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Figure 1: Wheeled Lab bridges popular low-cost open-source wheeled platforms [1, 2, 3] with the
research-backed robotics ecosystem Isaac Lab [4] to support and democratize access to cutting-edge
tools in modern robotics.

Abstract: Reinforcement Learning (RL) has been pivotal in recent robotics mile-
stones and is poised to play a prominent role in the future. However, these ad-
vances can rely on proprietary simulators, expensive hardware, and a daunting
range of tools and skills. As a result, broader communities are disconnecting from
the state-of-the-art; education curricula are poorly equipped to teach indispens-
able modern robotics skills involving hardware, deployment, and iterative devel-
opment. To address this gap between the broader and scientific communities, we
contribute Wheeled Lab, an ecosystem which integrates accessible, open-source
wheeled robots with Isaac Lab, an open-source robot learning and simulation
framework, that is widely adopted in the state-of-the-art. To kickstart research
and education, this work demonstrates three state-of-the-art zero-shot policies for
small-scale RC cars developed through Wheeled Lab: controlled drifting, eleva-
tion traversal, and visual navigation. The full stack, from hardware to software,
is low-cost and open-source. Videos and additional materials can be found at:
https://uwrobotlearning.github.io/WheeledLab/
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1 Introduction

The robotics community has made remarkable strides in recent years, boasting advances that en-
able quadrupeds to hike mountain trails and perform parkour [5, 6], autonomous drones to race at
champion-level ability [7], and robot hands to solve Rubik’s Cubes [8]. Shared across these feats is
simulated policy learning followed by direct deployment in the real world, termed Sim2Real.

However, these remarkable Sim2Real innovations currently target expensive, space-intensive, and
high-maintenance systems, including quadrupeds, humanoids, drones, and dexterous manipulators.
Such platforms make it difficult for the general population of robotics builders and users to access
the state-of-the-art techniques they employ, such as domain randomization and sensor simulation [7,
9, 10, 6].

In contrast, small-scale autonomous RC cars offer low-cost® yet performative platforms that can
leverage modern robotics methods, as we demonstrate in this paper. Used by classrooms, national
racing competitions, and enthusiasts, platforms like Fl1Tenth [3] have established themselves as
go-to, entry-level platforms for beginning roboticists and researchers alike. Crucially, these plat-
forms still provide sufficient onboard real estate to house components like the battery and compute
necessary for modern algorithms, as well as sufficient mobility to exercise complex dynamics and
environment interactions like drifting or off-roading [12, 13, 14, 15]. In short, small-scale wheeled
robots have high algorithmic potential at relatively low cost and hardware complexity.

A survey of existing ecosystems for low-cost wheeled platforms indicates that current simulation
capabilities are isolated and outdated (see Table 1). As a result, education [16] and research oppor-
tunities [17] currently limit practitioners to model-based or model-free methods with low-fidelity
simulation. With the advent of high-fidelity, open-source simulators like Isaac Lab [4], which are
geared toward modern robotic learning, these limited ecosystems no longer need to be the status
quo.

This work aims to support education and research by making modern robotics methods available
to the broader community. To accomplish this, we contribute a Sim2Real framework for open-
source wheeled robots that we have integrated with a state-of-the-art, research-grounded simulation
ecosystem, Isaac Lab. Modern methods we implement and evaluate include: massive parallelization,
domain randomization, sensor simulation, and end-to-end learning. We demonstrate these methods
using three policy types trained in simulation and deployed on low-cost, open-source platforms:

1. The Drifting Policy (7 4.i;) performs a controlled drift through extensive domain random-
ization, an approach in modern Sim2Real for tasks with uncertain and unstable dynamics.
This is the first work to demonstrate direct Sim2Real transfer for drifting without online
fine-tuning.

2. The Elevation Policy (7., ) traverses three-dimensional features with spatial reasoning.
This demonstration highlights end-to-end training for modern tasks that tightly couple
perception and control. Wheeled Lab is the first to provide integration of an accessible
elevation-based Sim2Real pipeline with massive parallelization.

3. The Visual Policy () traverses visual features with semantic understanding. This
demonstration highlights simulation, end-to-end training, and deployment with cameras,
a sensor modality gaining substantial research attention due to its pre-training potential.
Wheeled Lab provides a lower-cost alternative for visual Sim2Real compared to existing
integrations.

