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Abstract

The landscape of neural network loss functions
is known to be highly complex, and the abil-
ity of gradient-based approaches to find well-
generalizing solutions to such high-dimensional
problems is often considered a miracle. Simi-
larly, Bayesian neural networks (BNNs) inherit
this complexity through the model’s likelihood. In
applications where BNNss are used to account for
weight uncertainty, recent advantages in sampling-
based inference (SAI) have shown promising re-
sults outperforming other approximate Bayesian
inference (ABI) methods. In this work, we ana-
lyze the approximate posterior implicitly defined
by SAI and uncover key insights into its success.
Among other things, we demonstrate how SAI
handles symmetries differently than ABI, and ex-
amine the role of overparameterization. Further,
we investigate the characteristics of approximate
posteriors with sampling budgets scaled far be-
yond previously studied limits and explain why
the localized behavior of samplers does not inher-
ently constitute a disadvantage.

1. Introduction

By treating network weights probabilistically, Bayesian neu-
ral networks (BNNs) enable various applications, e.g., quan-
tifying uncertainty, as a basis for active learning pipelines,
improved optimization of the network itself, or compres-
sion approaches (Papamarkou et al., 2024). BNN research,
alas, faces challenges in posterior inference due to the pos-
terior’s high complexity (Izmailov et al., 2021) and the
overparametrization of neural networks, inducing symme-
tries that impede performance (see, e.g., Wiese et al., 2023;
Gelberg et al., 2024).
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Figure 1. Evolution of the approximate posterior distribution of
SAI, visualized by marginal bivariate densities of two weights
(axes, the lighter the higher the density) for 10 (left) and 10k
(right) chains of posterior samples with 10k and 10M posterior
samples visualized respectively.

While BNNs have been extensively studied in the context
of approximate Bayesian inference (ABI), sampling-based
inference (SAI) has only recently gained more traction due
to its improved practical feasibility (see, e.g., Sommer et al.,
2024; 2025). In contrast to ABI methods that come with
certain inductive biases, SAI is tasked with a seemingly
impossible idea: obtaining a set of representative samples
from a typically high dimensional and very complex poste-
rior without approximation assumptions that help to mitigate
the non-identifiability of the network’s weight mapping.

To better understand the challenges and opportunities re-
lated to sampling approaches for BNNS, it is crucial to
comprehend the nature of SAI’s (approximate) posterior.
While most sampling approaches are designed to yield sam-
ples from the true posterior in the limit, this is a theoretical
property. For BNNs in particular, sampling methods will
be much more of a (local) approximation in comparison
to other applications of SAI . It is, however, unclear, to
what extent the obtained posterior of SAI is subject to an
(implicit) approximation (cf. Figure 1).

Our Contributions In this work, we study the posterior
obtained by SAI from three different angles: First, we in-
vestigate the behavior of SAI and the influence of prior dis-
tributions on overparameterization. Next, we discuss how
non-identifiabilities will influence SAI and whether a spe-
cific treatment is necessary to address these. By analyzing
the approximate posterior in the limit with an unprecedent-
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edly large sampling budget, we further find that the posterior
induced by recent SAI methods might be much more well-
behaved than previously thought. Finally, we explore the
practical ramifications of our findings, suggesting that lo-
cal sampler behavior does not hinder the robustness and
superior performance of SAI in real-world applications, and
provide detailed guidelines for optimizing its performance.

1.1. Related Work

A thorough discussion of related work and open questions
in the field can be found in Appendix A.

1.2. Setup

In this and the following sections, we will study L-layer per-
ceptrons given by fo(x) = Ok, (¢ oh®)(x), with linear
function (V) (x) = WWx 4+ bW, W ¢ Rlixdi1 p() ¢
Ré . d; € Nforl € {1,...,L} =: [L], and mono-
tonic activation function (). Due to their popularity,
special emphasis will be placed on ReLU networks with
¢V = ¢ = max(-,0),] € [L — 1]. The vector  then
denotes the flattened and stacked weights and biases with
d =3 1eip) di- (di—1 +1). If the weight of a layer is a vec-
tor, it will be denoted as w("), and as w(®, if it is a scalar. In

the following, we also will assume a data distribution y; ind.
F(x;,0) with density p(y|X, ) = [[;c(, p(vilxi, 0). We
will denote the prior as p(@) and the posterior as p(0]X,y).
If not stated differently, we will assume a Gaussian prior
0; ~ N(0,77) with variance 77 = 72 for all §; in 6.

2. The Effect of Overparametrization

In the following, we start and try to build an understanding
of the effects of high dimensionality and overparameteriza-
tion as major drivers of posterior complexity.

2.1. Univariate Narrow Bayesian Networks

As an instructive example, we consider narrow Bayesian
neural networks of depth L = d with univariate input
and WV (z) = wWa. If ¢(-) = 1d(-), fo is a narrow
linear network. Given independent and identically dis-
tributed (i.i.d.) data {(x;,y;)}?; and model assumption
yi ~ N(fo(xi),0?), the Maximum Likelihood solution
6=w=wh,...
defined by

w={w:[] ) = O zd) Y s = B}

It is straightforward to see that this network admits a scaling
symmetry, as we can multiply any of the w® by a factor
¢ € RT and divide another &® [ # [, by ¢, which will
still be a maximizer of p(y|x, w). By introducing weight
decay, we can reduce this scaling symmetry to a sign-flip

, M) of arg ming, p(y|x, w) is a set

— 2L71

symmetry with only |W/| possible solutions (or 2

if L is even and sgn(3) = 1), admitting
Wpen = {w: wl) = +B8YL A ], = sen(A)}. (1)
This is because the two optimization problems
Wpen 1= arg min —log p(y[x, w) + ¢[wlz ()

Bpen = arg;nin— logp(y|x, 8) + ,(/)L|B‘2/L 3)

for regularization parameter ¢) € R™ can be shown to have
the same minima (see, e.g. Kolb et al., 2025). Note that
as ||w||% will increase linearly with L, the optimization
problem requires a smaller amount of regularization (or
weight decay) v for increasing L.

The Effect on ABI Using MFVI with a factorized Gaus-
sian ¢(w[¢) = ]y N (w®|u;, 0?) as an example, the
KL divergence KIL(¢(w)||p(w|x,¥)) is given by

Sieillog(r2/o?) = 1+ (o} + ) /772
Assuming 07 = 0% = 72, we see a similar result as in the
case of Equations (2) and (3): When keeping 72 and n fixed
and assuming a constant expected likelihood term while
increasing L, the KL divergence in the ELBO increases
with Y, 4 /(272). Let v := HlL:1 ;. Using the AM-GM
inequality, we know that 37, 47 > L - lv|?/L, where
the right-hand side corresponds to the problem’s minimum
norm solution /i; = |v|'/? VI € [L]. This means that the
optimization is discouraged from choosing any y; different
from |v|'/L as there would otherwise always be a smaller
KL divergence for the same functional output fg. This
has two consequences: 1) The individual solutions ji; will
converge to 0 as L increases and 2) if not adapted with
L, the prior will become more and more influential in the
objective via the KL divergence. Both observations assume
the (expected) likelihood to remain constant or at least not
to grow with L. In a simple model like in this section, this
seems to be a reasonable assumption.

Sampling-based Inference While normally distributed
priors can be shown to have a certain mathematical equiva-
lence to Lo-penalties and weight decay, SAI does not seek
to find a surrogate posterior with strong assumptions that
best match the true posterior; rather, it aims to approximate
the true posterior without imposing restrictive assumptions.
The setting is therefore different from the previous scenar-
ios. Now assume that for increasing network size d, the
likelihood does not increase—an assumption that can be
well justified in the univariate network above since it does
not increase in capacity with more layers L. Then, the
prior influence on the posterior will become more and more
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dominant for increasing L. This is because the likelihood is
bounded while the log-prior p(0) o 72 Z?Zl 67 increases
linearly (since d~* log p(@) converges to 1 almost surely by
the strong law of large numbers) and hence any non-zero

value for 5 becomes exponentially suppressed.

This, in turn, suggests that the posterior could potentially
even become simpler in structure in higher dimensions when
maintaining the model performance. Intuitively, a larger
network will have more flexibility and thereby also more
freedom to adhere to the prior distribution.

