; Wang et al., 2023b). Super-102

vised fine-tuning (SFT) and retrieval-augmented103

generation (RAG) are two approaches to building104

knowledgeable LLMs. In particular, SFT injects105

knowledge through standard auto-regressive train-106

ing (Wei et al., 2021), and recent work has explored107

enhancing LLMs with external knowledge using108

tabular or tree-structured representations (Wang109

et al., 2020b; Chen et al., 2024b; Jiang and Bansal,110

2019; Yang et al., 2023), aiming to improve entity111

and relation identification (Yasunaga et al., 2022;112

Badaro et al., 2023). RAG is another approach113

to introducing knowledge into LLMs, which first114

retrieves knowledge and then uses in-context learn-115

ing for generation (Lewis et al., 2020; Gao et al.,116

2023; Niu et al., 2023). Currently, effective in- 117

tegration of knowledge into LLMs is still in its 118

early stages, and comprehensive evaluations are 119

still lacking (Wang et al., 2020a; Lewis et al., 2020; 120

Kassner et al., 2023).Recent studies further high- 121

light challenges in modeling transitivity and inverse 122

relations during knowledge integration(Jang and 123

Lukasiewicz, 2023; Mitchell et al., 2022; Xu et al., 124

2024b). In this work, we focus on more general 125

relational knowledge and perform a comprehensive 126

evaluation. 127

2.2 The “Reversal Curse” of LLM 128

In the context of LLM-knowledge integration, the 129

reversal curse is a prominent phenomenon showing 130

that LLMs struggle to learn and generalize “Is- 131

A” (or “equal to”) relationships (Berglund et al., 132

2023; Zhu et al., 2024). One potential cause is 133

the auto-regressive training objective adopted by 134

LLMs, which may lead models to only learn a feed- 135

forward prediction and limit their ability to capture 136

deeper logical structures within textual data (Xu 137

et al., 2024a; Han et al., 2025; Chen et al., 2024a). 138

This limitation also manifests in inconsistencies 139

across QA answers, where models violate logical 140

constraints such as symmetry and entailment(Liu 141

et al., 2023; Aly et al., 2023; Mehrafarin et al., 142

2024) This issue, compounded by challenges like 143

the factorization curse, significantly impairs the 144

generalization performance of LLMs on reasoning 145

tasks (Toroghi et al., 2024; Malach, 2023). 146

To address these limitations, several solutions 147

have been proposed, including sentence reconstruc- 148

tion (Guan et al., 2021; Cripwell et al., 2022), ex- 149

plicit modeling of reasoning steps (Zhao et al., 150

2023; Wang et al., 2023a; Yeo et al., 2024), and 151

prompt engineering (Lin et al., 2021; Chen et al., 152

2023). Nevertheless, many of these approaches 153

focus on specific relations/scenarios and still de- 154

pend on manual prompt templates. In this work, 155

we explore more general relational knowledge and 156

propose a simple yet effective method to enhance 157

knowledge learning and generalization. 158

3 Evaluation Protocols 159

3.1 Relation Categorization 160

To comprehensively evaluate LLMs with relational 161

knowledge, we draw insights from KGE (Wang 162

et al., 2017) and analogically categorize relational 163

knowledge into four properties: symmetric, anti- 164

symmetric, one-to-many, and transitive. 165
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Symmetric Property (SYM). For an entity set166