By integrating low-cost, open-source platforms with Isaac Lab, this work addresses a current need
in robotics to extend modern principles in Sim2Real to resource-constrained audiences.

*About 3000 USD or less. See [11] for a comparative analysis.
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16 DOF . HOUND, MuSHR,
Wheeled Lab v 3D Depth, RGB + Collisions High v v RSL, SB3 FlTenth
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FlTenth [3] X 2D X Kinematic X X X Gym Fl1Tenth
16 DOF Steering
CARLA [18] X 3D Depth, RGB + Collisions X Only v SB3 X
Brunnbauer ef al. [19]
(PyBullet) X 2D RGB 12 DOF X X X X Fl1Tenth
Hamilton et al. [20]
(Gazebo) X 2D X Kinematic X X X X F1Tenth
PIETRA [21]
(Chrono) v X X 12 DOF X X X X FlTenth
RoboTHOR [22] X X RGB Kinematic X X v AllenAct Household

Table 1: Comparisons of existing ecosystems on their capabilities. Various simulation, learning,
and deployment ecosystems have been integrated with accessible wheeled platforms for Sim2Real.
However, these ecosystems are noticeably isolated from the research community and, where imple-
mented, have outdated features.

2 Related Work

Considerable prior work in Sim2Real has addressed open-source wheeled robots, including [15, 23,
24,25, 26, 27, 12, 28]. Some of these works produce one of 7rgifi, Teley, OF Tyis With partial or full
Sim2Real. The individual accomplishments of this research both motivate our choice of demon-
strations and help us highlight that varied state-of-the-art approaches can be coherently integrated
under the framework presented here.

Drifting Policy. Drifting is a challenging task in both optimal control and reinforcement learning
(RL) [29, 30, 31]. It is a fundamentally unstable maneuver whose control solutions are traditionally
determined by vehicle and ground parameters [32]. In many cases (ours included), researchers are
unable to demonstrate a controlled drift for imitation-based methods [27]. These challenges make
drifting an appealing task for RL. RL-based approaches have thus far been achievable only through
further real-world fine-tuning [27, 12]. In this work, we show that aggressive domain randomization,
perturbation simulation, and massive parallelization can enable direct transfer of a drifting policy.
To reduce the barriers-to-entry, we deliberately distance our methods from techniques such as gain
tuning and extensive system identification that require additional domain expertise and tooling.

Elevation Policy. It has become standard practice for locomotion policies on outdoor terrain to be
trained with elevation maps [6]. In parallel, autonomous off-road vehicles have also demonstrated
the importance of incorporating elevation in model-based methods [14, 33, 34]. Generally, these
elevation-based tasks address challenges that arise at the interface of agent morphology and percep-
tion, which are often difficult to model. Therefore, lower-cost wheeled platforms have traditionally
been oriented toward flat terrain [3, 24], revealing a gap in methodology between the broader com-
munity and the state-of-the-art. Notable exceptions include [15, 35, 36] but do not offer as extensive
community support for RL-based approaches.

Visual Policy. Improvements in camera and photorealistic scene simulation have advanced policies
capable of semantic reasoning, bridging the gap between pre-trained visual models and embodied
actions [37, 38]. Demonstrations of small-scale platforms with pre-trained visual models have also
been investigated [35]. In general, cameras provide an approachable and interpretable sensor modal-
ity for modern robotics education and research. Unfortunately, similar to elevation policies, visual
policy pipelines on low-cost mobile platforms are not readily available even though the success of
proprietary camera-based Sim2Real platforms suggests a clear demand [24]. This work demon-
strates simulation, end-to-end training, and deployment with cameras on a low-cost platform.

Isaac Lab Simulation Framework. This work builds on Isaac Lab, an open-source, widely
adopted, and rapidly growing simulation framework for robotics research [4, 10] that is heavily
supported by industry and academia alike [39, 40, 41, 42, 43, 10]. Isaac Lab has become a primary
learning framework of choice for recent robotics research due to its impressive performance and
ease-of-use features [44, 6, 45, 46, 47].
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Figure 2: Modular training framework imagined as the assembly of a puzzle. Three main
components comprise training: Run, Agent, Environment. Outlined puzzle pieces (e.g.,
Observation, Reward) are sub-components whose behaviors are defined by the pieces below
them. For instance, High Speed is a reward setting in all of our RL environments, as denoted by
the star () icon. Wheel (@), camera (ll), and mountain () icons indicate specific design choices
for 7t 4rife, Tvis, and 7repey, respectively. Components shown are non-exhaustive.

