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Abstract

The concept of knowledge distillation (KD) describes the training of a student
model with a teacher model and is a widespread technique in deep learning. How-
ever, it is still not clear how and why distillation works. Previous studies focus
on two central aspects of distillation: model size, and generalisation. In this work
we study distillation in a third dimension: dataset size. We present a suite of
experiments across a wide range of datasets, tasks and neural architectures, and
consistently observe that the gap in test error between distillation and the stan-
dard label training is increased as the dataset size is reduced. We call this newly
discovered property the data efficiency of distillation. Equipped with this new
perspective, we test the predictive power of existing theories of KD as we vary the
dataset size. Our results disprove the hypothesis that distillation can be understood
as label smoothing, and provide further evidence in support of the dark knowledge
hypothesis. Ultimately, this work reveals that the dataset size may be a fundamental
but overlooked variable in the mechanisms underpinning distillation.

Figure 1: Distillation is data efficient. Test error (for image classification) and perplexity (for
autoregressive language modelling) as a function of the relative training dataset size κ, averaged over
5 seeds. We compare models of the same architecture trained with either label training or knowledge
distillation. We observe that distillation dominates label training in the low data regimes.

1 Introduction

Knowledge distillation (KD) was introduced by Buciluǎ et al. (2006); Hinton et al. (2015) as a way to
transfer knowledge between two models with potentially different parameterisations. In its simplest
form, it consists of replacing the targets in the loss function with the outputs of a second model,
known as the teacher model. Several variants of the original formulation have been proposed, and
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KD is now a widespread technique in deep learning (Zagoruyko & Komodakis, 2016; He & Ozay,
2021; Touvron et al., 2021a; Caron et al., 2021; Beyer et al., 2022).

The study of distillation has so far focused on two central aspects thereof: model size and generalisa-
tion performance. Generally, it has been observed that through distillation one can reduce the model
size by a considerable factor without harming performance. And, more remarkably, the student can
generalise better than a teacher of the same size (a setting known as self-distillation), even without
any additional labels (Furlanello et al., 2018). All these observations were collected by training the
student and the teacher on the same amount of data.

In this work we look at distillation in relation to the dataset size. In doing so we discover an
inherent and unique characteristic of distillation, a phenomenon which we call the "data efficiency
of distillation". In a nutshell, we observe that the performance gains which have been historically
linked to self-distillation are more pronounced as the dataset size is reduced and they extend beyond
the self-distillation setting. This effect is consistent over a wide variety of experiments including
convolutional networks & transformers trained on vision & language data (see Figure 1). Existing
theoretical work has observed that distillation offers statistical efficiency in fixed features settings (i.e.
either linear models or neural networks in the NTK regime) (Phuong & Lampert, 2019; Ji & Zhu,
2020; Panahi et al., 2022; Zhao & Zhu, 2023; Menon et al., 2021). To the best of our knowledge, we
are the first to empirically corroborate these observations on popular neural networks and benchmarks.

As of today, there is no comprehensive theoretical account of distillation and the research community
is divided between several existing narratives. We revisit hypotheses on label smoothing (Yuan et al.,
2020; Zhou et al., 2021), distillation fidelity (Stanton et al., 2021), and feature learning (Allen-Zhu &
Li, 2020; He & Ozay, 2021) in light of this new data-centric perspective. Our work contributes to
the understanding of distillation by presenting new evidence and, more generally, a new perspective
which can expose the empirical bias in the current theories, helping to falsify or confirm them.

2 The data efficiency of distillation.

Experimental Setup. We adopt a simple experimental setup to compare distillation and label
training. We start with a trained teacher and train two equivalent models using either the teacher logits
(distillation, KD) or labels (label training, LT) as targets, obtaining a student pair (pKD, pLT ). For
a teacher trained on N samples, and a training dataset of M samples, we denote by κ ∶=M/N the
fraction of training data relative to the teacher, and we repeat the experiments for different κ in the
range (0,1). Additionally, we include a temperature hyperparameter in the distillation loss as Hinton
et al. (2015), which we finetune on the dataset. We present experiments on both image classification,
as is more common in the distillation literature, and also autoregressive language modelling tasks. A
complete description of the datasets and training procedure can be found in App. D. As metrics, we
use test error or test accuracy Acc(⋅) for vision, and test perplexity PPL(⋅) for text data.

Results. In Figure 1, we compare distillation to label training as a function of the data fraction
κ across datasets, tasks and architectures. Surprisingly, we observe in all settings that distillation
outperforms label training when κ < 1. Moreover, the gap in test performance -hereafter called the
performance increment (PI)- peaks at low values of κ (i.e. 0.05 to 0.3 for the datasets tested).

To better appreciate this finding it is worth to place it in the context of the existing literature on
distillation. It is widely reported that self-distillation leads to increased generalisation (Furlanello
et al., 2018; Allen-Zhu & Li, 2020; Stanton et al., 2021). Since typically student and teacher are
trained with the same amount of data, this observation corresponds to the κ = 1 slice in Figure 1.
Now compare the 0.20% and 1.3% PI reported by Furlanello et al. (2018) respectively on CIFAR10
and CIFAR100 with the 10% and 25% PI which we observe (annotated on Figure 1). Additionally,
on ImageNet and on Languini Books we observe PIs around 15% and 10%, respectively. In short, we
discover that the generalisation boost of distillation is not only preserved but amplified as the fraction
of training data κ is reduced, an effect which we call data efficiency of distillation.

3 Existing theories of distillation.

As mentioned above, multiple hypotheses have been produced to explain how distillation works,
each presenting empirical evidence in its own support. In this section, we reproduce the respective
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experiments in our setup in order to test which of these intuitions also apply to the κ ≠ 1 case, and
which are an artifact of the so far limited perspective.

