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ABSTRACT

Single-cell RNA sequencing (scRNA-seq) enables the study of cellular hetero-
geneity. Yet, clustering accuracy, and with it downstream analyses based on cell
labels, remain challenging due to measurement noise and biological variability. In
standard latent spaces (e.g., obtained through PCA), data from different cell types
can be projected close together, making accurate clustering difficult. We introduce
a latent plug-and-play diffusion framework that separates the observation and de-
noising space. This separation is operationalized through a novel Gibbs sampling
procedure: the learned diffusion prior is applied in a low-dimensional latent space
to perform denoising, while to steer this process, noise is reintroduced into the
original high-dimensional observation space. This unique “input-space steering”
ensures the denoising trajectory remains faithful to the original data structure. Our
approach offers three key advantages: (1) adaptive noise handling via a tunable
balance between prior and observed data; (2) uncertainty quantification through
principled uncertainty estimates for downstream analysis; and (3) generalizable
denoising by leveraging clean reference data to denoise noisier datasets, and via
averaging, improve quality beyond the training set. We evaluate robustness on
both synthetic and real single-cell genomics data. Our method improves cluster-
ing accuracy on synthetic data across varied noise levels and dataset shifts. On
real-world single-cell data, our method demonstrates improved biological coher-
ence in the resulting cell clusters, with cluster boundaries that better align with
known cell type markers and developmental trajectories.

1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) has revolutionized biomedical research by enabling high-
resolution profiling of cellular heterogeneity (Park et al., 2020; Miragaia et al., 2019), with large-
scale initiatives like the Human Cell Atlas providing foundational references for cell type annotation
(Regev et al., 2017; Lindeboom et al., 2021; Elmentaite et al., 2022; Stuart et al., 2019; Lopez et al.,
2018). However, since cells are sequenced without predefined labels, accurate cell type identification
must be derived entirely from unsupervised analysis of noisy high-dimensional data. The canonical
approach involves reducing dimensionality (e.g., via PCA) followed by clustering and manual anno-
tation based on marker genes—an iterative and subjective process (Kiselev et al., 2019; Stuart et al.,
2019). This paradigm suffers from three major limitations: 1) scRNA-seq data is inherently noisy
due to technical artifacts (e.g., varying capture efficiency, Kharchenko et al. 2014) and biological
stochasticity (Wagner et al., 2016), which clustering algorithms amplify, often producing unreliable
labels; 2) Reproducibility is hampered by batch effects and procedural differences across labs (Sha-
ham et al., 2017), making consistent clustering across datasets difficult; and 3) Population-specific
and technology-induced shifts in data distribution reduce generalizability.

We frame single-cell denoising as an inverse problem: recovering clean gene expression from noisy
measurements without imposing strong generative assumptions. This follows the plug-and-play
(PnP) paradigm (Venkatakrishnan et al., 2013; Zhang et al., 2021; Chan et al., 2016; Ryu et al.,
2019), which integrates powerful denoising priors with measurement models. Mainstream PnP dif-
fusion frameworks (Zhu et al., 2023; Go et al., 2023; Wu et al., 2024; Xu & Chi, 2024) enables this
through combining likelihoods via iterative refinement (e.g., Gibbs sampling), where each denois-
ing step is followed by controlled noise reintroduction to enforce data consistency. In principle, this
enables denoising beyond test data quality by transferring patterns from high-signal reference data
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(e.g., SMART-seq2, Picelli et al. 2013; 2014) to noisier technologies (e.g., droplet-based scRNA-
seq, Klein et al. 2015; Macosko et al. 2015). However, directly applying image-based PnP frame-
works to single-cell data is challenging. Unlike images where pixel noise is largely independent,
gene expression data exhibits intrinsic low-rank structure and complex correlations. Moreover,
denoising must preserve relational structure between cells for accurate clustering and annotation.
Standard dimensionality reduction (e.g., PCA) can collapse distinct cell types, making it impossible
to guide denoising accurately.

To address these unique challenges, we introduce a latent plug-and-play diffusion framework that
tailors the PnP philosophy to single-cell biology. Unlike prior PnP methods that rely on generic or
hand-designed priors, our approach is tailored to biological data and operates through a modified
two-step procedure, designed to overcome limitations of prior single-cell denoising methods. First,
a diffusion model is trained in a low-dimensional latent space (analogous to PCA) to capture the
core biological manifold of a high-quality reference dataset. Unlike PCA, this diffusion process
learns score functions directly from the data, enabling recovery of complex structures in the latent
distribution of cell types. This approach inherits the robustness to prior misspecification and scala-
bility to high latent dimensions characteristic of diffusion models (Xu & Chi, 2024). Second, during
inference on the noisy dataset, we employ a Gibbs sampling procedure that reintroduces noise into
the original high-dimensional input space. This critical step directly addresses the latent-space col-
lapsing issue inherent in methods like PCA (Burges et al., 2010), where distinct biological states
are projected too close together, losing information essential for precise denoising. By operating in
the original high-dimensional space, where full geometric relationships are preserved, our method
steers denoising toward biologically meaningful structures obscured in compressed representations.

Our framework diverges from existing Bayesian approaches for single-cell analysis by removing
their need for restrictive generative modeling. While variational autoencoders (VAEs) (Lopez et al.,
2018; Gayoso et al., 2019; Grønbech et al., 2020) are difficult to train and rely on strong likelihood
assumptions, more recent approximate message passing methods with empirical Bayes denoisers
(Zhong et al., 2022; Nandy & Ma, 2024) still require parametric noise modeling, operate purely in
the latent space, and scale poorly to high-dimensional latent spaces. In contrast, our approach re-
quires no explicit generative model or pre-processing for noise structure, instead learning it directly
from data. By combining the adaptability of likelihood-free diffusion with the structure-aware re-
finement of Gibbs-based input-space guidance, we enhance cluster separation even under high noise
or distribution shift, without depending on restrictive architectural or noise-modeling priors.