3 Implementation

Wheeled Lab bridges low-cost wheeled platforms with Isaac Lab (see Figure 1). We extend Isaac
Lab by designing infrastructure and assets which enforce reproducible experimentation. Some of
the highest-level abstractions towards this effort are illustrated in Figure 2 (e.g., Scene, Observa-
tion, Reward), highlighting the inclusion of run parameters, architecture, and hyperparameters in
addition to existing environment configurations. This design helps ensure reproducible, accessible,
and portable experimentation settings and results, which is critical for practitioners to build upon
existing work.

This work presents reliable and empirically validated baseline configurations of these abstractions,
which are amenable specifically to low-cost wheeled platforms. As Sim2Real remains an iterative
process, especially in low-cost settings, our implementations consider accessibility factors through-
out the entire development process: limited onboard compute and sensing, visual diversity, system
identification feasibility, access to evaluation terrain, access to open-source packages, and access to
training resources. Further implementation details for each task can be found in Appendix B.

4 Experiments

While we contribute the novelties in applied RL as discussed in
Section 1, our experiments aim to highlight the disparity in open-
source methodologies between the broader and scientific commu-
nities. Thus, we compare policies trained through Wheeled Lab to
baselines which reflect what training ecosystems currently provide
to low-cost wheeled platforms, as shown in Table 1. This includes
ablations over techniques such as domain randomization, pertur-
bations, parallelization capacity, and architectures. (-) denotes the
Figure 3: Several autonomy baseline version of a policy (e.g., asire). Across all policies, we
platforms shared among stu- use Proximal Policy Optimization (PPO) [48] as implemented in
dents in a robotics class. the RSL RL library to train the agent in simulation [49].

We implement, deploy, and evaluate three state-of-the-art policy types: T asift, Telev, and 7ryis on the
HOUND and MuSHR platforms. Settings for drifting and elevation tasks are shown in Table 2. All
other configuration settings not mentioned (e.g., rewards, actuator parameters, articulations) can be
assumed to be the same between 7 and 7.

Our experiments employ the HOUND [1] for mgir and the MuSHR [2] for 7reey and 7ryis. The
HOUND’s estimated total price is about 3000 USD for a complete autonomy package with sensing
(i.e., LiIDAR, RGB) and compute (i.e., Jetson Orin NX). The MuSHR is estimated at 930 USD. A
single NVIDIA RTX 3080 GPU is used for training. Isaac Lab also offers cloud-based training for
broader audiences without personal GPU access.
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Figure 4: A control strategy arises for drifting through turns. Left: (Overlay: colored trajectories
over multiple runs.) One run is spotlighted for this visualization. Arrows indicate the direction of
travel, and the colorbar denotes speeds (in m/s). Middle: Magnification of drifted turns with markers
visualizing vehicle orientation, steering (front wheel direction), and throttle (rear wheels; blue: —1,
pink: +1). Right: Slip angle, speed, steering, and throttle are plotted for each turn. To initiate the
drift, the platform quickly cuts the throttle to destabilize the rear wheels and then steers inwards
sharply to throw them outwards. With the platform now facing the track center, it throttles through
the remainder of the turn while counter-steering to control its residual angular momentum from the
initial maneuver. The entire sequence occurs in just over 1 second. Visualization inspired by [31].

4.1 Drifting

Background. Drifting is characterized by a ve-
hicle’s side-slip angle, i.e., the angle between
the heading and the velocity, as it maneuvers
through a turn. In high-performance driving,
drifting allows the vehicle to take much sharper
turns at higher speeds than would be otherwise
allowable by the no-slip turn radius [50]. The
total mass, center-of-mass, friction properties
of the surface and the wheels, actuator prop-
erties, state estimation, steering linkages, and
suspension are all relevant factors in the narrow
dynamics of a controlled drift.

3 S
Figure 5: Capured trajectories from the base-
line drift policy in real experiments. The base-
The sensitivity of these dynamics becomes es- line is unable to complete a valid turn without
pecially obvious when we (researchers) attempt ~ crashing or spinning out.
the task manually despite the deceptively simple action space (see website for videos). When the
maneuver is not executed correctly, the vehicle spins uncontrollably off track, losing traction (also

known as a spin out) and usually requiring a reset.