3.1 Label smoothing

CIFAR100 CIFAR10

κ LT LS KD LT LS KD

0.02 12.44±0.81 +0.48 ± 0.49 +9.77 ± 1.10 56.92 ± 0.46 −0.66 ± 0.53 +4.74 ± 0.86
0.1 35.36 ± 0.84 +0.38 ± 0.68 +25.46 ± 0.76 74.20 ± 0.28 −0.84 ± 0.31 +6.01 ± 0.33
0.2 53.21 ± 0.44 +0.48 ± 0.68 +16.72 ± 0.53 78.82 ± 0.47 −0.22 ± 0.44 +4.80 ± 0.65
0.4 65.66 ± 0.24 +0.60 ± 0.51 +8.75 ± 0.54 82.35 ± 0.28 −0.16 ± 0.38 +3.26 ± 0.30
1.0 74.42 ± 0.22 +0.47 ± 0.41 +2.12 ± 0.24 85.43 ± 0.15 +0.28 ± 0.23 +1.53 ± 0.24

Table 1: Distillation is data efficient, label smoothing is not. Classification accuracy of label
training (LT), and PI of label smoothing (LS) and knowledge distillation (KD) on CIFAR10 and
CIFAR100.

Yuan et al. (2020); Zhou et al. (2021) propose that the better generalisation of distillation is a result
of the regularization effect of smooth labels. In other words, the class relationship structure implicit
in the teacher network’s output is not the cause of distillation’s performance but rather what matters
is non-zero probability mass on non-target classes.

We are interested in asking whether the label smoothing story can account for the observed PIs when
reducing the dataset size. To that end, we replicate an experiment by Yuan et al. (2020) where the
teacher targets are compared to a softened version of the real labels δ(y) (see the implementation
details in the App. D.2.1) across dataset sizes, and report the results in Table 1.

The PI due to label smoothing is almost constant over the dataset size, whereas, as shown before,
the PI with distillation is markedly higher at lower dataset sizes (data efficiency). Thus, although
when using 100% of the dataset label smoothing and distillation show similar PIs, their behaviour is
substantially different for κ < 1. This confirms that the properties of distillation are not fully captured
by label smoothing, which allows us to ultimately reject this hypothesis.

3.2 Dark knowledge

Next, we examine the feature learning view of distillation Allen-Zhu & Li (2020), which builds upon
the intuition of dark knowledge given by Hinton et al. (2015). The hypothesis is that distillation
implicitly pushes the student features to align to the teacher’s features. More specifically, let ϕ be a
non linear feature extractor and h be an affine layer, with z = h ○ ϕ being the network’s logits. We
call ϕ(x) the features associated with the input x.

We look at the effect of distillation on the student’s features, and in particular whether distillation
leads to higher feature similarity between the distilled student and the teacher. We study the inner
product across the width dimension (which is invariant to permutations of neurons) kϕ(x,x′) ∶=
⟨ϕ(x), ϕ(x′)⟩. kϕ is often referred to as the feature kernel (Kornblith et al., 2019). We then compare
the feature kernels using the Centered Kernel Alignment (CKA) (Kornblith et al., 2019).

Remarkably, we observe (Figure 2) that the feature kernels of KD students are very aligned to the
respective teacher’s kernel, consistently across all image classification settings. Comparing Figure 2
to Figure 1 we may hypothesise the existence of a link between the PI and the alignment to the teacher
in feature space: both the feature kernel alignment increase and the PI are higher for lower values
of κ. In Figure 17 we find a strong correlation between the two across dataset sizes. Additionally,
in App. C.5 we plot the kernel alignment between students trained with different seeds on the same
input data, and we observe a significantly higher similarity among the KD students compared to any
other pair of trained networks.

To the best of our knowledge this is the first time logit-based distillation has been observed to result
in representational alignment . The mechanisms giving rise to this phenomenon are not trivial,
given that the student only has access to the teacher logits, not features. In App. C.4.4 we begin to
investigate in this direction. Although further research is needed to establish whether the different
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Figure 2: Distillation induces feature kernel alignment in image classification settings. On the
y-axes the CKA of the feature kernels kϕ of the KD and LT students to the teacher’s feature kernel.
Note that the LT students and the LT teacher are both trained with labels. On the x-axis the portion of
dataset used. We observe that KD produces markedly steeper curves, yielding high feature kernel
alignments at low κ.

results on language and vision may be reflective of these tasks’ different properties, these results
indicate that feature learning holds promise for theoretical understanding of distillation.

3.3 Student (in)fidelity

Figure 3: Fidelity and PI cor-
relate. Delta fidelity is the
difference to the fidelity of an
LT student trained on the same
amount of data. The colormap
represents κ.

Finally, we examine another widely held view on distillation: that
with enough data and training, the student should eventually repro-
duce the teacher (Beyer et al., 2022) (perfect fidelity). Stanton et al.
(2021) observed that, perfect fidelity is often neither attainable nor
necessary to achieve good performance in practice. However, we
are interested in assessing the role of fidelity at lower dataset sizes.
In particular, is there a relation between the observed PIs and the
degree of fidelity when κ < 1?

Following Stanton et al. (2021), we measure fidelity using average
Top-1 Agreement ED[1{argmaxc(pt(x))c = argmaxc(ps(x))c}]
and focus on self-distillation. Note that fidelity is distinct from
feature alignment since it is measured on the outputs of the model,
however high feature alignment may be a cause of high fidelity. In
contrast to Stanton et al. (2021), we find a strong positive correlation
between test fidelity and PI over multiple values of κ and across
datasets (Figure 3), despite fidelity always falling short of the 100%
target. This suggests that alignment with teacher predictions may
be a driving factor in the PI on small datasets. Thus, we may revise
the conclusions of Stanton et al. (2021) stating that the bulk of the
performance increment observed with distillation correlates with the
alignment to the teacher, however perfect alignment is not necessary
nor achieved in practical settings.

4 Discussion and conclusions

In this work we have studied the behaviour of distillation as a func-
tion of the dataset size. In so doing we discover a fundamental
property of distillation, namely data efficiency. In particular, we find
(Figure 1) that the benefits of distillation are significantly enhanced
when considering lower fractions of data. Given that the literature on
KD so far has focused on a slice of the dataset size axis, we use this
novel empirical angle to evaluate existing theories of KD, potentially
exposing the empirical bias behind these intuitions. We indeed find
that label smoothing is not an accurate model of distillation for κ ≠ 1
and, on the contrary our evidence suggests that feature learning has a
central role in KD. This latter finding has further implications on the
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study of distillation, as currently prominent analyses based on fixed features models cannot capture
the complexity of KD in neural networks.

