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ABSTRACT

Random matrix theory has proven to be a valuable tool in analyzing the general-
ization of linear models. However, the generalization properties of even two-layer
neural networks trained by gradient descent remain poorly understood. To under-
stand the generalization performance of such networks, it is crucial to character-
ize the spectrum of the feature matrix at the hidden layer. Recent work has made
progress in this direction by describing the spectrum after a single gradient step,
revealing a spiked covariance structure. Yet, the generalization error for linear
models with spiked covariances has not been previously determined. This paper
addresses this gap by examining two simple models exhibiting spiked covariances.
We derive their generalization error in the asymptotic proportional regime. Our
analysis demonstrates that the eigenvector and eigenvalue corresponding to the
spike significantly influence the generalization error.

1 INTRODUCTION

Significant theoretical work has been dedicated to understanding generalization in linear regression
models (Dobriban & Wager, 2018} |Advani et al.l 2020; Mel & Ganguli, 2021; Derezinski et al.,
2020; Hastie et al., 2022} Kausik et al.;2024; |Wang et al.| 2024a)). In an effort to extend this under-
standing to two-layer neural networks, researchers have explored various approximations, including
the random features model (Mei et al., [2022; Mei & Montanari, 2021} Jacot et al., [2020), the mean-
field limit of two-layer networks (Mei et al. 2018)), the neural tangent kernel (Jacot et al. 2018;
Adlam & Pennington| |2020), and kernelized ridge regression (Barzilai & Shamir, 2024} Liang et al.,
20205 [X1ao et al., 20225 Hu et al., 2024).

For the random features approximation, the first layer of the neural network is considered fixed, and
only the outer layer is trained. Concretely, consider a two-layer neural network

flx) = Z Go(wlx) =T o(Wa),

where z € R% is a data point, [(1, . . ., (|7 = ¢ € R™ are the outer layer weights, and w; € R¢ for
i=1,...,m (W € R¥™) are the inner layer weights. Let us define F' = (X W) as the feature
matrix, where X € R™*? is the data matrix. It has been shown that to understand the generalization,
we need to analyze the distribution of singular values of F'. Works such as |Pennington & Worah
(2017); |/Adlam et al.| (2019); |Benigni & Péché| (2021)); Fan & Wang| (2020); Wang & Zhu! (2024);
Péché| (2019); |Piccolo & Schroder (2021) have studied the spectrum of F' in the asymptotic limit,
enabling us to understand the generalization. However, random feature models do not leverage the
feature learning capabilities of neural networks. To gain further insights into the performance of
two-layer neural networks and their feature learning capabilities, we need to train the inner layer.

Recent studies such as|Ba et al.|(2022); Moniri et al.[(2023)) have examined the effects on F' of taking
one gradient step for the inner layer. Specifically, Ba et al.| (2022)) showed that with a sufficiently
large step size 7, two-layer models can already outperform random feature models after just one step.
Monir1 et al.[(2023) extended this work to study many different scales for the step size. Concretely,

let (z1,41), - - -, (Tn, yn) be n data points and let ) ~ n™ be the step size with a € (E;—;, ﬁ) for

¢ € Z>(. Perform one gradient step with the following loss function

Ly = %z": (yz —¢" U(WT%'))Q
i=1
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Figure 1.1: Figure from Moniri et al. (2023 showing the singular values of Fjy + P. The bulk
corresponds to Fp, while the spikes represent the effect of P.

to get W7. Then, they showed that there exists a rank ¢ matrix P such that
o(XW;) =: Fy = Fy + P + o(v/n),

where F} represents the features at initialization and X € R™*? is the data matrix. As shown in
Figure the singular values of F{y 4+ P consist of two parts: the bulk corresponds primarily to the
singular values of Fy, and the spikes correspond to the isolated singular values due to P. Hence, the
sample covariance %FlT F has a spiked structure.

Furthermore, they demonstrated that if

Lie(C) = Eaylly — ¢" oW )|

is the expected mean squared generalization error, then for some regimes, L (" (F1)) is asymptoti-
cally equal to L (¢* (Fo+ P)), where ¢* (F') is the minimum norm solution to the ridge regularized
problem with features F',

. 1
() = axgmin _ fly~ F¢IP 4 M I

However, they did not quantify L..(¢C*(Fy + P)). The challenge with quantifying the effect of the
spike on the generalization error is that since we have a fixed number of spikes, the asymptotic
spectrum does not see the spike. This paper takes a step towards quantifying such errors.

Contributions This paper considers linear regression where the data « has a spiked covariance
model. The main contributions of the paper are as follows.

(i) We consider two linear regression problems that capture some of the challenges present in the
spiked covariance model from |Moniri et al.|(2023). These regression problems extend prior
models from Hastie et al.| (2022) and |Li & Sonthalial (2024). In particular, we introduce two
regression targets, providing a more comprehensive understanding of how the learned features
interact with the target function.

(ii) We derive closed-form expressions for the generalization error for both models (Theorem [3]
and Theorem [)), offering precise quantification of the generalization error.

(iii) We show that the risk can be decomposed into the asymptotic risk for the unspiked case plus
a correction term that depends on the eigenvector and eigenvalue corresponding to the spike.
We show that for finite matrices, if the variance for the distribution of the bulk eigenvalues is
small enough, then the correction is significant.

Other Related Works Spiked covariance models have gotten significant attention. Prior works
such asBenaych-Georges & Nadakuditi|(2012);|Baik & Silverstein| (2006) have examined the largest
eigenvalue and its corresponding eigenvector in the asymptotic limit. Spiked covariances can be
seen when denoising low rank signals (Nadakuditi, [2014} [Sonthalia & Nadakuditi, 2023} |Kausik
et al.| [2024). Additionally, recent work |Li & Sonthalial (2024) also considers two particular spiked
covariance models and shows interesting double descent phenomena. See Couillet & Liao| (2022)
for more applications where spiked covariance models appear.

Recent work has also sought to understand the features of the spectrum beyond a single step (Wang
et al.,[2024b) and for three layer neural networks (Wang et al., [2024cj [Nichani et al., 2023).



Under review as a conference paper at ICLR 2025

Paper structure The rest of the paper is organized as follows. Section [2| provides a brief in-
troduction to random matrix theory and how it can be used to understand the generalization error
of the models. This section also highlights the difficulty in understanding the generalization error
for spiked covariance models. Section [3]sets up the problem formulation we analyze, and Section
[ presents our theoretical results. Finally, Section [5] represents some limitations of our work and
avenues for future work.

2 CHALLENGES WITH SPIKED COVARIANCES

In this section, we identify and elaborate on the specific challenges the spiked covariances from
Monir1 et al.|(2023) introduce in analyzing generalization errors.
2.1 RANDOM MATRIX THEORY BACKGROUND

We need to define a few important objects for this discussion and, more broadly, for the paper. Let
D be a distribution on R? with uncentered covariance ¥ = E,p [z2”] andlet X = [z1,..., 3,]"

be L.ID. samples from D. Let = %X T X be the sample covariance matrix.

Definition 1 (Empirical Spectral Distribution (e.s.d.). Let Ay, ..., \, be the eigenvalues of a matrix
Y and §(x) be the Dirac delta function. Then the empirical spectral distribution of ¥. is

1 d
vs(A) = 826&(/\)'

One of the most common assumptions made in this field is that as d — oo, vy converges almost
surely to a deterministic measure vy at every point of continuity of 1/ Once we know the e.s.d.
for the population covariance, we can express the limiting risk for ride regression as a function of the
deterministic quantity vz (Dobriban & Wager, 2018; Hastie et al., 2022). One of the most common
ways of describing v is via its Stieltjes transform.

Definition 2 (Stieltjes Transform). Given a measure v on R or its corresponding density function
fu, the Stieltjes transform m,, : C \ supp(v) — C of v is defined by

me) = [ = [ han

For the sample covariance, we see that
d
1 1 1 A -1
my.(z2) = = — =-Tr (E—zl) ]
) d;/\i(z)*z d {

One of the seminal results in random matrix theory develops a connection between the limiting
e.s.d. for the population covariance matrix and the limiting e.s.d. for the sample covariance matrix.
Marchenko & Pastur|(1967) showed that under some mild assumptions, the following theorem holds:

Theorem 1 (Marchenko & Pastur| (1967)). Let {(nk,dr)}ren be a sequence of pairs of integers
such that dy, /ny, — c as k — oo. Suppose ¥(dy,) and X}, € R™ > has ny, L1D. samples from
N(0,%(dy)). If vss converges almost surely to vy, then there exists a deterministic v such that the
e.s.d. of the sample covariance matrix vy, converges almost surely to vy at all points of continuity
of vp and for all z € C*, we have that m,,_(2) — m,,.(2), where

muF(Z):/t( L dl/H(t).

1—c—czmy,(2)) —z

The result is more general, but we provide a simplified version here.

Example 1. Suppose 3(d) = I. Then the e.s.d. of ¥ is a Dirac delta measure at 1, so its limiting
e.s.d. vy is 81. Hence, in this case, if we apply Theorem[I| we have that the Stieljtes transform of
the limiting e.s.d. v for the sample covariance satisfies the following

1

1—c—czmy,(2)) — 2z

mVF (Z) = (

"Note a measure is continuous at z if and only if v({z}) = 0.
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Such distributions v are called the Marchenko-Pastur distribution with shape c.

Results such as the above theorem from Marchenko & Pastur] (1967)) and Theorem 1.1 Bai & Zhou
(2008)) are qualitative results about the limit. Prior work such as [Dobriban & Wager] (2018); [Wu
& Xu| (2020); |Advani et al.| (2020); Xiao et al.| (2022)) use these results to understand the limiting
generalization error. However, there are also quantitative versions. Specifically, works such as
Hastie et al.|(2022)) use results from |[Knowles & Yin|(2017) to provide more nuanced conclusions.

2.2 CHALLENGES WITH SPIKED COVARIANCE

Let us recall the setup from Moniri et al.|(2023). Specifically, they assume that the outer layer weight
¢ ~ N(0,-1) and inner layer weights w; ~ Unif(S*™') with Wy = [wy ... wy,]T € R™X4
Additionally, they assume that the training data (z1,y1), - . ., (Zn, yn) is of the following form:

x; ~ N(0,1) and y; = o (0l ) + .

Here e ~ N(0,1), w ~ N(0, 1), and o, is ©(1)-Lipschitz. Then W is obtained after taking one

gradient step. Let X and §j be new independent data and let F; = o(XW), and Fy = o(XW)).
In the proportional asymptotic regime, with some additional technical assumptions on the student
networks activation o, Moniri et al.| (2023)) shows that

Fy = Fy+ Clo,n)(Xw) - ¢ +o(v),

where C(o,n) is a constant. After taking one gradient step for the inner layer, we train the outer
layer using least squares ridge regression. Hence, to understand the generalization performance of
such networks, we need to understand the generalization error for the following problem.

. 1
() = awgmin -y = P+ N

The standard approach to do this is by understanding the spectrum of Fi/' ;. We break ] Fy up into
three terms — the diagonal terms Fl Fy and C(o, n)?||(Xw)||? ¢ ¢* and the cross term Fy Xw ¢ .

Spectrum of C(a,7)?||(Xw)||>¢¢%:  This term is important for understanding the feature learn-
ing capabilities of neural networks, as it is the new term that appears after taking one gradient step.
However, the issue is that the limiting e.s.d. for the population covariance does not see this spike.
For example, suppose the population covariance matrix is

Y =T+ tuu”.
d—1

1
Then the e.s.d. for X is given by 8554_1 + &1, which converges to 6; once we send d — oco. This

illustrates the case when the limiting spectrum does not "see" the spike. However, if we consider the
value of the largest eigenvalue of the sample covariance, then it can converge to something outside
of the support (Baik & Silverstein, 2006}, Benaych-Georges & Nadakuditi, 2012} |Couillet & Liao),
2022).

Theorem 2 (Baik & Silverstein (2006) Theorem 1.1). Under the same setting as Theorem and let
Y = I +/¢uu”. Denoting A\ the largest eigenvalue of%XTX, asn,d — cowithd/n — ¢ € (0,1),
we have that

N _t
S o €+04712 £>1+\ﬁ'
(14+4e)? <1+ /e

From Theorem T} the limiting spectrum for the eigenvalues for the sample covariance matrix is the
Marchenko-Pastur distribution, whose support is [(1—+/¢)2, (1++/c)?]. However, we see that if £ is
big enough, then the largest eigenvalue escapes from the continuous bulk on [(1 — /¢)?, (1 + 1/¢)?]
and creates a spike. This spike is from a set of measure zero. Hence, its effect on the generalization
error cannot be detected in the asymptotic limit. However, in the finite case, this spike affects the
generalization error. In Section[d] we provide a concrete example for this.
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Spectrum of FTFO For this, Theorem 1.4 from |Péché| (2019)) establishes that the spectrum of
1 FOFO can be approximated by the spectrum of

%(@XWO + ¢1E)T (62 XWo + 6:2),

where = has IID standard Gaussian entries and ¢, ¢ are constants that only depend on o. Here X
and W are freely independent, and the asymptotic spectrum of XX T and W' W, are described
by appropriate Marchenko-Pastur distributions. Prior work such as [Nadakuditi & Edelman (2008)
can be used to analytically determine the spectrum of the product.