X , a relation R is said to be symmetric if, for any167

entity pair A,B ∈ X , the fact that A R−→ B holds168

(expressed as R(A,B)) implies that B R−→ A also169

holds. This is formally expressed as:170

∀A,B ∈ X, R(A,B) ⇒ R(B,A) (1)171

An example of a symmetric relation is the friend_of172

relation: if A is a friend of B, then B is also a friend173

of A.174

Antisymmetric Property (ASYM). Compared175

to symmetric relations, a relation R is said to be an-176

tisymmetric if, for any A,B ∈ X , R(A,B) implies177

that R(B,A) never holds but there exists a com-178

plementary relation R′ such that R′(B,A) holds179

(R ̸= R′). This is formally defined as:180

∀A,B ∈ X,R(A,B) ⇒ R′(B,A) (2)181

In other words, the relationship is strictly unidirec-182

tional. For example, the parent_of and child_of183

form an antisymmetric relation pair: if A is the184

parent of B, then B is always the child of A.185

One-to-Many Property (O2M). A relation R is186

said to have the one-to-many property if, for A ∈187

X , there can exist multiple entities Bi ∈ X such188

that R(A,Bi) holds, while each Bi is uniquely189

linked back to A via R′. Formally:190

∀A ∈ X, ∃B1, . . . , Bk ∈ X (3)191

∀i ∈ 1, . . . , k : R(A,Bi) ⇒ R′(Bi, A),192

For example, the teacher_of relationship forms a193

one-to-many relation: a teacher can have multiple194

students, and each student is associated with only195

one teacher .196

Transitive Property (TRAN). A set of three re-197

lations R1, R2, and R3 are said to exhibit the tran-198

sitive property if, for entities A,B,C ∈ X , the199

existence of R1(A,B) and R2(B,C) implies that200

R3(A,C) holds. Let R3 = R1 ◦ R2 denote the201

composition of R1 and R2. Formally:202

∀A,B,C ∈ X,

R1(A,B) ∧R2(B,C) ⇒ R3(A,C).
(4)203

For example, if R1 and R2 both represent the fa-204

ther_of relation, then R3 corresponds to the grand-205

father_of relation, This property enables the deriva-206

tion of indirect relations through composition.207

Type Template

SYM

TT {A} is the {R} of {B}.

Q1 {A} is the {R} of ___?
Q2 Who is the {R} of {A} ?
Q3 {B} is the {R} of ___?
Q4 Who is the {R} of {B} ?

ASYM
TT {A} is the {R} of {B}.

Q1 {A} is the {R} of ___?
Q2 {B} is the {R’} of ___?

O2M

TT {A} is the {R} of {B1}.
{A} is the {R} of {B2}.

Q1 {A} is the {R} of ___?
Q2 {B1} and {B2} are the {R’} of ___?

TRANS

TT {A} is the {R1} of {B}.
{B} is the {R2} of {C}.

Q1 {A} is the {R3} of ___?
Q2 {C} is the {R3’} of ___?

Table 1: Templates for constructing the training data
(TT) and evaluation (Q1-Q4).

3.2 Evaluation Setups 208

Datasets. We follow Table 1 to construct the 209

datasets for training and evaluation. Specifically, 210

for each type, we selected 10 relations from the 211

widely used knowledge base Freebase (Bollacker 212

et al., 2008) and instantiated 200 templates for 213

each relation by randomly sampling from a person 214

name list1. We then used ChatGPT to rephrase the 215

training data into well-formatted sentences, while 216

strictly preserving the order of entities and rela- 217

tions to mitigate potential issues related to auto- 218

regressive learning (Berglund et al., 2023). After 219

training, we tested the model on Q1–Q4 to evaluate 220

knowledge generalization. 221

Please refer to Appendix A for more details on 222

dataset construction, including relation selection 223

and quality control. 224

Learning Paradigms and LLM Backbones. We 225

considered four learning paradigms:(i) Supervised 226

fine-tuning (SFT). This is the standard approach 227

for training LLMs on textual data. Here, we 228

employed full-parameter training.(ii) Retrieval- 229

augmented generation (RAG). In this paradigm, 230

the model first retrieves evidence sentences from 231

all training sentences, and then concatenates them 232

with the query for inference.(iii) In-context learn- 233

ing (ICL). ICL can be seen as RAG with golden 234

evidence. Here, we augment the prompt with few- 235

shot examples to ensure the answer follows a spe- 236

1The US Baby Names dataset from Kaggle
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Figure 2: An overview of our approach, where we propose structural transformation noise (e.g., bidirectional and
intra-sentence transformations) and explicit reasoning rules to enhance learning.

