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ABSTRACT

This paper considers the challenge of estimating treatment effects from observa-
tional data in the presence of unmeasured confounders. A popular way to address
this challenge is to utilize an instrumental variable (IV) for two-stage regression,
i.e., 2SLS and variants, but they need to assume the additive separability of noise
and are limited to the linear setting. Recently, many nonlinear IV regression vari-
ants were proposed by regressing the treatment with IVs and confounders in the
first stage, leading to confounding bias between the predicted treatment and out-
come in the second stage. In this paper, we propose a Confounder Balanced IV
Regression (CB-IV) algorithm to jointly remove the bias from the unmeasured
confounders with IV regression and achieve better bias-variance trade-off in im-
balanced treatment distributions due to the observed confounders by balancing
for treatment effect estimation. Specifically, CB-IV algorithm consists of three
main modules: (1) treatment regression: regressing the treatment with IVs and
confounders like previous nonlinear IV methods for removing the confounding
from unmeasured confounders; (2) confounder balancing: learning a balanced
representation of confounders to eliminate the bias induced by the observed con-
founders (3) outcome regression: regressing the outcome with the predicted treat-
ment and the balanced confounders representation for treatment effect estimation.
To the best of our knowledge, this is the first work to combine confounder balanc-
ing in IV regression for treatment effect estimation. Moreover, we theoretically
prove that CB-IV algorithm is also effective under the multiplicative assumption
rather than the additive separability assumption. Extensive experiments demon-
strate that CB-IV algorithm outperforms the state-of-the-art methods, including
IV regression and confounder balancing methods, for treatment effect estimation.

1 INTRODUCTION

Treatment effect estimation is one fundamental problem in causal inference, and its key challenge
is to remove the confounding bias induced by the confounders which affect both treatment and
outcome. Under the unconfounderness assumption (i.e., no unmeasured confounders), many con-
founder balancing methods, such as Rubin (1973); Kuang et al. (2017); Shalit et al. (2017), have
been proposed to break the dependence between the treatment and all confounders. In practice,
however, the unconfounderness assumption is hardly satisfied and there always exist unmeasured
confounders. How to precisely estimate the treatment effect from observational data in the presence
of unmeasured confounders is of vital importance for both academic research and real applications.

A classical method to address the bias induced by unmeasured confounder is IV regression methods
(Pearl et al., 2000; Wright, 1928a; Heckman, 2008; Stock & Trebbi, 2003). As shown in Figure 1(a),
let T denotes the treatment, Y refers to the interest of outcome, X and U represent the observed
and unobserved confounders, respectively, where U might affect or be affected by X . Z refers to
the instrumental variables (IVs), which only influence Y via T . In IV regression, two-stage least
squares (2SLS) regression (Pearl et al., 2000; Angrist & Imbens, 1995; Angrist & Krueger, 2001) is
a classical statistical method with the following two stages: In stage 1, 2SLS performs linear regres-
sion from the instruments Z to the treatments T ; then in stage 2, it performs linear regression from
the conditional expectation of the treatments E[T | Z] (obtained from the stage 1) to the outcomes
Y . However, 2SLS and other variants of IV regression methods (Stock et al., 2002; Baum et al.,
2003; Carrasco et al., 2007; Buhlmann et al., 2014), require strong assumptions, either linearity or
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Figure 1: (a) Causal structural with unmeasured confounders. (b) Causal structure of stage 2 regres-
sion in the nonlinear IV methods. The observed confounders would be affected both the predicted
treatment T̂ and outcome Y , leading to confounding bias in stage 2 regression. In these figures,
green nodes denote observable variables, and gray nodes mean unmeasured variables. The arrows
with solid line point from the cause variables to the effect variables; The dashed lines without arrow
mean that the causal direction between the two variables is unknown.

additive separability of instruments Z, confounders X and noise (i.e., unmeasured confounders) U .
Moreover, in nonlinear scenarios, these methods cannot effectively extract instruments information
in the first stage, and the conditional expectation E[T |Z] = E[f(Z,X)|Z] may be a constant 0 or
weak association with Y (see Theory in Section A and Experiment in Section E in Appendix).
To address the above problems, recent nonlinear IV regression variants (Hartford et al., 2017; Xu
et al., 2020; Singh et al., 2019; Muandet et al., 2019) learn a joint mapping from the instruments
Z and observed confounders X to the conditional distribution of the treatment T in stage 1, i.e.,
P (T |Z,X) = f(Z,X) + E[U |X]. Then, these methods resample the predicted treatment T̂ from
the conditional distribution P (T |Z,X) obtained in stage 1 and perform nonlinear regression from
the resampled treatment T̂ and confounders X to the outcomes Y in stage 2, i.e., E[Y |Z,X] =

E[h(T,X)|Z,X] = E[h(T̂ ,X)] = E[g(T̂ ,X)] + E[U |X], which only holds when the noise U
is additive (Bareinboim & Pearl, 2012). From the processes of these methods, we know that the
observed variables X would affect the predicted treatment T̂ in stage 1, and also influences the
outcome Y , therefore, X would bring confounding bias between the predicted treatment T̂ and
the outcome Y for the regression in stage 2 as shown in figure 1(b), leading to poor performance
of these methods. Fortunately, the unobserved confounders U will no longer confound the causal
relationship between T̂ and Y in stage 2 (see figure 1(b)), and we only need to analyze and adjust
the observed confounders X .

In this paper, we propose a Confounder Balanced IV Regression (CB-IV) algorithm 1 to further
remove the confounding bias from the observed confounders by balancing in IV regression for treat-
ment effect estimation. Specifically, CB-IV algorithm contains the following three main compo-
nents: (1) treatment regression: given Z and X , identify conditional probability distribution of the
treatment variable T (i.e., T̂ ∼ P (T |Z,X) = f1(Z,X) + E[f2(X,U)|X]) for removing the con-
founding from unmeasured confounders, where we relax the assumption of additive on noise U ; (2)
confounder balancing: learn a balanced representation of observed confounders C = fθ(X), which
is independent with the predicted treatment T̂ ∼ P (T |Z,X) to reduce the confounding from the ob-
served variables as shown in figure 1(b); and (3) outcome regression: regressing the outcome Y on
the predicted treatment T̂ and representation of confounders C (i.e., E(Y |Z,X) = E[h(T̂ ,X)] =

E[g1(T̂ ,X)] + E[g2(T̂ )g3(U)|C] = E[g1(T̂ ,X)] + E[g2(T̂ )]E[g3(U)|C], which only holds when
C ⊥ g2(T̂ )) for counterfactual inference and treatment effect estimation. Based on this, we relax
the additive noise assumption. The main contributions in this paper are as follows:

• We study the problem of treatment effect estimation from observational data in the presence
of unmeasured confounders, and we find that previous IV-based methods are either limited
to the linear setting or would suffer from the bias from the observed confounders.

1Code: https://www.dropbox.com/sh/zwhp4bogdlhuqtj/AADgFcCLi-FfzRo7DQVTVFV1a?dl=0
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• We propose Confounder Balanced IV regression (CB-IV) method to jointly remove the
bias from unmeasured confounders by IV regression and observed confounders by bal-
ancing. Moreover, with confounder balancing in IV regression, we can relax the additive
separability assumption in IV-based methods.

• Extensive experiments on both synthetic and real-world datasets demonstrate the effective-
ness of the proposed algorithm. Under the multiplicative assumption (defined in Eq. (4)),
CB-IV algorithm works well without additive separability assumption hold.

2 RELATED WORKS

2.1 CAUSAL REPRESENTATION LEARNING FOR CONFOUNDER BALANCE

Inspired by traditional confounder balance works, such as propensity score methods(Rosenbaum &
Rubin, 1983; Rosenbaum, 1987; Li et al., 2016; 2020), re-weighting methods(Zubizarreta, 2015;
Athey et al., 2018; He & Garcia, 2009), Doubly Robust (Funk et al., 2011) and backdoor criterion
(Pearl, 2009), CFR (Johansson et al., 2016; Shalit et al., 2017) formulates the problem of con-
founder balance as a covariate shift problem, and regard the treated group as the source domain and
the control group as the target domain for domain adaptive balance under the unconfoundedness as-
sumption. Johansson et al. (2016); Shalit et al. (2017) expect that representation C = fθ(X), from
all confounders X , discard information related to T , but retain as much information related to Y as
possible, this is a trade-off, i.e., E[Y |X,T ] = g(C, T ), C ⊥ T,C = fθ(X). CFR-ISW (Hassanpour
& Greiner, 2019a) learns the representation C with a context-aware importance sampling weight.
SITE (Yao et al., 2018) preserves local similarity and balances the distributions of the representation
C simultaneously. DR-CFR (Hassanpour & Greiner, 2019b) and DeR-CFR (Wu et al., 2020) pro-
pose a disentanglement framework to identify the representation of confounders from all observed
variables. CEVAE (Louizos et al., 2017) and GANITE (Yoon et al., 2018) use deep generative mod-
els to estimate the joint distribution for causal inference. More discussion on confounder balance is
given in Section G in Appendix.

Deep representation learning has good performance and can capture complex relationships among
treatments, observed confounders, and outcomes, but it requires the unconfoundedness assumption.
Based on these confounder balance methods, we propose to use an instrumental variable to eliminate
the unmeasured confounding bias.