Spectrum of Cross Term - FoXw(¢T  This term is also particularly challenging as Fy and X are
both functions of X and hence are dependent. This paper shall not consider this dependence.

3 PROBLEM SETTING

Building upon the challenges identified in Section 2, we explore two spiked covariance settings. We
aim to understand the generalization error of least squares regression in such data models.

3.1 DATA MODEL

We consider a data matrix X € R™*?, whose rows are the data points, that is generated as the sum
of a rank-one signal component corresponding to the spike and a full rank component corresponding
to the bulk. Since we are interested in the effect of the spike on the risk, we call the spike component
the signal and we shall refer to the bulk as the noise. This is the signal plus noise spiked covariance
model from |Couillet & Liao| (2022).

X=7Z+A.

The signal (spike) component is represented by Z. Let u_€ R? be a fixed unit-norm vector repre-
senting the direction of the spike in the covariance matrixﬂ We generate Z as:

Z = vu”,
where 0 scales the norm of the matrix, and v € R™ has unit norm.

The noise (bulk) component is represented by A. The noise matrix A € R™*? has entries A;; that
are independent and identically distributed (i.i.d.) with mean zero and variance 75 /d. Additionally:

* The entries of A are uncorrelated.
* The distribution of A is rotationally bi-invariant; it remains the same under orthogonal
transformations from both the left and the right.

* A is full rank with probability 1, and empirical spectral distribution of = AA” converges
TA

to the Marchenko-Pastur distribution as n,d — oo with n/d — c.

Note that the isotropic Gaussian satisfies all of the noise assumptions. For a larger family of distri-
butions that satisfy the assumptions, see |Sonthalia & Nadakuditi| (2023).

Connection to two-layer model In the setting of [Moniri et al|(2023)) we can think of A as the
representing Foﬂ We can also think of u as being Aw for some isotropic Gaussian vector w. In
this situation, A and Z should be dependent. We shall not consider this dependence and assume
that Z, A are independent. This difference is significant. However, understanding the generalization
error while ignoring this dependence is still an important step.

3.2 TARGET FUNCTIONS

We study two different scenarios for the target vector y € R”, depending on whether the target
depends solely on the signal or on both the signal and the noise:

“This is not the exact eigenvector for the spike, as we have perturbed it by the noise matrix

3Note that this is note exact as the limiting e.s.d. for Fy is not necessarily the Marchenko-Pastur distribution,
only true of ¢o = 0. This difference is not too important, as instead of using the Stieltjes transform for the
Marchenko-Pastur distribution in our paper, we could use the result from [Péché| (2019); [Piccolo & Schroder
(2021)) instead.
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Signal-Only Model: The target depends only on the signal (spike) component Z:
yi = 7 Ba + &4,

where 8, € R? is the true parameter vector we aim to estimate and ¢; is the observation noise,
independent of Z and A, with E[g;] = 0 and E[¢7] = 72. If we consider our analogy of u = Aw,
then we see that y; is similar to a quadratic function of the data.

Signal-plus-Noise Model: The target depends on both the signal (spike) component Z and the
noise (bulk) component A:

yi = (zi +a;)" Bu + &,
where a; € R? is the i-th row of A.
3.3 LEAST SQUARES ESTIMATION AND RISK

We consider least squares regression to estimate the parameter vector 3 € R¢, with regularization
parameter p > 0.

For the signal-only problem, we solve:
Beo = axgmin lly = X8Iz + 1?1113 3.1
For the signal-plus-noise problem, we solve:

Bapn = argrrgnlly—XﬂH; (32)

Instance-Specific Risk: We consider the instance-specific risk, the error obtained when evaluating
performance on a specific testing dataset. We introduce testing data Xz = Z;s¢ + Ayst, generated
similarly to the training data but potentially with different variances.

To account for possible differences between training and testing data, we distinguish: 62, 6%, as

the strengths of the signal (spike) component and TE‘Mn, Tim as the variances of the noise (bulk)

component, each during training and testing. Additionally, ’7'52“ will denote the variance in the
observation noise during training.

The instance-specific risk for the signal-only model is:

1
Rao(e: . 7,0) = | ZuuB ~ XaBoll] (3.3)
st

where the expectation is over the randomness in Ay, A, €xn- 7 collectively represents all the
variances involved and 6 represents both 6;,., and ;.

The instance-specific risk for the signal-plus-noise model is:

1
E [ X8 — XuaBopnll2] - (34)

Nist

Rspn(c;T,0) =

By analyzing these two settings, we aim to understand how the spike in the covariance matrix af-
fects the generalization performance. The distinction between the signal-only and signal-plus-noise
models allows us to explore how the inclusion of the noise (bulk) in the target function influences
the estimator’s ability to generalize.

4 GENERALIZATION ERROR

This section presents the generalization errors for the two models. The detailed proof can be found in
Appendix [A]and [B] We present a proof sketch at the end of the section. We begin by considering the
signal-plus-noise model first. Here we use the Vinogradov notation where f < g means f = O(g).

Theorem 3 (Risk for Signal Plus Noise Problem). Let 7., < 1, d/n = ¢+ o(1) and d/niss =
¢+ o(1). Then, for any data X € R"*% y € R™ from the signal-plus-noise model that satisfy:
1<}, 735, <d 07,/13, <n 07,/m5 < . Then for ¢ < 1, the instance specific
risk is given by

0> 1 3 02, ¢ cr? 1
R . 9) = tst tst 1— trn Etrn i
spn(cy T ) Nist (0t2rnC + Tfltrn) - Tz%trn d(gtzrnc + T%trn) l—ec e d
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For ¢ > 1, it is given by
1\ 7% 73 72 02 1 1
Reon : ’9 — . 2 1— = tst tst Etrn (1 _ trnC -
e 8) = 3P (1- 1) Pt e (1o gt ) Lo (]

HgstTjtrn . 1 2 trn TEZt'r'n 9752’ nC + Tiwn
+ 5 vl (85 u)® + 1B I + = — .
st (02, +73, ) ¢ dri,..)  Th.. ¢

TheoremE] can be seen as an extensmn of Theorem 1 from Hastie et al.[(2022). Specifically, if we

set TAt = TA =d, Oy, = TAt n, and O, = TAt . Nist, and send d/n — c, then we obtain
from Theorem[ﬁf
2 c
Rspn — Etran c 1 c<1 . (4'1)
HB*” ( )+T&‘thc 1 c>1

This is the risk from |Hastie et al.[ (2022). Hence, we can see that Theorem (3| lets us interpolate
between a prior model that does not have the spike and spiked models smoothly.

Theorem [3] shows that the presence of the spike affects the risk in the non-asymptotic case. To see
this, let ;s = 7a,.,/Ttst and Oy, = Ta,,,, /0. This results in the Z and A matrices having the
same expected norm. Then, in the underparameterized (¢ < 1) case, this risk simplifies to

2
TAsar 2 c 1
—tst T . + ol — .
Tfhm ftrn 1 — ¢ d
Here we see that spike does not effect the risk. Hence, not seeing the spike in the asymptotic limit is

not an issue. On the other hand, for the overparameterized (¢ > 1) case, with the same simplification
(Btst = Testr/Mest and Oy, = T4, /1), the risk becomes

1\ 73 1 0? 1

2 Atst 2 trn

. 1——) ==t - . 4.2

e (1) B o [ e o (0) @
2 2

Comparing this to the unspiked case, we should observe a correction term (”% that depends
trn Af

on the relative strength of the spike (0y,,,) to the bulk (7 Atm)' If we assume large bulk strength, that

is, 74,., = Ta,., = d, then we see that this term is of order O(1/d?), which can be ignored. In
other words, the spike does not affect the risk.

However, if 74,,, = ©(1), then the correction term is of order ©(1/d). Hence, the spike does not
have an effect in the asymptotic case but does in the finite case. We verify this empirically.

Figure [4.1] shows four lines. The blue line corresponds to the true risk computed by empirically
training the model. The orange line is the risk predicted by Theorem|[3]or, more specifically, Equation
2

2
The green line is the correction term m"i""). Finally, the red line is the asymptotic risk
trnTT Ay,

which does not have the correction term.

We consider two settings. For the left hand side figure, we let 7., ., = 5,7T4,,, = T4,.,, = landd =
5000. We then varied n from 50 to 200. Here, we can see that the spike correction term is significant
and affects the risk. For the second setting, we consider the case when 74,,,, = 7a,,, = d = 500 is
large. In this case, the correction term has a small magnitude, and both the asymptotic risk formula
and Equation 4.2 match the true empirical risk.

Hence, we observe that if the target vector y has a smaller dependence on the noise (bulk) component
A, then the spike affects the generalization error. To better understand this, we can consider the
extreme case where the targets y only depend on the signal (spike) component Z. This is exactly the
signal-only model.

Theorem 4 (Risk for Signal Only Problem). Let pv > 0 be fixed. Let 1., =<0, d/n = c+o(1) and
d/nist = ¢+ o(1). Then, any for data X € R"*¢ y € R™ from the signal-only model that satisfy:
1< 7], 73, <d0%,/73, < n 0%,/7%, < . Then for ¢ < 1, the instance specific
risk is given by ' o

1
R(c; p, 7,0) = Bias + Variancey,,, + Variancea,,, .. + 0 (d)
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Figure 4.1: Figure showing the affect of the spike on the generalization error for finite matrices.
Left: when the strength of the spike is large compared to the bulk, we see an effect that this is not
detected by asymptotic risk. Right: the bulk and the spike have the same strength and we do not see
any effects of the spike on the risk.

with
07st T s
Bias = = Bs Sten (92 e+ T3 T—l}7
Tgst 72 [( uy' QAM(t Aum) (T2 = 1)

et'r‘nTAt + 1 ezrn + fot
Va1 gy | o 2 ) g, )

Variancey,,, = 7

4
2T A

72,7 03 1)67
Variancea,,, ., = 2% At [1 + S 3 ((C+ Jirn 1)] (T2 - 1)
Y

P} 2
273 TAtrn TAtrn TAtrn
) n 9 202 2 2
_ c (C+ 1)9tr’n Et'rnTAtst 1 _ 2c et""n EﬁnTAtst (1 — C/.L)
2 2 3
dr3, . V2T dy nwn

where

2 2 2
pe+ TAtrn + CTAvrn

2
= /(73, +ue—crd, ) aeend | T -

T ’
92
andy =1+ 2;[” (Titm + CTitrn + ple — Tl) )
Atrn

For ¢ > 1, the same formula holds except Th = \/(—Tfhm + ple+ CTE‘MH)Q + 4u267'fltm

Theorem El breaks the risk into three terms — the bias, the variance due to bulk, and the variance
due to the bulk and the observation noise. To further interpret the expression, we consider some
simplifications. First, setting 7. to zero recovers Theorem 1 from Li & Sonthalial (2024). Second,
let us consider the unregularized problem, that is ;. = 0.

Corollary 1 (Non-Regularized Error). For the same seiting as Theorem[d] for ¢ < 1, we have that

1
Rsolc; p = 0,7,0) = Bias + Variance + o <d> ,

2 2
i 9 9,5 C + Ta C
Bias = bt (7, (BT 72, (At A )
2 2 trn trn 1 —c
nist (O +74,,.,)

2 2 2 2 2 2 5

Variance = M + <(5Tu) 9”” + TAtrn B Tetrn ) etrnTAtst c
) _ 2 2 2 _
TAtrn (1 C) Htrnc + TA“% TA”” d (TA“. + 9tm ) 1 C
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Figure 4.2: The peak for generalization error versus c curve has a peak at ¢ = L For both
A

figures 4 = 7.,,,, = Otrn = Ots¢ = 1 and d = 1000. Left: We set 74,,,, = 1, hence the peak should
occur at ¢ = 1/2. Right: We set 74, = 2, hence the peak should occur at ¢ = 4/5.