5 Related works

We review the relevant literature on distillation in two steps. First, we go over the most popular
theories of distillation, and in a second step, we look at existing references to data efficiency in the
literature. Generally, we find that the discussion on distillation has mostly focused on its generalisation
and knowledge transfer aspects, and that the dataset size has largely been overlooked.

Distillation: the main threads. The discussion of generalisation benefits in distillation has pro-
duced several different answers, often difficult to reconcile. The oldest and most prevalent account of
distillation stems from the intuition that its benefits over hard label targets must reside in the dark
knowledge, i.e. the class relationship structure implicit in a teacher network’s output (Hinton et al.,
2015). Allen-Zhu & Li (2020) hypothesise that the students learn independent features from the
teacher (due to independent initialisations) and distillation is effective because the teacher is able to
transfer otherwise unlearnt features to the student. In contrast to this, Yuan et al. (2020); Zhou et al.
(2021) characterise distillation through the lens of label smoothing regularisation (Szegedy et al.,
2016). According to this view, the better generalisation of distillation is simply a result of the regular-
ising effect of smoothed labels (Müller et al., 2019). Lastly, the findings by Furlanello et al. (2018);
Stanton et al. (2021); Nagarajan et al. (2023) further challenge a fundamental intuition on distillation,
namely that the student learns a high fidelity representation of the teacher. In particular, Stanton
et al. (2021) present compelling evidence that distillation fidelity, defined as the test agreement of the
student to the teacher, is typically lower than expected, and higher fidelity does not always imply
higher generalisation.

Other works which have experimentally and theoretically contributed to understanding distillation
in isolation from the mainstream discussion are (Mobahi et al., 2020; Lopez-Paz et al., 2015; Dong
et al., 2019; Beyer et al., 2022; Yim et al., 2017; Zhao et al., 2022).

Distillation: data efficiency. Data efficiency in distillation has first been mentioned in the seminal
work of Hinton et al. (2015), where the authors briefly examine the regularisation effect of distillation,
leading to reduced overfitting in low data regimes. The discussion is however too short to be
conclusive. Phuong & Lampert (2019) provide a theoretical model of distillation in a simplified
linear binary classification setting. Crucially, they find that distillation benefits from significantly
faster statistical convergence rates than those afforded by learning from hard labels , meaning that
less data is needed to achieve a given performance when distilling from a trained teacher. This result
is improved by Ji & Zhu (2020), who also prove fast statistical convergence rates for distillation in
the infinite-width setting. Importantly, both of these results are obtained in fixed-features settings,
thus ignoring the potential role of feature learning in the data efficiency of distillation. Other (Foster
et al., 2019; Panahi et al., 2022; Zhao & Zhu, 2023; Menon et al., 2021) theoretical accounts of
distillation point to data efficiency, however, none of them effectively apply to common practice.
Empirical accounts of data efficiency are lacking in the literature. Hao et al. (2024) compare vanilla
KD to more sophisticated distillation techniques in high-data regimes. Perhaps the experimental work
most similar to ours is Hsieh et al. (2023), who design a modified distillation objective specifically
for language models to obtain data efficiency. Overall, we are the first to comprehensively study
distillation data efficiency for practical neural networks and to establish that distillation dominates
label training in low data regimes.

Impact Statement

By highlighting data efficiency as a fundamental facet of KD, our study shifts the understanding of
how distillation works and opens new pathways for research. This has significant implications for
improving model performance in data-scarce environments, which is crucial for fields like medical
imaging, autonomous driving, and natural language processing. Our work fosters advancements in
deep learning methodologies, promoting more efficient and effective deployment of AI technologies.
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Figure 4: Effect of temperature. Comparing the test accuracy gain of distilled students trained at
different temperatures. The optimal temperature value varies from task to task. The limit of infinite
temperature is represented by the MSE case.

A Ablation studies

Metrics For a given student pair (pKD, pLT ) we define the test accuracy gain of distilla-
tion over label training as Acc(pKD)/Acc(pLT ), respectively the test perplexity inverse gain as
PPL(pKD)/PPL(pLT ) for text data. These gain metrics are chosen such that the larger the values
they take, the more the distilled student outperforms the label student.

A.1 Effect of objective.

We denote the network output distribution by pf(x) = σ(f(x)) and the one-hot target distribution by
δ(y). Hereafter, we refer to the following loss as the minimisation objective:

(1 − α) ⋅ Ex∼D[ kl(pτt (x ), pτf(x) ) ] + α ⋅ Ex,y∼D[ kl( δ(y), pf(x) ) ] (1)

where kl(p, q) ∶= p⊺ log(p/q) is the Kullback-Leibler divergence between distributions p and q.
When α = 1 we recover the cross-entropy loss (label training) on the true labels and when α = 0 we
recover the distillation loss.

Taking inspiration from common practice, we explore three kind of changes to the objective: varying
the temperature τ (Figure 4), the weight α and using soft or hard targets in distillation (Figure 5).
Empirically, these aspects of the objective have been shown to affect the generalisation performance
of distillation in the classical κ = 1 scenario.

Temperature. We follow the convention by which temperature is applied symmetrically to both
the teacher and student output distributions. In this case, it is easy to show that temperature scales
the gradient by a 1

τ
factor and in the limit τ →∞ the kl loss gradient converges to the squared loss

gradient (cf. Hinton et al., 2015, Eq. 2&4). In other words, we can intuitively think of an increasing
temperature as smoothly interpolating from the kl to the squared loss.

Weight α. In the typical distillation setting (κ = 1) it is common to use intermediate values of α
(Hinton et al., 2015; Tang et al., 2020). We repeat our CIFAR10-5m and CIFAR100 experiments for
multiple values of α.

Hard labels. Finally, Touvron et al. (2021b) have empirically shown that providing the teacher
prediction as a true hard label yields lower test errors in some settings. We use hard labels distillation
on CIFAR100 and CIFAR10-5m as we vary κ.