2.2 INSTRUMENTAL VARIABLE METHODS

A popular way to estimate the causal effect from observational data in the presence of unmeasured
confounders is to use an instrumental variable (IV). As a classical IV method, two-stage least squares
(Pearl et al., 2000; Angrist & Imbens, 1995; Angrist & Krueger, 2001) performs linear regression to
model the relationship between the treatments and outcomes conditional on the instruments. To re-
lax linearity assumption, nonlinear IV regression variants learn a joint mapping from the instruments
Z and observed confounders X to the treatments T in stage 1. Sieve IV derives a finite dictionary
of basis functions to replace the linear counterparts on the structural function and derives a lower
bound. (Chen & Christensen, 2018; Newey & Powell, 2003). Kernel IV (Singh et al., 2019) and
Dual IV (Muandet et al., 2019) implement 2-stage regression via mapping X to a reproducing kernel
Hilbert space (RKHS) and performing kernel ridge regression. DFIV (Xu et al., 2020) adopts deep
neural nets to replace the kernel counterparts. Based on the optimally weighted Generalized Method
of Moments (GMM), AGMM (Lewis & Syrgkanis, 2018) and DeepGMM(Bennett et al., 2019) con-
struct a structural function via minimizing the loss of the sample averages of the moment conditions.
Given Z and X , DeepIV (Hartford et al., 2017) and OneSIV (Lin et al., 2019) estimate the condi-
tional probability distribution of treatments T using the instruments Z and confounders X in stage
1 and performs a joint mapping from resampled treatments T̂ ∼ P (T |Z,X) and confounders X to
the outcomes Y in stage 2.

As shown in Figure 1(b), variablesX , common causes of the conditional treatments T̂ and outcomes
Y , are confounders and not deconfounded in stage 2 of these nonlinear IV regression methods (See
Proof 1(b) for details). Based on the two-stage regression of IV methods, we propose to use the
above confounder balance techniques to adjust the observed confounder and reduce the variance
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in stage 2. This is the first provably efficient algorithm that combines the IV method with the
confounder balance technique using deep representation learning to the best of our knowledge.

3 METHODOLOGY

3.1 PROBLEM SETTING AND PRELIMINARIES

In this paper, we aim to estimate the average treatment effect by the structural function from
observational data in the presence of unmeasured confounders. In the observational data D =
{zi, xi, ti, yi}ni=1, for each unit i, we observe a treatment variable ti ∈ T where T ⊂ R, a outcome
variable yi ∈ Y where Y ⊂ R, instrumental variables zi ∈ Z where Z ⊂ RmZ , and confounders
xi ∈ X where X ⊂ RmX . Besides, there are some confounders ui ∈ U ,U ⊂ RmU , that simultane-
ously affect both ti and yi, and might affect or be affected by xi, but not recorded in the observational
data. mX ,mZ and mU are the dimensions of the observed confounders X , instrumental variables
Z and unobserved confounders U . The causal relationship can be represented with the following
model (Figure 1(a)):

{Z,X,U} → T ; {T,X,U} → Y ;Z ⊥ U,X;X ̸⊥ U (1)
Definition 1 The average treatment effect ATE is defined as:

ATE = E[Y | do(T = 1), X]− E[Y | do(T = 0), X] (2)
where the do(·) operator indicates that we have intervened to data.

Definition 2 An Instrument Variable Z is an exogenous variable that affects the treatment T , but
does not directly affect the outcome Y . Besides, an valid instrument variable satisfies the following
three assumptions:
Relevance: Z is a cause of T , i.e., P(T | Z) ̸= P(T ).
Exclusion: Z does not directly affect the outcome Y , i.e., Z ⊥ Y | T,X,U .
Unconfounded: Z is independent of all confounders X / U , i.e., Z ⊥ X,U
Besides, homogeneity and monotonicity assumptions (the structural equation model) in causal effect
are often used in the analysis of instrumental variables (Hernán & Robins, 2010; Wright, 1928b;
Goldberger, 1972; Wooldridge, 2010).
To precisely estimate the treatment effect/causal relationship, most of the previous IV methods
(Hartford et al., 2017; Xu et al., 2020; Singh et al., 2019; Muandet et al., 2019) require the additive
noise assumption (i.e., unmeasured noise gets added to the intended results {T, Y }) and model the
causal relationship as follows:

T = f(Z,X) + U, Y = g(T,X) + U,Z ⊥ U,X,E[U ] = 0 (3)
where f(·) and g(·) are continuous structure functions, and U is an additive noise term.

In this paper, we model the causal relationship more general and relax the additive separability
assumption to the multiplicative assumption, as follows:
T = f1(Z,X) + f2(Z)f3(X,U), Y = g1(T,X) + g2(T )g3(U) + g4(X,U), Z ⊥ U,X (4)

where f1···3(·) and g1···4(·) are continuous functions. In the structural function of Y , g2(T )g3(U)
denotes the multiplicative terms of U with T (e.g., U2T − UT + U ), and we define it as the
multiplicative assumption. The same principle can be applied to the structural function of T . The
completeness of P(T | Z,X) and P(Y | T,X) guarantees uniqueness of the solution (Newey &
Powell, 2003). Binary treatment and outcome case can be modeled similarly (Section C).
Definition 3 The Latent Outcome Function h(T,X) can be defined under the multiplicative as-
sumption (4), as follows:
E[Y | do(T ), X] = E[h(T,X)] = E [g1(T,X) + g2(T )E[g3(U) | X] + E[g4(X,U) | X]] (5)

3.2 THEORETICAL ANALYSIS AND DISCUSSION

Theorem 1 (Identification of treatment effects). If the learned representation of observed con-
foundersC = fθ(X) is independent with the predicted treatment T̂ , then the latent outcome function
h(T,X) can be identified with instrumental variables Z and representation C:

h(T,X) = g1(T,X) + g2(T )E[g3(U)|C] + E[g4(X,U)|C], C = fθ(X) (6)

4



Under review as a conference paper at ICLR 2022

where, E[g3(U)|C] and E[g4(X,U)|C] are constant for the specified X . The proof is given in
Section B in Appendix.

Then, the corresponding Average Treatment Effect (ATE) estimation can be written as:

ATE = E[h(T = 1, X)− h(T = 0, X)] (7)
= E [g1(1, X)− g1(0, X)] + E [g2(1)− g2(0)]E[g3(U)|C] (8)

Recent IV methods (Hartford et al., 2017; Newey & Powell, 2003) regress a conditional treatment
distribution P̂ (T | Z,X) using {Z,X} in the treatment regression stage, then learn the latent out-
come function hξ(T,X) from {T,X} to Y directly:

E[Y | Z,X] =

∫
hξ(T,X)dP̂ (T | Z,X) (9)

Obviously, in the complicated setting (Eq. (4)), these methods do not meet the identification condi-
tions of Theorem 1 and would be fooled by confounders X . Because X cause P̂ (T | Z,X) in the
treatment regression stage, X would be related to T̂ ∼ P̂ (T | Z,X) and Y .

Inspired by confounder balance works (Section 2.1), our algorithm (CB-IV) learn a balanced rep-
resentation C = fθ(X) independent of the predicted treatment T̂ ∼ P̂ (T | Z,X) and estimate
treatment effects simultaneously in the outcome regression stage. Without loss of generality, we
take the binary treatment case as an example to detail our algorithm.

E[Y | Z,X] =
∑

t∈{0,1}

hξ(T = t, C)P̂ (T = t | Z,X), C ⊥ T | P̂ (T | Z,X), C = fθ(X) (10)

Then, we transform the problem into a optimization problem to minimize MSE(Y −E[Y | Z,X]),
which can be estimated by the train data D = {zi, xi, ti, yi}ni=1:

min
hξ∈H

1
n

∑n
i=1

(
yi −

∑
t∈{0,1} hξ(t, fθ(xi))P̂ (t | zi, xi)

)2

(11)

whereH is a function space of hξ, and fθ(X) is the learned representation of confounders (i.e., C).
Thus, the ATE can be estimated by ˆATE = E[hξ(T = 1, fθ(X))− hξ(T = 0, fθ(X))].

3.3 ALGORITHM AND OPTIMIZATION

IV regression is the classical method for addressing the unmeasured confounders, but recent nonlin-
ear IV-based methods suffer the bias from the observed confounders as shown in figure 1(b), leading
to poor performance in practice.

To address these challenges, we propose a Confounder Balanced IV Regression (CB-IV) algorithm
to achieve confounder balancing in IV regression. Specifically, confounder balancing for removing
the bias from observed confounders and IV regression for eliminating the bias from unmeasured
confounders. Without loss of generality, we take the binary treatment case as an example to detail
three main components in the proposed CB-IV algorithm:

(1) Treatment Regression. In this part, we propose to regress treatment T with IVs Z and observed
confounders X directly because Z and X are independent. Specifically, we estimate the conditional
probability distribution of the treatments P̂ (T |Z,X) with a logistic regression network πµ(zi, xi)
for each unit i:

min
µ
L1 = − 1

n

n∑
i=1

(ti log (πµ(zi, xi)) + (1− ti) (1− log (πµ(zi, xi)))) (12)

where πµ(zi, xi) = P̂ (t = 1|zi, xi), µ is the learnable parameter of π.