For ¢ > 1, the bias and variance become

P 02, c+ 13
Bias = tst 7_4 (5T’LL)2 4 7_2 n trn
2 2 2 At \Fx Etrn c—1 )
Nitst (0“”" + TAtrn)
2 2 2 2 2
Variance — Asst Tetrn + <(ﬂTU)2 _ Tetrn > etT"ILTAtst ¢
- 2 _ * 2 2 2 _1°
TAtrn (C 1) TAtrn d (TAtrn + et”‘n) c—1

Here, both the bias and variance terms have been simplified and become more interpretable. For
example, the presence of 1 — c and ¢ — 1 in the denominator shows that the error blows up as we
approach the interpolation point (¢ = 1), leading to double descent. Suppose that 6y, = T4,,, /1,

Tf‘tm = d, and d,n — oo. Then in the underparameterized case (¢ < 1), the asymptotic risk
becomes 1
2 ¢ T
T, + u)——.
2 T (B

For the overparameterized case (c > 1), the asymptotic risk becomes

1 c
2 T
T, + u .

Ef,rnc_l (6* )0_1
Again, we see that a correction term appears and that the asymptotic risk is dependent on the spike.
Specifically, the correction term depends on the alignment between the eigenvector u corresponding
to the spike and the target function 5. We note that this correction term also exhibits double descent.
Finally, we do not get the ||3,]|?(1 — 1/c) term present in Equation[4.1|as 3, is independent of the
noise.

Alignment terms such as 63 u have been seen before. For example, [Wei et al.[(2022) considers
estimating the generalization error for least squares regression for data with non-identity covari-
ance. They show that the risk depends on the weighted alignment between the target 3, and the
eigenvectors of the covariance matrix.

Double Descent Peak Location Depends on Variance of the Bulk: While we obtained inter-
pretable results in the unregularized case, we would also like to understand the regularized case.
One common feature of generalization risks for least squares regression in the proportional regime
is that the asymptotic risk exhibits double descent. As seen from Theorem [3] and Corollary [T we
have double descent, and the peak occurs at ¢ = 1. However, looking at the formula in Theorem [4]
it is unclear if the risk exhibits double descent. Empirically, examining the risk shows us that the
model does exhibit double descent. However, the peak is no longer at ¢ = 1 and occurs at

2
TAvrn

C— —F/F—=.
2 2
Ty TH

Figure 4.2)empirically verify this in two cases.
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Proof Idea In this section, we provide a brief discussion of the proofs of the two theorems, par-
ticularly focusing on how we handle the spike in the covariance matrix. The proof relies on the
asymptotic limiting spectrum but only for the noise matrix A, not for A+ Z. This is why we cannot
let 74, ,74,,, g0 to zero. The proof builds upon ideas from [Sonthalia & Nadakuditi| (2023); [Li &
Sonthalial (2024). The main idea is that the solution 35, or 35py, is of the form:

Xty =(Z+A)ly.

Here, instead of using the spectrum of Z + A to quantify the error, we expand (Z + A)' using the
result from Meyer (1973) into sums of terms where we only invert A, not A + Z. Thus, we only
care about the Stieltjes transform of A.

Let 5y be the solution to the signal-only problem when 7'3””" = 0. Then we see that

550 = 50 + (Z + A)Tgtrna and 65]371 = 650 + (Z + A)TAﬂ*

We compute a bias-variance type decomposition for the risk. For example, for the signal-plus-noise
problem, we decompose it as

||Ztstﬁ* — Ztstﬂsan%‘ + HAtstﬁspn”%? + ||Atstﬂ* H%‘ - 2ﬁIAz;tAtstﬁspn~

Then we show that each of these can be expressed as the product of dependent quadratic forms
that are mostly of the form w? (A% Asnn)fwy or wi' (AT Asr) (AL Agrrn)Twy for some vectors
w1, wo. We use the almost sure weak convergence of the spectrum of A to express these as m/(—p?),
i.e., the Stieltjes transform of the limiting e.s.d for A at —u2. Additionally, we show that these
terms concentrate and bound the variance. See lemmas numbered [I0] through [22]in the Appendix.
As such, we can estimate the expectation of the product using the product of the expectations. We
need to keep track of two forms of error: first, from the approximation of the finite expectation
using the asymptotic version, and second, from using the product of expectations to approximate the
expectation of the product. These result in the o(1/d) error in the theorems.

5 LIMITATION AND FUTURE WORK

While this work takes an important step in understanding the generalization error for data with
spiked covariances, significant work remains to be done.

Discrepancies with Moniri et al. (2023) There are a few discrepancies between the model con-
sidered here and the spiked covariance model from Moniri et al.| (2023). Specifically:

(i) The distribution of the spectrum for F{y versus that of A.
(i) The dependency between Fy (for us A) and Xw (forus Z).

We believe the distribution of the spectrum of Fj is solvable using the techniques presented here. We
need to use the appropriate Stieltjes transform, which has been studied in prior work (Péché|[2019).
The dependency between F and Xw also appears tractable but would introduce some additional
quadratic forms that would need bounding. While these two problems are approachable, they require
significant work and are avenues for future research.

Multiple Spikes and Steps This paper only considers the model where there is a singular spike.
However, depending on the step size, we may see multiple spikes. We believe that the manner in
which [Kausik et al.[(2024) generalizes Sonthalia & Nadakuditi| (2023) from rank one to generic low
rank could be adapted to study the problem with multiple spikes. Additionally, we only consider the
case where we take one step.

6 CONCLUSION

The feature matrix of a two-layer neural network has been shown to have spiked covariance with
finitely many spikes. However, these spikes cannot be detected when we look at the asymptotic
proportional limit. Nevertheless, the spikes are crucial as they arise due to the feature learning
capabilities of neural networks. This paper considers linear regression with data that has a simplified
spiked covariance. We show that the models here are natural extensions of prior work and quantify
the generalization error. We show that for the signal-plus-noise model, the spike has an effect for
finite matrices, but this effect disappears in the asymptotic limit. For the signal-only problem, we
show that the dependence on the spike appears even in the asymptotic limit.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Ben Adlam and Jeffrey Pennington. The neural tangent kernel in high dimensions: Triple descent
and a multi-scale theory of generalization. In International Conference on Machine Learning, pp.
74-84. PMLR, 2020.

Ben Adlam, Jake Levinson, and Jeffrey Pennington. A random matrix perspective on mixtures of
nonlinearities for deep learning. arXiv preprint arXiv:1912.00827, 2019.

Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics of gener-
alization error in neural networks. Neural Networks, 132:428-446, 2020.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932-37946, 2022.

Zhidong Bai and Wang Zhou. Large sample covariance matrices without independence structures in
columns. 2008.

Jinho Baik and Jack W Silverstein. Eigenvalues of large sample covariance matrices of spiked
population models. Journal of multivariate analysis, 97(6):1382—-1408, 2006.

Daniel Barzilai and Ohad Shamir. Generalization in kernel regression under realistic assump-
tions. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=PY3bKuorBI.

Florent Benaych-Georges and Raj Rao Nadakuditi. The singular values and vectors of low rank
perturbations of large rectangular random matrices. Journal of Multivariate Analysis, 111:120-
135, 2012.

Lucas Benigni and Sandrine Péché. Eigenvalue distribution of some nonlinear models of random
matrices. Electronic Journal of Probability, 26:1-37, 2021.

Romain Couillet and Zhenyu Liao. Random Matrix Methods for Machine Learning. Cambridge
University Press, 2022. doi: 10.1017/9781009128490. https://zhenyu-liao.github.
io/book/l

Michal Derezinski, Feynman T Liang, and Michael W Mahoney. Exact Expressions for Double
Descent and Implicit Regularization Via Surrogate Random Design. In Advances in Neural In-
formation Processing Systems, 2020.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression
and classification. The Annals of Statistics, 46(1):247-279, 2018.

Zhou Fan and Zhichao Wang. Spectra of the conjugate kernel and neural tangent kernel for linear-
width neural networks. Advances in neural information processing systems, 33:7710-7721, 2020.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. Annals of statistics, 50(2):949, 2022.

Hong Hu, Yue M Lu, and Theodor Misiakiewicz. Asymptotics of random feature regression beyond
the linear scaling regime. arXiv preprint arXiv:2403.08160, 2024.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems, volume 31,
2018.

Arthur Jacot, Berfin Simsek, Francesco Spadaro, Clement Hongler, and Franck Gabriel. Implicit
Regularization of Random Feature Models. In Proceedings of the 37th International Conference
on Machine Learning, 2020.

Chinmaya Kausik, Kashvi Srivastava, and Rishi Sonthalia. Double descent and overfitting un-
der noisy inputs and distribution shift for linear denoisers. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
HxfqTdLIREL

11


https://openreview.net/forum?id=PY3bKuorBI
https://openreview.net/forum?id=PY3bKuorBI
https://zhenyu-liao.github.io/book/
https://zhenyu-liao.github.io/book/
https://openreview.net/forum?id=HxfqTdLIRF
https://openreview.net/forum?id=HxfqTdLIRF

Under review as a conference paper at ICLR 2025

Antti Knowles and Jun Yin. Anisotropic local laws for random matrices. Probability Theory and
Related Fields, 169:257-352, 2017.

Xinyue Li and Rishi Sonthalia. Least squares regression can exhibit under-parameterized double
descent. Advances in Neural Information Processing Systems, 2024.

Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the Multiple Descent of Minimum-Norm
Interpolants and Restricted Lower Isometry of Kernels. In Conference on Learning Theory, 2020.

V A Marchenko and Leonid A. Pastur. Distribution of eigenvalues for some sets of random matrices.
Mathematics of The Ussr-sbornik, 1:457-483, 1967.

Song Mei and Andrea Montanari. The Generalization Error of Random Features Regression: Precise
Asymptotics and the Double Descent Curve. Communications on Pure and Applied Mathematics,
75, 2021.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A Mean Field View of the Landscape of
Two-layer Neural Networks. Proceedings of the National Academy of Sciences of the United
States of America, 2018.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization Error of Random Feature
and Kernel Methods: Hypercontractivity and Kernel Matrix Concentration. Applied and Compu-
tational Harmonic Analysis, 2022.

Gabriel Mel and Surya Ganguli. A Theory of High Dimensional Regression with Arbitrary Cor-
relations Between Input Features and Target Functions: Sample Complexity, Multiple Descent
Curves and a Hierarchy of Phase Transitions. In Proceedings of the 38th International Confer-
ence on Machine Learning, 2021.

Carl D. Meyer, Jr. Generalized Inversion of Modified Matrices. SIAM Journal on Applied Mathe-
matics, 1973.

Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear feature
learning with one gradient step in two-layer neural networks. arXiv preprint arXiv:2310.07891,
2023.

Raj R. Nadakuditi. OptShrink: An Algorithm for Improved Low-Rank Signal Matrix Denoising
by Optimal, Data-Driven Singular Value Shrinkage. IEEE Transactions on Information Theory,
2014.

Raj R. Nadakuditi and Alan Edelman. The Polynomial Method for Random Matrices. Foundations
of Computational Mathematics, 8:649-702, 2008. doi: 10.1007/s10208-007-9013-x.

Eshaan Nichani, Alex Damian, and Jason D. Lee. Provable guarantees for nonlinear feature learning
in three-layer neural networks. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=£fShubymWrc.

S. Péché. A note on the Pennington-Worah distribution. Electronic Communications in Probabil-
ity, 24(none):1 — 7, 2019. doi: 10.1214/19-ECP262. URL https://doi.org/10.1214/
19-ECP262.

Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/f11e/0£3d014eead934bbdbacb62a0ldc4831-Paper.pdf.

Vanessa Piccolo and Dominik Schroder. Analysis of one-hidden-layer neural networks via the re-
solvent method. Advances in Neural Information Processing Systems, 34:5225-5235, 2021.

Rishi Sonthalia and Raj Rao Nadakuditi. Training data size induced double descent for denoising
feedforward neural networks and the role of training noise. Transactions on Machine Learning
Research, 2023.

12


https://openreview.net/forum?id=fShubymWrc
https://doi.org/10.1214/19-ECP262
https://doi.org/10.1214/19-ECP262
https://proceedings.neurips.cc/paper_files/paper/2017/file/0f3d014eead934bbdbacb62a01dc4831-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/0f3d014eead934bbdbacb62a01dc4831-Paper.pdf

Under review as a conference paper at ICLR 2025

Yutong Wang, Rishi Sonthalia, and Wei Hu. Near-interpolators: Rapid norm growth and the trade-
off between interpolation and generalization. In International Conference on Artificial Intelli-
gence and Statistics, pp. 4483-4491, 2024a.