cific format for parsing.(iv) Chain-of-thought rea-237

soning (CoT). CoT enhances prediction by encour-238

aging step-by-step reasoning. We augment the239

prompt by adding the instruction, “Please think240

step by step”.241

For LLM backbones, we consider LLama3-8B,242

LLama3.2-1B (Dubey et al., 2024), and Mistral-7B243

(Jiang et al., 2023) to ensure diversity in parameter244

scale and architecture. We report 5-run average.245

4 Learning with Transformation Noises246

and Reasoning Rules247

A key issue behind LLMs’ weak knowledge gen-248

eralization is their rigid auto-regressive objective249

(Berglund et al., 2023). To address this, we pro-250

pose (1) structural transformation noise, including251

bidirectional and advanced intra-sentence transfor-252

mations, and (2) the incorporation of explicit rea-253

soning rules to enhance learning.254

4.1 Bi-directional Transformations255

Let a training sentence be x = [w1, . . . , wn],256

where wi is the ith word. We first set up a bidi-257

rectional transformation objective to either pre-258

dict the reversed representation of x, denoted as259

x′ = [wn, . . . , w1], or recover x from x′. We de-260

sign two independent supervised fine-tuning tasks,261

as shown below.262

Backward Prediction. In this backward predic-263

tion task, the goal is to predict x′ conditioned on x264

with a special instruction token [REV]. The input265

is denoted as I = x⊕ [REV]. Then, at time step t,266

the probability to be modeled is: 267

p
(REV)
θ (t) = pθ

(
wn−t+1

∣∣I, wn, . . . , wn−t+2

)
(5) 268

where θ represents the model parameters. The train- 269

ing loss for the entire sentence can be defined as: 270

LREV = −
n∑

t=1

log p
(REV)
θ (t) (6) 271

In practice, we achieve the training by construct- 272

ing a sequence [x ⊕ [REV] ⊕ x′] and performing 273

standard next-word prediction. 274

Forward Restoration. In this forward restora- 275

tion task, the goal is to reconstruct the original 276

sequence x, conditioned on the reversed represen- 277

tation x′ and an instruction token [RET], denoted 278

by I ′ = x′⊕ [RET]. Similar to the previous task, the 279

probability to model at time step t and the training 280

loss are: 281

p
(RET)
θ (t) = pθ

(
wt

∣∣X ′, w1, . . . , wt−1

)
(7) 282

283

LRET = −
n∑

t=1

log p
(RET)
θ (t) (8) 284

In practice, the training can also be achieved by 285

constructing a sequence [x′ ⊕ [RET] ⊕ x]. Here, 286

the introduction of instruction tokens [REV] and 287

[RET], along with the two learning tasks, enables 288

the model to learn bidirectional context. 289
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4.2 Intra-Sentence Transformation290

The bi-directional transformation is mainly for sin-291

gle training sentences. Here, we also consider intra-292

sentence transformation.293

Overlap-based Transformation. The overlap-294

based transformation aims to merge the com-295

mon parts shared by two sentences and con-296

catenates the in-between parts to generate new297

training samples. For instance, consider the298

example in Figure 3. In this case, w1, w5,299

and w9 are common subsequences (or more pre-300

cisely, tokens). Here, we merge two sentences301

based on these tokens and concatenate the dis-302

continuous parts in between to build a new se-303

quence: [ w1 , w2, w3, w4, w5 , w6, w8, w7, w9 ].304

Intuitively, this transformation helps the model305

learn which tokens tend to appear in a common306

context, such as those on the right-hand side of307

one-to-many relationships. In practice, we use the308

Longest Common Subsequence (LCS) algorithm309

to identify common subsequences. With dynamic310

programming, this results in a highly efficient algo-311

rithm with a time complexity of O(N2), where N312

is proportional to the length of the sentence.313

IS-A Substitution. The motivation for is-a sub-314

stitution is to identify semantically equivalent parts315

between sentences and generate new training ex-316

amples by substituting these parts. Consider two317

training examples: 1) A is the R1 of B; 2) B is318

the R2 of C. We generate a new example: A is the319

R1 of (the R2 of C), where B serves as a proxy320

for substitution and is resolved across the two sen-321

tences. Through this approach, we aim to achieve322

the simplest chain based prediction. Note that we323

use only text matching and avoid complex parsing324

tools to ensure a simple and generalizable strategy.325

4.3 Learning with Explicit Reasoning Rules326

Different from format transformations, we also pro-327

pose directly injecting reasoning rules into LLMs328

to improve generalization. To achieve this, we329

construct a rule set expressed in first-order logic330

(FOL) to capture the properties of different relation331

types (§ 3.1). For example, the FOL rule for the332

anti-symmetric relation (parent_of, child_of ) is:333

parent_of(X,Y ) ⇒ child_of(Y,X) (9)334

Here, the rule is translated into plain text sym-335

bols for training, and we only instantiate the re-336

lations—not the entities—to eliminate the possibil-337

ity of learning shortcuts. We train these reasoning338

w9

w5

w1 w2 w5 w6 w8

w1 w3 w4 w7 w9

E1

E2

Figure 3: Example of the overlap patterns of two train-
ing examples E1 and E2.