2.2. Increasing Width

Moving to a one-hidden-layer network with d; > 1 units,
it is well-known that fg converges to a Gaussian process
for dy — oo. However, this is only the case if the prior
is adjusted for the number of parameters (see, e.g., Neal,
2012). In a BNN setting, it is, however, common practice
not to increase the prior variance for different model sizes
and use standard normal or Laplace priors independent of
the network size (Fortuin, 2022; Sommer et al., 2024). This
again induces more regularization toward zero compared
to approaches that adapt the variance with parameter size.
At the same time, the flexibility of the network increases,
allowing the sampler to more easily adhere to the prior.

Analogous to the univariate narrow network, there is a form
of exchangeability of all but the first and last weight in deep
and wide linear networks (Ziyin et al., 2024, Theorem 5.4).
Since the capacity of this network also does not grow with L,
we expect a similar behavior as before for all intermediate
layers: A posterior that is increasingly concentrated around
zero, with marginals that progressively resemble the prior.
In contrast to before, the first and last layers’ weights have
a special role being connected to the data, and will thus
be more influenced by the likelihood. We confirm this
hypothesis also empirically in a later experiment, depicted
in Figure 7.

2.3. ReLLU Activation and Biases

In contrast to linear networks, it is much more difficult to
get an intuition of posterior properties when including non-
linearities. To further reaffirm our conjecture, we turn to
two-layer neural networks with ReLU-activation in the hid-
den layer fo(x) = w® ' ¢(Wx +b(1). Such networks
have recently been shown to be “convexifiable” (Mishkin
et al., 2022) and, in a non-Bayesian setting, can be estimated
by iterating over possible activation patterns while solving a
group lasso problem. In Appendix E, we discuss the proper-
ties of this network and the implications of the reformulated
optimization problem in the Bayesian setting.

While not yielding a concave posterior density, we can
show that the density is unimodal in the product of weights

u = W(Q)TW(” (up to permutations), hence even less
sophisticated samplers should be able to navigate this poste-
rior landscape. Hypothesizing that the shape of the posterior
should reflect previously found patterns when the network is
chosen flexible enough, we conduct SAI for a small network
with 8 hidden neurons and a larger, more flexible one with
64 hidden neurons.

Empirically, we find that the uni- and bivariate marginal
densities of u, presented in Figure 8 and Figure 9 in the Ap-
pendix, support our hypothesis regarding the unimodality of
the posterior density of u. Specifically, as the dimensionality
increases, the prior exerts greater influence on the sampler,
causing the highly variable distributions across different
sampling runs (Figure 9, left) to converge and concentrate
around the origin (Figure 9, right).

General ReLLU Networks In the above example, we
found not only u to be unimodal, but the same also holds
for entries in W and wo. This can be explained as follows:
If the first layer’s activations are distributed symmetrically
around zero and d; is large enough, all weights in intermedi-
ate layers should have an equal likelihood of being negative
or positive. This allows the network to be (more) compliant
with the zero mean prior and therefore a similar picture as
in the deep linear network arises for the intermediate layer’s
weights. This in turn requires the biases to regulate the prod-
uct of weights and previous layer activations, which should
paint a clear picture in the biases’ posteriors. Figure 7 con-
firms our conjecture, showing more distinct patterns for the
first layer weights and biases, whereas intermediate layers
tend to reflect the shape of the prior.

3. Non-Identifiabilities

The previous section suggests that high dimensionality, in
particular overparametrization, might potentially even work
in favor of SAI (or in general probabilistic methods). How-
ever, this says little about the effectiveness of traversing
the posterior, and non-identifiabilities de facto still exist
in the model, even in high dimensions. We will illustrate
this for symmetries in the following but also address other
challenges in posterior sampling afterwards.

3.1. Symmetries

While there exists a multitude of different classifications
of symmetries, we focus on countable or discrete and un-
countable symmetries. We refer to Appendix B for their
definitions and related literature.

Examples A typical example of (the cause of) a count-
able symmetry is the interchangeability of neurons within
one layer—a permutation symmetry. By swapping the in-
and outgoing weights of two neurons in the same layer,
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we obtain the same function fg but modified weights
WO WD For a deep linear network fo(x) =
W WEDWO oWk, it is easy to see that ap-
plying such a permutation using a permutation matrix P €
{0,1}9*4 the network with permuted weights fg(x) =
WE o (WEDPTYPWO) ... Wx = fo(x) since
P'P = I; (P is an orthogonal matrix). In contrast to
permutation symmetries, uncountable symmetries such as
(positive) scaling symmetries result in an infinite amount of
equivalent models. This is easy to see, e.g., for the deep lin-
ear network: Ve # 0, fo(x) = W) ... (W=D . 1/0)(c-
WO)...WMx = fa(x). In contrast to permutation sym-
metries, uncountable symmetries are connected in weight
space. This makes it much more likely for methods to tra-
verse the (generalized hyperbolic) manifold created by these
symmetries while not providing any functional diversity.

3.2. Treatment in ABI

When trying to approximate the posterior p(w|X,y) us-
ing an approximate distribution ¢(w|¢) with parameters
¢ € R* 2z € N, a common approach is the minimiza-
tion of the (reverse) Kullback-Leibler divergence (KLD):
KL(g(w|¢)|lp(w|X,y)). Being mode-seeking by nature
and relying on stochastic optimization, such an ABI ap-
proach therefore ideally solves the problem of permuta-
tions and other countable symmetries implicitly by focusing
only on one of multiple modes. In general, approaches
that assume a unimodal distribution around a learned pos-
terior mean or the maximum a-posteriori (MAP) estimator
6 (such as Laplace approximation) will not be affected by
axis-mirrored solutions—at least when considering the un-
certainty of a single model optimization run. In contrast
to variational inference (VI) approaches, deep ensembles
(DE) can be potentially harmed in their expressiveness by
running into permuted but functionally identical solutions.

As can be seen in Figure 2, ABI methods are also often
“immune” by nature to uncountable symmetries such as
scaling symmetries as their local approximation around an
optimized solution 6 and stochastic optimization will again
focus on one specific solution. In addition, commonly used
ABI methods can be shown to be scale-invariant. For exam-
ple, applying a non-zero prior with slightly different aJQ- for
every parameter ¢; in a mean-field VI (MFVI, Blei et al.,
2017) approach can be shown to remove permutation and
scaling symmetries with probability 1 (see Appendix B.1)

While ABI will not always be “immune” as pointed out
by Gelberg et al. (2024) and apparent in Figure 2, there
is explicit treatment of symmetries for these optimization-
based methods. Examples include bias sorting (Pourzanjani
et al., 2017) or the above-described adjustment to the prior
distribution, which modifies the optimization objective as
proposed by (Ziyin et al., 2025). These approaches enhance
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Figure 2. Posterior of the network fo(x) = w2 (wix) as charac-
terized by SAI (using multiple chains of the NUTS sampler) and
ABI using mean-field VI with different prior variances 72. Ac-
cording to Equation (3), the minimum norm solution is given by
wir1wo = 1‘

neuron identifiability and (theoretically) remove permuta-
tion symmetries.

3.3. Treatment in SAI

Unlike ABI methods, SAI approaches do not rely on local
approximation assumptions, making them more susceptible
to symmetries. For example, a sampler might oscillate
between modes created by parameter permutations, wasting
computational resources on transitions rather than exploring
local regions around modes. This raises the question of
whether a sampler will remain within a symmetry-induced
manifold at any given time.

Theoretical Considerations While priors in SAI may
initially appear to guide solutions toward minimum norm
configurations, as seen in Laurent et al. (2024), this holds
only for simple networks with two weights. Counterexam-
ples emerge in networks with three or more weights (Ap-
pendix B.2). Yet, SAI possesses “built-in protective mech-
anisms” similar to ABI that prevent it from being trapped
in symmetries. First, because SAI proposes new states
probabilistically, it avoids being locked between countable
symmetries (Figure 2) and eventually selects a direction by
chance. Second, uncountable symmetries can be broken by
introducing slight variations in regularization across weight
dimensions, akin to using a non-constant diagonal mass ma-
trix in Hamiltonian Monte Carlo (Ziyin et al., 2025). More
generally, since the sampler operates probabilistically, it
almost surely does not remain in symmetry manifolds, as
these have a probability measure of zero.