Zhichao Wang and Yizhe Zhu. Deformed semicircle law and concentration of nonlinear random
matrices for ultra-wide neural networks. The Annals of Applied Probability, 34(2):1896-1947,
2024.

Zhichao Wang, Denny Wu, and Zhou Fan. Nonlinear spiked covariance matrices and signal propa-
gation in deep neural networks. arXiv preprint arXiv:2402.10127, 2024b.

Zihao Wang, Eshaan Nichani, and Jason D. Lee. Learning hierarchical polynomials with three-layer
neural networks. In The Twelfth International Conference on Learning Representations, 2024c.
URL https://openreview.net/forum?id=QgwAYFrhot!

Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how
real-world neural representations generalize. In International Conference on Machine Learning,
pp- 23549-23588. PMLR, 2022.

Denny Wu and Ji Xu. On the Optimal Weighted \ell_2 Regularization in Overparameterized Linear
Regression. Advances in Neural Information Processing Systems, 2020.

Lechao Xiao, Hong Hu, Theodor Misiakiewicz, Yue Lu, and Jeffrey Pennington. Precise learning
curves and higher-order scalings for dot-product kernel regression. Advances in Neural Informa-
tion Processing Systems, 35:4558-4570, 2022.

13


https://openreview.net/forum?id=QgwAYFrh9t

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM [4] (SIGNAL ONLY)

In order to take advantage of previous results, we reformulate the problem in Equation [3.4]to make
it align better with those settings. In particular, we consider

Zo = argII[}iTnHﬂIZtm + 53;71 - ﬂT(Ztm + Atrn)H% + MQHﬂH%v (A.1)
1 2
Reo(i1,70) = —Ea, e |18 Zust = B5(Zes + i3], (a2
tst

where Ay, € R Z400 = Oppuvl, € R BB, e € R Here we simply transpose
everything and adjust the matrix dimensions accordingly. We also change the dimensions of the test
data in the same way. This is equivalent to Equation but allows us to match previous settings,
from which we derive important results. Now we present the full proof in five steps.

A.1 STEP 1: DECOMPOSE THE ERROR TERM INTO BIAS AND VARIANCE

This step is foundational and relies on Lemma [I| The key idea here is to separate the error into
two components: bias and variance. This decomposition is crucial because it allows us to analyze
these two sources of error independently. The first term represents the bias (error due to the model’s
systematic deviation from the true function), and the second term represents the variance (error due
to the model’s sensitivity to fluctuations in the training data).

Lemma 1. Suppose entries of Ay € R¥ ™5t have mean 0 and variance Tf‘m /d. Then

Edv,dvseirn 185 Zast = Bao(Zast + Avst) | 7]
:]EAMqutst;Etrn |:||/BIZtSt - z:)ZtStH%} +IEAM‘7L7Atst15trn [|‘B£At5t||%] .

Bias Variance

Proof. This lemma is a direct extension of Lemma 1 in [Sonthalia & Nadakuditi| (2023)). It fol-
lows from the fact that the cross term is zero in expectation because the entries of Ay are zero in
expectation. O

A.2 STEP 2: OBTAIN PRELIMINARY EXPANSIONS FOR BIAS AND VARIANCE

This step involves deriving expressions for 55, and then using these to expand the bias and variance
terms.

We start by reformulating the ridge-regularized regression problem:

Bro = argmin |82 Zern + etrn = B (Ztrn + Aven) [ + 171815 (A3)

This can be rewritten using augmented matrices:
5;,; = argrgliTnHﬁ*TZtm + Ez;n - ﬁT(Ztrn + Atm)”% + MQHBH%

= arg rngn|‘ﬁIZtrn + ég;n - ﬁT(Ztrn + Atrn)”%»

where A;,., = [Aprr, ], Ziym = (Zirn O, €L, = [Ez;n 0]-

trn

The solution to this problem is given by:

g:) = (532157"71 + ég;n)(ZAtrn + Atrn)Ty (A4)
where T denotes the Moore-Penrose pseudoinverse.

Let 4 = U, @t'rn = [Utrn 0], Otst = [UtsAt AO] suchAthat Ztrn = 9tmu@t7;n and Ztst = Htstuf)tj;t.
We then define several helper variables (h, k, $, t, £, v, P, q) to simplify our expressions. These
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variables capture different aspects of the data and the solution, such as projections onto the signal
and noise spaces.

h = @trnAIrn7 k= Azrnua
= (I AtrnAtrn)u = @z,tz;n( - AIrnAtTn)’
E=1+ HtTnﬁﬁnAimu, = 05 llE1P 1R + €2,
k|2 .
]3 — trn | || t”I‘ etrnk;
 On]ft -
qAT _ trn” || kTAtrn — h.

3

Our main objective is to compute the expectations in Lemmal[]in terms of the regularization constant
1, the asymptotic ratio or Marchenko-Pastur shape ¢, the data parameters (0, O:st, d, ntst), the
noise parameters (T4, , TA,.,, Te,,., s Teso,)» and the ground-truth parameters, in particular 37 u.

Note that in practice, we only assume access t0 Zs,y, + Atrns BL Zirr + Etrn» and noise distributions
during training.

Lemma 2. Suppose v # 0. Under our assumptions,

s0 trn

2 0 3
T _ trng BT h + trn” ” ﬂTukTAITn + étj;ﬂn AIT’H. trn kaTAT - EﬁLjT .
v gl 3 v

Proof. From our optimization setting, it is clear that the optimal solution is given by

z:) = (BZZtTTL + éz;-n)(ZtT7L + Atrn)T
= (gtrnﬁIU6£n + éz;n)(etrnu'{)trn + Atrn)T
= Orn BT UL (Otrntirn + Arpn) T+ €L (Brnud L, + Agpn)'
trnﬁ* ’U/Utrn( trnWUtrn + trn) +€trn( trnuvtrn + trn) .

By Theorem 3 inMeyer| (1973), the pseudoinverse is

trn trn

9 r™n 3 A A
(Atm + HtTnuvtm) = Al tf TET AT — %qu. (A.5)
By Lemma 2 in|Li & Sonthalia (2024), the first term is

trn

At etrn”f 7T At éAAT etrng T trn” H2 T 7.7 At
Oprn BT uvl., | AT + : —t kT A, — ;pq 5 0% BTk + y ———0, uk” A,

‘We then combine these results. ]

Lemma 3. Suppose v # 0. Under our assumptions,

Ot 7 .
Yy — ﬁz;Ztst = B*TZm - BSTOZtst = gBTZtst + 975 tg z;npvtj;t
trn

Proof. From Lemma 2] we know that

Oy N2
ﬂzztst - B‘Z:)Ztst = BZZtst - < ¢ néﬂT h + t n” ” BT kTAITn) Ztst

trn

0 n 3 A A
— Etrn (AT tg iTk'TAITn — f/qu> Ztst-
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Substitute Z;5; = 9t5tuvt7;t. The first two terms can be rewritten as

0 trng }AL T 9t2rn||£|| kTAT T
tstﬁ* uvtst ~ UNUV gy + ~ trnUWVtst

X 02, |It
= etstﬂ (uvtst t;ng g;“nA:frrnu g;t + ”n,y||| kTAITn“’”éZt) :
Note £ — 1 = Oy dF, Al u, kT Al u = kTk = ||k||2. The above equation becomes
(€1 121 |12
0 7 (u s@w ), — Gl ﬂ (L ) |

Using v = 62, ||7]12]|k]|2 4 €2 to combine the coefficients, we have that

EE—1) 62 lIE201E)? 7+€—52 R §
y y y oy

1—

Finally, the first two terms are nothing but

gﬁTetstuvtst = EBTZtst
Additionally, after substitutions, the last term can be sunphﬁed as
9 ™ c A 9 N f 7
Etrn <A1‘rn té_ kaTAITn - %p <_ L g || hTA;rrn - h>> Ztst (*)

1 0 ™ 0 ™ t
- atStEtrn (Airnuv;l;t + té_ L:TkT‘AIrn Ugst + = 6 ( t gl H kTAIrnu + hu) vtst) :

Since k = Atmu and hu = vthtm = g;l, we then have that
9tm||k|| iy T E ([ BualltlIEI> , E-1Y 7
= Oys —t =
( t tstrn < ¢ 'Yp 5 + Oirm Vtst
9fm||k|| £ (0L EPIEI>+€2 - €Y 4
= 0;0F ok, + 2p | Vg
tstStrn < tst v 59”71 tst

9 ok
= Osstéprn < : ” I — T, 4+ = (79 f) Ug;t)
trn

1 Ji||2 N 1 .
= etStgt’rn <0t (trné'_'”.ET + etrnk> ’Ug;t + ?pv;‘gt — th"ypvtj;t>

T (_ etst A T etst A T atsté A~ T > — atstf AT A~ T

= Ern Vigt T 57— o, Vist — ) tst trnPVtsts
n trn,7

gtrn 01‘,7"71,

where we recall the expression of p for the second to last equality. We then obtain the result. O

Lemma 4. If A;s; has independent entries of mean 0 and variance Tflm /d, then

72 ngs
Ea,.. 1850 Atst 7] = 5| Bsol|-

Proof. Consider Atst = Atst, which has entries with variance 1/d. We have that

Nist

2
. 735,
Eap. (185 Aest ] = 74, Bar, (185 Ause”] = =2 Bsol -

The last equality directly follows from Lemma 3 in Sonthalia & Nadakuditi| (2023]). O
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Lemma 5. In the above setting,
Hﬁsj;”%‘ = (53”)2”3"% + 2ﬁzwg;)t(2trn + Atrn)TTétrn
+ ég;n(Ztrn + Atrn)i(Ztrn + Atrn)TTétrny

where BT = Ztrn(Ztrn + /Altm)f, the optimal solution to the rank 1 denoising problem
arg mlnﬂf ”Zt'rn - ﬁz(Ztrn + Atrn)H%‘

Proof. A direct expansion of ||3s,||% yields
1855 = (BT Zign + €5) (Zivn + Aten) T (Zin + Aten) T (B Zirn + €1,,)"
= 5:{Ztrn(2trn + Atrn)T(Ztrn + Atrn)TTZﬁnﬁ*
+ 287 Zirn(Zirn + At (Zirn + Aten) T étrn
+ éz;an(ztrn + Atrn)T(Ztrn + Atrn)TTétrn'
Using BT = Ztrn(Ztrn + Atm)T and Z;,y, = O4pnudyn, we have that
BzZtrn(Ztrn + Atrn)T(Ztrn + Atrn)TTth;nW

= Bfu TI‘ <9t2rnﬁg;n(2trn + Atrn)T(Ztrn + Atrn)TTﬁtrn) UTW

= &TUTI“ otrnUﬁgn(ZtTn + Atrn)T(Ztrn + Atrn)TT etrn{)trnuT UTW
N—_—— —
Zirm Ztrn
T, \2(| 3112
= (B w) I8l
where the second to last equality is since u is a unit vector, and inserting it on both sides of the trace

does not change the value. The other two terms follow. O

Note that these expressions in Lemma [] [5] can be expanded even further. We will come back to
them once we have the necessary expectations in the next step.

A.3  STEP 3: COMPUTE EXPECTATIONS OF IMPORTANT TERMS

Now we leverage techniques from random matrix theory to establish the following lemmas.

Lemma 6 (Li & Sonthalia (2024)). Let A € R¥*" and A = [Atrn,  pl] € R (n+d) - Suppose

A=UXVT and A = UXVT are the respective singular value decompositions, then U = U, and
(a) If d < n (underparameterized regime),

o1(A)? + pu? 0 e 0
0 \/ 02 (A)2 + /-1/2

$ c Rdxd
0 0 cq(A)? + u?
and .
V= [V;(djxiil ] c Rd+n)xn
(b) If d > n (overparameterized regime),
o1 (A)2 + 122 0 0 o 0]
0 0'2(14)2 + M2 0
5= 0 0 (A2 + 12 0| € R™,
I
0
i 0 0 0 0 p
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and - L
V — Vzl:n,l:ncl_ 0
ﬂUlm,Oi U(n+1):d

where C is the upper left n X n submatrix of 3

c R(d+7z) xd

The following Lemmas are in|Li & Sonthalia|(2024)) for the case when 72 = 1. We need the lemmas
for general 72 and so we present them here. The proofs are very similar to the proof in|Li & Sonthalia
(2024) with the appropriate rescaling.

