
A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Zhangyang Gao * 1 2 Daize Dong * 1 Cheng Tan 1 2 Jun Xia 1 2 Bozhen Hu 1 2 Stan Z. Li † 1

Abstract
Can we model Non-Euclidean graphs as pure lan-
guage or even Euclidean vectors while retaining
their inherent information? The Non-Euclidean
property have posed a long term challenge in
graph modeling. Despite recent graph neural
networks and graph transformers efforts encod-
ing graphs as Euclidean vectors, recovering the
original graph from vectors remains a challenge.
In this paper, we introduce GraphsGPT, featur-
ing an Graph2Seq encoder that transforms Non-
Euclidean graphs into learnable Graph Words in
the Euclidean space, along with a GraphGPT de-
coder that reconstructs the original graph from
Graph Words to ensure information equivalence.
We pretrain GraphsGPT on 100M molecules and
yield some interesting findings: (1) The pre-
trained Graph2Seq excels in graph representation
learning, achieving state-of-the-art results on 8/9
graph classification and regression tasks. (2) The
pretrained GraphGPT serves as a strong graph
generator, demonstrated by its strong ability to
perform both few-shot and conditional graph gen-
eration. (3) Graph2Seq+GraphGPT enables ef-
fective graph mixup in the Euclidean space, over-
coming previously known Non-Euclidean chal-
lenges. (4) The edge-centric pretraining frame-
work GraphsGPT demonstrates its efficacy in
graph domain tasks, excelling in both representa-
tion and generation. Code is available at GitHub.

1. Introduction
Graphs, inherent to Non-Euclidean data, are extensively
applied in scientific fields such as molecular design, social
network analysis, recommendation systems, and meshed 3D
surfaces (Shakibajahromi et al., 2024; Zhou et al., 2020a;
Huang et al., 2022; Tan et al., 2023; Li et al., 2023a; Liu
et al., 2023a; Xia et al., 2022b;b; Gao et al., 2022). The

*Equal contribution 1Westlake University, Hangzhou, China
2Zhejiang University, Hangzhou, China. Correspondence to: Stan
Z. Li <Stan.ZQ.Li@westlake.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Non-Euclidean nature of graphs has inspired sophisticated
model designs, including graph neural networks (Kipf &
Welling, 2016a; Veličković et al., 2017) and graph trans-
formers (Ying et al., 2021; Min et al., 2022). These models
excel in encoding graph structures through attention maps.
However, the structural encoding strategies limit the us-
age of auto-regressive mechanism, thereby hindering pure
transformer from revolutionizing graph fields, akin to the
success of Vision Transformers (ViT) (Dosovitskiy et al.,
2020) in computer vision. We employ pure transformer for
graph modeling and address the following open questions:
(1) How to eliminate the Non-Euclidean nature to facilitate
graph representation? (2) How to generate Non-Euclidean
graphs from Euclidean representations? (3) Could the com-
bination of graph representation and generation framework
benefits from self-supervised pretraining?

We present Graph2Seq, a pure transformer encoder designed
to compress the Non-Euclidean graph into a sequence of
learnable tokens called Graph Words in a Euclidean form,
where all nodes and edges serve as the inputs and undergo an
initial transformation to form Graph Words. Different from
graph transformers (Ying et al., 2021), our approach doesn’t
necessitate explicit encoding of the adjacency matrix and
edge features in the attention map. Unlike TokenGT (Kim
et al., 2022), we introduce a Codebook featuring learnable
vectors for graph position encoding, leading to improved
training stability and accelerated convergence. In addition,
we employ a random shuffle of the position Codebook, im-
plicitly augmenting different input orders for the same graph,
and offering each position vector the same opportunity of
optimization to generalize to larger graphs.