(2) Confounder Balancing: In this component, we aim to remove the confounding bias induced
by X as shown in figure 1(b). For binary treatment, Sriperumbudur et al. (2009); Johansson et al.
(2016); Shalit et al. (2017) proposed integral probability metrics (IPMs) to minimize the discrepancy
of distributions from different treatment arms. As for continuous treatment, Yuan et al. (2021);
Cheng et al. (2020) adopt mutual information to control the representation learning. In this paper,
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we propose to learn a representation of confounders (i.e., C = fθ(X)), and adopt the Wasserstein
distance (Cuturi & Doucet, 2014) to measure the discrepancy of distributions to achieve C ⊥ T̂ :

min
θ

disc(t̂, fθ(xi)) = Wass({fθ(xi)P̂ (ti | zi, xi)}i:ti=0, {fθ(xi)P̂ (ti | zi, xi)}i:ti=1) (13)

where {fθ(xi)P̂ (ti | zi, xi)}i:ti=k, k ∈ {0, 1} denotes the distribution of representationC = fθ(xi)

in the group T = k given the P̂ (ti | zi, xi). The constraint term has a stronger version that would
force fθ(xi) and original T to be independent directly:

min
θ

disc(t̂, fθ(xi)) = Wass({fθ(xi)}i:ti=0, {fθ(xi)}i:ti=1) (14)

More discussion on confounder balance and Wass distance is given in Section G in Appendix.

(3) Outcome Regression. Finally, we propose to regress the outcome with the predicted treatment
T̂ ∼ P (T |Z,X) obtained in treatment regression module and the representation of confounders
C = fθ(X) obtained in confounder balancing module. With considering that high dimensional
representation fθ(X) would induce the loss of treatment information in outcome regression function
hξ(T̂ , fθ(X)) (Shalit et al., 2017). This phenomenon also exists in the IV based methods. We
propose to learn hξ0(fθ(X)) and hξ1(fθ(X)) as two different head to estimate the treated outcomes
Y (T = 1, X) and control outcomes Y (T = 0, X), which will also help to learn independent
representation C = fθ(X) and reduce the confounding bias:

min
ξ0,ξ1

1
n

∑n
i=1

(
yi −

∑
t̂∈{0,1} hξt̂(fθ(xi))P̂ (t̂ | zi, xi)

)2

(15)

where P̂ (t̂ | zi, xi) = πµ(zi, xi) and fθ(xi) are derived from treatment regression module and
confounder balancing module, respectively.

Optimization: We formulate the regression problems into optimization problems, and optimize
them sequentially (Alternating training strategy is also an option). The optimization loss functions
of the two regression networks are:

min
µ
L1 = − 1

n

∑n
i=1 (ti log (πµ(zi, xi)) + (1− ti) (1− log (πµ(zi, xi)))) (16)

min
θ,ξ0,ξ1

L2 = 1
n

∑n
i=1

(
yi −

∑
t̂∈{0,1} hξt̂(fθ(xi))P̂ (t̂ | zi, xi)

)2

+ α disc(t̂, fθ(xi)) (17)

where α is a trade-off hyper-parameter. For the Treatment Regression, we use stochastic gradient
descent (SGD, (Duchi et al., 2011)) to train the logistic regression network πµ with loss L1. For
the Outcome Regression and Confounder Balancing, we use Adam ((Kingma & Ba, 2014)) to train
the three networks fθ, hξ0 , hξ1 with loss L2 jointly. To prevent overfitting, we add a regularization
term to regularize the prediction functions hξ0 , hξ1 with a small l2 weight decay. Then, the average
treatment effect can be estimated by ˆATE = E[hξ1(fθ(X))− hξ0(fθ(X))].
The details of pseudo-code (see Algorithm 1) and the network structures (see Table 3) of our algo-
rithm are provided in Section D.1 in Appendix. Besides, the discussion of hyper-parameters α (see
Figure 3) is detailed in Section D.2 in Appendix.

4 EXPERIMENTS
4.1 BASELINES

We compare the proposed algorithm (CB-IV) with two group methods. One group is IV based
methods: (1) DeepIV-LOG and DeepIV-GMM (Hartford et al., 2017): In the first stage, DeepIV
models the treatment network with logistic regression network (LOG) or gaussian mixture mod-
els (GMM); (2) KernelIV (Singh et al., 2019) and DualIV2(Muandet et al., 2019): KernelIV and
DualIV implement 2-stage regression with different dictionaries of basis functions from reproduc-
ing kernel Hibert spaces (RKHS); (3) OneSIV (Lin et al., 2019): OneSIV merges the two stages
to leverage the outcome to estimate the treatment distribution; (4) DFIV (Xu et al., 2020): DFIV
uses neural networks to fit non-linear models to replace the linear counterparts in the conventional
2SLS approach. The other group is confounder balancing methods with representation: (1) DFL
(Xu et al., 2020): DFL, an ablation experiment of DFIV, performs the nonlinear outcome regres-
sion directly without using instrumental variables; (2) DirectRep and CFR (Johansson et al., 2016;

2The codes of KernelIV and DualIV are available at https://github.com/krikamol/DualIV-NeurIPS2020.
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Shalit et al., 2017): Both DirectRep and CFR learn the representation of the observed confounders,
but the former does not make any constraints, and the latter requires the learned representation to
be independent of the treatments; (3) DRCFR (Hassanpour & Greiner, 2019b): DRCFR identifies
and balances the confounders from all observed variables. Note that OneSIV can be seen as an ab-
lation versions of CB-IV without confounder banalcing, and DirectRep and CFR are the ablation
versions of CB-IV without IV regression. For the sake of fairness, we uniformly use Wass distance
as the discrepancy metrics for CFR, DR-CFR, and CB-IV in the experimental comparison. The
continuous treatment experiments are given in Section F in Appendix.

4.2 EXPERIMENTS ON SYNTHETIC DATASETS

4.2.1 DATASET.

Similar to (Hassanpour & Greiner, 2019b), we generate the synthetic datasets as follows:
• The latent variables {Z,X,U}:

Z1, · · ·ZmZ
∼ N (0, ImZ

), X1, · · ·XmX
, U1, · · ·UmU

∼ N (0,ΣmX+mU
) (18)

where mZ , mX and mU are the dimensions of instruments, observed confounders and un-
observed confounders respectively. ImZ

denotes mZ degree identity matrix, ΣmX+mU
=

ImX+mU
∗ 0.95+1mX+mU

∗ 0.05 means that all elements except diagonal are 0.05 in the
covariance matrix, and 1mX+mU

denotes mX +mU degree all-ones matrix.
• The treatment variables T :

P (T | Z,X) = 1

1+exp (−(
∑mZ

i=1 ZiXi+
∑mX

i=1 Xi)+
∑mU

i=1 Ui))
, T ∼ Bernoulli(P (T | Z,X)),mX > mZ (19)

where Bernoulli(P (T | Z,X)) is the true logging policy of the treatments T .
• The outcome variabls Y :

Y (T,X,U) = T
mX+mU

(
∑mX

i=1 X
2
i +

∑mU

i=1 U
2
i ) +

1−T
mX+mU

(
∑mX

i=1 Xi +
∑mU

i=1 Ui) (20)

= 1
mX+mU

(
∑mX

i=1((X
2
i −Xi)T +Xi) +

∑mU

i=1((U
2
i − Ui)T + Ui)) (21)

where T ∈ {0, 1} in the binary treatment settings.
Next, we will verify the effectiveness of our model in different data dimensions.

4.2.2 RESULTS.

In this paper, we use Syn-mZ-mX -mU to denote the synthetic dataset with mZ instruments, mX

observed confounders andmU unobserved confounders. And we sample 10000 units from Syn-1-4-
4,Syn-2-4-4,Syn-2-10-4,Syn-2-4-10 and perform 10 replications to report the mean and the standard
deviation (std) of the bias of the average treatment effect (ATE) estimation in Table 1, where within-
sample error is computed over the training sets and out-of-sample error over the test set. From the
results, we have following observations: (1) More valid IVs would bring more accuracy on treatment
effect estimation by comparing with the results of Syn-1-4-4 and Syn-2-4-4. (2) High dimension of
unmeasured confounder would lead to poor performance of confounder balancing based methods by
comparing with the results of Syn-2-4-4 and Syn-2-4-10. (3) The existence of observed confounders
would make the IV based methods make huge error on treatment effect estimation, even worse
than the confounder balancing based methods. This is because current IV based methods ignored
the bias of observed confounders in their second stage regression. (4) Considering confounder
balancing in IV regression, our CB-IV improved considerably over the traditional IV-based methods
and achieved better performance than confounder balancing methods in most settings. When the
observed confounders are high-dimensional, the low-dimensional instruments’ information might
get lost, and CB-IV would be equivalent to CFR.