Methods Q1 Q2 Q3 Q4

LLama3-8B

SFT 0.888 0.580 0.000 0.000
RAG 0.820 0.612 0.384 0.554
Ours 0.900 0.782 0.892 0.688

ICL 0.850 0.910 0.936 0.854
ICL + CoT 0.882 0.922 0.986 0.886

LLama3.2-1B

SFT 0.566 0.410 0.000 0.000
RAG 0.438 0.628 0.346 0.636
Ours 0.902 0.748 0.562 0.648

ICL 0.552 0.750 0.760 0.748
ICL + CoT 0.682 0.738 0.782 0.788

Mistral-7B

SFT 0.720 0.450 0.000 0.000
RAG 0.228 0.468 0.320 0.488
Ours 0.982 0.830 0.942 0.856

ICL 0.344 0.698 0.950 0.942
ICL + CoT 0.684 0.760 0.958 0.962

Table 2: Results for addressing symmetric relations.

rules separately from the relation texts to avoid 339

inter-effects between them. 340

5 Evaluation Results 341

In this section, we give a detailed analysis of the 342

results on LLMs learning and generalizing across 343

four types of relational knowledge. 344

5.1 Results on SYM relations 345

Table 2 presents the results on addressing symmet- 346

ric relations, where Q1 and Q2 are settings with 347

queries in the forward direction, and Q3 and Q4 348

are settings in the reverse direction. Here, Q2 and 349

Q4 adopt queries with more natural expressions but 350

with different word orders compared to Q1 and Q3 351

(see § 3.2 for details). 352

According to the results: (1) The standard SFT 353

achieves good performance only in Q1, where the 354

word orders of the query and the training exam- 355

ples match; it struggles with unmatched ones (Q2). 356

Additionally, SFT fails to generalize symmetric re- 357
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Methods Q1 Q2 Avg.

LLama3-8B

SFT 0.754 0.000 0.377
RAG 0.714 0.510 0.726
Ours 0.958 0.738 0.734

ICL 0.864 0.908 0.886
ICL + CoT 0.964 0.988 0.976

LLama3.2-1B

SFT 0.882 0.000 0.441
RAG 0.768 0.718 0.743
Ours 0.956 0.786 0.871

ICL 0.888 0.878 0.883
ICL + CoT 0.980 0.008 0.494

Mistral-7B

SFT 0.416 0.000 0.208
RAG 0.406 0.308 0.449
Ours 0.590 0.714 0.560

ICL 0.546 0.904 0.725
ICL + CoT 0.648 0.980 0.814

Table 3: Results for addressing anti-symmetric relations.

lations, achieving zero accuracy in Q3 and Q4. (2)358

In contrast, ICL, though adopting a “no learning”359

paradigm, still yields relatively good performance,360

and CoT further enhances learning. This indicates361

that LLMs may be better at leveraging evidence362

provided in the context. However, as expected,363

the more realistic setting RAG yields worse perfor-364

mance as it cannot retrieve golden evidence. (3)365

Our approach significantly outperforms SFT and366

RAG, and its strong performance in the reverse di-367

rection demonstrates its effectiveness in learning368

and generalizing symmetric relation knowledge.369

5.2 Results on ASYM relations370

Table 3 presents the results for addressing anti-371

symmetric relations, where Q1 and Q2 are settings372

with queries for the forward and reverse direction.373

We also report the average performance.374

According to the results, SFT still cannot per-375

form reasoning in the reverse direction, showing376

a lack of generalization. In contrast, our approach377

significantly outperforms SFT, especially in the378

reverse direction. This demonstrates the ability379

of our approach to handle anti-asymmetric rela-380

tional knowledge. However, it is worth noting that381

the performance in the reverse direction is lower382

than in the forward direction. A possible reason383

is that for a relation R, its complementary relation384

R′ may never appear in the training data, and the385

model must learn it from other knowledge, mak-386

ing it more challenging. Interestingly, we observe387

Methods Q1B1 Q1B2 Q1Both Q2

LLama3-8B

SFT 0.784 0.010 0.000 0.000
RAG 0.339 0.497 0.017 0.126
Ours 0.930 0.810 0.748 0.416

ICL 0.488 0.652 0.188 0.280
ICL + CoT 0.608 0.782 0.564 0.688

LLama3.2-1B

SFT 0.324 0.012 0.000 0.000
RAG 0.042 0.292 0.000 0.179
Ours 0.770 0.488 0.328 0.326

ICL 0.230 0.422 0.046 0.230
ICL + CoT 0.438 0.678 0.686 0.488

Mistral-7B

SFT 0.798 0.004 0.000 0.000
RAG 0.595 0.161 0.026 0.110
Ours 0.980 0.936 0.918 0.268