Our framework offers three key advantages over existing single-cell clustering and denoising meth-
ods, providing a principled, robust, and reproducible pathway for automated cell type annotation:

• Adaptive noise handling through tunable interpolation: We introduce a parameter ρ that dy-
namically balances data-driven information and prior knowledge during denoising. This allows
optimal adaptation to varying noise levels and dataset qualities—preserving data-specific signals
when test and training distributions align, while leveraging prior knowledge to stabilize highly
noisy inputs. This capability is absent in conventional clustering and imputation methods.

• Uncertainty quantification: Unlike standard clustering or VAE-based pipelines, our approach
provides confidence sets for cell-type predictions, enabling quantitative assessment of annotation
reliability—critical for downstream analysis and clinical applications.

• Generalizable denoising: By training on high-quality reference data, our model learns a robust
biological manifold that can denoise even low-quality target datasets, effectively addressing real-
world scenarios where data from different labs exhibit substantial quality variations. Further, our
averaging-based approach enables denoising beyond the immediate training distribution, enhanc-
ing applicability across diverse experimental conditions.

Our experimental results demonstrate consistent performance under various mis-specifications of
the data-generating process in synthetic settings (Section 4). In real-world single-cell experiments,
our method shows strong potential for leveraging high-signal training data to improve denoising in
low-signal datasets and to denoise beyond the training distribution by averaging (Section 5).

Additional Related Work on Diffusion in Single-Cell Data Diffusion models provide flexible,
trainable priors that accommodate complex noise structures (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021b;a). While initial single-cell applications have focused on transcriptome
generation and data imputation (Luo et al., 2024; Wang et al., 2025; 2024; Zhang et al., 2025), their
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potential for learning denoised low-dimensional embeddings, critical for reference atlas construc-
tion and robust label transfer, remains largely unexplored. Our work investigates this gap, using
unsupervised clustering and subsequent biological validation as the evaluation framework.

2 SINGLE-CELL ATLAS CONSTRUCTION VIA POSTERIOR SAMPLING

We consider two single-cell RNA-seq datasets: (1) a reference dataset D(r) =
{
X

(r)
1 , . . . , X

(r)
m

}
used to train a diffusion prior that captures the underlying biological manifold, and (2) a target
datasetD(t) =

{
X

(t)
1 , . . . , X

(t)
n

}
to which we apply denoising using the learned prior. Both datasets

consist of raw UMI counts transformed into expression profiles via standard preprocessing pipelines
(e.g., quality control, variance stabilization, etc.). Our framework is agnostic to specific preprocess-
ing choices and accommodates diverse noise structures.

Data Generating Process We assume both datasets follow a low-rank factor model (Peng et al.,
2021; Weine et al., 2024; Zhong et al., 2022; Nandy & Ma, 2024; Argelaguet et al., 2020). Let
Xi ∈ Rd:

Xi = V Ui + εi, ∀i, (1)
where V ∈ Rd×k is a factor loading matrix that spans the transcriptional space; Ui ∈ Rk ∼ Pprior
encodes the low-dimensional biological cell signal drawn i.i.d. from an unknown distribution Pprior;
and εi is an independent noise vector, reflecting stochastic variation in the measurement process or
biological stochasticity. For specific datasets, we have

X(r) = U (r)
(
V (r)

)⊤
+ ε(r), U (r) ∈ Rm×k, ε(r) ∈ Rm×d; (2)

X(t) = U (t)
(
V (t)

)⊤
+ ε(t), U (t) ∈ Rn×k, ε(t) ∈ Rn×d. (3)

We assume conserved latent biological structures across datasets: the prior distribution Pprior (shared
cell state manifold) and factor loading matrix V (transcriptional programs) are identical for both
reference and target datasets. However, we allow dataset-specific noise characteristics ε(t) ≁ ε(r) to
accommodate different measurement technologies and batch effects, with the expectation that our
method performs best when the reference dataset D(r) has comparable or lower noise levels than
the target dataset D(t).

Given these shared structures, we drop superscripts on U and V entirely, as they represent the same
biological quantities across datasets. We retain the (r) and (t) superscripts only for dataset-specific
terms: D(r), D(t), X(r), X(t), ε(r), and ε(t). To further simplify notation, we henceforth drop the
superscripts with the convention that all quantities refer to the target dataset D(t) unless explicitly
marked with (r) for the reference dataset D(r).

Posterior Sampling for Denoised Embeddings Our goal is to construct a denoised atlas of D(t)

by computing posterior embeddings E[Ui | Xi], which we frame as sampling from the posterior:

π(U | X) ∝ f
(
X − UV ⊤ ∣∣U) Pprior(U),

where f(·) denotes the likelihood associated with the observation model, and Pprior represents the
population prior learned via diffusion on D(r). The main challenge lies in the likelihood term
f(X − UV ⊤ | U), which encodes the relationship between latent embeddings and observed ex-
pressions through the factor model in Eq. (1). Traditional approaches address this difficulty by
imposing restrictive assumptions: conjugate Gaussian priors with Gaussian likelihoods (Gelman
et al., 2013) enable tractable inference but fail to capture complex biological distributions, while
Metropolis-adjusted Langevin algorithms (Roberts & Rosenthal, 1998; Durmus et al., 2018) handle
non-Gaussian likelihoods but struggle with implicitly defined diffusion priors.