As a data-driven representation learning method, CB-IV requires more training data to ensure per-
formance. Hence we implement experiments with different data size (500, 1000, 5000, 10000) on
Syn-2-4-4 to study its impact on model performance. Figure 4.2.2 shows that the bias of the average
treatment effect estimation of CB-IV is low in different data sizes, but the variance is huge above
small data sets (<3000). As the number of data increases, the variance of CB-IV will decrease lin-
early. When the amount of data exceeds 3000, the upper bound of CB-IV’s estimation will be lower
than the lower bound of all baselines. In conclusion, our method relies more on a large amount of
data. One solution is to perform each experiment many times (e.g., ten duplicates) and then take the
average value to reduce the variance, but this is not the paper’s focus.
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Table 1: The bias (mean ± std) of ATE estimation on Synthetic data (Syn-mZ-mX -mU )
Within-Sample

Method Syn-1-4-4 Syn-2-4-4 Syn-2-10-4 Syn-2-4-10
DeepIV-LOG 1.0551 ± 0.0105 1.0571 ± 0.0080 1.0920 ± 0.0091 1.0196 ± 0.0076
DeepIV-GMM 0.9336 ± 0.0107 0.8744 ± 0.0192 0.7684 ± 0.0232 0.9253 ± 0.0172

KernelIV 0.4954 ± 0.0557 0.4573 ± 0.0541 0.7649 ± 0.0283 0.6239 ± 0.0625
DualIV 1.4689 ± 0.0721 1.4233 ± 0.0764 1.7189 ± 0.0756 1.5344 ± 0.0727
OneSIV 0.8228 ± 0.0752 0.6613 ± 0.0955 0.6886 ± 0.0540 0.8504 ± 0.0727

DFIV 0.8515 ± 0.0097 0.8602 ± 0.0071 0.8506 ± 0.0072 0.8858 ± 0.0090
DFL 0.8401 ± 0.0020 0.8507 ± 0.0021 0.8380 ± 0.0015 0.8308 ± 0.0045

DirectRep 0.1720 ± 0.0173 0.1630 ± 0.0084 0.1181 ± 0.0173 0.1994 ± 0.0160
CFR 0.1717 ± 0.0160 0.1582 ± 0.0151 0.1050 ± 0.0196 0.1980 ± 0.0182

DRCFR 0.1514 ± 0.0557 0.1359 ± 0.0337 0.0630 ± 0.0439 0.1542 ± 0.0317
CB-IV 0.0381 ± 0.0712 0.0160 ± 0.0470 0.0774 ± 0.0413 0.0092 ± 0.0646

Out-of-Sample
Method Syn-1-4-4 Syn-2-4-4 Syn-2-10-4 Syn-2-4-10

DeepIV-LOG 1.0549 ± 0.0101 1.0572 ± 0.0081 1.0931 ± 0.0091 1.0197 ± 0.0076
DeepIV-GMM 0.9334 ± 0.0106 0.8744 ± 0.0194 0.7682 ± 0.0229 0.9252 ± 0.0173

KernelIV 0.4953 ± 0.0552 0.4581 ± 0.0525 0.7652 ± 0.0278 0.6245 ± 0.0627
DualIV 1.4722 ± 0.0791 1.4671 ± 0.0764 1.7321 ± 0.0722 1.5131 ± 0.0664
OneSIV 0.8224 ± 0.0759 0.6612 ± 0.0950 0.6904 ± 0.0527 0.8512 ± 0.0735

DFIV 0.8514 ± 0.0091 0.8602 ± 0.0070 0.8507 ± 0.0071 0.8857 ± 0.0091
DFL 0.8401 ± 0.0020 0.8506 ± 0.0019 0.8383 ± 0.0016 0.8308 ± 0.0043

DirectRep 0.1721 ± 0.0160 0.1635 ± 0.0090 0.1160 ± 0.0154 0.1991 ± 0.0143
CFR 0.1717 ± 0.0146 0.1586 ± 0.0185 0.1029 ± 0.0187 0.1977 ± 0.0160

DRCFR 0.1511 ± 0.0548 0.1365 ± 0.0348 0.0617 ± 0.0450 0.1538 ± 0.0321
CB-IV 0.0374 ± 0.0750 0.0165 ± 0.0456 0.0748 ± 0.0401 0.0096 ± 0.0640

Figure 2: Performance of CB-IV on Syn-2-4-4 by varying data size

4.3 EXPERIMENTS ON REAL-WORLD DATASETS

4.3.1 DATASET.

We also check the performance of CB-IV methods with experiments on two real-world datasets,
which are adopted in Yao et al. (2018); Wu et al. (2020): IHDP tends to evaluate the effect of a
specialist home visit on premature infants’ cognitive test scores, and Twins aims to estimate the
effect of the weight in twins on the infant’s mortality.

IHDP3: The Infant Health and Development Program (IHDP) comprises 747 units (139 treated,
608 control). To develop the instrument variables, we generate 2-dimension random variables
for each unit, i.e., Z1, · · ·ZmZ

∼ N (0, ImZ
),mZ = 2. Then, we select 6 variables from the

original data as the confounders, including mX variables as observed confounders X and mU

as unobserved U , where mX + mU = 6. The treatment assignment policy is P (T | Z,X) =
1

1+exp (−(
∑mZ

i=1 ZiXi+
∑mX

i=1 Xi)+
∑mU

i=1 Ui))
, T ∼ Bernoulli(P (T | Z,X)).

Twins4: Twins dataset is derived from all twins born in the USA between the years 1989 and 1991
Almond et al. (2005). Similar to Yao et al. (2018), we select 5271 records from same-sex twins who

3http://www.fredjo.com/
4http://www.nber.org/data/
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Table 2: The bias (mean ± std) of ATE estimation on real-world data (Data-mZ-mX -mU )
Within-Sample

Method IHDP-2-6-0 IHDP-2-4-2 Twins-5-8-0 Twins-5-5-3
DeepIV-LOG 2.8736 ± 0.0577 2.6227 ± 0.0651 0.0135 ± 0.0215 0.0237 ± 0.0111
DeepIV-GMM 3.7760 ± 0.0316 3.7396 ± 0.0402 0.0194 ± 0.0047 0.0221 ± 0.0041

KernelIV 3.0605 ± 0.3054 2.9941 ± 0.4634 - -
DualIV 0.5925 ± 0.2212 0.6581 ± 0.2427 - -
OneSIV 1.7249 ± 0.3752 1.7411 ± 0.3422 0.0083 ± 0.0191 0.0080 ± 0.0167

DFIV 3.5543 ± 0.0891 3.6218 ± 0.1038 0.0268 ± 0.0005 0.0265 ± 0.0003
DFL 3.2018 ± 0.0496 3.1991 ± 0.0374 0.0624 ± 0.0586 0.0847 ± 0.0049

DirectRep 0.0675 ± 0.0562 0.4600 ± 0.0711 0.0167 ± 0.0171 0.0193 ± 0.0251
CFR 0.0854 ± 0.0579 0.4826 ± 0.0642 0.0115 ± 0.0167 0.0223 ± 0.0176

DRCFR 0.0553 ± 0.0644 0.4336 ± 0.0692 0.0114 ± 0.0221 0.0118 ± 0.0174
CB-IV 0.0117 ± 0.3882 0.1601 ± 0.2499 0.0067 ± 0.0271 0.0014 ± 0.0249

Out-of-Sample
Method IHDP-2-6-0 IHDP-2-4-2 Twins-5-8-0 Twins-5-5-3

DeepIV-LOG 2.8760 ± 0.0553 2.6226 ± 0.0692 0.0140 ± 0.0208 0.0238 ± 0.0111
DeepIV-GMM 3.7768 ± 0.0350 3.7388 ± 0.0416 0.0193 ± 0.0047 0.0221 ± 0.0040

KernelIV 3.0703 ± 0.3063 3.0232 ± 0.4401 - -
DualIV 0.5642 ± 0.2663 0.7147 ± 0.3547 - -
OneSIV 1.7287 ± 0.3725 1.7351 ± 0.3430 0.0082 ± 0.0191 0.0081 ± 0.0168

DFIV 3.5538 ± 0.0904 3.6225 ± 0.1061 0.0268 ± 0.0005 0.0265 ± 0.0003
DFL 3.2038 ± 0.0496 3.1994 ± 0.0376 0.0624 ± 0.0584 0.0846 ± 0.0046

DirectRep 0.0608 ± 0.0817 0.4571 ± 0.0759 0.0162 ± 0.0175 0.0194 ± 0.0253
CFR 0.0785 ± 0.0810 0.4804 ± 0.0687 0.0110 ± 0.0163 0.0225 ± 0.0180

DRCFR 0.0450 ± 0.0953 0.4321 ± 0.0673 0.0113 ± 0.0219 0.0118 ± 0.0174
CB-IV 0.0150 ± 0.3927 0.1578 ± 0.2540 0.0065 ± 0.0270 0.0015 ± 0.0247

* Most confounders are discrete variables and the outcome is binary variable in Twins data. The results of
kernel-based IV methods in Twins are NaN. We use ’-’ to denote it.

weighed less than 2000 grams and had no missing characteristics. Then we generate 5-dimension
random variables as the instrument variables and obtain mX variables as observed confounders X
and mU as unobserved U to design the treatments T according to the policy in Eq. (20).

4.3.2 RESULTS.
We conduct our experiments over the 100 realizations of IHDP and 10 realizations of Twins with a
63/27/10 proportion of train/validation/test splits. In each realization, we shuffle the data and then
redivide it into train/validation/test splits to simulate as many different data distributions as possible.
Data-mZ-mX -mU means that there aremZ dimension instruments, mX observed confounders and
mU unobserved confounders in the corresponding Data. We report the results in Table 2, including
the mean and standard deviation (std) of the bias of average treatment effect estimation.

In the dataset without unmeasured confounders (IHDP-2-6-0 and Twins-5-8-0), the performance
of CB-IV is better than confounder balance methods (DRCFR, CFR), better than two-head methods
(DirectRep), and the IV methods (DeepIV, KernelIV, DFIV) are the worst. DualIV and OneSIV have
the best performance in the traditional IV methods on IHDP and Twins, respectively. When there
are unmeasured confounders (IHDP-2-4-2 and Twins-5-5-3), it is evident that the performance of
the confounder balance methods decreased a lot. Still, the performance of CB-IV and IV methods
are almost unaffected, which is in line with our expectations. CB-IV requires a larger amount of
data to ensure the convergence of the variance. Because the training set of IHDP has only 471
samples, CB-IV has a small bias but a large variance. Despite this, in the presence of unobserved
confounders, the upper bound of the error of CB-IV is much lower than these baselines. In general,
CB-IV achieves the best performance among all baselines.