ICL 0.762 0.290 0.128 0.246
ICL + CoT 0.868 0.560 0.588 0.556

Table 4: Results for addressing one-to-many relations.

that ICL-like approaches do not exhibit this issue. 388

This suggests that when LLMs reason from context, 389

they naturally generalize the content. For the same 390

reason, our method lags behind RAG on several 391

metrics, particularly in the reverse direction. 392

5.3 Results on O2M relations 393

Table 4 presents the results on addressing one-to- 394

many relations. Here, Q1 and Q2 denote the set- 395

tings for querying in the forward and backward 396

directions respectively. However, considering that 397

the forward direction involves multiple answers, we 398

further divide Q1 into the following cases: whether 399

B1 is correctly answered (Q1B1), whether B2 is 400

correctly answered (Q1B2), or whether both are 401

correctly answered (Q1Both). 402

Our approach significantly outperforms SFT on 403

both Q1Both and Q2, highlighting its strength in 404

generalizing one-to-many relational knowledge. 405

Two key observations emerge when comparing 406

other learning paradigms: (1) ICL-like methods 407

perform poorly, especially on Q1Both, likely due 408

to confusion caused by one-to-many relations that 409

may resemble conflicting knowledge. (2) We also 410

observe architectural differences: LLaMA models 411

prefer earlier entities (higher Q1B1), while Mistral 412

favors later ones (higher Q1B2), suggesting distinct 413

inductive biases in how evidence is processed. 414
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Methods Q1 Q2 Avg.

LLama3-8B

SFT 0.004 0.000 0.002
RAG 0.232 0.046 0.139
Ours 0.720 0.424 0.572

ICL 0.332 0.146 0.239
ICL + CoT 0.488 0.466 0.477

LLama3.2-1B

SFT 0.002 0.000 0.001
RAG 0.420 0.080 0.250
Ours 0.984 0.570 0.777

ICL 0.520 0.280 0.400
ICL + CoT 0.688 0.480 0.584

Mistral-7B

SFT 0.000 0.000 0.000
RAG 0.380 0.000 0.190
Ours 0.538 0.706 0.622

ICL 0.480 0.200 0.340
ICL + CoT 0.638 0.484 0.561

Table 5: Results for addressing transitive relations.

5.4 Results on TRAN relations415

Table 5 presents the results for transitive relation416

tasks, where Q1 denotes forward compositional rea-417

soning and Q2 denotes the more challenging back-418

ward direction. Overall, this setting is significantly419

difficult.The standard SFT method fails in both420

directions, showing limited generalization ability.421

ICL-based methods also perform poorly, especially422

on Q2, with accuracy below 0.3. Adding CoT im-423

proves results to around 0.5.In contrast, our method424

consistently outperforms others in both directions,425

demonstrating strong capability in handling com-426

positional transitive knowledge. Among model427

backbones, Mistral performs best overall, and the428

strong performance of the LLaMA-1B model sug-429

gests that medium-sized LLMs can be effective for430

transitive reasoning.431

6 Discussion432

We provide a series of qualitative analysis to better433

understand the effectiveness of our approach.434

6.1 Ablation Study435

Different model components influence relation436

types differently. We conducted an ablation study437

using Llama-8B (Figure 4), where improvements438

from each component were normalized as relative439

scores.Results show that: (1) Bi-directional trans-440

formation (BT) benefits symmetric relations (SYM)441

by modeling reversibility, but is less effective on442

SYM ASYM O2M TRAN

BT

OT

IS

Rule

0.49 0.16 0.24 0.11

0.08 0.14 0.47 0.31

0.06 0.06 0.32 0.56

0.20 0.24 0.26 0.30
0.1

0.2

0.3

0.4

0.5

0.6

Figure 4: Ablation study on module impact across
relation types. BT: bidirectional transformation; OT:
overlap-based transformation; IS: IS-A substitution;
Rule: reasoning rules.

SYM ASYM O2M TRAN
0.0

0.2

0.4

0.6

0.8

Pe
rf

or
m

an
ce

 S
co

re

ICL Method Comparison

ICL
ICL+CoT
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Figure 5: Effect of adopting CoT.