Results. The results of our ablations are provided in Figures 4 and 5. In general, we see that what
holds true for κ = 1 does not invariably extend to other dataset sizes, and that different datasets give
rise to different behaviours. Importantly, we find that the temperature τ is crucial to the performance
gains and they may even vanish for some temperatures (e.g. see τ = 1 on CIFAR100). Due to the
influence of the temperature on the gradients, this evidence seems to suggest that the data efficiency of
distillation may be fundamentally understood as a phenomenon concerning the optimisation dynamics.
Additionally, using hard teacher targets reduces the performance increments in low data regimes. It
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Figure 5: Effect of soft labels and α. Test error on CIFAR10-5m and CIFAR100 as we (left-half)
switch from soft to hard labels distillation and (right-half) vary α . We average over 5 seeds.

follows that the probabilities associated with the non-target classes are necessary for data efficiency,
and, as such, they are fundamental to distillation. This observation is in line with the dark knowledge
hypothesis on distillation, which our analysis so far supported.

A.2 Effect of model and dataset size

Originally, distillation has been introduced as a technique to reduce the size of a network without
sacrificing performance. Therefore it is common in practice to consider teacher and student models of
different sizes. Here we play with the relative size of the teacher and student networks as we vary the
dataset size, to assess its effect on data efficiency. In particular, we are interested in testing the broad
cases of ‘teacher bigger than the student’, ‘teacher smaller than the student’ , and ‘teacher equal to the
student’ using two different network sizes. We experiment with different teacher-student combinations
on CIFAR10 and Languini Books, summarised in the legend of Figure 6 (as PTeacher → PStudent).
Additionally, we extend the range of κ beyond 1 (up to 10) in the CIFAR10-5m dataset,in order
to gauge the behaviour of distillation in the high data regime as well. In App. D.1 we report the
experiment configuration used in each plot of the paper.

Figure 6: Effect of relative size. Depicted is the gain in performance on CIFAR10-5m and Languini
Books, averaged over 5 seeds. The vertical dashed lines mark the intersection point κ∗ for each
configuration. Observe that the student relative size PStudent/PTeacher (negatively) correlates with
κ⋆.

Firstly, from Figures 1 and 6 we observe that the performance increment diminishes as κ increases.
Training with ground-truth labels outperforms distillation when using more data than the teacher
has been trained on (recall that the teacher is trained with one-hot class targets at κ = 1), or a more
powerful model. Notably, the distilled student’s performance flattens out slightly above the teacher’s
for κ > 1. This slight increase in performance when κ > 1 aligns with previous observations in the
literature on self-distillation (Furlanello et al., 2018; Allen-Zhu & Li, 2020; Stanton et al., 2021).
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Moreover, the fact that the error of the distilled student converges to somewhere close to the teacher’s
error, regardless of the model size, is in line with the bias-variance argument of Menon et al. (2021).
Simply, in the high-data regime the non zero bias term penalises distillation over label training. We
discuss this view more in depth in App. C.2.

In Figure 6, we mark by a vertical line the value of κ, such that at values of κ > κ⋆ label training
outperforms knowledge distillation. We observe that the relative size of the student with respect to the
teacher correlates (negatively) with κ⋆. For each dataset, a higher relative size PStudent/PTeacher

corresponds to a lower κ⋆: in CIFAR10 PStudent/PTeacher ≈ 76.66 and κ⋆ ≈ 0.7, and in Languini
Books PStudent/PTeacher ≈ 4.07 and κ⋆ ≈ 0.083. These observations hint at a relationship of
the form κ⋆ = β ⋅ (PStudent/PTeacher)−1, where β is a setting-specific constant. What does this
behaviour tell us about the relationship between distillation and label training? Recalling that
distillation converges to a performance close to the teacher’s we can draw a simple conclusion. The
value of κ⋆ mostly reflects the amount of data needed to reach the teacher performance when training
with labels. In the case of self-distillation, this value will be close to 1, and as we increase the
overparametrization of the student (with respect to the teacher) κ⋆ decreases.

B Can DED be useful in practice?

Table 2: Distillation with transfer learning. Validation accuracy for distillation and labels training
on a sweep of datasets. The teacher has been pretrained in a supervised fashion on ImageNet1k and
adapted to each dataset by retraining only the linear head. The ⋆ symbol indicates hyperparameter
tuning: the teacher head training and student label training use respectively the best hyperparameter
discovered by grid search. For comparison, we use the same hyperparameters between distillation and
labels training. Nonetheless, distillation outperforms labels training on almost all the benchmarks.

FLOWERS DTD AIRCRAFT CALTECH CARS FOOD

# TRAINING POINTS 1020 1880 6667 7810 8144 75750
# CLASSES 102 47 10 101 196 101

DISTILLATION 41.37 ± 1.60 37.04 ± 6.01 54.71 ± 1.86 73.98 ± 0.82 73.84 ± 0.65 75.09 ± 0.26
LABELS⋆ 35.84 ± 1.41 28.36 ± 2.45 53.40 ± 4.30 71.64 ± 1.03 70.20 ± 1.54 81.84 ± 0.34

TEACHER⋆ 86.60 67.44 45.18 94.00 55.03 70.76

We have shown with our work that distillation is data efficient, and it is natural to ask whether any
practical advantage could be derived from it for neural network training in realistic settings.

In order to answer this question we first consider distillation in data scarce scenarios, where data
efficiency could be beneficial to reach lower test errors. We mimic such scenarios with a transfer
experiment (Table 2), where we use a pre-trained teacher available on the PyTorch hub and finetune
only its linear head using the available data. Zhang et al. (2023) have studied KD in the case of
distribution shifts, however we are specifically interested in small datasets, which is outside of their
focus. We repeat the experiment on several publicly available datasets, which vary in size and number
of classes. We compare distillation and label training using the entire available data. Notice that, since
the teacher has been pre-trained on Imagenet-21k, κ is low for almost all the datasets considered. Due
to the little data available, hyperparameter tuning makes a significant difference in final performance.
Therefore, to avoid biasing our result in favour of distillation, we do hyperparameter tuning on
label training and use the same optimal hyperparameters also for distillation. We also tune the
hyperparameters when training the teacher linear head on the new data. Astonishingly, distillation
outperforms label training in almost all tasks considered, only falling behind when the dataset is
effectively large. This remarkable result suggests that distillation can be helpful in applications with
severely constrained resources, and we believe that further research into the behaviour of distillation
in low data regimes can lead to further boosts in performance.