5 CONCLUSION

The majority of instrumental variable methods ignore the confounding bias in the second stage
in nonlinear scenarios. A promising direction is to implement confounder balance. We confirm
this and extend the instrumental variable methods from the additive separability assumptions to
a more general scenario with multiplicative assumption through our theoretical and experimental
analysis. This leads us to a Confounder Balanced IV Regression (CB-IV) algorithm for causal effect
estimation with unobserved confounders. Extensive experiments show that the proposed method
achieves state-of-the-art performance in the treatment effect estimation.

In this paper, we mainly focus on treatment effect estimation and have not examined statistical
inference yet. Inference after deep neural network training is generally very challenging (Farrell
et al., 2021). We leave this to future exploration.
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A NONLINEAR CASE

Example 1 (Complicated nonlinear case). T = f(Z,X) + U = ZX + U, Y = g(T,X) + U =

TX2 +X + U , where Z ∼ N (0, 1), X, U ∼ N
(
(0, 0),

(
1 0.05

0.05 1

))
.

Proof 1 (a). Stage 1, classical IV methods perform linear/nonlinear regression from Z to T :

E[T |Z] = E[ZX + U |Z] = E[ZX|Z] + E[U |Z] = E[X]Z = 0

Then, we get a wrong conclusion that Z and T are independent.

Proof 1 (b). Stage 1, nonlinear IV regression variants perform linear/nonlinear regression from
{Z,X} to T :

E[T |Z,X] = E[ZX + U |Z,X] = E[ZX|Z,X] + E[U |Z,X] = XZ + E[U |X]

where E[ZX|Z,X] = ZX , because Z and X are independent. We define T̂ = E[T |Z,X] =
XZ + E[U |X] in the continuous case.

Stage 2, if we perform linear/nonlinear regression from {Z,X} to Y :

E[Y |Z,X] = E[TX2 +X + U |Z,X]

= E[(ZX + U)X2 +X + U |Z,X]

= E[(ZX3 +X + U + UX2|Z,X]

= ZX3 +X + E[U |X](X2 + 1)

= (ZX + E[U |X])X2 +X + E[U |X]

= T̂X2 +X + E[U |X]

= g(T̂ ,X) + E[U |X]

we will get the structure function (g(T̂ ,X) + E[U |X]) and an unbiased arverage treatment effect
(ATEZ) estimation of Z on Y :

ATEZ = E[Y |Z1, X]− E[Y |Z0, X]

= [E[g(T ′
1, X)] + E[U |X]]− [E[g(T ′

0, X)] + E[U |X]]

= E[g(T ′
1, X)]− E[g(T ′

0, X)]

Nevertheless, we want to obtain the causal relationship (ATE) between the treatments T and out-
comes Y , instead of the average causal effect estimation (ATEZ) of Z on Y . ATE and ATEZ

are not equivalent. Therefore, We have to perform linear/nonlinear regression from {T̂ ,X} to Y
in stage 2, i.e., E[T̂X2 + X + U |T̂ ,X], T̂ = E[T |Z,X]. Obviously, X would be a confounder
(T̂ = E[T |Z,X] derives from {Z,X}, and {X, T̂} are the cause of Y ) and these algorithms would
get a biased causal effect between the T̂ /T and Y . In other words, T is related to X , so there may
be multiple different solutions ĝ of argming′{E[T̂X2 +X + U |T̂ ,X] − g′(T,X)} and ĝ may be
different from true structural function g.

Fortunately, the unobserved confounders U will no longer confound the causal relationship between
T̂ and Y in stage 2 (see figure 1(b)), and we only need to analyze and control the observed con-
founders X .

B THEOREMS

Theorem (Identification of treatment effects). If the learned representation of observed confounders
C = fθ(X) is independent with the predicted treatment T̂ ∼ P (T | Z,X), then the latent outcome
function h(T,X) can be identified with instrumental variables Z and representation C:

h(T,X) = g1(T,X) + g2(T )E[g3(U)|C] + E[g4(X,U)|C], C = fθ(X) (22)
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Proof In this paper, we model the causal relationship more general and relax the additive separa-
bility assumption to the multiplicative assumption (Eq. (4)):

T = f1(Z,X) + f2(Z)f3(X,U), Y = g1(T,X) + g2(T )g3(U) + g4(X,U), Z ⊥ U,X

Treatment Regression Stage, we perform nonlinear regression from {Z,X} to T using deep neural
networks:

E[T |Z,X] = E[f1(Z,X) + f2(Z)f3(X,U)|Z,X]

= E[f1(Z,X)|Z,X] + E[f2(Z)f3(X,U)|Z,X]

= f1(Z,X) + E[f2(Z)|Z,X]E[f3(X,U)|X]

= f1(Z,X) + f2(Z)E[f3(X,U)|X]

where E[f1(Z,X)|Z,X] = f1(Z,X) and E[f2(Z)|Z,X] = f2(Z), because Z and X are indepen-
dent. We define T̂ = E[T |Z,X].

Outcome Regression Stage, we perform linear/nonlinear regression from {Z,C} to Y with C ⊥
g2(T ) using deep neural networks:

E[Y |Z,C] = E[g1(T,X) + g2(T )g3(U) + g4(X,U)|Z,C]
= E[g1(f1(Z,X) + f2(Z)f3(X,U), X) + g2(T )g3(U)|Z,C] + E[g4(X,U)|C]
= E[g1(f1(Z,X) + f2(Z)f3(X,U), X)|Z,C] + E[g2(T )g3(U)|Z,C] + E[g4(X,U)|C]
= E[g1(E[T |Z,X], X)|Z,C] + E[g2(E[T |Z,X])g3(U)|Z,C] + E[g4(X,U)|C]
= E[g1(T̂ ,X)|Z,C] + E[g2(T̂ )g3(U)|Z,C] + E[g4(X,U)|C]
= g1(T̂ ,X) + g2(T̂ )E[g3(U)|C] + E[g4(X,U)|C]

As for step 3 to step 4:

E[g1(E[T |Z,X], X)|Z,C] = E[g1(f1(Z,X) + f2(Z)E[f3(X,U)|X], X)|Z,C]
= E[g1(f1(Z,X) + f2(Z)f3(X,U), X)|Z,C]
= E[g1(T,X)|Z,C]

where E[f3(X,U)|X], only related to X , is a constant for the specified X/C. The completeness
of P(T | Z,X) and P(Y | T,X) would guarantees uniqueness of the solution (Newey & Powell,
2003). An example of unique solution can be found in Proof 1 (b) in Section 1.

As for step 5 to step 6:

E[g2(E[T |Z,X])g3(U)|Z,C] = E[g2(E[T |Z,X])]E[g3(U)|Z,C]
= E[g2(E[T |Z,X])]E[g3(U)|C]
= g2(E[T |Z,X])E[g3(U)|C]

where g2(E[T |Z,X]) only related toZ andX , and is independent of g3(U) conditional onZ andC.
Note that g2(E[T |Z,X]) and g3(U) are conditionally related conditional on X , but conditionally
independent given C.

Summarily, the latent outcome function is h(T,X) = g1(T,X) + g2(T )E[g3(U)|C], and can be
identified by IVs.

C BINARY TREATMENT AND BINARY OUTCOME CASE

In this paper, we model the causal relationship more general and relax the additive separability
assumption to the multiplicative assumption, as follows:

T = f1(Z,X) + f2(Z)f3(X,U), Y = g1(T,X) + g2(T )g3(U) + g4(X,U), Z ⊥ U,X (23)
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Table 3: Network structures of CB-IV on Data-mZ-mX -mU

Stage Setting Syn IHDP Twins

Treatment Regression

Loss log log log
Epoch 3 3 3

Batchsize 500 500 500
MLPLayers [128,64] [128,64] [128,64]
Activation ReLU ReLU ReLU
BatchNorm True True True

Learning Rate 0.05 0.05 0.05
Optimizer SGD SGD SGD

Outcome Regression

Loss MSE MSE log
Epoch 3000 100 200

Batchsize 256 100 100
MLPLayers R [256]∗3 [200]∗3 [256]∗3
MLPLayers Y [256]∗5 [100]∗3 [128]∗5

Activation ELU ELU ELU
BatchNorm False False False

Learning Rate 0.0005 0.0005 0.0005
Optimizer Adam Adam Adam

α 0.01/0.001 0.1 0.001/0.0001

where f1···3(·) and g1···4(·) are continuous functions. In the structural function of Y , g2(T )g3(U)
denotes the multiplicative terms of U with T (e.g., U2T −UT +U ). The same principle can be ap-
plied to the structural function of T . The completeness of P(T | Z,X) and P(Y | T,X) guarantees
uniqueness of the solution (Newey & Powell, 2003). For binary treatment and binary outcome case,
we can also model it similarly:

T ∼ Bernoulli(P (T )),where P (T ) = 1
1+exp−(f1(Z,X)+f2(Z)f3(X,U)) ,

Y ∼ Bernoulli(P (Y )),where P (Y ) = 1
1+exp−(g1(T,X)+g2(T )g3(U)+g4(X,U)) ,

log P (T )
1−P (T ) = f1(Z,X) + f2(Z)f3(X,U), log P (Y )

1−P (Y ) = g1(T,X) + g2(T )g3(U) + g4(X,U), Z ⊥ U,X (24)
In this paper, all relevant theories and proofs can be transformed into binary cases. We can use the
expectation of the samples to approximate the probability distribution of the data.

D PSEUDO-CODE AND HYPER-PARAMETERS

D.1 PSEUDO-CODE AND NETWORK STRUCTURES

We formulate the regression problems into optimization problems, and optimize them sequentially
(Alternating training strategy is also an option). The optimization loss functions of the two regres-
sion networks are:

min
µ
L1 = − 1

n

n∑
i=1

(ti log (πµ(zi, xi)) + (1− ti) (1− log (πµ(zi, xi)))) (25)

min
θ,ξ0,ξ1

L2 =
1

n

n∑
i=1

yi − ∑
t̂∈{0,1}

hξt̂(fθ(xi))P̂ (t̂ | zi, xi)

2

+ α disc(t̂, fθ(xi)) (26)

where α is a trade-off hyper-parameter.