Lemma 7. Suppose A € R4*™ such that d < n, where the entries of A are independent and have

mean 0, variance 72 /d, and bounded fourth moment. Let ¢ = d/n, A = [A pl] € R¥*(n+d),

Wy = AAT, and W,, = AT A, Suppose \q is a random non-zero eigenvalue of Wy, and A\, is a
random non-zero eigenvalue of the largest n eigenvalues of W,,. Then

724 p2c—cr?)?2 2¢272 72— 2 cter?
) B[] =B [5] = VRSt o159,

- 1| 1| 24 pPet(c—1)%r? 1 1 2
(i) B [73} =k {Tﬁ} o 2}140\;(7'2-1-:20—072)2+4M202‘r2 + 2pt (1 B Z) + O(I/T )

3 cu?
(i) B [713} =E {%3} = em (=% ) +o(1/7%),
_l-z—c— (1—z—c)?2—4cz

where m.(z) = ~50e is the Stieltjes transform.

Proof. First, it is trivial to see that 1/\g = 1/, in expectation since W and W,, share the same
set of eigenvalues from which we sample. Here we consider W, and define i = p/7, A = A/T.
Note A then has entries with mean 0 and variance 1/d.

By the definition of W, 5 Wj is the correct normalization to turn it into a Wishart matrix. Also, by

assumptions on A, the eigenvalues of T%AAT = cAAT converge to the Marchenko-Pastur distribu-
tion with shape c. With these results, we have that

AT
Wy =cl[A pl |:/LI:| = cAAT + cp’I
= (eXq)i = coi(A)? + cp?

= (eXq); = er203(A)? + er?fi?

. (c)\d> — oy (A)? + i,

T2

The rest of the proof follows the same fashion as in |Li & Sonthalial (2024), with additional care on
the general variances. We provide a sketch here: we consider the Stieltjes transform for computing
the expectation of inversed eigenvalues, which is given by

mc(Z):E)\|: 1 }:_1_2_0—\/(1—2—0)2—4%.

A—z —2zc
We plug in z = —cfi? to obtain the needed result,
72 1 c
E|—| = me(—cpi? E|—| = —med(—ci?).
LM} me(—cfi) — [/\d} —3Me(—cit’)

Simplifying and plugging in i = u/7, we have that

E 1] 1 B V(T2 + p2e — er?)2 + 4p2c2r2 — 7% — e+ er?
M| (A +p2| 2u2T2c '

To get expectations for the squared and cubed inverse, we need to compute the derivatives of m.(z):

1 } _ (c—z—|—\/—4cz+(1—c—z)2—1)(c—|—z—|—\/—4cz—|—(1—c—z)2—1).

me(2) = E {(A —z)? dez?\/—dez+ (1 —c—2)?

18



Under review as a conference paper at ICLR 2025

2 ] e+ D(E2+3(c—1)%) =322+ 1) = (c— 1)
} B cz3(—4cz + (1 — ¢ — 2)2)3/2
(c=D@x(c+1) = 22— (c—1)?)
cz3(_4cz +(1—c— 2)2)

4 2 2
T 9 1 c cl

© [~ =2 ] - 5 (7).
27° 7 ~2 1 oy cp?

1
A3
extremely complicated. Hence, we only provide a heuristic formula in the lemma statement and use
Sympy to simplify further computations when needed. O

Then we have

3

Similarly, we simplify these results to get the conclusion. Note for E { }, the formula becomes

Next we have similar Lemma for ¢ > 1.

Lemma 8. Suppose A € RY*™ such that d > n, where the entries of A are independent and have
mean 0, variance 72 /d, and bounded fourth moment. Let ¢ = d/n, A = [A ul] € R (d+n),

Wy = AAT and W, = AT A. Suppose A, is a random non-zero eigenvalue of Wy, and A\ is a
random non-zero eigenvalue of the largest d eigenvalues of W4. Then

. —724p2c+er2)2+44p2er2—72 —peter?
() E[L] =E[] = YErnicrer vt | (1)),

s 1| 1| p2?+pP et (e—1)%72 1 2
(i) B[] =[] = ottt 5l (1= )+ ol1/7),

0 B8] =83 - st (- 07,

3
d

where my o(z) = — 1zzml/er 7(12;;;1/6)2742:/6 is the Stieltjes transform.

Proof. The proof is analogous to the ¢ < 1 case. We consider W,, and define i = p/7, A=

A/T. By assumptions on A, the eigenvalues of T%ATA = AT A converge to the Marchenko-Pastur
distribution with shape 1/c, and

(An)i = 0i(A)? + p?
= (An)i = 7203(A)? + 722

An 5 _
+ (), e

The Stieltjes transform becomes

l-z—-1/c— VI —2-1/c)2 —4z/c
—2z/c '

myye(z) = (A.6)

Similar to Lemma we need to plug in z = —/i? here and compute necessary derivatives:

727 - [1] 1 - 1 2
E [)\n = m1/c(*,u2) —E T ﬁmuc(*ﬂz) = ﬁmuc <¢2> .

7 _ (1] 1 1

2
n J L'n J T

2797 " ~2 1] Lo, s
El:)\g =miy(—i7) —Elg | =55mie |~ )

n J L""n d
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We simplify these terms to get the results. Again we skip the full formula for the cubed inverse. [

Finally, we shall need the following estimates as well.

Lemma 9. Suppose A € R¥*", where the entries of A are independent and have mean 0, variance
72 /d, and bounded fourth moment. Let c = d/n. Suppose \ is a random eigenvalue of A. Then

(i) Ifd>n,E :ﬁ} — ¢ (; + 7'2+u2c—\/(—72;;:—220-&-07—2)2—%4#2(37—2) 4 0(1/7_2)'

(ii) Ifd < n, E ﬁ} _ % n 72+u2c—\/(~r2—0—2u;c2—c7-2)2+4u2c27-2 _’_0(1/7_2)_
) 7> 08 [y = (g — g ) o1/,

(iv) If d < n B[ 2ays] = 272\/@2;2222;5;1%2czrz — 22 +o(1/72),

(v) Ifd>n,E {(MA;)Q} _ ertertite ;f\/f(if/:i;:jﬂff4 +o(1/72).
) < B [ ] = e S s )

Proof. The results immediately follow from Lemmas by

2] v eelee] - oonld]
[(A +Au2)2} - {Hﬂ d [(A +1u2)2]’
A

Remark 1. We can also evaluate the following expectations:
A 1
El———=|=E | ——| — B | ——1|,
[(A+u2)3] [(Aﬂﬂ)?] 8 [(Aw%?&

=[] 2 laam ] -2 (s )

However, they are too complicated to be presented here and are not always useful. We will use
Sympy when these terms show up.

A note on bounded variances: Previous works in|Li & Sonthalial (2024), Sonthalia & Nadakuditi
(2023), and [Kausik et al.| (2024) have established proofs that bound variances of terms present in
our 3L formula, which implies that their variances asymptotically decay to 0. In our setting, since
the variance parameters 74 is at most O(n) and we normalize by 74 to get the appropriate limits.
However this means that when 74 grows we actually get faster convergence. 7. has finite value.
Hence they only induce a multiplicative change in the total variance of terms and do not affect the
asymptotic decaying phenomena. In other words, these terms are still highly concentrated, and we
can treat them as almost independent when d, ny., — o0. A direct consequence of this is that we
can compute the expectation of a product as the product of its individual expectations.
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A.4 STEP 4: ESTIMATE QUANTITIES USING RANDOM MATRIX ESTIMATES

The following lemmas compute the mean and variance of terms in the 3% formula. The proofs are
similar to Lemmas 13-18 in|Li & Sonthalial (2024); we repeat it for Lemma@] and provide a sketch
for the rest.

Lemma 10. Under our assumptions, we have that

2 2 2
c Py e, e L) resa ) e<a
~ 272 \/(‘r2 +u2c—cr? )2+4 2c272 2Tit Atrn
E4 [||hH2i| _ Atrn Agpn TH Atrn H Atrn n
o -rf‘ +('Tf‘ —ch 1 2
t ~ Atrn

¢ 272 \/(_"'2 T:— 2c+(r':'2 )2+4 2¢72 N 27—3\ T O(I/TA“‘”) c>1

Atrn Atrn w T Atrn Hoc Atrn trn

and Var(||h|]?) = o(1/73, ).
Proof. Recall that h = 8, Al . where tpn = [Virn 04] € R4 with vy, € R being
a unit vector. We aim to compute E 4, [||2]|?]. First, consider the singular value decomposition
(SVD) of A;pp:

Ay =USVT,
where U € R?%? is orthogonal, & € R9*4 is diagonal with non-negative entries, and V €
R(nern+d)xd hag orthonormal columns. Then, the pseudoinverse of A;,., is given by

Al st
and . .

Therefore, we have

||il||2 _ BBT _ f;T AT ATT

A AT 27T
trnAtrnAtrn Vtrn _rUt’r"n‘/E V= O

Assume ¢ < 1. We can partition V and y¢rn to reflect the structure of Atm. Using Lemma@ let us

write V as R
9 ‘/l:dz]z]_1
V= - .
[ pUs—t

Since the last d elements of 0,., are 0, we get that

T Yy _ T o1
Dy V' = Vg V1:a 22

Thus, we see that
E||2))? = ol Vi.aZ2 SV v,
d
>\.
Z T 2 i
pr— ’l) V. S —
i:1( trn Ld)z ()\L+,L’L2)2

Note v, V1.4 is a uniformly random unit vector in R™¢» by the rotational bi-invariance assumption
on Ay,. Thus, when we take expectations, this becomes 1/n4,.,,. We then see that

- Y by
E[Ih)2] =& |3 G WEIT

i=1

The term inside the expectation is another expectation and we can use weak convergence. Thus, in
expectation, this term by Lemma[7]becomes

A T3 4ot e 1
:| B Airn Atrn K — +0(1/Timn)’

E P

2
2 2 2., .2 2.2,.2
2TAt7‘n \/(TAtrn + 'LL ¢ CTAtrn) + 4’u ¢ TAM‘n
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where the additional factor of ¢ comes from projecting d entries onto the 7., coordinates of the

randomly uniform vector.

For ¢ > 1, we use the corresponding SVD in Lemma(6|and the expectation in Lemmal[8] We get

trn 2\2 2
(A + a ) 2Titrn \/(_Titrn + ,LLZC + CTlitrn)Q + 4M2CTﬁt7~n 2TAt1‘n

Lemma 11. Under our assumptions, we have that

2 2 or2 2 2.2 .2 2 2
\/(TAM‘” +'u ¢ CTAtrn) +4'u ¢ TAt TN, TA““" " C"'CTA“-” + 0(1/7—?{ )
trn

Ea,... [IIEl?] =
o \/ -2 +u2ctecer? +4p2er —72 § 7uzc+c72
( Atrn AtrnzLZTz”n Atrn Atrp + 0(1/7_%”")

and Var(HI%HQ) = 0(1/T;§tm).

Proof. (Sketch) Recall that k& = Al

trn

trntrn U

} ) Ea,, {ﬁ} c<1
1 1 1\ 1
EEAtrn |:A+;L2:| + (1 - Z) w2 c>1

where for ¢ > 1, 1/c of the eigenvalues follow the expectation and the rest equals 1/u2.

Ea,. [ T T At

Lemma 12. Under our assumptions, we have that

u. Using SVD of Atm and a similar argument, we have

—|—O(1/7’itm ).

O

O

2
E [”{”2] 27'}2‘1”'” T%trn - CTI%M‘H B M2C + \/(Titrn B CTfitrn + 'LLQC) + 462’u2’r§1trn> + 0(1/7_1%t7“n) c< 1
Atrn =
2
2 iltrn _Tflt”l + CT‘%“‘" - ,LL2C + \/(_T‘%trn + CTA’%tv'n + /,L2C) + 40/142’7"%“.") + 0(1/7—%#7‘71) & > 1

and Var(||t]|?) = 0(1/7‘31””).

Proof. (Sketch) Recall that £ = o, (I — A}

trn
we have ||#]|2 = 1 — 8%, Al Ay 04rn. and with SVD of Ay,

1— CEAtrn [%ﬂz] c<1

1- EAtrn [ﬁg;WL‘A/i:i?VTﬁtrn} = A\ .
1-— }EAH," [W} c>1

Agrn). Since (I — A],., Ay) is a projection matrix,

O

Lemma 13. Under our assumptions, we have thatE 4, , [é} =landVar(é) = 062, (dr3, )

Proof. Recall that f =1+ HtmvthT u. Using the SVD of Ay, we have that

trn

B [§] = 1+ Ear, Bt VEO 0] = 1.

because U is a uniformly random orthogonal matrix, which makes U7 v a uniformly random vector

that is independent of V and ¥. We similarly compute E Aprn [é 2} for the variance.