ASYM ones due to their directional nature. (2) 443

Overlap-based transformation (OT) excels in O2M 444

relations, likely due to its ability to model shared 445

contexts. (3) IS-A substitution (IS) is most im- 446

pactful for TRAN relations by constructing com- 447

positional structures. (4) Explicit reasoning rules 448

help across all relation types, with especially strong 449

effects on transitive relations. 450

6.2 Effect of Adopting Reasoning Rules 451

We conduct a deeper exploration of adopting rea- 452

soning rules by examining whether they can im- 453

prove SFT and ICL. For SFT, we consider two 454

settings: one follows our original approach, where 455

reasoning rules are trained separately, and the other 456

involves concatenating relevant rules with each 457

training example for model training. The results 458

are shown in Table 7, where we use LLaMA-3B 459

and transitive relations for evaluation. Accordingly, 460

incorporating rules improves performance in both 461

SFT and ICL, suggesting their effectiveness. More- 462

over, in SFT, adding relevant rules for each training 463

sentence is more effective, though this is not a real- 464

istic setting for real-world training. 465
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Case Train Exp. Query Answer SFT ICL ICL + CoT Ours Ours + CoT

1 ...John is the
father...

Who is
John’s son? Michael William

... John’s
son is
Michael.

John is the father of
Michael.
Therefore, Michael
is John’s son.

Michael
Michael.
Michael is
John’s son...

2

...Sam is the
teacher of
Emily....of
Michael...

Who are
the students
of Sam?

Emily
and
Michael

Emily

... the
student
of Sam is
Michael

...the students of
Sam are Emily and
Michael.

...Emily
and the
student is
Michael...

... students are
Emily and
Michael...

3 ...John is Mark’s
brother ...uncle....

Who is the
nephew of
John?

Tom James
Tom is
John’s
nephew...

John is Mark’s
brother ... so Tom is
John’s nephew.

Elizabeth
is the...

Tom. Tom is
John’s.....

Table 6: A case study comparing the outputs of different learning paradigms, where red represents incorrect
predictions, and green represents correct predictions.

Methods Q1 Q2 Avg

SFT 0.004 0.000 0.002
+ Sep. Training 0.212 0.112 0.162
+ Relev. Rules 0.244 0.248 0.228

ICL 0.332 0.146 0.239
+ Relev. Rules 0.438 0.256 0.396

Table 7: Effect of learning with reasoning rules.

Figure 6: Attention attribution analysis on anti-
symmetric relations for LLaMA3-8B.

6.3 Effect of Adopting CoT466

In Figure 5, we measure the average absolute im-467

provement achieved by incorporating CoT into the468

prediction process. The results show that CoT is469

universally effective and compatible with both ICL470

and our method. This suggests that CoT may serve471

as a “free lunch” for relational reasoning.472

6.4 Attribution Analysis473

Here, we conduct an attribution analysis on the474

Llama3-8B model under anti-symmetric relations,475

examining how attention is distributed across each476

word in the input when generating the predefined477

correct answer “Tom.” The results show that both478

the base model and the SFT model appear confused,479

failing to focus on informative parts of the input.480

In contrast, our model assigns higher attention to 481

the relevant entity “John,” and under the ICL set- 482

ting, the model attends to both the relational cue 483

“nephew” and the entity “John.” This suggests that 484

improved attention allocation plays a crucial role 485

in helping the model adapt its output expression 486

correctly. 487

6.5 Case study 488

In Table 6, we show specific cases for analysis. In 489

Case 1, due to a lack of explicit contextual clues, 490

SFT generates wrong answers, while both ICL and 491

our method generate correct answers. In Case 2, 492

ICL recognizes only “Michael” but misses “Emily” 493

as the answer. By introducing CoT, the model gen- 494

erates a complete answer. Our method identifies 495

both entities but delivers redundant expressions. 496

When combined with CoT, it generates a clean out- 497

put. In Case 3, for the compositional query, both 498

SFT and our method fail to answer correctly. How- 499

ever, with a brief CoT prompt, our model can figure 500

out the answer. This suggests that CoT activates 501

latent reasoning capabilities in LLMs. 502

7 Conclusion 503

In this study, we evaluate LLMs’ ability to learn 504

and generalize relational knowledge—focusing on 505

symmetric, antisymmetric, one-to-many, and tran- 506

sitive relations—and identify a clear gap between 507

supervised fine-tuning and in-context learning. To 508

address this, we propose a method that integrates 509

transformation noise and logical rules, substantially 510

improving model robustness and generalization. 511

Our work provides both theoretical insights and 512

practical strategies for enhancing LLMs in real- 513

world knowledge-driven tasks. 514

8



Limitations515

Our work has two primary limitations: (1) The516

data used is synthetic rather than real-world, while517

real-world data is more complex and can involve518

mixed properties, making it challenging to study519

and analyze their impact. (2) Empirical validation520

is currently limited to relations from Freebase, pri-521

marily focusing on person-related entities. Future522

work should test a broader range of entity types,523

including non-personal entities, to assess general-524

izability. Additionally, exploring theoretical expla-525

nations and establishing cross-domain evaluation526

benchmarks will be crucial to expand the applica-527

bility of our work.528
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A Dataset Construction775