Practical Considerations The previous paragraph ex-
plains why samplers might not exactly follow symmetry
manifolds, leaving open the question of whether their ex-
istence impairs sampling performance. While no definite
answer exists and pathological examples or challenging ap-
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Figure 3. Cumulative LPPD for individual and ensembled sampler
chains, initialized from functionally equivalent permuted warm-
start parameters as well as functionally diverse, regular warm-start
parameters.

plications can always be found', we provide arguments and
empirical evidence in the following section showing that
SAI is not notably affected by symmetries or other non-
identifiabilities in practice.

3.4. Regions of (Almost) Zero Probability

Non-identifiability includes regions where fg learns nothing,
resulting in (near) zero likelihood with nonzero probability
mass. This can occur, for example, when a ReLLU activation
remains inactive across all data points. In models with bot-
tlenecks or when this affects the output neuron, fg becomes
non-identifiable. Once a sampler enters such a region, it
cannot move, similar to regions of extremely low probability.
To mitigate this, samplers can be warm-started using solu-
tions from a pre-optimized non-Bayesian network, which
has proven highly effective (Sommer et al., 2024).

4. Sampling in Practice

BNN posteriors are highly complex. In Section 2, we ar-
gue that in overparameterized models, the prior can domi-
nate, shaping the posterior. This assumes a well-performing
model. Likewise, Section 3.4 advocates warm-starting
the sampling process. To navigate posterior complexi-
ties, we identify three key strategies: 1) warm-starts, 2)
multiple chains, and 3) focusing on localized exploration.
The following sections detail their role in addressing non-
identifiabilities and other challenges.

4.1. Countable Symmetries

To avoid countable symmetries like permutations, SAI can
be designed to prioritize local exploitation, minimizing
jumps between symmetrical solutions. Since permuted so-
lutions reside in different orthants, transitioning between
modes requires crossing the origin, which is unlikely within

IThis is also the reason for the great variety of samplers, each
trying to solve a differently structured problem.

,5\0
o) 12
10
8

Posterior Samples
Squared Wasserstein Distance

Figure 4. Pairwise Squared Wasserstein-2 distances of the predic-
tive distribution induced by each sample from a warm-start ini-
tialized sampler chain on the airfoil dataset. Non-significant
distances are depicted in orange.

a limited computational budget. Even if two chains explore
the same mode in different orthants, SAI remains largely
unaffected. Evidence is provided in Figure 3, showing that
sampling will still provide functionally diverse models (mea-
sured using the log posterior predictive density, LPPD for
short) when starting 11 chains from permutations of a 12th
chain. This experiment suggests a cost-effective alterna-
tive to Bayesian Deep Ensembling (BDE) (e.g., Sommer
et al., 2025), requiring only a single pre-trained model while
achieving comparable ensemble performance.

4.2. Uncountable Symmetries

To analyze how trajectories of a sampler behave over time
and whether the resulting samples show signs of functional
equivalence, we analyze the predictive distribution for each
sample s € [S]. In two different iterations of the sam-
pler, we obtain weight sets (%), 8(°) which yield predictive
distributions p(y|X, 0)) and p(y|X, 0®)). Using a Gaus-
sian assumption for the data distribution, i.e., y|X,0 ~
N (s, diag(o?)), the two weight vectors yield two distribu-
tions N (pu*), diag((0)()) and N(p'®), diag((a*)))),
respectively. In order to analyze the distance between sam-
ples in one chain, we compute the Wasserstein-2 distance
between these two distributions. Large distances indicate
that the sampler is able to sample a diverse set of models.
Since both distributions are normal, we know that the differ-
ence of samples y(*) — y(*) generated by these distributions
will also be normally distributed with mean p(®) — p®) and
variance (2)®) +(62)(®) —2p®a®) ©(¥). This way, we
can evaluate whether the obtained Wasserstein-2 distances
correspond to significant changes in the distribution by com-
puting Z-statistics for every pair of samples 8(*), 8(5) We
compare these against the 97.5% standard normal quantile
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to test (on a 5%-level) the null hypothesis that the two dis-
tributions are functionally equivalent (see Appendix D.5 for
details). The results are depicted in Figure 4, suggesting
that most obtained samples are indeed functionally diverse.

4.3. Limiting Distribution and Local Approximations

Beyond near-zero probability regions and symmetry mani-
folds, Sommer et al. (2024) report disconnected modes in
the SAI posterior. However, it remains unclear whether
these arise intrinsically or from insufficient sampling. To
investigate, we extend their analysis to 10 000 chains with
1000 samples each, compared to their original 12 chains.
As shown in Figure 1, the apparent disconnectedness in the
margins is primarily a result of limited chains as well as the
local dynamics of the sampler rather than an intrinsic prop-
erty of the posterior. Further analysis of bivariate densities
of the kernel and bias weights across layers (Figure 7 in the
Appendix) reveals no evidence of marginally disconnected
modes, while intermediate layers resemble the (shifted) pri-
ors. In particular, the kernel parameters seem to follow a
multivariate zero-centered Gaussian-like distribution and
first/last layers exhibit rather distinct roles as hypothesized
in Section 2. The results also confirm our conjecture that
the shifted margins of the biases align with ReLU activa-
tions centering hidden states. Consult Appendix D.1 for an
extended discussion.

Local Exploration is Just Fine Building on our previous
discussion, the effectiveness of SAI is questionable given its
need for extensive sampling to characterize large posterior
regions. However, a local approximation using short-chain
ensembles proves sufficient for UQ, as shown in Figure 5
and our benchmark. Results with the MILE sampler (Som-
mer et al., 2025) indicate that UQ performance quickly
saturates with fewer chains, which are easily parallelized on
modern hardware. Practically, localization depends on the
number of samples per chain, assuming an optimal step size
for retaining a stable likelihood. Prioritizing local explo-
ration mitigates non-identifiability issues (e.g., permutations
and sign-flips) while improving computational efficiency.

5. Benchmark

Finally, we run a benchmark to demonstrate that SAI with
previous considerations is a viable alternative to ABI. This
presents further evidence that sampling—if done correctly—
works well in practice and is not hindered by the intricacies
of the posterior landscape. For this purpose, we compare
two prominent ABI methods to SAI using different sampling
strategies across a range of regression tasks.

We report results in Table 2 in the Appendix using the
root mean squared error (RMSE) and the LPPD for UQ.
In these settings, Laplace achieves good predictive perfor-
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Figure 5. Cumulative LPPD over the number of chains (standard
deviation across 5 random chain orderings).

mance while ranking last in terms of LPPD. In contrast,
MFVI provides improved uncertainty quantification but sac-
rifices predictive accuracy. DEs with 10 members demon-
strate robust performance in both metrics. BDEs achieve the
highest performance among all methods, even with a single
chain and show improved predictive accuracy and uncer-
tainty quantification when ensembling 10 chains. For further
details and an extended discussion, see Appendix D.7.

6. Discussion, Limitations and Future
Research

We analyzed the approximate posterior induced by sampling-
based inference for BNNs, focusing on symmetries, over-
parameterization, and prior influences. Our theoretical and
empirical findings suggest a well-behaved posterior, sup-
porting SAI as a viable alternative to ABI. Our approach
assumes initialization from multiple well-performing neural
networks akin to a DE. DEs have been shown not to yield
a proper characterization of the posterior in general but to
provide a mixture of distributions related to their initializa-
tion value and nearby optima instead (Wild et al., 2024).
While BDEs theoretically converge to the true posterior
with infinite samples, practical sampling is biased toward
reachable regions when starting from DE solutions. Hence,
while our approach may not yield exact posterior samples,
it effectively captures the epistemic uncertainty relevant to
practitioners: Given a reasonably well-performing neural
network, how much parameter uncertainty remains in the
model? Put differently, a practitioner would seldom be inter-
ested in the subspace of (useless) models where the posterior
is (almost) zero.