Task. For our evaluation, the task involves maintaining speed while minimizing the cross-track
distance from an oval racing line without spinning out.

Setup. State estimation is provided primarily by onboard Visual-Inertial-Odometry (VIO). We use
a motion capture system for evaluation and occasional (1 hz) integrator-drift correction due to space
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limitations of our indoor testing environment. Successful VIO-only runs not used for data collection
are shown on our website. To enable the platform to be physically capable of drifting, tape is
wrapped around the platform’s rubber wheels to reduce friction and converted the base to a rear-
wheel drive.

Results. We find that the baseline is unable to make a ~_Policy | Comuption Perturbation DR #Bnvs Epochs
stable turn, much less complete a full lap (Figure 5). ™" ‘ ; 5 5 1834 2888
However, it occasionally attempts to counter-steer de- 7, ‘ X X X 128 1000
spite showing no indication during training. Baseline < ’ i v 1024 1000
training runs consistently fail to discover the drifting T_able 2: Training setti.ngs. Baseline poli-
mode. Motor cogging, noisy state estimates, constant ©1¢S_Tarit and eiey (liberally) reflect ca-

slipping, and steering biases cause significant covari- pabilities currently available to low-cost,
ate shift open-source wheeled platforms.

On the other hand, 7 is able to complete full laps. In addition, we observe evidence of high
robustness in 7rgg NOt yet seen in previous literature [12, 31]. That is, when the platform does spin
out, instead of attempting to regain control by cutting the throttle, the policy maintains its angular
momentum for a full spin (or more) before returning to the track. A visualization of the results
(Figure 4) gives insight into the policy’s precise control. The maximum (controlled) slip angle is
58°, and the average speed is about 1.6 m/s. Appendix B.1 provides further details about the design
and implementation of 7 gf.

4.2 Elevation

Baseline

(a) Captured trajectories of elevation policy (b) 3D view of global elevation map.

in real experiments.
Figure 6: Comparison of policy 7rjey and baseline 7ejey in simulation and real-world elevation tasks.
Fig. 6a shows real-world execution: 7, (top) successfully avoids obstacles using local elevation,
while 7.y (bottom) avoids elevation features entirely. Fig. 6b visualizes the elevation map along
with additional experiment result annotations. Trajectories from 7rejey (yellow/blue) and 7y (pur-
ple/white) are overlaid. Policies only access their local 2.5 x 2.5 m maps during evaluation.

Background. On unstructured and uneven terrain, an elevation map is essential for identifying
traversable areas in the scene. However, traversability is strongly dependent on agent morphology
and dynamic state. Along with the ground geometry, the following affect how to safely traverse un-
even terrain: the platform’s ground clearance, center-of-mass height, wheel size, maximum torque,
suspension, and momentum. Poor traversal can result in catastrophic failures, such as rollovers, and
motor (or engine) stalling.

Task. To show that the trained elevation-based policy is capable of geometric reasoning, we con-
struct a scene with two types of elevation features that contribute to the overall elevation map, i.e.,
walls and ramps. Crucially, the incorporation of ramps sets the task apart from sole obstacle avoid-
ance since ramps are features with height but are still traversable with the correct approach strategy.
The starting and goal positions are placed on opposite sides of the testing area, with the elevation
features placed in between. The platform must safely traverse the scene to arrive at the goal position
by avoiding obstacles and ascending ramps when locally feasible.
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Setup. States provided to the policy are goal-relative position, orientation, and a local (2.5 x 2.5
meters) body-centric elevation map. A local map is sampled from a prior global elevation map.
Although the platform is capable of creating onboard maps [1], a configurable indoor environment
requires higher mapping resolution than is available for this evaluation.

Results. We find that the baseline primarily deviates from any elevation features to approach the
goal. When the baseline does ascend the ramp, it quickly falls off the sides. However, 7.y can both
traverse the ramp safely and navigate through subsequent obstacles to reach the goal. Like 7rqsif,
the lower number of simulated agents gives the baseline policy significantly fewer opportunities to
explore correct trajectories in a narrow range of safe states.