Next, we move on to assess whether data efficiency translates into computational efficiency and
thus whether distillation may be used to reduce the training costs of realistic neural networks. In
Figure 7 we plot the test perplexity of GPT-MINI networks trained with distillation or label training
as a function of the flops. We compare distillation with teacher of different sizes, while keeping the
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student the same. Perhaps unsurprisingly, we find that the computational costs incurred by the extra
forward pass through the teacher penalise distillation over label training. In particular, as the teacher
size is increased the final test perplexity lowers but the computational cost increases. Ultimately,
distillation is not computationally efficient in 2 out of 3 scenarios considered.

Figure 7: Distillation is not computationally efficient. Test perplexity over FLOPS for GPT mini
students with 3 different teachers. A teacher of bigger size corresponds to higher PI but also higher
FLOPS.

C Additional Material to the main paper discussion

C.1 DED in Vision-Transformers.

Figure 8: DED can be observed in attention-based architectures. Test error on CIFAR10-5m as a
function of the relative training dataset size for ViT models. Compared are models obtained through
label training and distillation from a ViT teacher (left) and a ResNet18 teacher (right). Importantly,
we observe data efficiency also for attention-based architectures when using distillation.

Out of curiosity and completeness in our empirical analysis we run an experiment using Vision Trans-
formers (ViT) on CIFAR10-5m. Given that ViTs are notoriously data inefficient and the CIFAR10
dataset is relatively small, the ViT teacher we use (adapted from this Pytorch implementation of
(Dosovitskiy et al., 2020), without extra data augmentations for better comparisons with CNNs)
only achieves 80% validation accuracy on CIFAR10. Therefore, we also compare the setting of
training ViT students with the ResNet18 teacher. In Figure 8 we plot the test error of distillation and
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label training as we vary the fraction of training data κ. Interestingly, the performance increment
is consistently higher when using the ResNet18 teacher, and it carries over the κ = 1 threshold. We
suspect that the reason for this difference lies in the markedly lower test error in the ResNet18 teacher,
however, further experiments are needed to finalise this claim.

C.2 Bias-Variance tradeoff.

We turn to a simple bias-variance decomposition of the expected error, in a similar spirit as (Menon
et al., 2021). Let ps(D) be a student trained on the dataset D and p̄Ms be the mean student trained
with M samples, i.e. p̄Ms = ED∼PM [ps(D)]. Taking py to be the true label distribution1, the expected
squared loss l2(f, g) = Ex,y[∥f(x) − g(x)∥2] decomposes into two terms:

ED∼PM [l2(ps(D), py)] = ED[l2(ps(D), p̄Ms )]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Variance

+ l2(p̄Ms , py)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bias2

+ ϵ
(2)

where ϵ is an irreducible approximation error. As the number of training samples grows M →∞, the
variance term reduces up to the noise inherent in the optimisation process. Consequently, the bias
term controls the behaviour in the high-data regime for both distillation and label training. In the case
of distillation with a fixed teacher trained on finite data, the bias term converges to a constant, which
depends on the teacher accuracy on P , as well as the bias implicit in the optimisation procedure.
Thus, in the high-data regime, the positive bias penalises distillation over ground-truth targets. By
the same token, when the data is scarce the variance term may be significantly higher than the bias
and dominate the error. Therefore the presence of increased PI in low data regimes suggests that
distillation has a variance reduction effect on the estimator, which compensates for the higher bias.
And this effect is consistent across datasets and models.

C.3 Zooming into (in)fidelity.

Figure 9: Fidelity of self distillation in low and high data regimes. On the y-axes we plot the
distillation fidelity (in percent) on train and test data, averaged over 5 seeds and 8 temperature values.

We report additional results on distillation fidelity for the CIFAR10-5m dataset, which allows us to
explore the particularly interesting high-data regime. In Figure 10 we plot distillation fidelity on train
and test data for different student-teacher network configurations.

We must remark that several aspects of this setting are sub-optimal and do not match the experiments
in Stanton et al. (2021), therefore the conclusions must be taken with a grain of salt. To begin with, the
training hyperparameters are not optimised and they are especially inadequate for the ’small’ networks.
Another factor which may be entangled in these results is the presence of augmentations. We adopt
the same augmentations for all network configurations, despite the differences in representational
capacity. Finally, in some settings, there is an irreducible approximation error due to the mismatch of
student and teacher architecture, which may be a confounder to higher fidelity error.

Nevertheless, we observe an interesting trend in the high data regime. The train and test curves
converge to the same value as κ increases. We speculate that the ’convergence fidelity error’ may
quantify the implicit bias given by the optimisation procedure.

1Note that by using py instead of δ(y) we get rid of potential label noise.
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Figure 10: Distillation fidelity over CIFAR10-5m train and test data for different network configura-
tions.

Figure 11: Temperature affects train fidelity Distillation fidelity over CIFAR10-5m train data as
we vary the distillation temperature τ .

Further, in Figure 11 we show train fidelity for multiple distillation temperatures. Temperature
appears to have a strong influence on train fidelity. One hypothesis is that this effect is a consequence
of the different training dynamics due to the temperature scaling the gradient. More surprisingly, the
trend is reversed with respect to generalisation: higher temperatures deliver higher generalisation and
lower train fidelity.

Finally, we plot the difference between train and test fidelity as a function of κ. Curiously, we find
that, across all configurations, the difference curves are well approximated by O(1/

√
κ).

C.4 Distillation and feature learning.

C.4.1 What impact does the linear head have on feature learning?

We assess the relevance of the linear head h in DED. In other words, we ask: is the observed data
efficiency dependent on the linear map h?

This is a natural question to ask because different feature extractors ϕ are known to perform differently
when h is trained on little data, depending on the eigendecomposition of ϕ (Bordelon et al., 2020;
He & Ozay, 2022). To answer this question, we take feature extractors from teacher-distilled and
label-trained students, on various fractions κ of data, and fit a logistic regression classifier on the
feature-based representation of the whole dataset (κ = 1). By fitting the linear probe Alain & Bengio
(2016) on the full dataset we are accounting for potential effects of data scarcity on the linear map h.