Consistent with the literature on SAI, we employed full
batch sampling. While stochastic samplers exist (Chen
et al., 2014; Zhang et al., 2020), our discussion of the high-
dimensional, non-identifiable BNN setting is not related to
the choice of a stochastic SAI approach. Added stochas-
ticity may mitigate entrapment in symmetrical solutions,
but further research is needed to improve performance and
reduce hyperparameter sensitivity (Sommer et al., 2025).
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Impact Statement

This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related Work and Open Questions

Characterizing epistemic uncertainty in machine learning is one of the main goals of probabilistic inference (Hiillermeier &
Waegeman, 2021). For neural networks, a Bayesian approach has been identified as a promising direction early on in the
research community (Tishby & Solla, 1989; MacKay, 1992). While some approaches such as Monte Carlo dropout (Gal &
Ghahramani, 2016) and deep ensembles (Lakshminarayanan et al., 2017) have been shown to relate to the idea of BNNSs,
most research revolves around approximate Bayesian methods. Seminal work includes the introduction of probabilistic
backpropagation approaches (Blundell et al., 2015; Hernandez-Lobato & Adams, 2015), variational inference (see, e.g., Blei
et al., 2017), Laplace approximation (see, e.g., Ritter et al., 2018; Daxberger et al., 2021a), as well as local approximations
such as linearization (Immer et al., 2021), subnetwork inference (Daxberger et al., 2021b), or subspace inference (Izmailov
et al., 2020; Dold et al., 2024).

A.l. Related Work

Sampling-Based Inference An alternative to approximate approaches is sampling-based inference (SAI), usually relying
on Markov Chain Monte Carlo (MCMC) methods. SAI is often considered a gold standard (see, e.g., Farquhar et al., 2020)
as sampling approaches can be designed to sample from the true posterior (in the limit). While successful for smaller
models or simpler hypotheses, SAI remains a challenge in high dimensions and is often considered impractical for BNNs
(Papamarkou et al., 2022). With the ulterior goal to characterize the posterior landscape of BNNs (Izmailov et al., 2021),
recent approaches have made progress to allow for better mixing of Markov chains (Sen et al., 2024), devising strategies
for treatment of symmetries (Wiese et al., 2023; Laurent et al., 2024), and scaling samplers for larger datasets (Chen et al.,
2014; Zhang et al., 2020) as well as parameter spaces (Sommer et al., 2024; 2025).

Challenges in Posterior Characterization The challenges in characterizing the posterior of BNNs using SAI are related
to several factors. Two well-known reasons are the high dimensionality and multimodality of the parameter space. In
addition, overparametrization of the neural network fg : X — ) causes non-identifiability w.r.t. its parameters 8 € ® C R<,
More specifically, for data D = {(y;,x;)}7, with (y;,x;) € X x ), non-identifiability usually refers to parameter
sets 0 in the weight space © of the neural network that lead to the same functional mapping (Hecht-Nielsen, 1990), i.e.,
30,0 € ©,0 £ 0 : fo(x) = f5(x)Vx € X.

Symmetries One of the most prominently discussed non-identifiabilities is symmetry (Villar et al., 2024). Showing
functional equivalence of networks when parameters admit an equivalence relationship, i.e., 8 ~ 8 = fo(x) = f5(x) is
more straightforward (Pourzanjani et al., 2017; Petzka et al., 2020; Phuong & Lampert, 2020; Bona-Pellissier et al., 2023),
while deriving parameter equivalence from equivalent outputs, i.e., fo(x) = f5(x) = 6 ~ 6 requires stronger and often
impractical assumptions (Rolnick & Kording, 2020; Phuong & Lampert, 2020; Bona-Pellissier et al., 2023). Recent work
has also identified symmetries as the origin of low-capacity saddle points (Li et al., 2019; Ziyin et al., 2023). This suggests
improvements in model performance and/or optimization when removing symmetries from the network (as, e.g., suggested
in Ziyin et al., 2025).

Treating Symmetries Proposals to deal with symmetries include bias sorting (Pourzanjani et al., 2017) or skip connections
(Kurle et al., 2021) to remove permutation invariances, using invariant networks (Cohen & Welling, 2016; Zaheer et al.,
2017; Hartford et al., 2018; Maron et al., 2019; Navon et al., 2023), removing scaling symmetries via regularization (Laurent
et al., 2024), or computing a model average over symmetry orbits (Gelberg et al., 2024). While symmetries are also known
to slow down sampling in SAI (Nalisnick, 2018; Papamarkou et al., 2022; Wiese et al., 2023), only a few papers have studied
symmetries in SAT .

A.2. Open Research Questions

It remains an open research question to what extent 1) the high-dimensionality and overparametrization of models change
the BNN posterior obtained through SAI methods and how this, in turn, affects derived uncertainty quantification (UQ)
statements. Overparamatrization also induces non-identifiabilities, making it unclear 2) whether SAI is even able to navigate
such complex landscapes.

10



Workshop at the 7th Symposium on Advances in Approximate Bayesian Inference (non-archival), 2025

B. Further Discussion on Neural Network Symmetries

Following Rolnick & Kording (2020); Phuong & Lampert (2020); Bona-Pellissier et al. (2023); Laurent et al. (2024), we
introduce the most commonly discussed symmetries in the literature: permutation (discrete), sign-flip (discrete), and scaling
(uncountable) symmetries (see Definitions B.1, B.3 and B.2).

Possibly one if not the most prominently discussed symmetry in neural networks is the permutation symmetry.

Definition B.1 (Permutation Symmetry). Let 7(i),i € [d] be a permutation of the elements in [d], and P € {0, 1}4*4
with elements {d,(;) ;}i,je[a) and Kronecker delta function 5. We say a network fg contains permutation symmetries if

JP 7& 1;: fg(X) = fpg(X) Vx € X.

Trivially, for any factorized isotropic prior choice the prior is invariant w.r.t. to permutation symmetries. The challenge with
BNNs which previous symmetry removal approaches targeting the breaking of this invariance have not addressed is the
random nature of the weights and biases. Due to their randomness, the approach by (Pourzanjani et al., 2017) to sort the
biases is likely ill-defined as the distributions of the parameters might still overlap, and hence a change of order in the biases
might occur even without an actual neuron permutation taking place.

Further, permutation symmetries can be seen as a special case of a scaling symmetry (cf. Figure 2), defined as follows:

Definition B.2 (Scaling Symmetry). Let A\; € R\{0},j € [d] and A := diag(\1, ..., Aq). We say a network fg contains
scaling symmetries if AN # I : fo(x) = fae(x)Vx € X. We further call the symmetry a positive scaling symmetry if it
holds \; > 0Vj € [d].

While permutation symmetries can potentially be connected via scaling symmetry hyperbolas, this is usually not the case for
sign-flip symmetries as this would imply traversing through the origin.

Definition B.3 (Sign-flip Symmetry). Let ¥ = diag(s) with ¢ € {—1,1}%. We say a network fg contains sign-flip
symmetries if 3% # I : fo(x) = fso(x)Vx € X.

Sign-flip symmetries are special in that some activation functions are invariant w.r.t. joint sign-flips in adjacent layers (such
as tanh), while others like the ReL.U function do not admit sign-flips. Thus in this case the non-invariance of the likelihood
of ReLU networks w.r.t. single sign-flips reduces the amount of posterior symmetries. The usually deployed symmetric
zero-centered priors do not help in the reduction of symmetries in this setting. We can easily formalize this prior invariance
in the following Proposition.

Proposition B.4. Symmetric zero-centered factorized priors are invariant w.r.t. sign-flips.

Proof. We have
p(26) = [[o(,6) 2 T]00)) = p(6)

where () is due to the symmetry and zero-centeredness of the priors. O

Notably, the likelihood of ReLU although non-invariant w.r.t. a single sign-flip can be invariant with respect to multiple
sign-flips. In the context of ReLU networks one can think of sign-flip matrix 3 as encoding the activation of different paths
through the network. So if there are functionally redundant paths through the network one can find a corresponding matrix
) to create a symmetric parameter set.

B.1. Scaling Symmetries for MFVI

When performing mean-field variational inference with a diagonal Gaussian, it is common to encounter symmetrical solutions
that can slow or hinder convergence, such as the low-capacity fix point depicted in Figure 2 on the right. Introducing small,
fixed offsets to the mean vector and the variance parameters of the prior as proposed in Ziyin et al. (2025) helps break these
symmetries by slightly shifting each dimension away from identical configurations and it rescales the regularization in
different directions. As a result, the optimization is nudged toward distinct, stable modes rather than remaining stuck in
symmetry axes, thereby improving the quality of the final variational approximation. This is formally demonstrated in the
following analysis.