4.3 Visual

Figure 7: Captured trajectories of visual policy in real experiments. The trajectories are obtained
from the motion capture system. We include videos of each setting and trial in the supplementary.
Background. Visual navigation traditionally \_‘:"\',*4' w..“"fﬂ|
relies heavily on a semantic understanding of -l T ;‘:"‘i
the environment through visual feedback [51]. i "i
Despite its importance, embedding information % i
such as traversability through this modality has 3
its unique challenges [52]. First, visual obser- #Walkers = 1 #Walkers = 3 #Walkers = 5
vations (e.g., RGB images) from robots are rep- Figure 8: Examples of randomly generated en-
resented in high-dimensional tensors, requiring ~Vironments to train 7. Black and white rep-
exponentially more training data. Also, small resent _penalizing and safe regions, re§pectively.
changes in environments that result from illu- We adjust th,e number. of wa?kers to .tram the pol-
mination, weather, or time of day can result in icy across different Q1fﬁcult1es. US.“?g a smaller
N . . number of walkers will make the training environ-
c?ta[sst;c])phlc failure of machine learning mod- ments more challenging.
els .

Lo
-

These challenges can be effectively addressed through the simulation of visual information. In
addition to generating large amounts of task-relevant data, domain randomization can help improve
generalization during transfer.

Task. We construct our task scene using black and white foam tiles (see Fig. 7). These tiles are
inexpensive, safe, and widely available. Surrounded by black tiles, a “figure-8” path is laid using
white tiles. The platform must remain on the white path while avoiding the surrounding black tiles.
A dynamic version of this task is also used in evaluation; black “barricade” tiles are dynamically
removed and placed to demonstrate robustness and real-time navigation reasoning.

We generate simulation environments with black and white areas, as we show in Fig. 8 to train the
visual policy. Each example in the figure represents a sub-environment, and our entire map is com-



posed of sub-environments. This allows us to assign different difficulties for each sub-environment.
See Appendix B.3 for additional details about map generation.

Evaluation. We measure success or failure over five trials. We define success as the
robot finishing at least one lap without staying in one place for more than 5 seconds.

: : MLP CNN
Setup. Our input states include grayscale ob- NoAug.  With Aug. | No Aug.  With Aug.

servation (resolution of 40 x 60), linear and #of Success/ Trial | 075 375 | 0/5 1/5
angular velocity, and last action. Linear and
angular velocities are obtained from the mo-
tion capture system. We design experiments

Table 3: Visual policy results. Results demon-
strate the effectiveness of image augmentations
. . for Sim2Real generalization. ~While we ex-
to dem.onstra.te the effec.t.lven.ess of image agg— pect CNN to be more capable of learning, MLP
mentations (i.e., color jittering and Gaussian reqents better generalization capability. We in-
blur) and different architectures (i.e., MLP vs  (lude videos of each run in the supplementary ma-
CNN) in Sim2Real generalization. terials.

Results. For quantitative evaluation, we run ex-

periments five times and count the number of successes for each setting. As reported in Table 3,
image augmentation is essential in Sim2Real generalization. The policies without augmentation fail
at generalization. Further, despite the better learning capability of CNNss, they result in worse gener-
alization to the real world; we also found that CNN training often collapses to a trivial solution, with
the reward designs remaining the same as MLP training. Such results imply that CNNs may overfit
to simulated data and require more careful design in rewards and loss functions for stable training.

In the supplementary materials, we qualitatively evaluate the results using recorded videos. Al-
though both policies with augmentation predict meaningful actions, the MLP-based policy generates
smoother and precise actions. In contrast, the CNN-based policy often generates noisy actions, as
shown in fast steering changes and audible motor cogging.

5 Conclusion

Drawing from our results in Section 4, observe that there is an alarming gap in techniques between
the scientific and broader communities. Methods and modalities (e.g., parallelization, corruption,
elevation), almost native in popular implementations and frameworks for platforms like humanoids
and quadrupeds, are scattered throughout different implementations and research efforts for wheeled
platforms.

We present this work, Wheeled Lab, to act as a bridge between the broader community and state-of-
the-art research in robot learning through low-cost, open-source wheeled platforms. Atop Isaac Lab,
Wheeled Lab provides a modular and self-contained design framework to lower the barrier-to-entry
while being fully integrated with Isaac Lab’s extensive research community and ecosystem.

To kickstart this integration, we demonstrate the entire Sim2Real pipeline on three state-of-the-art
policy types. Each policy and task is motivated by their fundamental relevance to general robot
learning and Sim2Real. Drifting is a complex control problem that highlights accurate, randomized,
and massive physical simulation. Through Wheeled Lab, we demonstrate the first zero-shot transfer
of a drifting policy thus far in the literature. Elevation traversal defines safe behavior at the interface
between perception and control, highlighting physical scene generation and massive interaction.
Visual navigation integrates a sensor modality with substantial research attention and pre-training
potential while showcasing challenges in data diversity and transferability.