We introduce GraphGPT, a groundbreaking GPT-style trans-
former model for graph generation. To recover the Non-
Euclidean graph structure, we propose an edge-centric gen-
eration strategy that utilizes block-wise causal attention to
sequentially generate the graph. Contrary to previous meth-
ods (Hu et al., 2020a; Shi et al., 2019; Peng et al., 2022) that
generate nodes before predicting edges, the edge-centric
technique jointly generates edges and their corresponding
endpoint nodes, greatly simplifying the generative space. To
align graph generation with language generation, we imple-
ment auto-regressive generation using block-wise causal at-
tention, which enables the effective translation of Euclidean
representations into Non-Euclidean graph structures.

1

https://github.com/A4Bio/GraphsGPT

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Leveraging Graph2Seq encoder and GraphGPT decoder, we
present GraphsGPT, an integrated end-to-end framework.
This framework facilitates a natural self-supervised task to
optimize the representation and generation tasks, enabling
the transformation between Non-Euclidean and Euclidean
data structures. We pretrain GraphsGPT on 100M molecule
graphs and comprehensively evaluate it from three perspec-
tives: Encoder, Decoder, and Encoder-Decoder. The pre-
trained Graph2Seq encoder is a strong graph learner for
property prediction, outperforming baselines of sophisti-
cated methodologies on 8/9 molecular classification and
regression tasks. The pretrained GraphGPT decoder serves
as a powerful structure prior, showcasing both few-shot and
conditional generation capabilities. The GraphsGPT frame-
work seamlessly connects the Non-Euclidean graph space
to the Euclidean vector space while preserving informa-
tion, facilitating tasks that are known to be challenging in
the original graph space, such as graph mixup. The good
performance of pretrained GraphsGPT demonstrates that
our edge-centric GPT-style pretraining task offers a sim-
ple yet powerful solution for graph learning. In summary,
we tame pure transformer to convert Non-Euclidean graph
into K learnable Graph Words , showing the capabilities
of Graph2Seq encoder and GraphGPT decoder pretrained
through self-supervised tasks, while also paving the way for
various Non-Euclidean challenges like graph manipulation
and graph mixing in Euclidean latent space.

2. Related Work
Graph2Vec. Graph2Vec methods create the graph embed-
ding by aggregating node embeddings via graph pooling
(Lee et al., 2019; Ma et al., 2019; Diehl, 2019; Ying et al.,
2018). The node embeddings could be learned by either tra-
ditional algorithms (Ahmed et al., 2013; Grover & Leskovec,
2016; Perozzi et al., 2014; Kipf & Welling, 2016b; Chan-
puriya & Musco, 2020; Xiao et al., 2020), or deep learn-
ing based graph neural networks (GNNs) (Kipf & Welling,
2016a; Hamilton et al., 2017; Wu et al., 2019; Chiang et al.,
2019; Chen et al., 2018; Xu et al., 2018), and graph trans-
formers (Ying et al., 2021; Hu et al., 2020c; Dwivedi &
Bresson, 2020; Rampášek et al., 2022; Chen et al., 2022).
These methods are usually designed for specific downstream
tasks and can not be used for general pretraining.

Graph Transformers. The success of extending trans-
former architectures from natural language processing
(NLP) to computer vision (CV) has inspired recent works
to apply transformer models in the field of graph learning
(Ying et al., 2021; Hu et al., 2020c; Dwivedi & Bresson,
2020; Rampášek et al., 2022; Chen et al., 2022; Wu et al.,
2021b; Kreuzer et al., 2021; Min et al., 2022). To encode the
graph prior, these approaches introduce structure-inspired
position embeddings and attention mechanisms. For in-
stance, Dwivedi & Bresson (2020); Hussain et al. (2021)

adopt Laplacian eigenvectors and SVD vectors of the adja-
cency matrix as position encoding vectors. Dwivedi & Bres-
son (2020); Mialon et al. (2021); Ying et al. (2021); Zhao
et al. (2021) enhance the attention computation based on the
adjacency matrix. Recently, Kim et al. (2022) introduced
a decoupled position encoding method that empowers the
pure transformer as strong graph learner without the needs
of expensive computation of eigenvectors and modifications
on the attention computation.