In Figure 13 we show the results. Crucially, we observe that retraining the linear layer preserves the
gain in test-accuracy of distillation and the effect of temperature (Figure 18) across students, with the
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Figure 12: The difference between train and test fidelity reduces at a 1/
√
κ rate. We plot the

difference between train and test fidelity on CIFAR10 for each network configuration. We juxtapose
each curve with the best fitting ω/

√
κ line.

Figure 13: Data efficiency does not depend on the linear head. Test classification accuracy (in
a 0-1 scale) as a function of κ. We compare the trained network to a logistic regression classifier
(dashed lines). Label-trained students are shown side by side with distilled students (e.g. Figure 14).

largest gains for small κ as expected. We therefore conclude that the data efficiency of distillation
cannot be captured wholly through the linear layer h and one must consider also the network features.

C.4.2 Does distillation induce the same features?

Figure 14: Feature alignment varies across datasets and architectures. Feature alignment
(Equation (3)) between the teacher and the distillation- (purple) and label- (green) trained students as
a function of κ. The markers show individual samples, and the lines represent the average.

We proceed to explore the effect of distillation on the student network features ϕ. We ask the following
simple question: do the distillation-trained features approximate the teacher features?
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Table 3: Feature alignment does not depend on initialisation. This table reports feature alignment
averaged over several values of κ for 5 seeds.

NETWORK FA DISTILLATION SAME INIT

RN18

0.49 ± 0.03
√

×

0.40 ± 0.06
√ √

0.51 ± 0.07 × ×

0.52 ± 0.07 ×
√

CNN

0.78 ± 0.01
√

×

0.79 ± 0.01
√ √

0.84 ± 0.01 × ×

0.84 ± 0.01 ×
√

In order to answer this question we look at the normalised inner product between the students
and teacher features when the two networks are identical. More precisely, let a, b be two different
instances of the same network, we define their feature alignment to be:

FA(a, b) = 1

Z
⟨ϕa, ϕb⟩D (3)

The sign ⟨⋅, ⋅⟩D denotes the average over the data distribution, which we approximate by an average
over the test set, and Z =

√
⟨ϕa, ϕa⟩D ⋅ ⟨ϕb, ϕb⟩D normalises the score.

Figure 14 shows the feature alignment between the students and the teacher on 3 benchmarks of
different difficulty. Importantly, feature alignment can only be computed if the teacher and student
features are of the same dimension. Thus we apply this test only to the self-distillation settings. We
do not observe a shared trend among the benchmarks, suggesting that distillation does not necessarily
imply feature alignment. Note that for convolutional networks the features are taken after ReLU
activation and thus the alignment will be positive. This is not the case in the transformer network.
Perhaps surprisingly, we observe low alignment also when the student and teacher initialisation
coincide (Table 3).

C.4.3 NTK alignment

It is natural to inquire whether the alignment observed at the feature layer propagates back through
the network backbone. In order to do this we look at the Neural Tangent Kernel (NTK) (Jacot et al.,
2018), a model of training dynamics in wide NNs that is exact in the infinite-width limit under certain
parameterisations. In the NTK setting, an NN fθ evolves as a linear model in its parameters θ, with a
fixed feature map determined by its Jacobian ∂fθ

∂θ
at initialisation, which captures features from all

layers in the NN.

Importantly, the (last layer) feature kernel appears in the NTK computation as one summand in a sum
over the network layers, because the Jacobian of fθ with respect to the last linear layer is precisely the
feature vector ϕ. Therefore the NTK alignment between two networks captures offers an overview of
the alignment of the feature at all the intermediate layers.

We compute the NTK of teacher and student networks (both distillation and labels) and evaluate their
alignments using CKA. We plot the result in Figure 15, alongside the feature-kernel alignments for
the same experimental setting. Predictably, we observe a similar trend in the two curves. However, the
feature-kernel alignment is generally higher than the NTK’s, suggesting that the effect of distillation
is best observed in the feature layer.

C.4.4 Does distillation yield feature kernel alignment?

First, the CKA is defined as follows:

CKA(ks, kt) =
HSIC(ks, kt)√

HSIC(ks, ks) ⋅HSIC(kt, kt)
(4)

with HSIC(ks, kt) = (n − 1)−2 ⋅ Tr(ksHktH), and H being a centering matrix.
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Figure 15: NTK vs FK alignment. The kernels are measured on CIFAR10 for the SMALL→SMALL
network configuration.

We begin by looking at the case of an optimal distillation student f⋆s . Say that f⋆s (x) = ft(x) for all
x ∈DM , (DM being the training dataset of size M ). If we define the target kernel as:

ktgf (x,x
′) ∶= ⟨f(x), f(x′)⟩ (5)

it is obvious to conclude that distillation entails equivalence of the teacher and student’s target kernels
on the training data (cf Tang et al. (2020) for evidence of this effect). However, it is not obvious
how feature kernel alignment may ensue from target kernel alignment. Rewriting f⋆s (x) as Wsϕs(x)
and ft(x) as Wtϕt(x) the target kernel is ktgf (x,x

′) = ϕs(x)⊺[W ⊺
s Ws]ϕs(x′). Thus from the

equivalence of target kernels, it follows that:
ϕs(x)⊺[W ⊺

s Ws]ϕs(x′) = ϕt(x)⊺[W ⊺
t Wt]ϕt(x′)

If Ws and Wt are orthogonal matrices, we can immediately conclude that the student and teacher
feature kernels are equivalent up to some scaling factor.

But in general Ws and Wt, will not be square matrices and cannot be orthogonal. Indeed, for image
classification settings we will have the output projection down to a smaller number of classes than
width, and for language modelling transformers we have the opposite (the Languini vocabulary is
16k). For the image classification setting, we can hope to recover some structure in the feature and
weight spaces due to the Neural Collapse phenomnon Papyan et al. (2020); Kim & Kim (2024),
which will tells us that the features and the weights in trained classification NNs on small numbers of
classes will become aligned. They will also exhibit a Simplex Equiangular Tight Frame behaviour in
the final layer, where class inputs are mapped to the class centroid. Investigating if Neural Collapse
can help to explain the feature alignment we observe with distllation provides an interesting direction
for future work.