Wheeled Lab is entirely low-cost and open-source.  Please refer to the project web-
site (https://uwrobotlearning.github.io/WheeledLab/) for experiment videos and
more information.
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6 Limitations

Although an objective of Wheeled Lab is to support education, this work has not yet conducted a
study to evaluate how comprehensible the pipeline is to robotics students. Like F1Tenth, we aim
to construct an open curriculum around Wheeled Lab to help introduce difficult or interdisciplinary
topics that may be sources of confusion. This study will help reveal what steps in the Sim2Real
process might prove most challenging or unfamiliar.

While iterative testing for unique conditions can serve pedagogical purposes, the appeal of building,
training, and deploying a platform that “just works” can be inspirational for beginner roboticists.
However, the policies presented here in their current open-source state must be met with patience
and an intent to iterate. Thus, custom low-cost wheeled platforms invite yet another frontier of
modern robot learning: robust adaptation [54]. For instance, the development of a drifting pipeline
that adequately adapts to friction on deployment can help lower the barrier-to-entry even further.

Towards Accessible Sim2Real

The development of Wheeled Lab is constrained by both platform and development to low-cost yet
easily obtainable resources. Mechanical hysteresis and tolerances of hobby-grade components, lim-
ited onboard compute and sensing, visual diversity, methodological simplicity, access to evaluation
terrain, access to open-source packages, and access to training resources are all considered in the
development of Wheeled Lab. Sim2Real accessibility is not only a challenging constraint on robot
hardware but on the entire development process.

In accessibility efforts, experts are perhaps paradoxically limited by their expertise, making viewing
problems from the perspective of a novice or non-traditional practitioner challenging or impossi-
ble. We find that broader audiences tend to benefit significantly from approachable infrastructure,
familiar abstractions, modularity, and straightforward, reproducible, yet instructive tasks and exper-
iments. Wheeled Lab has fortunately garnered interest from the broader community in support of
these objectives, receiving contributions and feedback from the perspective of non-scientific audi-
ences. Meanwhile, we expect that experts are better positioned to contribute fundamental concepts
with vision. Wheeled Lab is an essential step towards aligning these communities and fostering
a future of robot learning where all roboticists can equip themselves with indispensable skills in
hardware, deployment, and iterative development.
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A Supplementary Material

Videos and more information can be found on the project website:

https://uwrobotlearning.github.io/WheeledLab/

B Design and Implementation Details

The typical ranges on friction, mechanical tolerances, damages, etc. for low-cost platforms are far
from ideal. However, iterating and developing on individual platforms in unique environments is
practically and pedagogically critical, especially for real-world robotics. We hope that this work
allows practitioners to focus their efforts on precisely this development cycle rather than infras-
tructure. The following implementation details should be regarded as a starting point and potential
reference for troubleshooting inevitable issues.

Isaac Lab environment configurations primarily include parameter settings and reward functions,
and can be quickly parsed while efficiently communicating environment behavior. We highlight
some notable details in this section.

B.1 Drifting

We found that drifting was an exemplary task to demonstrate the physical Sim2Real gap. Much
of the development cycle was focused on closing this gap, as supported by countless other seminal
works [8, 6].

B.1.1 Actuators

In many related works for agile tasks, data is typically collected to assess actuator response and
estimate gains. However, this process can be unfamiliar to beginning roboticists or non-traditional
enthusiasts. Instead, all actuator parameters are extracted exactly from their technical specifica-
tion sheet online, and gains are domain-randomized across environments. Achieving the task in
this manner helps to convey that, while domain expertise can certainly improve performance (do-
main randomized policies are known to find conservative solutions [10]), it is not strictly necessary
through modern methods.

It is worth noting that a few “Sim2Real2Sim” (or Sim2Sim) cycles were spent narrowing the ran-
domized gain ranges for the throttle actuator settings. Due to neural network policy tendencies to
exhibit “bang-bang” (on-off) behavior, gain values can become extremely important to the actual
forces exerted on the vehicle.

Establishing and improving pipelines for this process can be an accessible yet effective future con-
tribution for use by potential practitioners.