Graph Self-Supervised Learning. The exploration of
self-supervised pretext tasks for learning expressive graph
representations has garnered significant research interest
(Wu et al., 2021a; Liu et al., 2022; 2021c; Xie et al., 2022).
Contrastive (You et al., 2020; Zeng & Xie, 2021; Qiu et al.,
2020; Zhu et al., 2020; 2021; Peng et al., 2020b; Liu et al.,
2023c;b; Lin et al., 2022; Xia et al., 2022a; Zou et al., 2022)
and predictive (Peng et al., 2020a; Jin et al., 2020; Hou et al.,
2022; Tian et al., 2023; Hwang et al., 2020; Wang et al.,
2021) objectives have been extensively explored, leveraging
strategies from the fields of NLP and CV. However, the
discussion around generative pretext tasks (Hu et al., 2020a;
Zhang et al., 2021) for graphs is limited, particularly due to
the Non-Euclidean nature of graph data, which has led to few
instances of pure transformer utilization in graph generation.
This paper introduces an innovative approach by framing
graph generation as analogous to language generation, thus
enabling the use of a pure transformer to generate graphs as
a novel self-supervised pretext task.

Motivation. The pure transformer has revolutionized the
modeling of texts (Devlin et al., 2018; Brown et al., 2020;
Achiam et al., 2023), images (Dosovitskiy et al., 2020;
Alayrac et al., 2022; Dehghani et al., 2023; Liu et al., 2021d),
and the point cloud (Li et al., 2023b; Yu et al., 2022; Pang
et al., 2022) in both representation and generation tasks.
However, due to the Non-Euclidean nature, extending trans-
formers to graphs typically necessitates the explicit incorpo-
ration of structural information into the attention computa-
tion. Such constraint results in following challenges:

1. Generation Challenge. When generating new nodes
or bonds, the undergone graph structure changes, re-
sulting in a complete update of all graph embeddings
from scratch for full attention mechanisms. Moreover,
an additional link predictor is required to predict po-
tential edges from a |V| × |V| search space.

2. Non-Euclidean Challenge. Previous methods do not
provide Euclidean prototypes to fully describe graphs.
The inherent Non-Euclidean nature poses challenges
for tasks like graph manipulation and mixing.

3. Representation Challenge. Limited by the generation
challenge, traditional graph self-supervised learning
methods have typically focused on reconstructing cor-
rupted sub-features and sub-structures. They overlook

2

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

G
ra

ph
2S

eq
 E

nc
od

er

1

4

2

3

G
ra

ph
 W

or
d

Pr
om

pt
s

<EOS>

bond

atom

atom

bond

bond

atom

atom

bond 1 3C-C

C-C 1 3

C=O 3 4

O 4 4

C

C

C-C

1 1

2 2

1 2C

C

C-C

1 1

2 2

1 2

<BOS>

POS 1

POS k[GW k]

[GW 1]

C-C 2 3

C 3 3C-C 2 3

C 3 3

C=O 3 4

O 4 4

G
ra

ph
 W

or
ds

G
ra

ph
G

PT
 D

ec
od

er

VectorsInput Graph

Generated Graph

Non-Euclidean Euclidean

Non-Euclidean

[GP]

[GP] POS 1

POS k [GW k]

[GW 1]

SegToken GPE

C=O 3 4 bond

O 4 4 atom

C-C 1 3 bond

C

C

C-C

C-C

1 1

2 2

atom

atom

1 2

2 3 bond

bond

C 3 3 atom

Seg Token GPE

Figure 1: The Overall framework of GraphsGPT. Graph2Seq encoder transforms the Non-Euclidean graph into Euclidean
Graph Words, which are further fed into GraphGPT decoder to auto-regressively generate the original Non-Euclidean graph.
Both Graph2Seq and GraphGPT employ pure transformer as the structure.

of learning from the entire graph potentially limits the
ability to capture the global topology.