PnP Framework with Auxiliary Variables By leveraging the PnP diffusion framework, we over-
come this challenge using a split Gibbs sampling approach (Xu & Chi, 2024) that introduces aux-
iliary variables Zi to decouple the likelihood from the diffusion prior. This is achieved by first
replacing Ui with Zi in the likelihood generating stage, and then enforce consistency between Ui

and Zi through a Gaussian penalty, which leads to following augmented joint distribution:

Pρ(Xi, Ui, Zi) ∝ exp

(
− log f(Xi − V Zi)−

1

2ρ2
∥Ui − Zi∥22 − logPprior(Ui)

)
, (4)
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where ρ controls the alignment strength. Smaller ρ enforces tighter coupling between Ui and its
auxiliary counterpart Zi. This leads to a Gibbs sampler alternating between two conditional updates:

Likelihood Step: Pρ(Zi | Xi, Ui) ∝ exp

(
− log f(Xi − V Zi)−

1

2ρ2
∥Ui − Zi∥22

)
, (5)

Prior Step: Pρ(Ui | Zi) ∝ exp

(
− 1

2ρ2
∥Ui − Zi∥22 − logPprior(Ui)

)
. (6)

Although resembling Gibbs sampling, the alignment penalty is artificially introduced rather than
arising from standard conjugacy. This modification allows us to plug in a diffusion prior at inference
time, thereby enabling efficient posterior sampling even when the prior is only implicitly specified.

Evaluating Atlas Quality A key challenge in single-cell atlas construction is the lack of direct
evaluation metrics due to high-dimensional noise and the curse of dimensionality (Kiselev et al.,
2019). We employ a multi-faceted evaluation strategy combining quantitative clustering metrics and
qualitative visual assessment:

1. Visual Assessment: We use dimensionality reduction techniques, particularly UMAP (McInnes
et al., 2018), to visually examine the quality of denoised embeddings. Well-separated, biologi-
cally meaningful structures in 2D visualizations validate the method’s performance.

2. Unsupervised Clustering with Post-Hoc Evaluation: Denoised embeddings {Ûi}ni=1 are clustered
without using label information to obtain K clusters. The quality of these clusters is evaluated
by comparing them to the known cell type labels Li ∈ 1, . . . , C using metrics like adjusted rand
index (ARI) (Hubert & Arabie, 1985), average silhouette score (Rousseeuw, 1987), and cell-type
Locally Invariant Simpson Index (Korsunsky et al., 2019), which quantify the agreement between
the data-driven clusters and biological annotations.

Our framework is fully unsupervised, relying only on expression data.1 We benchmark performance
on synthetic data with known ground truth and on real datasets, noting that real-world labels may be
imperfect (and thus annotation accuracy thus provides an indirect measure of atlas quality).

3 METHOD

We introduce a latent plug-and-play diffusion scheme for denoising query cell embeddings under the
guidance of a diffusion model trained on a large corpus of single-cell gene expression data. Lever-
aging the PnP framework, we recover low-dimensional embeddings U from noisy gene expression
profiles X(r) by decoupling data fidelity and prior structure: the query cell’s expression profile an-
chors the denoising process to its unique features, while the pretrained diffusion model contributes
global information about the structure of the cell population. Our pipeline consists of two stages:

1. Training stage: jointly estimate the factor loading matrix V and train a diffusion model to learn
the prior distribution Pprior over embeddings on D(r).

2. Inference stage: given query expressions X(t)
q , perform posterior sampling using a split Gibbs

scheme, alternating between likelihood-informed updates and diffusion-guided updates.

This approach preserves the flexibility of diffusion priors while maintaining tractable posterior in-
ference, providing a scalable and uncertainty-aware framework for single-cell atlas construction.

Diffusion Training We train the diffusion model on the reference dataset D(r). Consider the best
rank-k approximation of the reference data produced by singular value decomposition: X(r) ≈
Ŵ Σ̂V̂ ⊤, where Ŵ ∈ Rn×k and V̂ ∈ Rd×k are unitary matrices containing the top k left and right
singular vectors, respectively, and Σ̂ ∈ Rk×k is the diagonal matrix of the top k singular values. This
decomposition yields our loading matrix estimate in Eq. (1), V̂ . We then compute the transformed
observations Ûi = V̂ ⊤X

(r)
i for i = 1, . . . ,m, which accurately approximates the latent embeddings

Ui under a wide range of noise models. These estimated embeddings {Ûi}mi=1 therefore provide
training samples from the prior distribution Pprior and are used to train the diffusion model.

To learn this prior, we adopt the standard forward-diffusion framework (Sohl-Dickstein et al., 2015;
Ho et al., 2020), which we detail in Appendix A.

1While labels are not used in denoising, we explore label-augmented diffusion training in Section 5.
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Algorithm 1 DICE: Diffusion Induced Cell Embeddings

1: Input: query cell Xq; trained diffusion model ε̂θt(·); number of iterations T ; annealing schedule
{ρs}Ts=1; estimated factor loading matrix V̂

2: Initialize: U (0)
q ← V̂ ⊤Xq

3: for s = 0 to T − 1 do
4: Likelihood alignment: sample

Z(s)
q | U (s)

q ∝ exp
(
− 1

2ρ2
s
∥Zq − U (s)

q ∥22 − log f(Xq − V̂ Zq)
)
.

5: Prior alignment: Using the reverse diffusion update in Eq. (7), sample

U (s+1)
q | Z(s)

q ∝ exp
(
− 1

2ρ2
s
∥Z(s)

q − Uq∥22 − logPprior(Uq)
)
.

6: end for
7: return U

(T )
q as the denoised embedding of the query cell.

Denoising with DICE We now introduce DICE (Diffusion Induced Cell Embeddings, Algo-
rithm 1), our split Gibbs sampling procedure for denoising a query cell Xq and estimating its la-
tent embedding Uq . Given an annealing schedule {ρs : s = 1, . . . , T}, the augmented distribu-
tion Eq. (4) decomposes posterior sampling into two iterative steps:

1. Likelihood alignment (Line 4) is implemented using either a general proximal scheme (Xu &
Chi, 2024) or a closed-form Gaussian update when f is Gaussian (Proposition 3.1). Unlike the
likelihood alignment step in Eq. (5), Line 4 operates in the original d-dimensional data space,
reintroducing noise through the likelihood function log f(Xq − V̂ Zq).