B.1.2 Friction

Initially, the domain randomization over friction was used to cover a wide range (0.2 to 0.8) of
potential friction values between the tape-covered tires and the carpeted ground. However, resulting
policies would perform poorly and inconsistently on deployment. A long thread of Sim2Sim cycles
was used to search for friction parameters but still resulting policies were not reliably transferring.

In the end, a cheap (less than 5 USD) spring scale was used to estimate the coefficient of friction,
measured by dragging the vehicle with the scale along the carpet. This value (about 0.4) was then
used as the midpoint of the friction randomization during training.

The project website also contains videos of deployments on different surfaces (e.g. finished con-
crete). Lower friction values appear to cause the vehicle to take wider turns (due to lack of turning
friction) and spin out quickly during drift maneuvers. Enabling the platform to drift over multi-
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ple surfaces is also of fundamental interest to the robotics community as it is a form of domain
adaptation.

B.1.3 Articulations

While we initially used the MuSHR [2] articulations defined by the open-source URDF file, we
found that its modeling inaccuracies affected the precise control expectations of the platform. As a
result, we improved the articulations: (1) by moving the steering linkages from the wheel axis to the
actual steering joint and (2) by articulating the suspension joints of the vehicle.

Steering inaccuracies were noticeable due to the gap between turning radii in real and sim. The
moment arm on the linkage can also adversely affect the tracking of the steering joint during high-
velocity maneuvers. This can even be observed in simulation when steering joints behave strangely
asymmetrically with unsuitable actuator settings.

Suspension helps close the gap on load shifting during turns. With a suspension travel of 4 cm,
these shifts have consequences in the total friction and “thrust” produced while throttling through
turns. Interestingly, suspension articulation also helped to stabilize the simulation. At a wheel
speed of 3 m/s, the rotation rate of the wheels reaches 60 rad/s, occasionally resulting in collision
penetrations during simulation which cause unrealistic “jumping” through drifted turns. Damped
suspension joints helped to stabilize these collisions without requiring smaller simulation time steps
which would significantly lengthen training times.

B.1.4 Rewards

Six rewards were designed for this task:

i.) Cross-Track Distance. The lateral distance of the vehicle from an oval track line. This
is defined without time-dependent reference trajectories as often done in model-based ap-
proaches or even in deep RL methods [30]. This is highly weighted otherwise, the agent
tends to take larger, safer turns.

ii.) Velocity. Reward for high speeds.

iii.) Side-Slip. Only stable side-slip angles were rewarded. Stable side-slip angles are manage-
able through the steering limits (0-30°).

iv.) Progress. Reward for making progress along an arbitrary direction (counter-clockwise, in
this work).

v.) Turn-Energy. Shaping term for increasing velocity rewards, specifically when inside turn
regions.

vi.) Turn-Left-Go-Right. Shaping term for encouraging exploration to discover an alternate
turning mode (e.g., drifting) by counter-steering. Strictly positive when the angular velocity
and the steering command are opposite to each other. 0 otherwise.

Penalties were also given for going out-of-bounds.

B.2 Elevation
B.2.1 Training

Training elevation in simulation proved to be a challenging task. Training would often collapse
into one of: (1) seeking goals while avoiding obstacles or (2) climbing ramps. Striking a balance
between the two often required re-designing the scene or task configuration in simulation.

As observed for model-based methods [14], evaluating uneven terrain traversal for vehicles can be
challenging due to the reasonable alternate mode of avoiding risky terrain altogether, which may
often be faster. However, the primary goal of this work is to better enable the broader community to
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engage with state-of-the-art methods in elevation-based robotics. Thus, the reward and scene were
constructed to incentivize the agent to actively seek out risky terrain while penalizing failures.

Supported by machine learning literature, noise injection becomes less effective for generalization
at higher dimensions. For states such as elevation maps, perceived noise is likely more structured
than the additive Gaussians injected through observation corruption. While debugging, we found
that the policy would improve if the elevation features were brought closer in shape to the features
seen in the simulation. To resolve this without “training on test”, the scene was augmented with
slopes of various gradations and heights.

B.2.2 Suspension

As mentioned in Appendix B.1, suspension joints were added to the open-source MuSHR articula-
tions. This is critical for elevation where maintaining momentum up a ramp helps training stability.
Without suspension articulation, climbing ramps have an abrupt and destabilizing impact at higher
speeds.