To tackle these challenges, we propose GraphsGPT, which
uses pure transformer to convert the Non-Euclidean graph
into a sequence of Euclidean vectors (Graph2Seq) while
ensuring informative equivalence (GraphGPT). For the first
time, we bridge the gap between graph and sequence mod-
eling in both representation and generation tasks.

3. Method
3.1. Overall Framework

Figure 1 outlines the comprehensive architecture of
GraphsGPT, which consists of a Graph2Seq encoder
and a GraphGPT decoder. The Graph2Seq converts Non-
Euclidean graphs into a series of learnable feature vectors,
named Graph Words. Following this, the GraphGPT uti-
lizes these Graph Words to auto-regressively reconstruct
the original Non-Euclidean graph. Both components, the
Graph2Seq and GraphGPT, incorporate the pure transformer
structure and are pretrained via a GPT-style pretext task.

3.2. Graph2Seq Encoder
Flexible Token Sequence (FTSeq). Denote G = (V, E)
as the input graph, where V = {v1, · · · , vn} and E =
{e1, · · · , en′} are sets of nodes and edges associated with
features XV ∈ Rn,C and XE ∈ Rn′,C , respectively. With a
slight abuse of notation, we use eli and eri to represent the
left and right endpoint nodes of edge ei. For example, we

have e1 = (el1, e
r
1) = (v1, v2) in Figure 2. Inspired by (Kim

et al., 2022), we flatten the nodes and edges in a graph into
a Flexible Token Sequence (FTSeq) consisting of:

1. Graph Tokens. The stacked node and edge features
are represented by X = [XV ;XE] ∈ Rn+n′,C . We
utilize a token Codebook Bt to generate node and
edge features, incorporating 118+92 learnable vectors.
Specifically, we consider the atom type and bond type,
deferring the exploration of other properties, such as
the electric charge and chirality, for simplicity.

2. Graph Position Encodings (GPE). The graph struc-
ture is implicitly encoded through decoupled position
encodings, utilizing a position Codebook Bp com-
prising m learnable embeddings {o1,o2, · · · ,om} ∈
Rm,dp . The position encodings of node vi and edge ei
are expressed as gvi = [ovi ,ovi

] and gei = [oeli
,oeri

],
respectively. Notably, gl

vi = gr
vi = ovi , g

l
ei = oeli

,
and gr

ei = oeri
. To learn permutation-invariant features

and generalize to larger, unseen graphs, we randomly
shuffle the position Codebook, giving each vector an
equal optimization opportunity.

3. Segment Encodings (Seg). We introduce two learn-
able segment tokens, namely [node] and [edge],
to designate the token types within the FTSeq.

edge
1 3
C-C Token

GPE

Seg

C CC-C C-C
1 1 2 2

node node node

O
4 41 2 2 3

edgeedge

1

4

2

3

edge
3 4

C=O

node

C
3 3

Figure 2: Graph to Flexible Sequence.
3

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Algorithm 1 Construction of Flexible Token Sequence

Require: Canonical SMILES CS.
Ensure: Flexible Token Sequence FTSeq.

1: Convert canonical SMILES CS to graph G.
2: Get the first node v1 in graph G by CS.
3: Initialize sequence FTSeq = [v1].
4: for ei inDFS(G, v1) do
5: Update sequence FTSeq← [FTSeq, ei].
6: if eri not inFTSeq then
7: Update sequence FTSeq← [FTSeq, eri].
8: end if
9: end for

As depicted in Figure 2, we utilize the Depth-First Search
(DFS) algorithm to convert a graph into a flexible token se-
quence, denoted as FTSeq = [v1, e1, v2, e2, v3, e3, v4, e4],
where the starting atom matches that in the canonical
SMILES. Algorithm 1 provides a detailed explanation of
our approach. It is crucial to emphasize that the result-
ing FTSeq remains Non-Euclidean data, as the number of
nodes and edges may vary across different graphs.