Figure 16: Eigenspectrum for teacher and a distillation student network trained on CIFAR100. We
observe a drop after the first 100 dimensions, which is often indicative of neural collapse.

C.5 Extra plots
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Figure 17: Feature kernel alignment correlates with test accuracy gain. Each point represents a
different student-pair instance for varying κ (represented by the colour) and τ (represented by the
size) on CIFAR100 (left) and CIFAR10 (right). The dashed lines connect points with the same κ to
highlight the differences within equivalent data regime groups.

Figure 18: Data efficiency does not depend on the linear head (2). Test accuracy gain as a function
of κ and the distillation temperature τ . We compare the trained network to a logistic regression
classifier.

Figure 19: κ = 0.02, τ = 1 (left) and τ = 20 (right).
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Figure 20: κ = 0.1, τ = 1 (left) and τ = 20 (right).

Figure 21: κ = 0.2, τ = 1 (left) and τ = 20 (right).

Figure 22: κ = 0.2, τ = 1 (left) and τ = 20 (right).

Figure 23: κ = 0.4, τ = 1 (left) and τ = 20 (right).
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Figure 24: κ = 1.0, τ = 1 (left) and τ = 20 (right).
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D Details on the experimental setup

D.1 Dataset, Networks & Configurations

We repeat our experiments on 4 different datasets, namely CIFAR10-5m (C10) (Nakkiran et al.,
2020), CIFAR100 (C100) (Krizhevsky & Hinton, 2009), IMAGENET (IMN) (Deng et al., 2009) and
Languini Books (LBOOKS) (Stanić et al., 2023) , and several networks. In particular, for the image
datasets we use a set of convolutional networks and for the LBOOKS dataset we use GPT networks
of varying sizes. An overview of the experiments configuration is given in Table 4. We use a publicly
available extended version of CIFAR10 figuring around 6 mln images, synthetically generated by
sampling from a generative model trained on CIFAR10 (commonly named CIFAR 5m). We evaluate
our models on the test set also included in the CIFAR 5m collection. The dataset has been released
together with the paper (Nakkiran et al., 2020).

Table 4: Overview of the experiments configurations. The lines marked by the ⋆ symbol refer to
experiments presented in the Appendix.

DATASET STUDENT NETWORKS (P ) TEACHER NETWORKS SELF NAME

CIFAR10 (+5M)

VANILLA CNN (150K) VANILLA CNN (150K)
√

SMALL→SMALL
RESNET18 (11.5M) × BIG→SMALL

RESNET18 (11.5M) VANILLA CNN (150K) × SMALL→BIG
RESNET18 (11.5M)

√
BIG→BIG

VIT (6.3M)⋆ VIT (6.3M)
√

-
RESNET18 (11.5M) × -

CIFAR100 RESNET18 (11.5M) RESNET18 (11.5M)
√

-

IMAGENET RESNET50 ( 25.6M) RESNET50 (25.6M)
√

-

LANGUINI BOOKS

GPT MINI (27M) GPT MINI (27M)
√

MINI→MINI
GPT MINI (27M) GPT SMALL (110M) × SMALL→MINI
GPT MINI (27M) GPT MEDIUM (336M) × MEDIUM→MINI

GPT MINI2 (67M) GPT MEDIUM (336M) × MEDIUM→MINI2
GPT SMALL (110M) GPT MINI (27M) × MINI→SMALL
GPT SMALL (110M) GPT SMALL (110M)

√
SMALL→SMALL

Exact configuration in each plot and table. For the CIFAR10 and Languini Books dataset we
report the network configuration used in each plot shown in the main paper:

• Figure 1 C10: BIG→BIG, LBOOKS: SMALL→SMALL.

• Figure 4 C10: SMALL→SMALL, LBOOKS: MEDIUM→MINI2.

• Figure 5 C10: BIG→BIG

• Figure 6 C10: all except those including ViT, LBOOKS: MINI→MINI, SMALL→MINI,
MINI→SMALL, SMALL→SMALL.

• Table 1 C10: BIG→SMALL

• Figure 9 C10: BIG→BIG

• Equation (4) C10: SMALL→SMALL, LBOOKS: MEDIUM→MINI2.

• Figure 24 C10: SMALL→SMALL

D.1.1 Range of κ.

Exact set of values of κ used for each dataset:

• C10: [0.02,0.1,0.2,0.4,0.8,1.,1.5,2.,3.3,10.20.]
• C100: [0.024,0.12,0.24,0.48,1.0]
• IMN: [0.001,0.01,0.05,0.075,0.1,0.2,0.3]
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• LBOOKS: We train GPT-like language models on the Languini Books dataset in a streaming
fashion, i.e. each batch is processed only once. Therefore, κ dynamically increases during
training.

CIFAR10-5m is a synthetic dataset of similar distribution as CIFAR10 with ∼ 6M instead of 60K
samples. This allows us to investigate κ≫ 1 for teachers pre-trained on CIFAR10, as discussed in
Section 2. In particular, we perform experiments using up to 20× more data than the teacher training
data with CIFAR10-5m.

D.1.2 Network architectures

In line with common practice, all our networks are of the form, f(x) = (h ○ ϕ)(x), for non-linear
feature extractor ϕ and linear map h. Hereafter we may refer to ϕ as the network backbone and to h
as the network head. Unless stated otherwise, all the head layers take the form of a linear map from
the feature space ϕ to the logit space z: h(ζ) =Wζ + b, W being the weight matrix and b the bias.

Vanilla CNN The backbone consists in a sequence of 4 convolutional layers interleaved by batch
normalisation layers, ReLU activations and max-pooling. After flattening, the feature layer has width
160.

ResNets We reproduce the original structure of residual convolutional networks described by He
et al. (2016). We use a ResNet18 (feature layer width 512) for CIFAR10 and CIFAR100, and a
ResNet50 (feature layer width 1024) for ImageNet.