2. Prior alignment (Line 5) is implemented using the trained diffusion model via the reverse update

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ε̂θ(xt)

)
+
√
1− αt zt, zt ∼ Nk(0, Ik), (7)

run for t = t0, t0 − 1, . . . , 1 with initialization xt0 =
√
ᾱt0 U

(s)
q . The chain length is chosen so

that ᾱt0 ≈ (1 + ρs)
−1.

We reduce posterior variability by generating multiple samples and averaging, enabling denoising
beyond reference data quality (Figure 1 (first column) and Figure 3). The parameter ρs controls
the relative weight of prior and likelihood: a larger ρs emphasizes population-level structure and is
suitable for noisy queries, while a smaller ρs emphasizes fidelity to the observed expression profile.

Likelihood Alignment under Gaussian Noise Although our framework accommodates general
likelihoods, in practice, single-cell data are often log 1p-transformed and modeled with Gaussian
noise (Zhong et al., 2022; Argelaguet et al., 2020). In this case, Proposition 3.1 (proof in Ap-
pendix B) establishes that the likelihood update step admits a closed-form update:
Proposition 3.1. Assume f is the standard multivariate Gaussian density in d dimensions. Follow-
ing Gaussian conjugacy, for all s = 0, . . . , T − 1, the likelihood update step (Line 4) admits the
following update:

Z(s)
q ∼ Nk

(
Λ
(
V̂ ⊤Xq +

1
ρ2
s
U (s)
q

)
, Λ
)
, Λ =

(
V̂ ⊤V̂ + 1

ρ2
s
Ik

)−1

.

Remark 3.2. The same denoising scheme can be applied to the training data themselves, yielding
refined embeddings that serve as a reference atlas. Notably, atlas construction via DICE does not
rely on restrictive parametric assumptions for either the likelihood or the prior, enabling the method
to capture rich and complex population structures as found for example in single-cell data.

Confidence Sets We quantify uncertainty in the embedding of a query cell Xq by applying DICE
multiple times and examining the spread of the resulting denoised embeddings.

4 EVALUATION ON SYNTHETIC DATA

Setup To evaluate how well DICE recovers clean latent structure from noisy expression profiles,
we design a controlled setting that mimics two pure cell populations with known labels. In latent
dimension k = 15, the training prior is a balanced Gaussian mixture Pprior =

1
2 N15

(
015, 1.5 I15

)
+

5
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Figure 1: UMAP visualizations of the 400 test cells for each of the four configurations. Top row:
PCA projections; bottom row: DICE-denoised embeddings. Columns (left to right) correspond to
Setups 1–4. Throughout, we refer to the mixture component centered at 115 with scale 1.3 I15 as
Cluster 1, and to the complementary component as Cluster 2 (Gaussian N15(015, 1.5 I15) where
applicable; heavy-tailed tν=4(1.3 I15) in the latent–prior–shift configuration). Points are colored
blue for Cluster 1 and orange for Cluster 2.

1
2 N15

(
115, 1.3 I15

)
, with each component corresponding to one cell type. We sample a loading

matrix V ∈ R2000×15 with entries i.i.d. N (0, 1). For each cell i, we draw a latent U (r)
i ∼ Pprior

and measurement noise ε
(r)
i ∼ N2000(0, I2000), and generate a synthetic expression profile X

(r)
i =

V U
(r)
i + ε

(r)
i ∈ R2000, i = 1, . . . , 1600. This yields a reference dataset D(r) of size m = 1600

in d = 2000 observed dimensions, analogous to a high-signal scRNA-seq experiment with two
subpopulations present in equal proportion.

Test configurations We examine three train-test shifts covering practical single-cell scenarios,
with |D(t)| = 400, fixing Pprior and V as in Section 2 unless noted otherwise:

1. Setup 1 (matched train–test distribution). We generate D(t) from the same DGP as D(r) to
isolate posterior denoising effects. This evaluates whether DICE improves population separation
in latent space versus PCA, mirroring standard atlas workflows where query cells are mapped via
denoised embeddings (Nandy & Ma, 2024).

2. Setup 2 (signal-strength shift). We increase the noise on D(t), with ε
(t)
i ∼ N2000(0, 10 I2000).

This mirrors single-cell scenarios with lower read depth/fewer UMIs or noisier platforms (e.g.,
shallow sequencing) that reduce signal-to-noise ratio (SNR) at test time. This tests whether
DICE, trained on high-quality data, denoises low-SNR profiles better than PCA.

3. Setup 3 (noise-model shift). We generate D(t) with a heavy-tailed noise, ε(t)i ∼ tν=4(I2000)
(multivariate t with 4 degrees of freedom and scale I2000), while keeping a Gaussian likelihood
during denoising. This tests DICE’s robustness to likelihood mis-specification from heavy-tailed
residuals (due to outliers, doublets, or over-dispersion in single-cell applications) against PCA.

4. Setup 4 (latent-prior shift). We change the test latent distribution to a heavy-tailed mixture:
U

(t)
i

i.i.d.∼ 1
2 N15(115, 1.5 I15) +

1
2tν=4(1.3 I15), with increased noise ε(t)i ∼ N2000(0, 10 I2000).

This tests robustness to prior mis-specification when deploying on novel, heterogeneous subpop-
ulations (e.g., new developmental states), where we expect DICE to recover mixture separation
better than PCA despite heavier tails and lower SNR.

Training and denoising workflow We train a diffusion model on 15-dimensional latent representa-
tions obtained via PCA from the training setD(r) for 2,000 epochs (training details in Appendix C).
The resulting model serves as the learned prior Pprior across all four test configurations.