B.2.3 Rewards
i.) Goal Velocity. Rewards velocity projected onto the goal heading vector.
ii.) Z-Position. Rewards larger z-positions (gained through ascending ramps).
iii.) Falling Penalty. Penalizes negative body-frame z velocities.

iv.) Roll on elevation. Penalizes roll angles while on elevation features.

B.3 Visual

While visual information is essential in modern robotics to solve complex real-world problems, sim-
ulating such information requires state-of-the-art rendering techniques to close the Sim2Real gap.
Despite such computationally heavy efforts, machine learning models trained with simulated data
often fail at real-world generalization due to diverse types of environmental changes, e.g., illumi-
nations, weather, etc. Instead, in this work, we “simplify” visual information from both simulation
and real by compressing RGB pixels to grayscale, closing the Sim2Real gap. Still, we observed that
such compressed visual information exhibits a non-trivial amount of Sim2Real gap. This section de-
scribes how we tackle this problem by providing details of our environment, training augmentations,
architectures, and reward designs.

B.3.1 Visual map generation

We designed the problem by encoding traversability into color information. Black tiles are non-
traversable regions while white indicates safe to travel. We divided the whole map into multiple
sub-environments that are individually configurable. Then, we randomized white paths over the
black area in each sub-environment. Specifically, each sub-environment comprises 9 cells, and we
sample a start point in each cell and generate paths toward random endpoints in the sub-environment.
We made the number of random paths from a single start point configurable, allowing the users to
adjust the difficulty of the training (see Fig. 8). This can later be used for curriculum learning by
assigning different difficulties for sub-environments. We tested the generated map with more than
2,000 agents in parallel, running seamlessly with a single Nvidia RTX 3080 GPU. The algorithm
overview for sub-environment generation is presented in Alg. 1.

B.3.2 Model Architectures

We adopt a multi-layer perceptron (MLP) as our basic policy network. For ablations, we add a
simple 3-layer convolutional neural network (CNN) that serves as an image feature extractor before
the policy networks. The extracted features are concatenated to the rest of the observation terms,
such as linear/angular velocities and last action, and fed into the MLP policy networks. We observe
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Algorithm 1 Visual Policy Sub-environment Generation

: Input:

. (Henv, Weny) < # of rows and # of columns for each sub environment
 (Heet, Ween) <— # of rows and # of columns for each cell

* Nyalkers < # of walkers for path generation

: Pseudo-code:
> Initialize traversability map; O - not traversable / 1 - traversable
7: T € {0,1}Fen>Wer .0

> Sample start points from each cell

9: P « ] > Initialize an array to save start points
> Sample random start points for each cell

10: forrow r = 0,1, ..., Hen/Heen do

11: forcolc=0,1,..., Weny/Ween do

12: Prow <— UniformSampling(0, Heen) + 7 - Heen

13: Peol < UniformSampling(0, Ween) + ¢ - Ween

14: P = [(Prow, Peol)] > Append the start point to P**"
15: end for

16: end for

17: for (prow, Peot) in P**" do
18: for iter—= 0,1,..., Nyalkers do
> Sample random end points

19: Do
20: Grow <— UniformSampling(0, Heny)
21: Geol < UniformSampling (0, Weny)
22: do While T (grow, geol) == 1
> Generate random paths and update traversability map
23: GenerateRandomPaths(T, (Prow, Peol), (Grows Geol))
24 end for
25: end for
26: Return: T

that inducing CNN takes longer training time to learn optimal actions and often collapses into a
trivial solution - agents decide to spin in a circle, only maximizing the velocity rewards.

B.3.3 Image Augmentations

To close the sim-to-real gap, we apply image augmentations for policy training. This includes
aggressive color jittering (i.e., brightness, contrast, saturation, and hue adjustments) and Gaussian
blur. As demonstrated in both qualitative and quantitative evaluations, image augmentations play
a crucial role in closing sim-to-real gaps. Further augmentations or randomization can be easily
applied to our code design.

B.3.4 Rewards

Two rewards were designed for this task

i.) Velocity Reward. Rewards higher velocities

ii.) Traversability Reward and Penalty. Rewards being on white regions, and penalizes it for
being on black regions

B.3.5 Terminal Conditions

We experimented with different terminations. In addition to the standard time-out and out-of-bounds
terminal conditions, we added a terminal condition when the robot is on black. However, this often
resulted in a lack of exploration, and policies that produced “jerky” or undesirable actions, such as
idling at the initial location.
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