GPT We use the GPT2-inspired transformer model provided in the Languini benchmark (Stanić
et al., 2023). In our experiments we employ 4 GPT2 models of different sizes. In particular, the
width and depth (measured in number of attention blocks) of the backbone changes between sizes,
but all the models share the same block type. The code of the Languini library is publicly available
on GitHub2. The MINI GPT network has width 512 and depth 4; the MINI2 GPT network has width
1024 and depth 4; the SMALL GPT network has width 768 and depth 6; and finally the MEDIUM
GPT network has width 1024 and depth 24. We use two trained MINI and MEDIUM networks as
teachers.

D.2 Training procedures

All our experiments involve two training steps. First, we train one teacher network on the full dataset
(or a fixed portion thereof in case of C10 and LBOOKS data). Second, we train another network (the
student) on a variable portion of the dataset.

Teachers We train 1 teacher for C100 and IMN,2 teachers for C10 and 3 teachers for LBOOKS. The
seed of the teacher is fixed and once trained we use the teacher as a black-box function. Importantly,
the teachers are trained with one-hot-labels following common practices (see App. D.2.1 for details).

The C100 and IMN teachers are trained on the full training set. The C10 teachers are trained on a
fixed random sample of 60K images from the almost 6M available samples. To ease comparison, the
LBOOKS teachers are trained on the same amount (≈ 8.3G) of tokens.

Students For each experimental configuration, we train two identical networks (which we call
students) with identical training settings, either using one-hot-labels or soft-label targets provided by
the teacher. Each experiment is repeated over 5 seeds, which means a total of 10 networks (with 5
different initialisations). For each dataset, we train these 10 networks on multiple fractions of data
(identified by the value κ, see App. D.1.1 above). Moreover, we distil all students with different
temperatures τ (see App. D.2.1 for the list).

Notice that a student trained with one-hot labels on the full dataset (κ = 1) is equivalent to the teacher
(up to its initialisation). For this reason, we keep the same training setup for teachers and students.
Moreover, we do not change training hyperparameters between label training and teacher distillation
to allow for a better comparison.

2https://github.com/languini-kitchen
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D.2.1 Hyperparameters

We repeat all of our experiments over 5 seeds, which affect the network initialisation and
the data sampling processes. Moreover, we vary the temperature of distillation in the range
[0.1,1,3,5,10,20,100], and we simulate the case τ →∞ with an l2 loss on the logits (cf (Hinton
et al., 2015)). Finally, unless stated otherwise, we use the SGD optimiser for training.

For C10 we do not use optimal training hyperparameters. Therefore, the performance achieved by
teacher and student networks is not maximal with respect to their capacity. For all the other datasets,
however, we rely on publicly available optimal "training recipes" which have been tuned to the
architecture. Therefore in the case of C100, IMN and LBOOKS the performance of our models is
high relative to the model capacity.

CIFAR10 For both the teacher and the student networks pair we use the following training hy-
perparameters: learning rate = 0.1, with a linear warmup over the first 5 epochs and subsequently
annealing the learning rate with a cosine schedule, weight decay = 0.001, batch size 256, 30 epochs.
We use random augmentations consisting of crops to 32 × 32 and horizontal flips.

CIFAR100 For both the teacher and the student networks pair we use the following training
hyperparameters: learning rate = 0.1, with a linear warmup over the first epoch and subsequently
reducing the learning rate by a factor of 5 after 60,120 and 160 epochs, weight decay = 0.0005,
momentum = 0.9, batch size 128, 200 epochs. We use random augmentations consisting of crops to
32 × 32, horizontal flips and rotations of 15 degrees maximum.

IMAGENET For both the teacher and the student networks pair we use the following training
hyperparameters: learning rate = 0.1, reducing the learning rate by a factor of 10 every 30 epochs,
weight decay = 0.001, momentum = 0.9, batch size 64, 90 epochs. We use random augmentations
consisting of crops to 224 × 224 and horizontal flips.

LANGUINI BOOKS For each GPT model we follow the standard training recipe provided by the
Languini library, including Adam Kingma & Ba (2017) (cf the code for details). Importantly, we
decay the learning rate at every step and always use a batch size of 128. The MINI teacher has been
trained on 3.2B tokens and the MEDIUM teacher has been trained on 5.7B tokens from the same
source.

Label smoothing In our label smoothing experiments on C100 we use the same hyperparameters
as Yuan et al. (2020) for better comparison (although they use a different student-teacher network
configuration). We then repeat the experiment on C10 (this dataset is not present in Yuan et al. (2020))
using the same hyperparameters. Specifically, we set a = 0.99 and α = 0.9 (so the distillation weight
is 0.1). Moreover, we explore 3 temperature values, namely τ = 1,20,100.

D.2.2 Compute resources

We perform all of our experiments on graphic cards NVIDIA 4090, with 24GB of GPU memory. For
the larger language experiments which require higher GPU memory we parallelise our experiments
over multiple devices. The maximal runtime of a single experiment is 5 days and 22 hours. The total
recorded compute for the entire project (so including failed and omitted experiments) is 1080 days.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide evidence for data efficiency in distillation in Figure 1, we study
the factors affecting data efficiency in Section 2 and we apply the data efficiency perspective
to validate existing theories of KD in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We evaluate our experimental setup on several datasets, discussing the contra-
dictory findings between language and vision in Section 3.2. We fully explore the effect of
implicit assumptions on our finding such as model size (Figure 6), and other hyperparameters
in Section 2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We report all the information needed to reproduce our experiments in App. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We do not provide access to code in the reviewing phase but we pledge to
release the code upon acceptance. Additionally our experiments are mostly based on popular
benchmarks in the literature, using common architectures and publicly available datasets,
with the exception of Languini Books.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all such details in App. D, and include an overview of the experi-
mental setting in the main paper (??).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Every Figure and Table in the paper reports the mean and standard deviation
(represented by the shaded area in the plots) over 5 runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report high level information regarding the compute resources in
App. D.2.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the code of ethicss and we have not detected any
violations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include an impact statement after the conclusion.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not introduce new datasets or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We include citations for all datasets and models used. We do not employ
further assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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