At test time, we denoise the PCA projections of each configuration by running Algorithm 1 (DICE)
for T = 200 Gibbs iterations with a constant annealing level ρt = 20. We repeat this procedure
with 10 independent random iterations and report the mean of the resulting embeddings as a Monte
Carlo estimate of E[U |X] for each test cell.
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Setup PCA DICE

1 0.25 0.37
2 0.24 0.36
3 0.22 0.34
4 0.22 0.28

Table 1: Average sil-
houette scores (higher is
better) for two methods
across four settings.
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Figure 2: UMAP visualizations of 500 runs of DICE on the same input
point in Setup 1 and ρ = 0.1. Training data are shown in grey. Left:
center of Cluster 2; Right: midpoint between Clusters 1 and 2.

Evaluation We assess the cluster separation of DICE-derived embeddings against a PCA baseline
that projects expression profiles to the same latent dimension used for clustering. Qualitatively,
we visualize UMAPs (McInnes et al., 2018) (Fig. 1); quantitatively, we report the average cosine
silhouette score (Rousseeuw, 1987), computed using the true cluster labels of the test data (Table 1).
Because ground-truth labels are available in this benchmark, both readouts are directly comparable.
Across all four settings, DICE yields clearer separation in UMAP and higher silhouette scores than
the PCA baseline, indicating more faithful recovery of the underlying classes.

Uncertainty in the embeddings We visualize our confidence set construction for two fixed points:
(i) the center of Cluster 2 and (ii) the midpoint between the two cluster centers. For each input, we
run DICE 500 times and project the resulting embeddings onto the same UMAP as the training data.
When the input lies at the center of a cluster (Figure 2, left), all embeddings map consistently to
Cluster 2, indicating high confidence in the cluster assignment. In contrast, when the input lies be-
tween clusters (Figure 2, right), the embeddings are split across both clusters, reflecting uncertainty
in the assignment. Such uncertainty could be advantageous for downstream tasks designed to incor-
porate soft labels. Additional plots in Appendix E show how the parameter ρ directly controls the
size of the confidence sets. Thus, ρ must be tuned to balance coverage and performance.

5 EVALUATION ON SINGLE-CELL DATA

We evaluate the effectiveness of DICE in denoising single-cell gene expression profiles using two
publicly available single-cell RNA-seq datasets: the CITE-seq dataset from Hao et al. (2021) and
the human fetal brain development datasets from Polioudakis et al. (2019) and Nowakowski et al.
(2017). These datasets originate from distinct tissues and capture diverse cellular populations. They
also differ in their relative signal strengths, allowing us to examine the ability of our method to
handle both complex cell distributions and varying signal-to-noise regimes.

Diffusion Training For each dataset, we first select the latent dimension k using the elbow of
the singular-value spectrum, and then project the training data onto this k-dimensional space via
PCA. This yields the training embeddings {Ûi}mi=1 and the loading matrix V̂ used by DICE. We
train the same diffusion architecture across datasets using AdamW with a cosine-annealed learning-
rate schedule. Additional details on the training pipeline, including precise model architecture, are
provided in Section C of the appendix.

5.1 ANALYSIS OF THE CITE-SEQ DATASET

Dataset CITE-seq dataset (Hao et al., 2021) consists of RNA profiles for 20,729 genes across
152,094 PBMCs with paired antibody-derived tags (ADT) measurements. We focus solely on the
transcriptomic modality and uniformly subsample 10,000 cells for analysis. Ground-truth labels are
provided, and we adopt the L2-level granularity, which distinguishes ∼30 immune subtypes.

Preprocessing and denoising We applied standard QC, removing cells with < 200 genes, genes
expressed in < 3 cells, and cells with > 15% mitochondrial counts. Using library size factors com-
puted from the dataset, we normalized counts to 104 per cell, followed by log(1+x) transformation
to stabilize variance. We selected the top 3,000 highly variable genes (Seurat v3 criterion), scaled
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Figure 3: UMAP of 1,000 held-out PBMCs from the CITE-seq dataset. Left: PCA embeddings in a
25-dimensional latent space using V̂ from the training set. Right: embeddings after denoising with
DICE using a diffusion model trained on the other 9,000 cells.

to unit variance with values capped at 10. Batch effects from sequencing lanes were corrected with
Harmony (Korsunsky et al., 2019), yielding a matrix X ∈ R10000×3000. We split into 9,000 training
and 1,000 held-out test cells with preserved label proportions. Similar to Setup 1, we test DICE’s
ability in denoising beyond the quality of the training dataset in this setting. The training set was
used to fit the diffusion model, and the test set was reserved for evaluation.

Using the training pipeline above, we picked k = 25 and trained a diffusion model on 25d PCA
embeddings and applied DICE for T = 100 denoising iterations to the PCA embeddings of the test
cells. We used a linearly decreasing (equally spaced) annealing schedule {ρt}Tt=1 from 5 to 0.5 over
100 points. Further details of the denoising procedure are provided in Appendix C.

Evaluation We compare UMAP (McInnes et al., 2020) visualizations of the 1,000 held-out test
cells denoised by DICE against their PCA projections without denoising (Figure 3). Denoised
embeddings show clearer segregation of immune subtypes, with marked improvement in separat-
ing CD4 and CD8 T cells. These populations are notoriously difficult to resolve from RNA alone
(Hao et al., 2021), a challenge that originally motivated multimodal approaches combining RNA
and protein. In the unimodal setting considered here, however, popular toolkits such as Seurat
rely directly on PCA embeddings. Our results indicate that denoising PCA embeddings with priors
learned from high-signal training data substantially improves cluster separation, supporting more
reliable annotation of held-out cells. Beyond visual inspection, we also quantify clustering quality
using the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985) computed after Leiden clustering on
a 20-nearest-neighbor graph built from the embeddings, comparing recovered clusters to the true cell
labels provided in the metadata. The PCA-based embeddings achieve an ARI of 0.7165, whereas
the DICE embeddings achieve 0.7563, illustrating the effectiveness of our approach in better segre-
gating distinct cell populations.