In this section, we describe how we construct the776

training and test sets for our Relational Reasoning777

Evaluation Dataset. Our goal is to ensure diver-778

sity in entity names, linguistic templates, and rela-779

tion instantiations while preventing the model from780

memorizing the test data in advance, thereby rigor-781

ously assessing its generalization ability in learning782

relational structures.783

A.1 Training Data Construction784

Defining Common Relationships. We select ten785

frequently used relationships for each of the four re-786

lation types described in Table 8. These are drawn787

from common social or familial roles and from788

typical hierarchical scenarios.789

Entity Names and Privacy. To ensure diversity790

and fairness in the training data, we balanced male791

and female names in the original dataset, which792

were drawn from culturally neutral common name793

lists. Additionally, we avoided using any person-794

ally identifiable information or widely recognized795

public figures during the selection process to main-796

tain anonymity.797

Constructing Samples. For each relation type, we798

use multiple statement templates and correspond-799

ing question forms (see Table 1). Each template800

is instantiated with the selected relationships (e.g.,801

"Alice is the friend of Bob"), thereby construct-802

ing our training data samples. Within the same803

relational experiment, each name corresponds to a804

unique relationship.805

Quality Control. We perform grammar and syn-806

tax checks on all generated samples and ensure807

the consistency of entity names and gender-related808

relationships to maintain semantic coherence. Ad-809

ditionally, we remove ambiguous or contradictory810

sample pairs to enhance data quality.811

A.2 Test Data Construction812

Constructing Samples.According to the rules, we813

generate corresponding test data for each training814

sample. By using the same entity names and corre-815

sponding templates, we instantiate each template816

with the selected relationships to construct our test817

dataset. Pre-Training Test for Zero-Shot Accu-818

racy. Before training, we perform a zero-shot ac-819

curacy test on the model using the test dataset to820

ensure it cannot answer correctly without training.821

The goal is to verify that the model’s baseline per-822

formance is low enough so that any improvements823

Symmetric Relations

friend, classmate, neighbor, colleague, room-
mate, teammate, partner, ally, cofounder, sibling

Anti-Symmetric Property

father-son, teacher-student, mother-daughter,
grandfather-grandson, husband-wife, uncle-
nephew, aunt-niece, boss-employee, doctor-
patient, nurse-patient

One-to-Many Property

coach-athlete, doctor-patient, nurse-patient,
landlord-tenant, buyer-seller, client-consultant,
host-guest, mentor-mentee, driver-passenger,
editor-writer

Transitive Property

grandparent-parent-child, sibling-sibling-child,
mentor-mentee-mentee, coach-athlete-athlete,
doctor-patient-patient, landlord-tenant-tenant,
buyer-seller-seller, host-guest-guest, uncle-
nephew-child, aunt-niece-child

Table 8: The detailed sub-relation tables for the four
relation types illustrate common real-world relational
structures. Through subsequent relation definitions and
reasoning processes, they reveal different logical char-
acteristics of relation inference.

after training are due to actual learning rather than 824

pre-existing knowledge. Our experiments confirm 825

that the accuracy on all test data is 0 with the pre- 826

trained model. 827

B Details of Reasoning-Rules 828

In this section, we present a detailed explanation 829

of the process used to construct our rule-based rea- 830

soning data. Our data is derived from the Wiki- 831

data database, a structured, open-source knowledge 832

graph that contains entities and their relationships 833

across diverse domains.We leverage this resource 834

to extract relationships and build a comprehensive 835

dataset of reasoning rules. 836

We adopt different strategies for various rela- 837

tionship categories. For symmetric property, we 838

search for property descriptions that include the 839

term symmetric. For antisymmetric property, we 840

look for descriptions containing the term “inverse” 841

and manually pair inverse properties by consulting 842

the Inverse Property field (e.g., father ↔ child). For 843

one-to-many property, we select those with an ob- 844
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Figure 7: Model ACC changes with training epochs