Proposition B.5. Using an adjusted prior p(8) = N(0;00,X) with 8y ~ N(0,00) and 1/%;; ~U(1 —¢,1 + €) witha
small € breaks scaling and permutation symmetries with probability 1 and ensures better convergence of the MFVI algorithm.
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Similar to (Ziyin et al., 2025), optimizing the ELBO with the adjusted prior from above results in:

ELBO = Eyg)[logp(y | 0)] — Dxi(q(0) || p(9))
=Eq(g)[logp(y | 8) —logq(6) + N(6; 60, X)) @
= Eqo)[logp(y | 8) —logq(8) — (6 — 60)"=71(0 — 6,) + constant]

This formulation is consistent with the “advanced removal” loss function from the paper by Ziyin et al. (2025) where
the term (6 — 0y)TX~1(0 — ) encourages the solution to deviate from symmetric configurations by regularizing the
difference from the shifted prior.

B.2. Scaling Symmetries for SAI

In this analysis of scaling symmetries for SAI, we focus on parameters 8 € ® with strictly log-concave factorized (SLCF;
Definition B.7) priors p € P defined on ® = R?, which are symmetric around mode(p) = 0. Using strictly log-concave
priors allows us to exclude degenerated cases such as piecewise zero or constant priors, which make general statements
about symmetries (even) less tractable. The symmetry around zero and factorization is arguably one of the most common
choices in Bayesian deep learning, but also encodes prior knowledge obtained in non-Bayesian NN literature, where weight
initialization is typically set to be symmetric around zero without interdependence between the initialization of different
weights. The set of SLCF priors P includes many common prior distributions used in the literature (Fortuin, 2022) such as
the standard Gaussian, Beta, or Laplace prior. For completeness sake, we formalize the definition of SLCF priors and review
the important properties.

Definition B.6 (Log-concavity). A continuous random variable 7T is log-concavely distributed on ©, a convex subset of R”,
if, for any 0;,0;, € © and any A € [0, 1],
p(AG; + (1= N)8i) = [p(6)]*[p(6:)]' . Q)

Definition B.7 (Strict log-concave distribution). A density p of a distribution is said to be strictly log-concave (SLC), if
Vo<l
log p(A0; + (1 — N)0;) > Alogp(6;) + (1 — A) log p(¥;). (©6)

Strict log-concavity implies that the density p decreases more rapidly than a linear combination of its values.

It is straightforward to see that this property can be extended to k& dimensions when the density factorizes:

Proposition B.8 (Product of independent strictly log-concave distributions). The product of independent strictly log-concave
univariate distributions is again strictly log-concave.

Proof. Assume p(61),p(62) are SLC. Then it holds for p(61, 63):

log p(61,02) = log(p(61) - p(B2)) = log p(61) + log p(62). @)

Since log p(#;) and log p(62) are concave functions, their sum is also concave (since the sum of concave functions is
concave), and hence p(61, 62) is log-concave. O

Corollary B.9 (SLCF priors). SLC priors that factorize, i.e., where p(61, ... ,0,) = le p(0;), are again SLC.
Proof. This follows directly from Proposition B.8. O

Pairwise analysis Often, scaling symmetries in ReLU networks are studied using an adjacent pair of weights and
without the bias term like w(? ¢(wMx). The positive symmetric scaling - excluding permutations - then corresponds
to w® == wWeand w® := w® /c with ¢ € R\ {1, /) y- For this simple pairwise setting, one can show the
non-invariance of the posterior assuming commonly used priors i.e. that the posterior does not have the defined scaling
symmetries. This stems from the fact that the likelihood component is obviously equivalent but the prior must be different
if one assumes a strictly log-concave prior like a Gaussian or Laplace which is factorized (SLCF). We show this in the
following in Proposition B.10 and would like to emphasize that there is a striking similarity to min-norm solution analyses.
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Proposition B.10. SLCF priors with zero mean are not pairwise invariant w.r.t. positive scaling when excluding parameter
permutation.

Proof. We must prove that
p(61) - p(62) # p(bic) - p(62/c) (®)
fore>0,c ¢ {1, z—f}, which constitutes the point of parameter permutation that we explicitly exclude. W.l.o.g., assume

05 > 0,. We differentiate between two cases, 1 < ¢ < Z—f andc € (0,1)U (%7 00).

Case l: Letl < c< Z—f. Instead of varying ¢ € (1, Z—f), we can also use a convex combination of #; and 6o, i.e., A € (0,1)
S.t.

p(01c) - p(B2/c) = p(A1 + (1 = A)f2) - p((1 — A)01 + Aba). )
Using Definition B.7, we have
log(p(61c) - p(02/c)) = log(p(A01 + (1 = X)f2) - p((L — A1 + A2))
> Alogp(01) + (1 — A) log p(62) + Alog p(62) + (1 — A) log p(61) (10)
= logp(61) + log p(62) = log(p(61)p(02))
and therefore the inequality between scaled priors for 1 < ¢ < Z—f.
Case2: Letc € (0,1) U (z—f, 00). Define the function

w(c) =logp(bic) + log p(f2/c) —log p(61) — log p(62).

If we can show that Bc > 0, ¢ ¢ {1, g—f}, s.t., w(c) = 0, then Eq. 8 is true. For ¢ € (1, Z—f) this was already shown in Case 1.
We further know that w(1) = 0 and w(z—f) = 0. Further, we have

P00 (0a)c) 0,
— O — — =L 72 11
O = 5o0 " pa)e) @ (an
N—— ———
éV(elc) éV(OQ/c)

Since p is strictly log-concave, log p is strictly concave, and V(z) = dlog p(x)/0x is larger zero for z < 0 = argmax log p
and smaller zero for z > 0 and moreover strictly monotonically decreasing. Therefore

a) If 6, = 0, we have p(62) = p(f2/c), which cannot hold for ¢ # 1 since p is strictly log-concave.

b) If 0 < 01 < B2, V(61¢) > V(02¢) and |V (0:1¢)| < |V (62¢)] as it is the derivative of a strictly concave function with 0
origin i.e. Vz > 0 it holds that V(z) < 0 and V(-) strictly monotonically decreasing. Furthermore, for the case that
¢ € (0,1) we have

fic< 01 <0y < 92671 < 92872. (12)

With these insights at hand we can show that for ¢ € (0, 1) Eq. 11 must always be positive:

0

0
w’(c) == V(ch) . 91 - V(Gg/c) . 672 = — |V(910)‘ . \9; +|V(92/C)| . C% > 0. (13)

<|V(02¢)| <B2c72
Since @’ (1) is already positive by the same argument and ww(1) = 0, we know that w(c) < 0Ve € (0, 1).

0 . ~ A 6 Oy /~ - .s . ~ . 2]
For c > 5 by using ¢ = ﬁ/c &= ﬁ/c, i.e., rewriting c as a fraction ¢ < 1 of its lower bound 3* Eq. 11 can be
rewritten as

_P0:/8) ,  p(6:0) 61

== e " ven 6 i
= % [V(02/€) - 0, — V(61€) - 6, . (15)
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Using f3 > 6% we can follow the arguments of Eq. 13 to obtain

0
@' (c) = é [V(62/¢) - 0 — V(6:2) - 0:%] . (16)
4
:é —|V(02/8)|- 0s +|V(0:8)|-6:&%| < 0. (17)

>|V(6,8)] >0182

<0

Now a similar argument as before can be used since ww(f2/601) = 0 and w’(02/61) < 0forall ¢ > 65/0; < ¢ < 1.
This implies that w’(¢) < 0Ve > 62/6,.

c) If §; < 02 < 0, we have the same result as in b), as roles flip, in particular V(61¢) > V(6zc) still holds but V(-) is
strictly positive valued and the negative parameters 61 and 65 would be influencing the argument on o’ (+) in the same
way as the V(-) terms in b).

d) If§; < 0 < 65 and w.l.o.g. assume 6 > |6 |, now the same derivation as in b) is applicable. For the case ¢ € (0, 1)
we have again a strictly positive @’(c) as |63| > |61| with 6; having negative and 6, having positive sign, as well as
positive V(61 ¢) and negative V(62 /c), for which it holds that |V (61¢)| < |[V(62/c¢)|. Analogously one can show the
case of c € (g—f, o0) leveraging the reparameterization of ¢ proposed in b).