5.2 ANALYSIS OF HUMAN FETAL BRAIN DEVELOPMENT DATASETS

Datasets We evaluate the effectiveness of DICE in transferring cell type information learned from
high-signal training data to related low-signal test data using scRNA-seq datasets from Nowakowski
et al. (2017) and Polioudakis et al. (2019). Both datasets profile human fetal brain tissue during
development. The Nowakowski et al. (2017) dataset includes cells from primary cortical and medial
ganglionic eminence (MGE) samples across multiple stages spanning peak neurogenesis, whereas
the Polioudakis et al. (2019) dataset focuses on cells from the neocortex during mid-gestation (15–
21 post-conception weeks). While the cell types profiled in the two datasets are related, they are
not identical due to differences in the sampled tissue. This contrasts with the CITE-seq dataset con-
sidered previously, where training and test cells originated from the same source. This experiment
evaluates the robustness of DICE to realistic distributional changes that occur during cross-dataset
cell-type label transfer.

Preprocessing and Denoising We analyzed 3,495 cells from Nowakowski et al. (2017) and 15,126
cells from Polioudakis et al. (2019), both of which had undergone QC and transformations analogous
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Figure 4: UMAP of 1,000 randomly sampled cells from the Polioudakis et al. (2019) dataset. Left:
PCA embeddings in a 15-dimensional latent space using V̂ from the training set. Right: embeddings
after denoising with DICE using a diffusion model trained on the Nowakowski et al. (2017) dataset.

to our CITE-seq workflow. Because the studies differ in protocols and development of the tissue
under consideration, only 17,638 genes were shared; from this intersection we selected the top
5,000 highly variable genes, yielding matrices Xnow ∈ R3495×5000 and Xpol ∈ R15126×5000. Cell-
type annotations were available only for the Nowakowski et al. (2017) data, so we performed label
transfer to the Polioudakis et al. (2019) data using the Seurat v3 procedure (Stuart et al., 2019)
over the shared genes. As Xnow exhibited a stronger signal, we trained the diffusion prior on a
k = 15 latent projection of it (via PCA) and evaluated DICE on 1,000 randomly sampled cells
from Xpol to assess denoising and embedding quality. The training and denoising hyperparameters
(noise/annealing schedule, number of diffusion denoising steps, and number of Gibbs iterations)
matched those used in the CITE-seq example.

Evaluation We compare UMAP visualizations for the embeddings constructed from the test data
using DICE and the embeddings obtained via the PCA transform learned from the training data.
Denoising substantially improves biological interpretability, with two salient gains. The canonical
excitatory trajectory RG→ IPC→nEN→EN is visually continuous and easy to follow in the DICE
embedding, whereas it appears fragmented under PCA. Further, the cluster of inhibitory neurons
(IN) is also more compact and clearly separated after denoising, and DICE reveals a distinct branch
emerging from IN in the test dataset that is largely masked in the PCA space. Finally, denoising
cleanly separates newborn inhibitory neurons (nIN) from mature IN, highlighting developmental
heterogeneity within the inhibitory lineage. Because Nowakowski et al. (2017) dataset is a smaller,
high-signal reference spanning fewer cell types, while Polioudakis et al. (2019) dataset is a richer
atlas, label transfer yields coarse annotations; consequently, global label-matching can penalize
meaningful substructure. Indeed, ARI (using the same embedding clustering scheme as CITE-seq
experiment) is 0.42 for PCA versus 0.35 for DICE, reflecting over-splitting of broad labels into
finer, developmentally coherent groups in the test data. A locality-aware metric is more appropriate
here: the cell-type LISI (Local Inverse Simpson’s Index (Korsunsky et al., 2019); lower is better
for local purity) computed using the same clusters is markedly lower for DICE (7.27) than for PCA
(8.25), indicating that denoising sharpens lineage relationships and resolves biologically relevant
subpopulations that PCA tends to blur.

Discussion We introduced DICE, a latent plug-and-play framework for denoising and extract-
ing meaningful embeddings from high-dimensional observational data with an underlying low-rank
structure. Both synthetic and real-world experiments demonstrated its ability to denoise beyond
the training distribution and the ability to leverage clean reference data for denoising. We further
showed that DICE can quantify uncertainty in cluster assignments and remains robust under model
misspecification. Future work includes extending DICE beyond linear low-rank structures and the
i.i.d. noise assumption, as well as improving the efficiency of the sampling procedure.
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Reproducibility statement We provide the full codebase as supplementary material and will re-
lease it publicly upon publication. The appendix details the implementation, including hardware
specifications, software packages, and training configurations. For synthetic experiments, we in-
clude both a description in the main text and code for data generation and preprocessing in the
supplementary files. For real-world datasets, we describe dataset acquisition in the appendix, pre-
processing steps in both the main text and appendix, and provide scripts to reproduce all experi-
ments.

Use of Large Language Models (LLMs) Large Language Models (LLMs) were used to assist in
preparing tables and figures and for proofreading.
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A DIFFUSION TRAINING

For a given noise schedule {αt}t∈[T ], noisy versions of Û (r)
i are generated as

Û
(r)
t,i =

√
ᾱt Ûi +

√
1− ᾱt εt,i, εt,i

i.i.d.∼ Nk(0, Ik), (8)

where ᾱt =
∏t

s=1 αs. A neural network ε̂θt(Û
(r)
t,i ; t) is trained to predict the injected noise εt,i from

the corrupted sample Û
(r)
t,i by minimizing the mean-squared error

L(θ) =
1

m

m∑
i=1

∥∥εt,i − ε̂θ(Û
(r)
t,i ; t)

∥∥2
2
.

The fitted network provides an estimate of E[εt,i | Û (r)
t,i ], which is directly related to the score

function of the marginal distribution pt(Û
(r)
t,i ) via

∇
Û

(r)
t,i

log pt(Û
(r)
t,i ) ≈ − 1√

1−ᾱt
ε̂θ(Û

(r)
t,i ; t).