ject cardinality specified as “multiple”. Finally, for845

transitive property, we identify properties that sup-846

port path expressions (e.g., ID/ID) or are explicitly847

designated as transitive.848

For each relationship category, we determine the849

number of entities required for each target relation.850

Specific entities are replaced with a predefined851

set of placeholders (e.g., PersonA, Mr.B, Mrs.C),852

which facilitates substitution during sentence gen-853

eration and enhances the model’s generalization ca-854

pabilities. The relationships are then represented as855

tuples (relation1,relation2, object1, object2, . . . );856

for example, (employer, employee,PersonA, Per-857

sonB,). By flexibly substituting these placeholders,858

we generate diverse sentence structures, further im-859

prove the model’s understanding of inter-entity rela-860

tionships during training.Additional. We construct861

the training data using predefined language struc-862

ture templates. These templates follow a condition-863

result reasoning format, where the condition de-864

scribes the relationship between entities and the865

result denotes the logical conclusion derived from866

that relationship. A sample of these templates is867

provided in Table 9.868

For each template, we synthesize appropriate869

conditions and results that reflect the characteris-870

tics of the relationships. The substitution process871

entails selecting suitable predicates and articles for872

connection and modification. For instance, in the873

case of symmetric relations, we generate two se-874

mantically equivalent templates for the condition,875

such as “A is the R of B” and “The R of B is A.” For876

each condition template, we iterate through various877

relationships within each category.Template slots878

are dynamically filled using a type-aware align-879

ment module that maps entity and relation types to880

lexical patterns. This process generates a dataset of881

200 explainable rules, each pairing a formal logic882

expression with its natural language equivalent, en-883

abling joint training of large language models on884

No. Language Structure Templates

1 Given the [condition], then [result].
2 If [condition], then [result].
3 When [condition], then [result].
4 Once [condition] is met, then [result].
5 If [condition] holds true, then

[result].
6 Provided that [condition], then

[result].
7 In case [condition], then [result].
8 Assuming [condition], then [result].
9 If [condition] is satisfied, then

[result].
10 When [condition] occurs, then

[result].

Table 9: List of language structure templates with place-
holders for conditions and results.

both symbolic and textual representations of rela- 885

tional knowledge. To prevent repetition in instanti- 886

ated relationships, we randomly select appropriate 887

names to fill entity placeholders, completing the 888

instantiation. 889

C Hyperparameters Setting 890

We fine-tune the base model using supervised learn- 891

ing. During training, we set the number of epochs 892

to 5, the learning rate to 2e-5, and the batch size to 893

32 for the LLaMA3-8B and LLaMA3.2-1B models. 894

For the Mistral-7B model, we set the number of 895

epochs to 5, the learning rate to 4e-5, and the batch 896

size to 16. During inference, we utilize the vLLM 897

framework (Kwon et al., 2023) to efficiently handle 898

large-scale model evaluations. All experiments are 899

conducted on NVIDIA A100 GPUs with 80GB of 900

memory. 901
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D Epoch Analysis for Relational902

Understanding903

In this section,we investigate the correlation be-904

tween training epochs and the model’s knowledge905

internalization. We employ a consistent forward-906

oriented training template and evaluate perfor-907

mance through both forward and backward reason-908

ing metrics. The experimental results for four rela-909

tional patterns are presented in Figure 7 .Our em-910

pirical evidence indicates that the model’s forward911

reasoning capability demonstrates a statistically sig-912

nificant ascending trajectory with increasing train-913

ing epochs, despite minor fluctuations observed in914

certain epochs. However, the model shows mini-915

mal improvement in backward tasks, one-to-many916

recognition, and multi-hop reasoning tasks. Our917

method achieves consistent performance improve-918

ments across all evaluation metrics, further reflect-919

ing the framework’s effectiveness in facilitating920

comprehensive knowledge acquisition.921

14


	Introduction
	Related Work
	LLMs with Knowledge
	The ``Reversal Curse'' of LLM

	Evaluation Protocols
	Relation Categorization
	Evaluation Setups

	Learning with Transformation Noises and Reasoning Rules
	Bi-directional Transformations
	Intra-Sentence Transformation
	Learning with Explicit Reasoning Rules

	Evaluation Results
	Results on SYM relations
	Results on ASYM relations
	Results on O2M relations
	Results on TRAN relations

	Discussion
	Ablation Study
	Effect of Adopting Reasoning Rules
	Effect of Adopting CoT
	Attribution Analysis
	Case study

	Conclusion
	Dataset Construction
	Training Data Construction
	Test Data Construction

	Details of Reasoning-Rules
	Hyperparameters Setting 
	Epoch Analysis for Relational Understanding