For the Treatment Regression, we use multi-layer perceptrons with ReLU activation function and
BatchNorm as our logistic regression network πµ and the network has two hidden layers with 128,
64 units, respectively. Then, We use stochastic gradient descent (SGD, (Duchi et al., 2011)) to train
the network πµ with a loss L1 for three epochs with a batch size of 500.

For the Outcome Regression and Confounder Balancing, we use Adam ((Kingma & Ba, 2014)) to
train the three networks fθ, hξ0 , hξ1 with loss L2 jointly. To prevent overfitting, we add a regular-
ization term to regularize the prediction functions hξ0 , hξ1 with a small l2 weight decay.
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Algorithm 1 Two(2)-Stage Representation learning with Instrumental Variables
1: Input: Observational data D = {zi, xi, ti, yi}ni=1, The maximum number of iterations I
2: Output: Ŷ0 = hξ0(fθ(X)), Ŷ1 = hξ1(fθ(X))
3: Loss function: L1 and L2

4: Components: A logistic regression network πµ(·; a representation learning network fθ(·); two-
head outcome regression networks hξ0(·) and hξ1(·).

5: Treatment Regression Stage:
6: for i = 1, 2, 3, ... do
7: {zi, xi}ni=1 → πµ(zi, xi)→ P̂ (t = 1 | zi, xi)
8: L1 = − 1

n

∑n
i=1 (ti log (πµ(zi, xi)) + (1− ti) (1− log (πµ(zi, xi))))

9: update µ← SGD{L1}
10: end for
11: Outcome Regression Stage:
12: for i = 1, 2, 3, ..., I do
13: {xi}ni=1 → Ci = fθ(xi)

14: {zi, xi}ni=1 → πµ(zi, xi)→ P̂ (t = 1 | zi, xi)
15: {fθ(xi), ti}ni=1 → disc(t̂, fθ(xi))

16: L2 = 1
n

∑n
i=1

(
yi −

∑
t̂∈{0,1} hξt̂(fθ(xi))P̂ (t̂ | zi, xi)

)2

+ disc(t̂, fθ(xi))

17: update θ, ξ0, ξ1 ← Adam{L2}
18: end for

Within-sample

Out-of-Sample

Figure 3: Hyper-parameter sensitivity analysis on Data-mZ-mX -mU . The green lines show the
ATE bias of the hyper-parameter α within the specified range {0, 0.0001, 0.001, 0.01, 0.1, 1}. The
red line indicates the parameters chosen by CB-IV.

Table 3 shows the details of the structure networks of CB-IV in different datasets. In the Treatment
Regression Stage, the Loss would be an MSE-loss for continuous treatments and a log-loss for binary
treatments, and the treatment network has multiple hidden layers with [MLPLayers] units. In the
Treatment Regression Stage, the Loss would be an MSE-loss for continuous outcomes and a log-loss
for binary outcomes. The representation network has multiple hidden layers with [MLPLayers R]
units, and the outcome network has multiple hidden layers with [MLPLayers Y] units. Algorithm 1
shows the pseudo-code of our methods (CB-IV).

Hardware used: Ubuntu 16.04.5 LTS operating system with 2 * Intel Xeon E5-2678 v3 CPU, 384GB
of RAM, and 4 * GeForce GTX 1080Ti GPU with 44GB of VRAM.

Software used: Python with TensorFlow 1.15.0, NumPy 1.17.4, and MatplotLib 3.1.1.
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D.2 HYPER-PARAMETERS ANALYSIS ON DATA-mZ -mX -mU

Given the multi-term objective function (Eq. (17)) in CB-IV, we study the confounder balance
item (Eq. (13)/(14)) on the average treatment effect estimation of different datasets (Data-mZ-mX -
mU ) by changing hyper-parameter α in the scope {0, 0.0001, 0.001, 0.01, 0.1, 1}. The result in
Figure 3 demonstrates the confounder balance item is necessary for CB-IV. Combined with the two-
head outcome functions, CB-IV indeed learn an effective independent representation and accurately
estimate the average treatment effect.

E THE EXPERIMENTS ABOUT DIFFERENT VARIABLES USED IN DIFFERENT
STAGE

According to the preliminaries, we confirm that it is not sufficient to use instruments only in the
first stage of the IV methods. In this section, we use Syn(vars used in stage 1)(vars used in
stage 2) to represent that the regression variables we would use in the two stages of the instrumental
variable method, respectively. Then we sample 10000 units from Syn-2-4-4 to construct the datasets
Syn(vars used in stage 1)(vars used in stage 2) perform 10 replications. For example, Syn(Z)(X)
means that we perform logistic regression from the instruments Z to the treatments T in the first
stage for all IV methods. We estimate the causal effect of the treatments T on outcomes Y using
observed confounders X in the second stage for all IV methods or in the outcome regression stage
of representation methods.

We report the mean and the standard deviation on the bias of average treatment effect (ATE) estima-
tion on different data settings in the Table 4. We find that almost all methods achieve the best results
on Syn(Z,X)(X), compared with Syn(Z)(X),Syn(X)(X) and Syn(Z,X)(Z,X), which is in line with
our expectations. Comparing the results of Syn(Z)(X) and Syn(Z,X)(X), all IV methods, including
CB-IV, are no longer effective in the setting Syn(Z)(X), DRCFR will achieve the best average treat-
ment effect estimation. In addition, the results of DeepIV and DFIV methods are poor and almost
unchanged on all data. The result confirms that these IV methods would be no longer effective,
using only instrumental variables Z or only observed confounding variables X in the first stage.

In reality, we may not identify which variables we observed are instrumental variables Z and which
are confounders X . Fortunately, our proposed model is still valid in this case. The result of setting
Syn(Z,X)(Z,X) shows CB-IV, using all observed variables {Z,X} in stage 1 and learning a bal-
anced representation of all observed variables {Z,X} to implement causal effect estimation in stage
2, can still obtain a SOTA results. Moreover, the confounder balance methods (DirectRep,CFR and
DRCFR) transiently balances the representation of instrumental variables Z, the performance will
degrade. The traditional instrumental variable methods (DeepIV,OneSIV and DFIV) cannot identify
causal effects in this scenario.

F THE CONTINUOUS TREATMENT EXPERIMENTS

F.1 DEMAND DATASETS WITH DIFFERENT SAMPLE SIZE

In demand Datasets (that applied in DeepIV (Hartford et al., 2017), KernelIV (Singh et al., 2019),
DualIV (Muandet et al., 2019) and DFIV (Xu et al., 2020)), we report mean squared error (MSE) and
its standard deviations over 10 trials with different data sizes (500, 1000, 5000, 10000): the outcome
variabl is Y = 100+(10+T )X1ψX2

−2T+E; the treatment variable is T = 25+(Z+3)ψX2
+U ;

ψX2 = 2
(
(X2 − 5)4/600 + exp

[
−4(X2 − 5)2

]
+X2/10− 2

)
; where X1 ∈ {1, . . . , 7}, X2 ∼

unif(0, 10), Z,U ∼ N(0, 1) and E ∼ N(0.5U, 0.75). In this case, the instrument variable is Z,
the treatment variable is T , the observed variables are {X1, X2}, the outcome variable is Y , the
unmeasured confounder is {U,E}.
Like the binary treatment studies in this paper, on this classical simulation data Demand (Table
F.2), the balanced representation methods without using IV still perform much better than the pure
IV-based methods. Considering confounder balancing in IV regression, our method CB-IV im-
proved considerably over the traditional IV-based methods and achieved better performance than
confounder balancing methods in most settings. Nevertheless, our method still relies on large sam-

17



Under review as a conference paper at ICLR 2022

Table 4: The bias (mean ± std) of average treatment effect estimation on Synthetic data (Syn(vars
used in stage 1)(vars used in stage 2))

Within-Sample
Method Syn(Z)(X) Syn(X)(X) Syn(Z,X)(Z,X) Syn(Z,X)(X)

DeepIV-LOG 1.0551 ± 0.0057 1.0545 ± 0.0072 1.0588 ± 0.0093 1.0571 ± 0.0080
DeepIV-GMM 0.8617 ± 0.0164 0.9915 ± 0.0066 0.9607 ± 0.0059 0.8744 ± 0.0192

KernelIV 0.9639 ± 0.0698 0.8654 ± 0.1742 0.8897 ± 0.1573 0.4573 ± 0.0541
DualIV 0.6582 ± 0.5607 1.6109 ± 0.4953 1.7628 ± 0.0423 1.4233 ± 0.0764
OneSIV 1.0477 ± 0.0304 1.1760 ± 0.0457 1.0529 ± 0.0448 0.6613 ± 0.0955

DFIV 1.0028 ± 0.0096 0.8945 ± 0.0037 0.8377 ± 0.0066 0.8602 ± 0.0071
DFL 0.8422 ± 0.0016 0.8428 ± 0.0019 0.8423 ± 0.0017 0.8507 ± 0.0021

DirectRep 0.1630 ± 0.0084 0.1630 ± 0.0084 0.1783 ± 0.0224 0.1630 ± 0.0084
CFR 0.1582 ± 0.0151 0.1582 ± 0.0151 0.1775 ± 0.0234 0.1582 ± 0.0151