Thus, training the model to predict noise is equivalent to estimating the score function, which in turn
defines the reverse diffusion process and enables sampling from the prior Pprior. For the detailed
procedure, see Algorithm 2.

B PROOF OF PROPOSITION 3.1

To prove Proposition 3.1 let us observe that if f(·) is the density of standard multivariate Gaussian
distribution, then

f(Xi − V Zi) =
1

(2π)d/2
exp

(
−1

2
∥Xi − V Zi∥22

)
.

Therefore

Pρ(Z
(s)
q | Xq, Uq) ∝ exp

(
−1

2
∥Xq − V̂ Z(s)

q ∥22 −
1

2ρ2
∥U (s)

q − Z(s)
q ∥22

)
(9)

(1)
∝ exp

(
− 1

2
(Z(s)

q )⊤
(

1

ρ2s
Ik + V̂ ⊤V̂

)
Z(s)
q + (Z(s)

q )⊤
(
V̂ ⊤Xq +

1

ρ2s
U (s)
q

))
(10)

(2)
∝ exp

(
− 1

2
(Zq −mq)Λ

−1(Zq −mq)

)
, (11)

where

Λ =

(
1

ρ2s
Ik + V̂ ⊤V̂

)−1

(12)

mq = Λ

(
V̂ ⊤Xq +

1

ρ2s
U (s)
q

)
, (13)

and (2) follows by completing the quadratic form in the power of the exponential in (1) to match the
density of a Gaussian distribution. Then the proposition follows by identifying the density on the
right-hand side of (2) as that of a Gaussian distibution with mean mq and covariance Γ.
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Algorithm 2 Train diffusion model

Require: Training set {X(r)
i }i∈[T ], epochs E, noise schedule {αt}t∈[T ], embedding dimension k

Ensure: Trained model ε̂θ
1: Calculate the factor loading matrix V̂ from the training data by projecting X(r) to a k dimen-

sional latent space using PCA.
2: Compute Ûi = V̂ ⊤X

(r)
i .

3: for e = 1, . . . , E do
4: Independently sample timestep t(i) ∼ U{1, . . . , T} for all i = 1, . . . ,m
5: Draw noises εt(i),i ∼ N (0, 1) for all i
6: Construct noised inputs

Û
(r)
t,i =

√
ᾱt(i) Ûi +

√
1− ᾱt(i) εt(i),i, for i = 1, . . . , n,

and ᾱt(i) =
∏t(i)

s=1 αs

7: Compute loss

L(θ) = 1

m

m∑
i=1

∥∥εt,i − εθ
(
Û

(r)
t,i , t

(i)
)∥∥2

2

8: Take gradient step on θ.
9: end for

10: return εθ

C MODEL ARCHITECTURE AND IMPLEMENTATION DETAILS FOR TRAINING
THE DIFFUSION MODELS USED IN THE SINGLE CELL EXPERIMENTS

Overview Across all experiments, we use the same denoising network,
TabularDiffusionMLP, which predicts Gaussian noise εt,i from the noised sample Ûr

t,i ∈ Rk

at diffusion step t. The architecture is parameterized by the number of residual MLP blocks M and
the hidden dimension D. For synthetic experiments, we use a smaller model with M = 2 blocks
and hidden dimension D = 64 (≈ 150,000 trainable parameters), trained for E = 2,000 epochs.
For single-cell experiments, we employ a larger model with M = 8 blocks and hidden dimension
D = 512 (≈ 35,000,000 trainable parameters), trained for E = 20,000 epochs. We use a batch size
of B = 4048 across all models.

Input encoders We encode the data and the diffusion time with separate branches: (i) a linear
projection Ur

t 7→RD, and (ii) a sinusoidal positional embedding of t followed by two SiLU-activated
linear layers to RD. We then concatenate the two D-dimensional features into a 2D-dimensional
vector.

Backbone The concatenated features are processed by eight residual MLP blocks of constant
width 2D. Each block expands to 4D units and contracts back to 2D (Linear 2D→ 4D, Batch-
Norm1d, SiLU, Linear 4D → 2D, BatchNorm1d), and adds a residual skip connection. This
design provides sufficient capacity while remaining simple and fast for tabular inputs.

Output head A final projection (Linear 2D→D, SiLU, Linear D→ d) produces εθ(Û
(r)
t , t) in

the same dimensionality as Û (r)
t .

Training objective and schedule We adopt the standard noise-prediction loss L(θ) defined in
Algorithm 2 with a linear β schedule: βt ∈ [10−4, 2×10−2] linearly spaced over T = 512 steps and
αt = 1− βt, ᾱt =

∏t
s=1 αs. We optimize with AdamW (learning rate 1× 10−4, batch size 4048)

for 20000 epochs.

Data augmentation in training High-quality single-cell datasets may contain relatively few cells
but provide reliable labels. We leverage these labels for data augmentation during diffusion model
training. Inspired by mixup by Zhang et al. (2018), we interpolate between multiple same-class
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samples rather than mixing across classes. Concretely, given a sample X
(r)
i with label Y (r)

i , we
select four additional same-class points and construct

X̃
(r)
i =

5∑
j=1

λjxj , (λ1, . . . , λ5) ∼ Dirichlet(1).

During training, we select the interpolated version X̃
(r)
i with a probability of p = 0.9. This intra-

class mixup enriches the training distribution and improves robustness for the single-cell data. We
use no data augmentation for the synthetic experiments.

Layer specification For completeness, Table 2 lists the exact layers and tensor shapes (B denotes
batch size).