O

General ReLU networks Sadly, this pairwise result does not apply to general ReLU networks. In the following,
we provide a counterexample of the invariance of the prior to positive symmetric scaling. The example is the simple

ReLU net from above amended by a bias term: w®) ¢(w™Mz 4 b(1)). This implies b(1) := b ¢ for the scaling to be
symmetric. For this case, one can construct invariant counterexamples by choosing the classically used A (0, 1) prior for
each of the three weights. One then just has to show that 3¢ € R\ 11 1) /™) (2 5} and admissible parameters s.t.
p(OM)p(wM)p(w@) = p(bM c)p(w™®c)p(w® /c) holds. We can reframe this as the setting where for some fixed weights
we have to show that there exist positive roots of the function (c) = p(b™)p(w™)p(w®) — p(b™ )p(w™e)p(w® /c)
that are not {1, w® / w® w®) / b(l)} i.e. permutations or the trivial root one. Therefore we can simply fix the parameters to
some values w(?) = 0.5, w(? = 0.8, b)) = 0.9 and consequently have to find roots that are not in {1,1.6,0.8/0.9 ~ 0.88}.
Calculating the roots of this function & leads to a single non-trivial positive root at ~ 0.77 which is visualized in Figure 6.
This concludes the counterexample and shows that there still exist symmetries in simple ReLU networks with biases that are
not completely removed by imposing SLCF priors.

0.002

0.001

h(c)

0.000

0.7 0.8 0.9 1.0

Figure 6. Visualization of the function h(c) for w) = 0.5, w® = 0.8, b*) = 0.9 and standard Normal priors. The non-trivial root is
highlighted in red.

Also, we highlight the assumption about the exclusion of permutations realized via scaling in Proposition B.10 - in particular
across layers. The following example for invariance in the prior holds even without adding biases to the model. We do this
using weights in distant layers that relate as w( ™1 := w(®) x ¢ and w® := w?) /c with | > 2. Then one trivially gets an
invariant factorized prior if w(") and w(?) are scaled with ¢ and w® and w1 with ¢~
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After all, it is evident that the factorization of the prior gives rise to many invariances especially with a growing number of
factors. Thus, we show by counterexample on a simple ReLU network with biases that for realistic ReLU networks there are
irreducible scaling symmetries within the posterior induced by an invariance of both likelihood and the classic choice of
SLCEF priors. Nevertheless, it is clear that SLCF priors reduce the volume of such invariant symmetric manifolds e.g. in
Proposition B.10.

Remark B.11. Proposition B.10 sheds new (positive) light on weight priors that have been discussed controversially by
advocates of functional priors in Bayesian deep learning (see, e.g., Tran et al., 2022). Using SLCF helps to reduce scaling
symmetries and harmonizes well in combination with ReL.U networks that preclude sign-flips.

C. Experimental Setup

Software Our software is implemented in Python and mainly relies on the jax (Bradbury et al.,, 2018) and
BlackJAX (Cabezas et al., 2024) libraries. Our code is available at https://github.com/EmanuelSommer/
sampled-approx—-posteriors.

Computing Environment The experiments were conducted on two NVIDIA RTX A6000 GPUs and an AMD Ryzen™
Threadripper™ PRO 5000WX/3000WX CPU with 64 cores. For most experiments, 10 chains were sampled in parallel
on the CPU, enabling efficient parallelization and allowing multiple experiments to run concurrently. For larger-scale
experiments involving thousands of chains, 50 chains were sampled in parallel to maximize resource utilization.

Datasets Table | summarizes the benchmark datasets utilized in our experiments. If not specified otherwise, we use a 70%

train, 10% validation and 20% test split as well as a fully connected model architecture with 3 hidden layers, 16 neurons per
layer.

Table 1. Benchmark regression datasets overview.

Dataset Size Features Source

Airfoil 1503 5 Dua & Graff (2017)
Bikesharing 17379 13 Fanaee-T (2013)
Concrete 1030 8  Yeh (1998)

Energy 768 8  Tsanas & Xifara (2012)

Performance Evaluation To quantify the quality of the posterior predictive approximation and thus the UQ capabilities
of the models we use the log posterior predictive density (LPPD; Gelman et al., 2014; Wiese et al., 2023; Sommer et al.,
2025) over a test set Dy, defined as

K
LPPD — Z log (Kls Z Zp (y*|9(k75)(x*)>> . (18)
(y*,@*) EDeest

n
test k=1 s=1

Here, K denotes the number of chains, S the number of samples per chain, and 8(*:*) the parameters from the s-th sample
of the k-th chain. Intuitively, the LPPD quantifies how well the predictive distribution aligns with the observed labels, with
higher values indicating higher density coverage i.e. improved UQ performance.

In addition, we employ the root mean squared error (RMSE) for regression tasks to check for the accuracy of point
predictions.

D. Experimental Details and Further Analyses
D.1. Exploring the Limits of BDEs

We extend the limited analysis of Sommer et al. (2024) which only considers at 12 chains to 10k chains of 1k samples each
and also use a more than twice as large fully-connected neural network (4 hidden layers of 16 neurons each) to perform
distributional regression. For this, we use the recently proposed MILE approach (Sommer et al., 2025) and configure it
exactly as suggested by the authors. Due to the immense computational load of sampling this amount of chains and also
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Figure 7. Bivariate empirical marginal posterior densities of a 4-hidden layer BNN fitted on UCI benchmark data (10M posterior samples
obtained from 10k independent chains). The rows and columns show representative densities of randomly selected input, hidden, and
output weights.

evaluating the posterior samples (compressed the samples roughly amount to 100GB for a single experiment) we focus on
one benchmark dataset, namely, airfoil. We have also conducted a slightly smaller experiment for the bikesharing
dataset with 1k instead of 10k chains, which confirms the findings of the larger experiment. In our analysis, we focus on two
major aspects. First, we analyze how the performance of the model develops when adding chains to the Bayesian Model
Average (BMA). Second, in the spirit of Sommer et al. (2024) we take a closer look at bivariate margins of the empirical
posterior derived from SAIL

The cumulative performance, which we—focusing on UQ quality—measure with the LPPD, of adding chains to the BMA
obviously depends on the order in which chains are added. Thus, we consider 5 different orderings and report means and
standard deviations of the cumulative LPPD over chains in Figure 5. The result suggests that with even a rather small amount
of chains the performance saturates quite fast, but slowly increases further until exhibiting a very strong performance for
10k chains. Parallelizing 10-20 chains on modern hardware is very easy and comes with no considerable cost overhead over
single-chain sampling. This also has very positive implications on memory requirements and inference time, rendering the
approach practically feasible.

Both in Figure 1 and 7 we show representative marginal plots of the above-described experiment on the airfoil dataset.
Thereby we only focus on within-layer margins. For completeness, we will also include a whole grid of plots that features
within and across layer margins in the code repository, as a large amount of high-resolution densities hinders a smooth
rendering of the manuscript. Before starting the interpretation of the visualizations one should stress that the marginal view is
a limited perspective on the high-dimensional posterior of interest. From 1, which displays the empirical marginal posterior
approximation for 10 and for 10k chains for two intermediate layer weights respectively, one can tell that the reported
marginal mode disconnectedness in Sommer et al. (2024) is merely a result of the limited amount of sampling performed.
While the more localized approximation of 10 chains does not cover the margins as continuously as the 10k chains, we
know from Figure 5 that the exploration already supports good performance. Figure 7 provides a more nuanced view of how
the different weights in the network act in their margins. One can observe two distinct patterns, namely differences based on
the layer and the role (bias or kernel) of the weight. The distinct pattern where weights in the input and output connected
layers exhibit identifiable roles forming distinct e.g. multimodal or concentrated margins, and intermediate layer weights
exhibit margins that perfectly align with their (shifted) standard Gaussian prior, is supported by the proof for the functional
arbitrariness of intermediate weights by Ziyin et al. (2024) for linear networks. This is also in line with Sommer et al. (2024)
who provided evidence for increased exploration of the sampler for intermediate layer weights. Furthermore, the margins of
the biases are centered around —1 which reflects the centering of the ReLU-induced positive hidden states. In the spirit of
Fortuin et al. (2022), which derive proposals for priors from empirical weight distributions, one could consider adjusting the
priors for the biases in ReLU networks accordingly in future work.
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D.2. Convexifiable Network

For the experiments in Figure 9 and 8, we employed a small fully-connected network with 8 hidden neurons and a larger
one with 64 hidden neurons on the airfoil dataset. For posterior sampling, we applied the NUTS sampler Hoffman &
Gelman (2014) with pre-trained warm-starts, 100 warmup steps and 1000 posterior samples per chain across 10 chains.
The Hadamard product of the weights was calculated according to the derivations in Mishkin et al. (2022); Kolb et al.
(2023). We follow Kolb et al. (2023) in defining the group Hadamard product ©¢ of two vectors v € R? and w € R as
vOgw 2 (vjw;)jeg for a given partition G. We apply the group Hadamard product to our first- and second-layer-weights,
where the partition G is given by the incoming weights of each first layer hidden neuron, resulting in the Hadamard product
u, as described in Section 2.3. In Figure 9 and 8, we plot the resulting densities of a random selection of components of u
and observe unimodality across different sampler chains.