Lemma 14. Under our assumptions, we have that

2
1 + tr" TI%M‘” + CTA’%tTn + M2C a \/(Titrn o CTA’%trn + M2C) + 462#

Atrn

Ea,,.. V] =

At

with Var(’}//etrn) - 0(1/(7-%“%))'

22

O

27—%17‘71,) + 0(1/T124t7‘n) c< 1

Vo gl (R, + o, e = (o, erd, e aaen, ) o/, o>
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Proof. Recall that v = 02 [|£]|2]|k||? + £2. The expectation of the individual terms were computed

trn

in Lemmas|[I1] [12} and[T3]

The difference between product of the expectations and the expectation of the product can be
bounded by the square root of the product of the variances. Hence in the this case, we see that
the product of the expectations has an error term of o(1/ Tﬁtm) and the square root of the product of

the variances is also o(1/73, ). Hence, we see that the error in the expectation is o(1/73, ).

We also need to compute the variance. The variance of the product of two dependent random vari-
ables X’ and ) is given by

Cov(X2,Y?) + [Var(X) + E[X)?] [Var(Y) + E[V]*] — [Cov(X, V) + EX]E[V]].

Note that for both variances decay at order o(1/ Titrn) additionally, we see that the constant order
term represented by (E[X]E[)])? cancels out. Hence we see that

Var(y) = 0, [Cov( 1%, 1) +o(1/73,,)] -

Similar to before, we can compute and check that Cov(||£]|*, ||k]|*) is o(1/73,,.)- O

Lemma 15. Under our assumptions, we have that
u202+u2c+(c—1)27—/24”n

- - 2
pret+ptet(e—1) 7y,

4 _ .2 2 2 2 2.2
2“ C\/( TAtTnJrH C+CTAt7‘n) +4M CTAtT‘n,

and that Var(l%TflT Al ];i) = 0(1/734”")-

+ 2# (1- %) +o(1/73, )

+ ﬁ (1—=1)+o0(1/73, )

trn*trn

B, [F0AL AL -

trntrn

Proof. (Sketch) Using k= Aimu and the SVD, we have

1
Ba,, [TUS0T] = {4 [ c<1
trn 1 1 1 1
EEAf,rn {W} + (1 - Z) wr C >1
where for ¢ > 1, 1/c of the eigenvalues follow the expectation and the rest equals 1/%. O

Details of the above expectations have been discussed in |[Li & Sonthalial (2024). The following
lemmas establish expectations unique to this setting.

Lemma 16. Suppose ¢ € R™ whose entries have mean 0, variance T., and follow our noise as-
sumptions. Then for any random matrix Q € R"*" independent, we have

E.q [¢7Qe] = 2E[Tx(Q)].
Proof. We have that

n n
ETQS = Z Z €i€55 -

i=1 j=1

We take the expectation of this sum. By the independence assumption and assumption E[e;e;] =
0 when i # j, we then have

E: q [€TQ5} = ZE [522] E[g;;] = TEE [Z Qij‘| = Tf]E Tr(Q)]-
i=1 i=1
O

For the following Lemmas [I8] 191 20| [21] [22] we need that variance with respect to Ay, is
bounded. We do not need it to decay. All of the expressions can be expressed as bounded functions of
the non-zero eigenvalues of Ay,.,. Hence, due to weak convergence, they converge to some random
variable on a compact measure space (the measure is the Marchenko-Pastur measure). Hence, these
random variables have finite moments. Some of the variances do actually decay, but it is not too
important.

23
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Lemma 17. Under our assumptions, the following terms have zero expectation w.r.t. Ay and eqpp
Ve € (0,00)

(l) EAt'r'n trn i| 0.

(ii) Ea,, [e?mkteftm} =0.
(iii) EAf,rn [Etrn trm‘A]L kt&t’“”} =0.
(lV) EAtr'n |:5trnAtrnhT]%étT”i| =0.

Proof. The heuristics for this proof will be the following: if the term contains an odd number of a
uniformly random vector centered around O (call it a € R¥) that is independent of the rest, then by
matrix multiplication, the expectation can be written as

Z E [a?**'] E [other terms] for some k € N.
This becomes 0 since the expectation of an odd moment is O for a centered uniform distribution.

We use this idea to expand these 4 terms for ¢ < 1:

(i) The term kT Al

trn

hT follows directly from Lemma 18 in|Li & Sonthalial (2024).

(i) ég;"nkfét'f“” = ég;'nAIrnuvt'm (I AtrnAtTn)EtTn
Using the SVD A =UXVT and the fact that the last d entries of Vgrns Etrn are 0, we have
el VT UTuwol, (I —VVT)épm
V1. dEZ 1T V1. dZZ & & Etrn
= [Ez;n Og} |: /.LUZ 1 :| Utu [Utrn 05] (I |: UE 1 :| [E IEVvljzwd NE IUT]) |: Od :|
=T V7,405 72 @ vF (I = Vi.aSE 22V etrn.

We notice the vector U7 v is uniformly random and centered by the rotational bi-invariance
assumption. Hence, the expectation equals O.

Gii) &7, ATATTkie,,., =T Al AT Al

trn‘ttrn trnuvtrn(I AtrnAtTn)gtTn'

Similarly, with SVD this is just
el vE2VTUST U Twol, (I —VVT)épn,

Etrn

=<l VS (SR8 4 12872) ST U ol (T~ ViSSPV e,

Again we use the explicit form of V and note VIV = $-1%25-1 4 253-2, The vector U u
is uniformly random, so we have zero expectation.

. T . AT o
@iv) Et ATRTET Etrn = EtmAIMAImvtmuTAImgtm.

‘We then have
el VS22V T 0t US W e, = e V3.gBE 48V im0 U TUS=2vieim.

The vector u” U is uniformly random, so we have zero expectation.

Similarly, for the ¢ > 1 case, we can prove it using the corresponding SVD, and the same results
hold. O

It is important to note that Lemma[I6|does not directly apply due to the zeros in &. For the following
Lemmas we only need that the variance is bounded. We do not need the variance to decay.
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Lemma 18. Under our assumptions, we have that

2 2 2
2 TAprn T A, THTC 1 2
) Tetrn | 522 NG vy 3, | T o(1/74,,,) e<1
E AT k,];,TA _ Atrn, Atrn Atrn Atrn, rm
Etrn,Atrn €t7‘7l Etrn| = 5 n 5 n 5 .
2 TA CTAypy TH C 1 2
Tetrn T YSUSCRRRY: T +o(1/73,,) ¢>1
272 \/(—7'2 +p2ctcr? ) +4p2er? At
TAtrn Agpn TH Atrn HoCT A o

Proof. Suppose ¢ < 1. We expand this term using SVD and have

At
€trnkk Etrn = atrnAtrnuu Atrngt?”n

_ T ‘/1(122
trn UE 1

= V22U Tl T US 28V e

} ST IUST [SeVE ST

We take its expectation and by Lemma[T6] we have
Bevrn i [étTT”];]%Té”"} =72, Ea,., [Tf (W;dEi_QUTuuTUXAJ_QEVde
=72 Ea,, [WTUST2SULVES 20Ty

A
_ 2
~ B [

The rest follows from Lemmal[9} For ¢ > 1, we use the same approach and get

2
AT 73T 2 _ Tevrn A
EEtrn,Atrn [Etrnkk 5trn:| - Ec EAtTn |:()\+M2)2:| !

where the additional factor of 1/c¢ comes from projecting n.,,, entries onto the d coordinates of the
randomly uniform vector. O

Lemma 19. Under our assumptions, we have that

22, 2 2 _2
poc+ptet(c—1)°T
72 (=1 744, +3(1—c))+o(1/r3, ) c<1
trn 2\/(Tf‘trn+u2070‘rf‘ in )244p2c? TAt trn

T 3T ia
EgtrnyAtrn [Etrnt tgt"'"] = 2 2 2 2_2
2 pwoct+pTet(e—1)* 7y

.
Etrn 2\/(—Titm+”2C+CTitm)2+4u2”itr

L\JM—A

(1— c)) +o(1/73, ) ¢>1

Proof. Suppose ¢ < 1. We expand this term using SVD and have

Etrnt tEtT’ﬂ - gtrn(‘[ AZ;nAA*trn)/UtTﬂﬁtj;n (I - ‘AAIrnAtTn)étTn
=&l (T =VV Yool (I —=VVT)épn,
=l (I = V0.aBE 28V Y ogmol, (I — VigES 728V ) epm.

We take its expectation and by Lemma[I6] we have

Eegro. [0, 8] = 72, Eay, [Tr ((I VLaES T2V vl (1 — Vlzdziﬁzvfd))}

=72 B, [0 = ViaZS 22V 0t |

Etrn

Etrn

2 T T N —2 T
=T EAt'rn [vtrnvt?”n - 2rUtrnV'1:dEE Evlgdvtrn

IS AR VA0 3) St yob ) 1 dvtm]
A2 A
2
= 1+ By |—2 |2k, |—2—1).
T( B [(Huz)Q] e [AﬂﬂD
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The factor of ¢ comes from projecting d entries onto the ny,.,, coordinates of the uniformly random
vector.

The rest follows from Lemma[9] For ¢ > 1, we use the same approach and get

. A2 A
T T iA _ 2
B B ] =72 (1B |5 - 22 [255] )

The variance directly follows from concentration. O

Lemma 20. Under our assumptions, we have that

2 2 2
Ta +cTi +up“e 1

7-521 d - _ trn tr2n = — 52 —+ O(l/Tjt ) c < 1

At b 27 (7 +p2c—cr )2+4p2c?T Atrn o
E AT A _ Appn Agrm Atprm Atrn
2”“ 8trn trn 5”” - 2 2 2 .
trm Ta,. +tcTa, +pc
ngtrnd _ 2Atrn - At,nz : — — 27_21 —+ O(l/T{%trn) c > 1
2T R e \/(7TAtrn+M CHeTRy,, ) TR, Atrn

Proof. Suppose ¢ < 1. We expand this term using SVD and have
EtrnAtrnAtrnEtTn - Etrn‘/Z 2VT§757‘71 - Etrn‘/l dzz Z‘/1 dCtrn-
Again taking the expectation, we have
EstrnaAtr'n [strnAIrnAirTnétTn} = TEQtTnEAtrn |:TI' (Vlidziizlzvl’l:d)}

=12 g, [Tr (22—42)}

Etrn

A
2
S e
where the factor of d comes from summing up the d diagonal elements.

The rest follows from Lemma[9} For ¢ > 1, we use the same approach and get

. A M A
T 2 2
Eetrn;At'r'n [EtrnAIrnAtrnEtTn} - Tsn n NtrnEAt'r'n |:2:| = Tet,,.n ?]EAt'r'n |:()\4>,u2)2:| .

(A +p?)
O
Lemma 21. Under our assumptions, we have that
2 3,2 _2
Tetrn© M TAbyn 2
2 ; 2 ; 2,22 3/2 +0(1/7-14“%) c<1
E T WTiz N ((TAt +ute—cri, )2+4aptcT] m)
Etrn,Atrn €t7’77, trn Etrn| = 7_62 csp,27'i 9 .
trn trn 573 + O(I/TAtrn) c> 1

— 2 2 2
(74, rurerers, )P Hauters, )

Proof. Suppose ¢ < 1. We expand this term using SVD and have

Ez;n trnhTtEtTn - EtrnAtrnAtrnvtTnvg;n(I - AzrnAtTn)étTn
=L VSTV T ool (T = VV Tt
=&l V1SS SV vl (I = VigSE 28V e tm.