Stage Operation / Activation Output shape

Input projections
Û

(r)
t branch Linear (k→D) (B,D)

t embedding Sinusoidal (1→16) (B, 16)
Linear (16→D) + SiLU (B,D)
Linear (D→D) + SiLU (B,D)

CONCAT — (B, 4D)

Residual MLP block (repeated ×M )
Hidden Linear (2D→4D) (B, 4D)

BatchNorm1d (4D), SiLU (B, 4D)
Linear (4D→2D) (B, 2D)
BatchNorm1d (2D) (B, 2D)

Residual x← x+ block(x) (B, 2D)

Output projection
Head Linear (2D→D) + SiLU (B,D)

Linear (D→k) (B, k)

Table 2: Layer specification for TabularDiffusionMLP predicting εθ(Û
(r)
t , t). B is batch size,

k is the input (latent) dimension, D is the hidden dimension of the network

Practical notes We normalize t to [0, 1] prior to sinusoidal embedding, use SiLU activations
throughout, BatchNorm1d within blocks, and default PyTorch initializations.

Implementation setup We implemented all experiments in Python. Neural network training was
performed in PyTorch (Paszke et al., 2019) on GPU-accelerated hardware, using a mix of AWS
g4dn.xlarge EC2 instances and a dedicated Ubuntu server with an NVIDIA GeForce GTX 1070
(8GB RAM).

Runtime The runtime of our method can be divided into training and inference. Training is dom-
inated by parameter updates for the diffusion model, with speed depending on hardware and chosen
model size. Using the CITE-seq setup as an example, training on 9,000 cells with 3,000 dimensions
for 10,000 epochs required approximately 11 hours on the EC2 instance.

Inference proceeds via Gibbs sampling, alternating between the prior and likelihood steps. The prior
step, which involves sampling from the diffusion model, is the most computationally expensive. As
ρ determines the starting timestep of the diffusion model t, the duration of the prior sampling is
dependent on ρ, larger values of ρ result in longer runtime. For example, one Gibbs iteration on
1,000 test cells takes about 30 seconds for ρ = 1, corresponding to roughly 30 minutes of total
runtime for denoising the test set of the CITE-seq dataset with 100 Gibbs iterations.
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D DISCUSSION ON THE CLUSTERING METRICS

To assess the quality of clustering in the learned embeddings, we employ three complementary
metrics: the average cosine silhouette score (Rousseeuw, 1987), the Adjusted Rand Index (ARI)
(Hubert & Arabie, 1985), and the cell-type Locally Invariant Simpson Index (cLISI) (Korsunsky
et al., 2019). Below, we provide a brief description of each metric.

1. Average Cosine Silhouette Score. The silhouette score quantifies how well a point is
matched to its assigned cluster compared to other clusters, measured here using cosine
distance. For a point i, let a(i) denote the average intra-cluster cosine distance, and let
b(i) denote the minimum average cosine distance between i and any other cluster. The
silhouette score for i is defined as

s(i) =
b(i)− a(i)

max{a(i), b(i)}
.

We report the mean silhouette score across all points as a global measure of clustering
quality, with values closer to 1 indicating more distinct and coherent clusters.

2. Adjusted Rand Index (ARI). The Rand Index evaluates the agreement between two par-
titions by counting the proportion of point pairs that are consistently assigned together or
apart. The ARI corrects this measure for chance, making it more robust in settings with
many clusters. It is defined as

ARI =
RI− E[RI]

max(RI)− E[RI]
,

where RI is the raw Rand Index and E[RI] is the expected value of the number of agreeing
pairs under random clustering but fixed cluster sizes. ARI values range from 0 (chance-
level agreement) to 1 (perfect alignment with ground truth).

3. Cell-type Locally Invariant Simpson Index (cLISI). The Local Inverse Simpson’s Index
(LISI) was originally introduced to assess batch mixing in single-cell integration tasks. We
adapt it to clustering by replacing batch labels with cluster (or cell-type) labels, yielding
cLISI. For each cell i, cLISI measures the effective number of distinct clusters represented
in its k-nearest neighbor neighborhood:

LISI(i) =

(∑
c

p2ic

)−1

,

where pic is the fraction of neighbors of i belonging to cluster c. We report the average
cLISI across all cells. Lower values correspond to locally purer clusters, while higher val-
ues indicate greater mixing. Unlike ARI, cLISI does not require ground truth annotations
and provides a local measure that complements the global silhouette score.

E INFLUENCE OF RHO ON UNCERTAINTY IN THE EMBEDDINGS

Setup To assess the sensitivity of DICE to different values of ρ, we conduct an ablation study for
denoising the center of Cluster 2, as in the left panel of Figure 2. We generate 500 runs of DICE for
ρ ∈ [0.1, 0.5, 1.0, 5.0, 10.0, 20.0] and plot them inside the UMAP of the training data.

Results As ρ increases, the spread of the sampled points grows, reflecting reduced guidance from
the observed data and greater reliance on the broader prior. This induces a trade-off: for low-noise
data, small ρ values place more emphasis on the observed sample, while for high-noise data, larger
ρ values still enable denoising, convey uncertainty through a wider spread.

F DATA SOURCES

CITE-seq benchmark. We used the Seurat v4 CITE-seq dataset distributed with scvi-tools
as our atlas building benchmark. The original Seurat object and feature matrices were taken directly
from the scvi example and used without modification, except for preprocessing and downsampling
steps described in Section 5.
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Figure 5: UMAP visualizations of 500 runs of DICE on the Cluster 2 center under Setup 1 with
increasing values of ρ ∈ [0.1, 0.5, 1.0, 5.0, 10.0, 20.0] (left to right, top to bottom). Training data in
grey.

Human fetal brain development. We analyzed two fetal neocortex transcriptomic datasets,
Nowakowski et al. (2017) and Polioudakis et al. (2019), obtained via the gEAR (Gene Expression
Analysis Resource) portal (Orvis et al., 2021). For both studies, we downloaded the author-provided
processed count matrices and accompanying metadata from gEAR and restricted analyses to the
shared gene set as detailed in Section 5.

Provenance and licensing. All datasets were used under the terms specified by their original
authors and hosting platforms. We performed only secondary analysis; no new data were generated
for this work.
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