Chains

Chain 01
Chain 02
Chain 03
Chain 04

Figure 8. Bivariate marginal density of two random weight products of a ReLU-activated neural network with 64 hidden neurons on a
regression task.

1.0

Figure 9. Marginal posterior densities of the Hadamard product of weights for a ReLU-activated neural network with 8 (left) and 64
neurons (right) in the hidden layer on the airfoil dataset, colored by sampler chain.

D.3. Hyperbolic Posterior Illustration

In Figure 2, rescaling symmetries and their handling in SAI and MFVI is illustrated. As a model, we use a univariate narrow
Bayesian network, as described in Section 2.1. We employ the model on a dataset where the optimal solution is a regression
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line with slope B = 1. In this simple setting, we know the hyperbolas that constitute the rescaling symmetry, as the product
of both weights w; and ws must be equal to 1. In Figure 2 (left), we have depicted the samples obtained by running 12
warm-started NUTS sampler chains with 1000 posterior samples each in blue and samples drawn from a MFVI run in red.
It is to be noted that single NUTS chains are not able to jump from one hyperbola to the opposing one. As expected, we
observe that MFVI is not able to excape the low-capacity fix point at (0, 0) as we increase the prior strength (decrease the
prior variance), as the stochastic optimization of the ELBO cannot outweigh the drag towards the origin that is exerted by
the prior and the symmetry-mirror wy = ws (Ziyin, 2024).

D.4. Permuted Initializations

In order to explore the entrapment of the sampler in symmetric solutions while exploring the posterior, we initialize 10
sampler chains in permuted warm-start parameter configurations that all induce the exact same functional mapping. We
use a fully-connected, ReLU-actived network with 3 hidden layers with 16 neurons each. The MILE sampler (Sommer
et al., 2025) is employed for posterior inference on the airfoil dataset, with a rather small warmup sample budget of
100 samples. In Figure 3, we observe that the individual sampler chains are nonetheless able to explore the vicinity of
the permuted posterior modes and produce functionally diverse samples, thereby completely recovering from the point
of symmetry. This is further supported by the observation of a considerable improvement of the cumulative LPPD when
ensembling all individual chains. This points towards the sampler being able to recover functionally diverse parameters
along the individual chains, even though these were initialized in a point of symmetry. In effect, the ensemble LPPD is
almost on par with the one produced by a regularly warm-started BDE.

—Ensemble
Permuted Warmstarts Regular Warmstarts
a
& 0.75
—
g
5 0.70
o
g
5 0.65
O
1 10 100 1000 1 10 100 1000

#Samples (log scale)

Figure 10. Chain ensemble performance for a three hidden layer fully connected network with ReLU activation on the airfoil dataset
(zoomed-in illustration of Figure 3).

This finding is interesting for many reasons. First, it underscores the importance of proper chain initialization with parameter
states that already induce a high model likelihood, no matter the functional diversity induced by this parameter state. Moving
towards the typical set, the sampler benefits from its stochastic components, whereas samples from the typical set then
quickly drive up the LPPD. The cumulative LPPD then increases more slowly, as every new sample contributes less and less
to the Bayesian model average that is formed to approximate the posterior predictive distribution with a finite sample size.
Eventually, the chain performances and the ensemble performance converge towards their respective local approximation of
the posterior given the chain or the whole ensemble of chains, which is plotted separately in Figure 10.

In an alternative illustration, we have depicted the squared Wasserstein-2 distances of the predictive distributions p(y|X, 8(*))
implied by every sample 8(*) from a chain across 4 different chains and 50 samples in Figure 11. It is clearly visible that the
within-chain distance of the implied predictive distributions is lower compared to the between-chain distance with very
similar patterns for both the chains started using regular warm-starts and permuted warm-starts.

The result also carries the possible practical implication that a diverse set of functionally different warm-starts as chain
initializers might not be crucial for a well-performing Bayesian model average. This could prove helpful for large
architectures, where obtaining warm-start parameters is increasingly costly.
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Figure 11. Squared Wasserstein-2 distance of the predictive distribution induced by individual samples from four different sampler chains
onthe airfoil dataset.

D.5. Computing Wasserstein Distances for Uncountable Symmetries

In order to check whether distributions are significantly different, we first estimate the correlation between two samples
using p = Cor(p'*), u(®)). For every possible combination s, 5 € [S], s # 5, we then compute

o =t — pl® (19)

and calculate the mean over all observations, which should have distribution

n
fip = ﬂ_lzﬂD,i ~ N (0,710, (20)
i=1
where ) o
0% = (02)(8) + (02)(s) —2p5 9 g®) 1)

Our test statistic can then be computed as
Z = fip/(Vnop) (22)

and compared against the 95% standard normal quantile (1.96) to highlight values where one would reject the hypothesis
that the estimated distributions are equivalent.

D.6. Influence of the Prior Strength

As discussed in the main sections, typical SAI applications fix a common prior variance across the network. To the best of
our knowledge, it is not common to increase variances with increased network depth as analogies to regularized optimization
might imply. In order to provide empirical evidence that a constant variance irrespective of the network depth works well,
we perform a small benchmark, where Figure 12 in depicts the resulting LPPD and RMSE performances, confirming that
a standard Gaussian distribution is a well-working choice with little changes when altering the network size. An extend
discussion of prior choice follows below.

The standard isotropic Gaussian remains the most widely used prior in Bayesian neural networks. It is the default in industry
standard software like fortuna (Detommaso et al.) and is shown to lead to high performing results in works like Sommer
et al. (2025). While Fortuin et al. (2022) argue that heavy tailed priors are superior for fully-connected BNNs, the isotropic
assumption is rarely challenged. As discussed in Section 3 and illustrated in Figure 2, the scale and thus the prior’s strength
is related to the likelihood of scaling symmetries to appear in the posterior. At first glance it might seem intuitive that for
changing dimensionality of the problem the prior’s pull towards the origin has to be adjusted based on the dimension. While
the optimization literature would suggest a looser regularization for increased overparameterization to be sufficient, the
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Figure 12. Average LPPD and RMSE ranks (+ standard deviation across 3 train-test splits) of varying scale parameters for the zero-
centered Gaussian priors. The different model sizes are differentiated by color. Better ranks (i.e. 1>2) correspond to better performance
of the prior scale for the given model size.

opposite argument can be made for smaller scales in light of taming the functional explosion of deep networks. To grasp
the effects of increased dimensionality and prior scale we have conducted roughly 100 experiments assessing the practical
performance of SAI on 3 distinct tasks. For three benchmark regression datasets (airfoil, bikesharing, energy)
we fitted four fully-connected BNNs with 1 up to 4 hidden layers of 16 hidden neurons. We repeated this for various prior
scales of a zero-centered isotropic Gaussian and report the average and standard deviation of RMSE and LPPD ranks in
Figure 12. The results confirm that regardless of the number of model parameters the isotropic standard Gaussian is a robust
choice for attaining good performance. Also, small deviations do not seem to harm BNN performance, but with both much
smaller and much larger variance, clear deterioration in performance is visible, which indicates that neither a systematic
adjustment of the prior scale proportional to the dimensionality nor to the inverse direction is required.