DRCFR 0.1359 ± 0.0337 0.1359 ± 0.0337 0.1414 ± 0.0536 0.1359 ± 0.0337
CB-IV 0.4953 ± 0.2631 0.5294 ± 0.0996 0.1145 ± 0.0717 0.0160 ± 0.0470

Out-of-Sample
Method Syn(Z)(X) Syn(X)(X) Syn(Z,X)(Z,X) Syn(Z,X)(X)

DeepIV-LOG 1.0552 ± 0.0054 1.0546 ± 0.0075 1.0591 ± 0.0097 1.0572 ± 0.0081
DeepIV-GMM 0.8618 ± 0.0164 0.9915 ± 0.0066 0.9606 ± 0.0059 0.8744 ± 0.0194

KernelIV 0.9634 ± 0.0699 0.8651 ± 0.1767 0.9164 ± 0.1573 0.4581 ± 0.0525
DualIV 0.8002 ± 0.3073 1.6063 ± 0.5008 1.7601 ± 0.0371 1.4671 ± 0.0527
OneSIV 1.0478 ± 0.0302 1.1763 ± 0.0453 1.0526 ± 0.0448 0.6612 ± 0.0950

DFIV 1.0027 ± 0.0095 0.8944 ± 0.0037 0.8375 ± 0.0065 0.8602 ± 0.0070
DFL 0.8421 ± 0.0016 0.8427 ± 0.0017 0.8421 ± 0.0015 0.8506 ± 0.0019

DirectRep 0.1635 ± 0.0090 0.1635 ± 0.0090 0.1787 ± 0.0192 0.1635 ± 0.0090
CFR 0.1586 ± 0.0185 0.1586 ± 0.0185 0.1777 ± 0.0233 0.1586 ± 0.0185

DRCFR 0.1365 ± 0.0348 0.1365 ± 0.0348 0.1416 ± 0.0517 0.1365 ± 0.0348
CB-IV 0.4929 ± 0.2614 0.5285 ± 0.0994 0.1144 ± 0.0714 0.0165 ± 0.0456

ples. The contribution of this paper is to find this phenomenon and give a practical solution, and we
relax the additive assumption.

F.2 DEMAND DATASETS WITH DIFFERENT STRUCTUAL FUNCTIONS OF T

We adjust the difficulty of the simulation and perform experiments to increase the importance of
instrumental variables in the structure function of T (e.g., adjust γ and λ in T = 25 + γZ +
(λZ + 3)ψX2

+ U ), we name it as Demand-γ-λ. Demand-0-1 is the original Demand data with
T = 25 + (Z + 3)ψX2

+ U . In Demand-0-5 with T = 25 + (5 ∗ Z + 3)ψX2
+ U , we increase

the information of the instrumental variable and amplify the confounding bias. As for Demand-5-1
with T = 25 + 5 ∗ Z + (Z + 3)ψX2

+ U , we increase the information of the instrumental variable
but keep the confounding bias unchanged.

The experimental results (reported in Table F.2) shows that if the information of instrumental vari-
ables and confounders increases, all methods will become worse, but the balanced representation
methods without using IV still perform much better than the pure IV based methods. If we only
increase the information of the instrumental variable, the results of the pure IV based methods and
CB-IV are almost unchanged due to the same confounding bias. However the balanced representa-
tion methods are basically worse, which is a very magical phenomenon. One conjecture is that the
fluctuation of T affects the change of Y . perhaps we should regularize the treatment variables and
outcome variables before regression them. Anyway, the confounding bias comes from the treatment
regression stage is a very important problem in IV based methods.

G DISCUSSION ON CONFOUNDER BALANCING

G.1 CONFOUNDER BALANCING

The gold standard approach for treatment effect estimation is to perform Randomized Controlled
Trials (RCTs), where different treatments are randomly assigned to units. Unlike RCTs, the treat-
ment T in the observational studies is not randomly assigned; instead depends on confounders
X . This change could result in confounding bias: P(T |X) ̸= P(T ). If we directly regress
E[Y |T,X] = hξ(T,X), in binary treatment case , such as the hospital scenario, most patients
(have an injection) in the treated group have severe comorbidity, i.e., P(T = injection|X =

18



Under review as a conference paper at ICLR 2022

Table 5: The MSE (mean ± std) of latent outcome estimation on Demand data

Within-Sample
Method 500 1000 5000 10000

DeepIV-LOG - - - -
DeepIV-GMM 7197.0858 ± 591.5079 11199.8894 ± 6482.5072 3163.3388 ± 266.4328 1356.3735 ± 343.5231

KernelIV 3078.2122 ± 647.2202 2363.3228 ± 270.7994 1692.1801 ± 72.6865 1526.4373 ± 141.7145
DualIV 13462.7471 ± 4882.1326 12839.8616 ± 5159.1546 28532.6462 ± 15774.3332 >30000
OneSIV 6196.9547 ± 1931.3269 6879.3032 ± 1940.6865 8784.7186 ± 1200.5437 8203.8744 ± 1120.1937

DFIV 240.0821 ± 381.7838 152.4014 ± 52.8385 198.9294 ± 30.6243 195.2834 ± 9.3424
DFL 141.4824 ± 26.4270 173.2734 ± 29.9088 196.8437 ± 17.8268 195.9884 ± 11.1385

DirectRep 138.7284 ± 24.0162 153.4422 ± 16.6723 193.0451 ± 12.8752 191.2359 ± 5.5144
CFR 126.9027 ± 20.9857 161.7175 ± 20.9926 191.6562 ± 10.2437 193.3015 ± 5.5614

DRCFR 705.7547 ± 462.9351 503.0686 ± 240.5934 419.0754 ± 126.1294 427.2194 ± 162.0811
CB-IV 117.6441 ± 23.2538 142.0652 ± 16.1174 164.6670 ± 7.4433 165.0155 ± 5.9588

Out-of-Sample
Method 500 1000 5000 10000

DeepIV-LOG - - - -
DeepIV-GMM 7249.5025 ± 465.7548 11470.8863 ± 6643.9238 3360.7893 ± 483.8971 1006.6206 ± 313.7140

KernelIV 2859.5013 ± 660.9105 2280.9724 ± 547.9235 1142.8346 ± 170.3749 994.9508 ± 146.2092
DualIV 12101.9675 ± 3948.9629 12455.8961 ± 2916.7411 27940.9859 ± 14022.5994 >30000
OneSIV 6539.1699 ± 1788.4552 7088.5011 ± 1846.4845 8883.0686 ± 988.7041 8330.8031 ± 1026.3255

DFIV 764.4473 ± 415.1062 404.9916 ± 133.0858 214.4949 ± 30.6644 190.5521 ± 8.9768
DFL 358.7445 ± 47.3268 261.3345 ± 35.6856 192.7698 ± 14.4607 182.9253 ± 11.5256

DirectRep 271.8334 ± 25.7621 222.3286 ± 9.5751 199.8683 ± 5.4527 193.9514 ± 7.3804
CFR 266.2449 ± 28.4544 225.9142 ± 11.7594 195.8037 ± 11.3383 192.0922 ± 8.9325

DRCFR 799.8020 ± 467.5651 621.7465 ± 275.9710 511.0712 ± 155.0455 532.4370 ± 199.5613
CB-IV 291.4765 ± 39.3366 229.1330 ± 42.2210 179.4130 ± 4.2211 172.9054 ± 5.3395

* The results of IV-based methods are consistent with those of the report in DeepIV (Hartford et al., 2017), KernelIV (Singh et al., 2019), DualIV
(Muandet et al., 2019) and DFIV (Xu et al., 2020). The difference is that they scale the results by log10, but we don’t.

Table 6: The MSE (mean ± std) of latent outcome estimation on different Demand datasets
(Demand-γ-λ)

Within-Sample
Method Demand-0-1 Demand-0-5 Demand-5-1

DeepIV-LOG - - -
DeepIV-GMM 1356.3735 ± 343.5231 3102.8901 ± 744.4496 1465.5604 ± 253.3932

KernelIV 1526.4373 ± 141.7145 5772.8724 ± 413.1272 1428.5166 ± 227.3451
DualIV >30000 >30000 >30000
OneSIV 8203.8744 ± 1120.1937 30854.0811 ± 3647.2961 7892.6823 ± 2009.5216

DFIV 195.2834 ± 9.3424 1205.0481 ± 1740.5136 197.2478 ± 16.8028
DFL 195.9884 ± 11.1385 1159.9531 ± 1902.0860 200.3554 ± 8.9157

DirectRep 191.2359 ± 5.5144 888.6762 ± 1077.6299 440.0853 ± 117.3984
CFR 193.3015 ± 5.5614 465.3831 ± 181.4856 449.6735 ± 161.0288

DRCFR 427.2194 ± 162.0811 391.6148 ± 28.2101 405.8180 ± 105.9513
CB-IV 165.0155 ± 5.9588 234.1836 ± 30.0674 167.7809 ± 6.7831

Out-of-Sample
Method Demand-0-1 Demand-0-5 Demand-5-1

DeepIV-LOG - - -
DeepIV-GMM 1006.6206 ± 313.7140 2829.4425 ± 724.6786 1151.6218 ± 284.1778

KernelIV 994.9508 ± 146.2092 5435.9011 ± 435.2851 1004.7321 ± 216.7744
DualIV >30000 >30000 >30000
OneSIV 8330.8031 ± 1026.3255 18508.7687 ± 2341.9042 7856.9271 ± 1977.9162

DFIV 190.5521 ± 8.9768 668.3026 ± 566.7304 196.2839 ± 16.6671
DFL 182.9253 ± 11.5256 597.6806 ± 622.1575 189.7124 ± 7.4217

DirectRep 193.9514 ± 7.3804 689.6526 ± 692.1083 489.9140 ± 121.1920
CFR 192.0922 ± 8.9325 417.2996 ± 123.5452 469.7471 ± 140.7833

DRCFR 532.4380 ± 199.5613 497.3451 ± 26.3724 470.5751 ± 143.4208
CB-IV 172.9054 ± 5.3395 224.3519 ± 18.0629 165.8571 ± 7.1423

severe comorbidity) > P(T = injection|X = mild comorbidity) . Then, the potential injection
output estimation for patients with mild comorbidity will be biased towards the actual results of
patients with severe comorbidity due to the confounding bias. Thus, confounder balancing means
that we try to balance the distributions of confounders X between different treatment arms T to
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simulate the results of Randomized Controlled Trials (RCTs), i.e., P(T = 1|X) = P(T = 0|X),
equivalent to P(X|T = 1) = P(X|T = 0).