We take its expectation and by Lemma[T6] we have

trn Etrn

Ee,,... [ethT hTfétm} 2 Ea,. [Tr (vg;n(l— wdzi—?m/fd)V1:d22—4zvl?dvtrn)]

trn

=72 Ea,. [vﬁn%;dﬁlﬁ)_‘LZ%TdvtM BYAIRT 3 Saed 350> 4EV1dvtm}

Etrn

= 72 cE # —cE L
= Tetrn Atrn (A + p2)? Atrn A+ p2)3
1 1
2 2 4
= Tetm <CM EAtrn |:(>\ +N2)2:| — CU EAt'l'n |:(A+M2)3:|> .
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The factor of ¢ comes from projecting d entries onto the ny,.,, coordinates of the uniformly random
vector. The rest follows from Lemma([7} For ¢ > 1, we use the same approach and get

1 1
Eetrn, [ Al hTie m] =72 E — | - u'E | |-
A Etrntrn Et Tetrn M Atrn ()\+M2)2 H Atrn ()\+M2)3

L]
Lemma 22. Under our assumptions, we have that
72 22
Strn trn + 0(1) c< 1
3/2
T T~ (12 +p2e—cti )2+4[L2 272
Eé‘trmAwn {EtrnAzrnAIrnkk trnj| = ( Arn 2 ch Ta o )
Strn trn e + 0(1) c > 1

2 2 2 2 2 2
(( TAM‘nJrH C+CTAt'rn) +4,LL CTAt'rn)

and that Var (T Al AIT kkTé,.,) = o(1).

trn“trn

Proof. Suppose ¢ < 1. We expand this term using SVD and have
EtrnAIrnAI?nkk Etrn = EtrnAIrnAzanIrnuuTAtrngtrn
>0 0 Y "2 V6 Yand SRR VIVER 95 Sk VN
=T V258 (2*1222*1 + ,ﬁz*?) ST u  US 2V ey,
We take its expectation and by Lemma[I6] we have

Eern, [ethI,nAI,TnkkTetm} =72 Ea,. [ TUS 2Ly es 3 ( “ly25-l oy 25 )i]_lUTu]

trn

Etrn
- L
=72 (E — = | -E 2
e (B o] B [ 5
AT
> |E s
e (B [

- ) . -
2 2
=T E —— | —pE — ).
Qm(‘”mxx+wv_ 8 &”[@+u%?>
The rest follows from Lemma([7} For ¢ > 1, we use the same approach and get

[ T AT T } 9 1 1 12 1
Eetrn, |€ nh | =T, “Ea,, |77 3| TEAw. | T3 | ]
e |Etrn Al t et \ O+ p2)2 ¢ (A + p2)3

=72 Ea,, [0TUST2EIER28 20Ty — 2 USRS 00 |

O

These are all the expectations we need for the final derivation of the error formula. We present the
full results here, but readers might have noticed a substantial similarity in each pair of cases: the two
formulas only differ in the radical. This observation will allow us to present the final formula in a
more concise way.

A.5 STEP5: PUT THINGS TOGETHER

Proposition 1. Under our assumptions we have that for the bias term, if ¢ < 1,

2 92
Bt |0 21 = 0520 = 2 5T 0+ B (B 73,.,) (T2~ 1) o (2 )
AtTTL

trn
where

2 2 2
W e+ Ta,,, TCTa,.,
T '

2
7= /(R - erd, ) aped,  To =

0
and~y =1+ —m (Tf‘tm + CTitrn + ,uQC — Tl) .

For ¢ > 1, the same formula holds except

2
T = /(=r2,, +wPcterd, ) +duerd,
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Proof. By Lemmal[3] we can rewrite the bias term as
2
| ¢

Ostl 7 .
6T tst + 9 2 ~ z;npvg;t
trn

st;ZtstHi;v -

F
¢ T 6t i B2
tstS A A~ tst
= ’ 7ﬂzztst + 9 = z;npvtjgt +2Tr <9 = stwetrnpvt9t> .
v F trn”Y F trn”Y

Note the last term is zero in expectation since ., has mean 0 entries. We go ahead and expand the
other two terms.

Using Z;st = Oysiuvi,, we first have

. 2
€ o tf T, T T t tf T
=By Zyst = b B UV Vpst U B = . (3 )
v F
since v, Vst = ||vse]|? = 1. We also have
Orsil T AT 02,2 AT AT T 02,2 T A
0 €t7npvtst = 029 Tr (strnpvtstvtStp 5““”) = 929 2 trnpp Etrn-
trnY F trnY trnY
[N 07, Ik 21 7
We plugin p = —%t — O¢rnk and expand. We get
03,,€2 (LI 293 k]2
95“72 ””52 el Tt pm trn el kteim +02., 6T kkTém
trn S———

Since the term has mean zero and 6;,,, is a constant it doesn’t effect the mean. Hence can divide and
multiply by 67, so that we get a factor of 62, /4% which then has the appropriate variance. Hence,
the second term equals 0 + o(1) in expectation. We then have that w.r.t. A, and ¢y,

2 2 k R
B9 Zot = 88, Zeally = 02 (107 | & | 462,02, I r e,

trn

Etrn

1
—|—9t5t [7 stmkkTetm} .

By concentration and Lemmas [T} [T3] [T4] [T8] [T9] we use SymPy to directly multiply individual
expectations and get the results. O

Proposition 2. Under our assumptions, with 3T = Ztm(Ztm + Atm)Jr we have that if ¢ < 1,

62 07, + T2,
B [(ST0?I81] = 2 5Ty [(QAA) (- 1) +ol1)

where

2 2 2
W e+ Ta,,, TCTa,.,

2
Tl = \/(Titrn + M2C - CT%‘M‘H) + 4M262T124t7‘n’ T2 T k)
1

92
andy =1+ 5B (1, berd, e T).
Atrn

For ¢ > 1, the same formula holds except

2
= /(=r3, +ue+erd, )P+ duers, .

Proof. Li & Sonthalial (2024)) studies the ridge-regularized denoising setting. By its Lemma 4, with
our notations,

~ 02 F2 R 4
[ Wope |2 = Lff 1A% + 2 MkTAT Ty trn” al Oernll o7 41 497 7.
gt v

trn trn
72

The rest follows from concentration and our Lemmas[T0} [12} [13] [14} [13]
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Proposition 3. Under our assumptions, we have that if c < 1,

EemmAt,\n [ég;n(ZAtrn + AtTTL)T(ZtTn + Atrn)TTétrn:|

2 2 2
0z, T +1)67.
Tetrn |:d cztrn ; ((C 5 ) trn 1>:| (T2 _ 1)

2
2TAt7'n TAen T TAtrn
9 ) 2 2.2 2
_ c (C—|— 1)9t7’7’b7—5trn 1 . 29trnc Tetrm < 1 _ C’“’)
5 53 2 3 )0
TAtrn v Tl " Tl Tl

where

2 2 2
2 pec+ Ty, Ty

— 2 2. 2 2,22 _ trn trn

T, = \/(TAM +ple—cry, ) 4+4pPri, [ Th = d :

2

0
andy =1+ 727_'2"" (T%tm + crf,tm + ple— Tl) .
Atrn

For ¢ > 1, the same formula holds except

2
T = /(7. + e+ erd,,, )+ duerd, .
Remark: This term corresponds to the part of variance further induced by &4, .

Proof. We first expand this term and cross out individual terms with zero expectation, denoting them
accordingly.

ég;>n(2tr7l + Atrn)T (Ztrn + Atrn)TTétrn

£ ~ T
~ 9 rn ~ ~ o N 9 n . R . .
= étj;’n (A;ﬁrrn + té ngTAIrn - quT> (Azrn + té tATkTAIrn - ’E}/qu) Etrn

4 20 it aap aa 2% o
*éT 14Jf ATT étrn+ g"n éT /1Jf ATT ktétrnfigéT AIrnQﬁTétrn

— “trn‘trnftrn trn“trn‘trn trn
0
97527’71 ];TAT ATT )&l iTiz 204 AT ”T];TAT AT A 52 AT anT anT o
+ 52 trn‘ttrn €trnt tEtTn - v Etrnt trndP " Etrn + Wgtrnpq qp" Etrn

We know the expectation of the first term from Lemma. Here the second term equals O in expectation
by Lemma |7} We expand the other terms one by one, marking those with zero expectations:

- etrn ffT) étrn

2% o it s pI N | 02 1K||% . _
7783;’7LAIrnqu€tTn = 77€,tl;”nAIrn (WTLU”AZE;L‘IC - hT 7Mt - etTnkT Etrn
0l 2 13 13
208 NENPNEIZ oo 2+ air 2o 2020007 0 st atT i
- _ trn” U || || Ez;nAImAgnktﬁtrn— trnH || €z;nAIrnAI?nkkT€tTn
vE
0
202 k2 v v s Wirn v ar e
_ tTn” H €£nAItht5trn— trn €z;nAzthkT€tm
0
20 I 20 I OrrnllE® i1+ 5 02, |1k|1% .
2 on TR AL, G5 e = — 22T TR A, <—““”Aifnk—hT> et
¥ 3 £
204 WENRIENZ /o0 26 avr o\ - .
= - 2o FITIHIE (K" Af,, AL E) 2T, i
7€
20 12 forct atr o\ r erir
_ 2l (kTAImAITTnk> e iTTe,
’Yf —_———
0
_29§rn||k||2 AT ATATAT 7T ta _ t2rn AT ATATAT 72T 1.7 ~
— €t KT AL R ey, Erpnt” kBT Af R kT Epn.
75 ————

0
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‘We further denote

03 Nk 7 p 02 NN e 02125 5 -
Q :quT — trn ‘ A! H || tATkTAIrn 4 tT‘nJ || {Th+ tT‘n/“ H kkTAIrn 4 otrnkh (A7)
Then using this result, we expand the last term

2
%éz;nﬁqATQf)Tétrn = %éz;nQQTétrn
0 NENMNENY fog 21 a4 - . 205 |1k|I411£]1
—_———

trn“trn

7262 72 y
205 KRN og v air s - 208 NEIPNENZ .7 2 og 2t o7 s
72 — v —
07 k[ |A ]2 A 40}, 11|12 (1)1 cp it ams
+ trn |/_}/IL || || é\g;nthétrn"" trn |’Y2|| || || éz;n{]—' k,TAITnhT tétrn
0
203 | klI2IAI2E 7 0L MEN® fog 2+ a7 2 .
+ t’rn”ﬁy|2 || H féz;nktétrn + tT’r:,y|2 || (kTAIrnAI?nk) éz;nkkTétrn
0
203 tAzA RN o P B2A2 .
+ trr;2| H féz;nkkTAIrnhT kTétrn"’ trnJy2| § étj;nkkTétrn~

0
All the cross terms will have zero expectation here.

Now the only terms with nonzero expectation are

Q) &r Al AT 2.

trn‘trn‘trn

trn“trn

. 202 o AL aam oA e
(ii) —% (Ht||2£,§r,,nAJr AT kkTépm + ||k||2fsz;nAItht5tm).

(ii) % (Ht”4 (kTAImAIgnk) Enk kT Ern + Hk”4Hh”25£ntNTt5tM)-
(iv)
O8I IEN" 268 WEIPIEI® | 60n \ (17 a1 217 2 o7 j7ie . Ol BIPE 1 pop.
<trn72é2 e tE (AL, ATLE) et o + el kR
~ 2
(O8I0 = Oa) ™ 02 e .
= s (kTAImAIfnk) T Ty Pl I 2” S
= I (A7 AL L ALLR) €T 80 + |1B2E2ET R T 200 )

In the last step, the cancellation follows from v = 62 ||#]|2[|k||? + £2. We use Lemmas

(13} [T4] [T3] [17] [18] [T9} 20l 21] 22] to multiply these expectations with SymPy. In particular, with the

numbering above, we get

_ dr2 B 202 2?2 Ty — cp?
B[] = G50 1), B, ()] = —20 e (D200,
trn
[(i47)] = cle+ Vbinte,, T2 T, — 2eth,,
ctrn:Atrn 27—2””72 2 T12 ’
]E [( )] _ ce?rnTEQtrn T (T 1)
trnsAtrn wjl = 27-211””72 2\f2 !
We combine these terms to get the results. The variance follows from concentration. [
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Theorem 4 (Risk for Signal Only Problem). Let p > 0 be fixed. Let 7., <0, d/n = c+o(1) and
d/niss = ¢ + o(1). Then, any for data X € R"*? y € R™ from the signal-only model that satisfy:
L3, 73, <d 07,/73, <n 07,/15 <K . Then for ¢ < 1, the instance specific
risk is given by '

1
R(c; u, 7,0) = Bias + Variancea,, + Variancea,, ... +0 <>

d
with
62, 1 72
Bi _ tst _— T,\2 Etrn 92 2 T —1
1as Nist ’72 |:(B* U) + 27’;1‘”" ( trnC T+ TAtrn) ( 2 ) )
02,73 1 c (92 +72 )
Vari — JtrnlAwse © (gT, N2 | 2\t T T A ) o q
ariancea, i 2 (By u) 2 (T, — 1)],

2 2 2 2
TS, T 0;... T 1)6
Variancea,,, c,.., = 55;2 Ast [1 + :2”" T; ((c —:2 )0in + 1)] (Tr —1)
Atrn At'rn trn
— 02(C+ 1)9?7"n7-€2trn7—31tsf, 1 _ 2620t2TnT€2tran21tst (1 — CMQ)
dri, V212 dry T? T} )’

where

2 2 2
_ et TA, A

2
— 2 2, _ 2 2 .22
Tl - \/(TAtrn + p=c CTAt'r'n) + 4/1' ¢ TAu-n’ T2

T ’
92
andy =1+ 27_t4m (Titm + CTitm + e — Tl) .
Atrn

For ¢ > 1, the same formula holds except Ty = \/(—Titm + ple+ CTI%”")2 +4pery, .