Another naive approach to not worry about the scale parameter would be to leverage common neural network initialization
strategies to set the prior scale layerwise and depending on the architecture. One common representative of such initializations
is the Glorot initialization (Glorot & Bengio, 2010) which specifies the scale parameter as

o =/2/(Nin + Nour)- (23)
In the above considered architectures most kernels have ni, = no, = 16 leading to a scale of 0.25 rather constantly over the
network. As we can see in Figure 12 this scale level is however not suboptimal, as the scale is too small. This is the case for
most popular network initialization schemes. Thus in this setting we can not find evidence that deviating from the isotropic
prior assumption in favor of layerwise adjustments in the spirit of network initializations is beneficial in terms of model
performance.

D.7. UCI Benchmark

Table 2. Mean RMSE (] ) and LPPD (7) results (+ standard deviation across 3 train-test splits) for a 3 hidden-layer fully-connected neural
network on regression tasks. Numbers in brackets indicate the number of ensemble members/chains.

Dataset Laplace MFVI DE (10) BDE (1) BDE (10)
Airfoil —1.056 +0.003 | —0.975 4+ 0.004 | —0.293 £+ 0.096 0.016 +0.293 0.665 £ 0.062
E Bikesharing | —1.046 = 0.001 | —0.990 £ 0.005 | —0.223 £ 0.181 | —0.060 + 0.096 0.226 + 0.043
5 Concrete —1.131 £0.036 | —0.998 £+ 0.007 | —0.510 £ 0.189 0.042 4+ 0.056 0.080 £ 0.061
Energy —1.046 £0.004 | —0.945 £ 0.002 1.561 +0.101 1.947 + 0.047 2.204 + 0.024
- Airfoil 0.237 £0.013 0.276 4+ 0.009 0.269 £ 0.016 0.184 +0.016 0.152 4 0.014
v | Bikesharing 0.252 4+ 0.006 0.318 +0.018 0.253 £ 0.015 0.262 +0.018 0.229 + 0.016
E Concrete 0.482 4+ 0.100 0.350 +0.025 0.297 +0.032 0.270 +0.034 0.258 £ 0.037
Energy 0.065 4+ 0.008 0.126 4+ 0.007 0.050 £ 0.001 0.041 £+ 0.003 0.032 £ 0.002

For the UCI benchmark presented in Section 5 and Table 2, we fit classical mean regression to the different tasks corre-
sponding to the datasets described in Table 1. In the process, we always use a fully-connected feed-forward neural network
with 3 hidden layers of size 16 each resulting in about 700 total model parameters. If sampling from the posterior is done we
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use 1000 samples per ensemble member (chain). We describe the configuration of the employed methods one by one:

* For the Laplace approximation (LA), we utilize a JAX-based implementation to first train MAP solutions using the
Adam optimizer with decoupled weight decay (Loshchilov & Hutter, 2019) for 10 000 epochs with a learning rate
of 0.005 to then carry out last-layer LA with a generalized Gauss Newton Hessian approximation and closed-form
predictive approximation as detailed in Daxberger et al. (2021a). The variance of the predictive distribution is calculated
according to Daxberger et al. (2021a) with a small additional noise variance term.

¢ For mean-field variational inference (MFVI), we utilize a Gaussian posterior approximation with independence
assumption. We optimize the evidence lower bound (ELBO) for 5000 epochs with the Adam optimizer and a learning
rate of 0.005. The variance of the predictive distribution is calculated as the variance over the the predictions made
with 100 samples from the fitted approximate posterior with a small additional observation noise term.

* As the recently proposed Microcanonical Langevin Ensemble (MILE) approach provides both an optimized Deep
Ensemble (DE) and a Bayesian Deep Ensemble (BDE), we follow the suggested setup of Sommer et al. (2025) i.e.
the DE is optimized with the Adam optimizer with decoupled weight decay with (memberwise) early stopping and the
sampling then uses the proposed auto-tuning strategy of MILE comprising 50k steps before then providing 1k samples
(after the thinning of 10k samples).

Each method is evaluated using three distinct train-test splits to assess the robustness of its performance.

E. Convexifiable Network from a Bayesian Perspective

Pilanci & Ergen (2020) showed that the the optimal value(s) of the optimization problem of a one-hidden-layer
ReLU-activated fully-connected neural network without bias, which is regularized with weight decay, can be recovered
from an equivalent reformulation of the optimization problem as a group-¢;-regularized optimization problem. This
result relies on “enumerating” all possible activation states of a single neuron in the hidden layer on a fixed dataset
X € R™ P, namely, Dx = {D = diag(1(Xv > 0) : v € RP)}. Since learning with all possible activation
patterns of such a network on a fixed dataset is computationally infeasible in most cases, Mishkin et al. (2022)
propose a sub-sampling approach, where they only sample a subset of all possible activation patterns, D, and are
still able to find optimal points to the optimization problem using proximal-gradient solvers. It is notable that this is
analogous to the posterior sampling process in a Bayesian neural network framework. In our context, the computation
of ReLLU neurons is inherently tied to the posterior sampling process, implicitly generating their associated activation patterns.

From this perspective, given S posterior samples, we can express D as

D= {diag(]l(W(l)w(s) >0), Ve [L])}S

s=1

Compared to the experiment in (Mishkin et al., 2022), where the size of D is limited to 100, our approach allows for
generating a significantly larger number of activation patterns, resulting in greater expressiveness. In the next step, we apply
the group Hadamard parameterization map (GHPP, Kolb et al., 2023) described above and denoted by K to the sampled
weights that implicitly include numerous possible ReLU activation patterns.

Lemma E.1. Ler f(W1,ws) be the log posterior up to constants and use independent zero mean Gaussian priors with
variance T2 for every weight. Further, define X as vertically stacked observations x; and y as vector of targets for a
regression task. Then (W, wy) majorizes g(u) under the map K(W," ,w] ) = W, w] = u.
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Proof.
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where equality in the AM-GM inequality holds if and only if || W1;|3 = |w2;]?. O

As a direct consequence, we have the following:

Corollary E.2. The distribution of u (up to permutations) is unimodal.

This results from Lemma E.1 and the fact that we can apply Theorem 2.10 in Kolb et al. (2023), which shows that f and g
must share the same global and local optimal values.

F. Results for Univariate Networks
F.1. Derivations of Results from Section 2.1

We start by analyzing the negative log density of the unconstrained posterior:
—log p(wly,x) x 53 Z HzL:1 w® ;)% + # Zlel wh?. (24)
Using the AM-GM inequality we obtain
—log p(wly,x) o

(yi — T2y wPz:)? + 54 S (w®)? (25)
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In particular, applying Theorem 2.10 from Kolb et al. (2023), we know that — log p(w|y, x) and g(3) have matching local
and global minima. Multiplying by —1 and exponentiating both terms does not change this property.

2-Layer Networks For L = 2, it is easy to see that g(/3) is convex as g corresponds to the Lasso problem. As a
consequence, we know that there is one global posterior mode for w, which coincides with the maximum of —g(3), given
by
B= 0 if | >0 wiy| < 1/72
sen(3oiy way) - (1 0 waysl — 1/7%) i [ 20, @iyl > 1/72
The posterior of 5 does not have an analytical form but can be simulated from by using a Laplace prior. However, since

identity in (26) only holds for (w")? = |3|?/L, the posterior density of w only needs to coincide in the mode and must be
unimodal due to the matching optima theorem, but is not necessarily convex.
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Networks with L > 2 For L > 2, g(/3) is not convex anymore and hence the log posterior is not necessarily unimodal
anymore. Due to the exchangeability of all w(?), we, however, know that for B = arg ming g(/3), one mode of p(wly, x)
is located at w") = (3)1/L, for | € [L]. When fixing n and starting to increase the network’s overparametrization, i.e.,
increasing L, we observe a trade-off between prior and likelihood. Assuming r? := (y; — Bx;)? < oo and d8/0L = 0, we
have that g1 (53)/g2(3) — 0 as L — co. This is because the likelihood term stays constant for increasing L while |3|?/*
approaches 1 in the limit. In other words, for increasing L, the likelihood term will have less and less influence on the
posterior while the prior will become more and more influential.
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