To address the confounding bias from observable confounders, traditional confounder balance
works, such as propensity score methods(Rosenbaum & Rubin, 1983; Rosenbaum, 1987; Li et al.,
2016; 2020), re-weighting methods(Zubizarreta, 2015; Athey et al., 2018; He & Garcia, 2009),
Doubly Robust (Funk et al., 2011) or backdoor criterion (Pearl, 2009) to control the confounders’
distributions. CFR (Johansson et al., 2016; Shalit et al., 2017) formulates the problem of confounder
balance as a covariate shift problem and regards the treated group as the source domain and the con-
trol group as the target domain for domain adaptive balance in observational data. In this paper, we
use ”balanced” representation learning to tackle the problem.

Discussion on direct regression: In the randomized controlled trial setting, two distributions of
confounders in treated and control group are same, i.e., P(X|T = 0) = P(X|T = 1) = P(X).
We can estimate the potential control and treated outcome well enough by directly implementing
neural network regression from the treatments and confounders to the outcomes, i.e., E[Y |T,X] =
hξ(T,X). However, in the observational study, estimating causal effects from observational data is
different from supervised learning (Yuan et al., 2021). This is close to “learning from logged bandit
feedback” (Strehl et al., 2010), with the distinction that we do not have access to the action generator
model.

If we directly regress E[Y |T,X] = hξ(T,X), there will be two vital problems: (1) Finite Sam-
ples:The neural network, without any regularization, may be overfitted on the limited training
data. In binary treatment case , such as the hospital scenario, most patients (have an injection)
in the treated group have severe comorbidity, i.e., P(X = severe comorbidity|T = injection) ¿
P(X = mild comorbidity|T = injection) . Then, the potential injection output estimation for pa-
tients with mild comorbidity will be biased towards the actual results of same patients with severe
comorbidity due to the confounding bias. (2) Treatment Indicator might get lost: Confounders
are the cause of the treatment variable, the information of treatment variables may be replaced by
confounders in outcome regression, resulting in the consistency of the predicted potential outcomes
from different treatments for the specifiedX , i.e., hξ(0, XT=t) = hξ(1, XT=t) = hξ(XT=t),XT=t

denotes variables from the group T = t.

In finite samples, confounder balance is a important regularization on the outcome regression model.
Converting P(X|T = 1) > P(X|T = 0) to P(fθ(X)|T = 1) = P(fθ(X)|T = 0) = P(fθ(X)) via
balancing the distributions of confounders X between different treatment arms T , we can enforce
the representation distribution of training samples to approximate that of the population and keep T
not replaced by X in the outcome regression stage. When we balance the representations, although
the representations C = fθ(X)will lose information predictive of T̂ , we will emphasize the infor-
mation of T̂ . Even under the ideal condition, we expect that the discarded information in X can be
can reconstructed by representation C and T , it’s a trade-off in learning balanced representations.
Besides, we use the ”balanced” representation to bound the expected treatment effect estimation er-
ror (Shalit et al., 2017): ϵ(h,Φ) ≤ 2

(
ϵt=0
F (h,Φ) + ϵt=1

F (h,Φ) +BΦIPMG

(
pt=1
Φ , pt=0

Φ

)
− 2σ2

Y

)
.

”Balanced” representation means that the gain is from decreasing the bias of the population, includ-
ing the bias of counterfactual estimation, at the price of a small increase in the estimation bias of
common samples in data.

”Balanced” representation (Johansson et al., 2016; Shalit et al., 2017) has good performance and
can capture complex relationships among treatments, observed confounders, and outcomes, but it
requires the unconfoundedness assumption. For example, physical fitness (i.e., unobserved con-
founders U ) may not be recorded in the historical data. The causal effects of the treatments on
outcomes are not identifiable from data with unmeasured confounders. To address this challenge,
the patients’ income, an instrumental variable (IV) Z that only affect the treatments and does not
affect the outcomes directly, can be used to eliminate the unmeasured confounding bias (Pearl et al.,
2000; Wright, 1928a; Heckman, 2008; Stock & Trebbi, 2003).

G.2 ABOUT THE WASSERSTEIN DISTANCE

For representation balancing, CFR (Johansson et al., 2016; Shalit et al., 2017) and DR-CFR (Has-
sanpour & Greiner, 2019b) adopt Maximum Mean Discrepancy (MMD) and Wasserstein distance
(Wass) to calculate the dissimilarity of distributions from different treatment arms and fit a balanced
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representation by minimizing the discrepancy. For the sake of fairness, we uniformly use Wass dis-
tance as the discrepancy metrics for CFR, DR-CFR, and CB-IV in the experimental comparison.
Wass distances (Wp(µ, ν)

def
=

(
infπ∈Π(µ,ν)

∫
Ω2 D(x, y)pdπ(x, y)

)1/p
, p ∈ [1,∞) and probabil-

ity measures µ, ν ∈ Borel probability measuresP (Ω)) have many favorable properties, documented
both in theory (Villani, 2009; Cuturi & Doucet, 2014) and practice (Pele & Werman, 2009). Besides,
Wass distance have consistent estimators which can be efficiently computed in the finite sample case
(Shalit et al., 2017; Sriperumbudur et al., 2012) and Wass distance is a common measure in deep
learning: many algorithm breakthroughs (Arjovsky et al., 2017; Cuturi & Doucet, 2014) benefit
from it. However, there is no known way or a simple method for some function families to com-
pute the integral probability metric or its gradients efficiently. Therefore, this paper adopts the Wass
distance in binary treatment cases for fairness and expects better performance. As for continuous
treatment cases, we learn a ”balanced” representation via mutual information minimization con-
straints CLUB (Cheng et al., 2020). The experiments and the theory (Shalit et al., 2017) both prove
that a ”balanced” representation facilitates tighter expected error bounds in the enormous sample
size.

In binary treatment cases, P(C|T = 0) = P(C|T = 1) if and only if IPM =
Wass(CT=0, CT=1) = 0. Obviously, in binary case, IPM = 0 means that the distributions of
representation C are the same in the treated group and the control group, i.e., P(C|T = 0) =
P(C|T = 1) = P(C). The learned representation C is independent of T . In continuous treat-
ment cases, we can regard the minimization of mutual information between representation C and
treatment T as C ⊥ T .

G.3 ERROR BOUNDS WITH REPRESENTATION BALANCING

Shalit et al. (2017) gives a novel, and intuitive generalization-error bound showing that the expected
treatment effect estimation error is bounded by the standard generalization-error and the distance
between the treated and control distributions induced by the representation:

ϵ(h, θ) ≤ 2
(
ϵt=0
F (h, θ) + ϵt=1

F (h, θ) +BθIPMG

(
pt=1
θ , pt=0

θ

)
− 2σ2

Y

)
(27)

where ϵT=t
F (h, θ) =

∫
X ℓ2(y, h(T = t, fθ(x)))p

T=t(x)dx for t ∈ {0, 1}; pT=t(x) denotes the PDF
of x given T = t; pT=t

θ = {fθ(xi)}i:ti=t; Bθ is a constant; σ2
Y is the expected variance of Y .

The instrumental variable deals with unobserved confounders, as shown in Figure 1(b), variablesX ,
common causes of the conditional treatments T̂ and outcomes Y , are confounders and not decon-
founded in stage 2 of these nonlinear IV regression methods (See Proof 1(b) for details). Based on
the two-stage regression of IV methods, we propose to use confounder balance techniques to reduce
the error in the outcome regression stage. Consequently, we use L2 (Eq. 17) as the loss function in
the outcome regression stage:

min
θ,ξ0,ξ1

L2 = 1
n

∑n
i=1

(
yi −

∑
t̂∈{0,1} hξt̂(fθ(xi))P̂ (t̂ | zi, xi)

)2

+ α disc(t̂, fθ(xi))

In mathematical, the optimization goal L2 is consistent with error bound
2
(
ϵt=0
F (h, θ) + ϵt=1

F (h, θ) +BθIPMG

(
pt=1
θ , pt=0

θ

)
− 2σ2

Y

)
. If we directly regress

E[Y |T,X] = hξ(T,X), nonparametric models without prior knowledge may have poor pre-
diction performance for samples that rarely appear in the data (overfiting). Thus, confounder
balance is a great regularization on the outcome regression model. We bound the error ϵ(h, θ)
by minimizing ϵt=0

F (h, θ) + ϵt=1
F (h, θ) and IPMG

(
pt=1
θ , pt=0

θ

)
simultaneously. Combining with

IV methods and confound balance methods, we eliminate the confounding bias from observed
confounders and unmeasured confounders.
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