Proof. The proof follows from the decomposition in LemmalT]

1 2 . . .
—Ee,,, Aun || Y Ztst — BeoZist|| . gives the bias in Propositior[T]
Ntst o
Furthermore,
2
1 TA,  Ntst
s 2 . .
— #EEW“AM IBsol| 7 gives the variance,
Nist
where by Lemma3]

Hﬁso”%‘ = (Bzu)znwopt||%‘+2ﬁzwg;;t(ZAtrn'i_Atrn)TTétrn"'_ég«n(ZAtrn"'_Atrn)T(Ztrn+Atrn)TTétrn7
The second term equals O in expectation due to entries of €4, having mean 0. The other two terms

have expectations given in Propositions 2} [3] O

B PROOF OF THEOREM [3| (SIGNAL PLUS NOISE)

Now with a similar reformulation as[A] we can rewrite the signal plus noise problem (no regulariza-
tion) as follows:

65;771 = arg IngnHﬂz(Ztm + Atrn) + Etj;n - BT(Ztrn + Atrn)”%‘

We are interested in the error:

1
Rspn(c; T, 9) = 7EAt7‘n;Atst78trn |:‘
Nist

BY (Zise + Avst) = Bipn (Zest + Atst)HH :
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Theorem 3 (Risk for Signal Plus Noise Problem). Let 7., =< 1, d/n = ¢+ o(1) and d/nis; =
¢+ o(1). Then for any data X € R"*% y € R" from the signal-plus-noise model that satisfy:
1< 73, 73, <d 07,/13, <n 07,/15 < . Then for ¢ < 1, the instance specific
risk is given by '

0} 1 T3 07 cr? 1
R e, 0) = tst + tst 1— trnC Etrn +ol =],
spn( ) |:ntst (0t2rnc + Titrn) Titrn d(thTnC + TA“%) 1-c d
For c > 1, it is given by

1\ 7% 3 72 62 1 1
Reon : 79 — . 2 1— = tst tst Etrn [ _ trnC -
nland) =18 (1= 1) B4 g (1 e ) Lo (]

trn
2 4 2 2 2
+ GtStTAtT'n 1— 1 ( ) + ||ﬂ* H2 trn + Tetrn 0757"6 + TAtrn )
2 2 )2 c dr? T4 c—1
st (03 +73,.) TAprn Atrn

Proof. The proof techniques will be similar to Bl For simplicity, here we say A L B when their
expectations with respect to the random variables are equal. We also suppress the error terms for
brevity.

Hﬁ*T(Ztst + Agst) — Bg;m(ztst + Atst) Hi
= Hﬁ:{Ztst - SantstHF + ||ﬁTAtst SpnAtstHF
£ HBZZtst - gantetHF + HﬂspﬂAtStHF + ||ﬂzAtst||F - 2ﬂ3At<9tAz;tﬂ(9pn

bias variance adjustment

In the first equality, the cross term equals 0 in expectation since A4 has mean O entries. There is an
extra term due to the existence of noise in the signal.

In this setting, the optimal set of parameters is now given by

spn - (6T(Ztrn + Atrn) + gtrn)(Ztrn + Atrn) - z:) + 6*TAtrn(Ztrn + Atrn)T-
With this in mind, we revisit the expectations of terms in the decomposition separately.

Signal plus-noise Bias: For ¢ < 1, we adopt similar notations from [A] (since when we consider
Appn € R”X(‘“”) naturally n < d + n and we are in this case). We define h = vl Al

trm>
k - Azrn Utrn(I AIrnAtTn) f - 1 + etrnvg;nAIrnu’ ’71 - 0t2rn||t|| ||k||2 + 527 and
o Ll
= tTtT — Ok, 1 = kaTAIm — h.

The same results hold:
6IZtst - 5£7nZtst :ﬂzZtst - ﬂsj;Ztst - BzAtrn(Ztrn + Atrn)TZtst

3 Orst&
ziﬁzztst + 9 ot " g;nplvtst ﬁ Atrn(Ztrn + Atvn) Zist
trn

by Lemma E We then look at the third term. Combining the pseudo-inverse formula[A-3] the expan-
sion of pg” , 7, and A,,.,,, we can use a similar approach as in|3[and have some nice cancellations:

0 ™
7631Atrn(ztrn + Atrn)TZtst = *63Atrn (Al'rn tg tTkTAIrn - ’flplq{) Ztst
t)|? Otrn
= 0,87 Aprm, (Ajm il kET AL, — S 5kh> wol,
ga! 71

t)|% 1 k1
— _atstﬂIAtrn (kvg;t _ trn ‘ || H ||

9 rn
kol — 2 5khuv§t>
71 Y1

trn”t” Hk”2 etrng f - 1) k’UT
tst
g T otrn

_etstBIAtrn (1
§

£ T T
= —9tst*5* ApynA tmuvtst = —7ﬂ* Zyst.
1
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Hence, with ;o = 0 (see Corollary[I), if ¢ < 1, the bias equals
1 ? £ 0t23t Tetrn ( c )
Nist F Mist (etrnc + TAmL) 1—c

If ¢ > 1, now we have dimension d > n and need to further define s = (I — Ay, Atm)u Ny =
03,0 5|2 |12 + €2, and

9tst§ T T
0 EtrnP1Vtst
trn”)

1
T ||ﬁ*TZtst - @Z;gnztstHzF =

2 0 h 2
tTnH H AirnhT etrnka qT — _ t’rnH || ST
£ £
We note sTu = ||s||2. By Theorem 5 from Meyer (1973), the following pseudo-inverse holds:

—h.

0 ™
(Ztm + Atrn) AT : AT h'st 'yinq;

trn f trn

With a similar simplification, we have
BzZtst - Bg;;nZtst :B*TZtst - B;Ztst - BTAtrn(Ztrn + Atrn)TZtst
3

S
:r}fﬂzztst + 0 tSt 5;&1;77,272”1&515 63Atrn(Ztrn + Atrn)TZtst'
2 trn”:

Furthermore, we recall expressions of the deﬁned variables, and the third become can be simplified
as:

0
ﬁzAtrn(Ztrn + At’r‘n) Ztst - etstﬁ At'rn <Atrnuvt1;t tgn AirnhTSTuvg;t - inQgUU£t>

0 H 2 T § o
tst+ = trnh Utst %p2q2 UVt gt

< 2
(et (1))
(- atmp”tst** (el 9) )
(gt (*

(.

= HtstBZAtrn

S
= HtstﬁzAtrn pzvm 7?2

= etstﬁfAtrn

= 9tst/BzAtrn

p2vt5t "‘

Orrnlls || [A)1? + €% — o
fatrn bt

Y2 — o7
gatrn tst

etrn

= HtstﬁzAtrn <

2Utst + p2

otrn
Otst€
= . BTAtrnp2'Utst
gtrn Y2
Hence, we have that
2
£ Ost€
||ﬁ*TZtst - SantstHF H B Zyst + 0 . (ﬂ*TAtm +5g;n)p2Utht
trn"Y2 F
2 2 2
Ots¢§ T T 01st§ 1 T
=BT Ziall + ’ Eprn D2V + By Atrnp2v
. tst 9trn'72 trn tst 0trn’Y2 trn tst h
20,51£2
+ 9t - ﬂTAtrnPQUfst tstﬂ*
n 2

The first two expectations are given in Corollary [T] (the bias). We compute expectations for the last

two additional terms here. Similar to Lemma |1 . we have kAIth = 0 in this case. We recall the
expression of ps, g2 and obtain

Or51& 22
tst s
ﬁZAtrnPZUg;t ; L ﬂTAtrnp2p2 trnﬁ*
9757”?1’72 F gtrn Y3
E tst§2 T trnH H4AT hThATT 02 kkT
- ggrn V3 6 52 trn trn + trn trnﬁ*
2 2 2 2
g etstali;*n || BTAtTnAIrnhThAI?nAtj;nB* at;tf ﬁTAtrnkkTAz;nﬁ*
2 2
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where the cross terms have zero expectation. Taking general variances into account, from Lemma
from [Sonthalia & Nadakuditi| (2023)), we have that

P L=t ¢By BT, 1E_ c
) ) ) .
TAwn A Ta,(c— 1D

Furthermore, we turn to the SVD of the noise matrix (A, = ULV, ¥ € R4*ntrn) to evaluate
these expectations. We define a = UTu, b = UTB,, ¢ = VTv,.,. Since U and V are uniformly
random orthogonal matrices independent from each other, these vectors are centered and uniformly
random. a, b are unit vectors, and ¢ has length ||S.||. We expand the following two terms using
SVD:

BT Ay Al RTHAIT AT

trn trn‘ttrn

B, = (BTUzetsi TV Ty,,.,)?
2
(o Yo

Ntrn

= Z 2b2— + cross terms

E HB»«II2 1 c _ B c
n

T d ngg 3, (e—1)  d T3, (c—1)

2 T,)2
N G A O

In the first term, the cross terms have zero expectation due to the centered uniform vectors. In the
second term, the terms in the middle do not change the alignment between W and u, so we have
WTu. Putting everything together, we have

’ 9tst§ ﬂTA psz 2 E QthtTﬁtm (5T )2 ozetegrnTA"n ( 1) ||5*H2
* trn s — /0 . 9 No 0 . 9 o - = .
0t’rn72 ot F (9t2rn + Titm)Q (61527% +7 Atm)Q c d
With a similar approach, we now look at the last term:
2045 202,,&2
t té- BTAtTnPQUtstZ stB* _ tstf TAtrn ( trn” H AIrnhT 9 k) uTﬁ*
etrn 2 9t7n 2 §
E 2925251562

ﬁTAtrn keu™ B
72

Here the first term becomes 0 in expectation since
B Agrn Al h"u” B, = B BT USEISTV 0y u” By,

where Vvl is centered and uniformly random. Lastly,

T,\2
ﬂzAtrnkuTﬁ* - B:{UEZTUTUU’TB* 2 (B*Cu) 9
20tst£ T 20t2€t7-ﬁ T, \2
A . — — " ftrm " .
Htrn 2 ﬁ ! pQUtSt tStB (9t27”n + T%”n)Q (ﬁ U)

Now we have all these terms. If ¢ > 1, the bias equals

1
@ HﬂIZtst - B:Z;;nztstHQF L

62 1 12 02 c+ 13
(e (1) (oo 0 s (B ),
nese (0 +73,,.,) ¢ d c—1
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Signal-plus-noise Variance: By Lemma[d]

2
2 E TA,, st
HBSPHAtStH » Ctl ”65an%
TR, st g T 1 1T (AT T \T
- T(B* (Ztrn + Atrn) + Etrn)(Ztrn + Atrn) (Ztrn + Atrn) (/B* (Ztrn + Atrn) + 5trn)
E Tir‘tn

= Tmﬁz(ztrn + Atrn)(Ztrn + Atrn)T(Ztrn + Atrn)TT(Ztrn + At'r‘n)Tﬁ*

2
TApas Mtst
A d z;n(Ztrn + Atrn) (Ztrn + Atrn)TTEtrn-

Again the cross term is 0 in expectation due to mean O entries of £.,. Proposition 2] gives the
expectation of the second term (we make p — 0). The first expectation is

. 1
Bz(ztrn + Atrn)(Ztrn + Atrn)T(Ztrn + Atrn)TT(Ztrn + AtT'n)T/B* g min (17 C) ||B*H2

With ¢ = 0 results (see Corollary[I), If ¢ < 1, the variance equals

1 T E T3 T2 ¢ (e T3 )
A — tst trn 1 _ T’n Jr tst n .
Nist Hﬁs;zm tstHF T?ﬁtm(l _ C) d (T%” + etrn ) d ||6 ”

If ¢ > 1, the variance equals

1 E TitstTEQt'rn 9t2rn ]' Titst 2
et 185 A £ 2 (-1 (1 RIGCEES) + o= B

Atrn ¢ TAt + 9“"”

Further Adjustment: By Lemmad] we see that
E "4, "tst Ntst
18 Avse 17 = 7 181, a

. 1 7'2 Nist
ﬂTAtstAtst spn : AtstAtst(Ztrn+Atrn)TT(Ztrn+Atrn)Tﬁ* £ min <1a C) v 25 ||B*H2

If ¢ < 1, the adjustment equals

1 73
Kt (Hﬁ:{AtstHiﬂ - 253AtstAtj;tﬂspn> g _%”ﬁ*HQ

If ¢ > 1, the adjustment equals

1 2\ 3
o (17 A~ 267 A A ) £ (1 2) P

Putting things together from the three separate terms, we get the results.
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