Euclidean Graph Words. Is there a Euclidean repre-
sentation that can completely describe the Non-Euclidean
graph? Given the FTSeq and k graph prompts
[[GP]1,[GP]2, · · · ,[GP]k], we use pure transformer to
learn a set of Graph WordsW = [w1,w2, · · · ,wk]:

W = Graph2Seq([GP]1,[GP]2, · · · ,[GP]k,FTSeq]),
(1)

The token [GP]k is the sum of a learnable [GP] token and
the k-th position encoding. The learned Graph WordsW
are ordered and of fixed length, analogous to a novel graph
language created in the latent Euclidean space.

Graph Vocabulary. In the context of a molecular system,
the complete graph vocabulary for molecules encompasses:

1. The Graph Word prompts [GP];
2. Special tokens, including the begin-of-sequence token

[BOS], the end-of-sequence token [EOS], and the
padding token [PAD];

3. The dictionary set of atom tokens Dv with a size of
|Dv| = 118, where the order of atoms is arranged by
their atomic numbers, e.g., D6 is the atom C;

4. The dictionary set of bond tokens De with a size of
|De| = 92, considering the endpoint atom types, e.g.,
C-C and C-O are different types of bonds even though
they are both single bonds.

3.3. GraphGPT Decoder

How to ensure that the learned Graph Words are information-
equivalent to the original Non-Euclidean graph? Previous

graph self-supervised learning methods focused on sub-
graph generation and multi-view contrasting, which suffer
potential information loss due to insufficient capture of the
global graph topology. In comparison, we adopt a GPT-style
decoder to auto-regressively generate the whole graph from
the learned Graph Words in a edge-centric manner.

GraphGPT Formulation. Given the learned Graph
Words W and the flexible token sequence FTSeq,
the complete data sequence is [W,[BOS],FTSeq] =
[w1,w2, · · · ,wk,[BOS], v1, e1, v2, · · · , ei]. We define
FTSeq1:i as the sub-sequence comprising edges with con-
nected nodes up to ei:

FTSeq1:i =

{
[v1, e1, · · · , ei, eri], if eri is a new node
[v1, e1, · · · , ei], otherwise

.

(2)
In an edge-centric perspective, we assert eri belongs to
ei. If eri is a new node, it will be put after ei. Employ-
ing GraphGPT, we auto-regressively generate the complete
FTSeq conditioned onW:

FTSeq1:i+1
FTSeq1:i←−−−−− GraphGPT([W,[BOS],FTSeq1:i]),

(3)
where the notation above the left arrow signifies that the
output FTSeq1:i+1 corresponds to FTSeq1:i.

Edge-Centric Graph Generation. Nodes and edges are
the basic components of a graph. Traditional node-centric
graph generation methods divide the problem into two parts:

(1) Node Generation; (2) Link Prediction.

We argue that node-centric approaches lead to imbalanced
difficulties in generating new nodes and edges. For the
molecular generation, let |Dv| and |De| denote the num-
ber of node and edge types, respectively. Also, let n and
n′ represent the number of nodes and edges. The step-
wise classification complexities for predicting the new node
and edge are O(|Dv|) and O(n × |De|), respectively. No-
tably, we observe that O(n× |De|)≫ O(|Dv|), indicating
a pronounced imbalance in the difficulties of generating
nodes and edges. Considering that O(|Dv|) and O(|De|)
are constants, the overall complexity of node-centric graph
generation is O(n+ n2).

These approaches ignore the basic truism that naturally oc-
curring and chemically valid bonds are sparse: there are only
92 different bonds (considering the endpoints) among 870M
molecules in the ZINC database (Irwin & Shoichet, 2005).
Given such an observation, we propose the edge-centric gen-
eration strategy that decouples the graph generation into:

(1) Edge Generation;
(2) Left Node Attachment; (3) Right Node Placement.

4

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

We provide a brief illustration of the three steps in Figure 3.
The step-wise classification complexity of generating an
edge is O(|De|). Once the edge is obtained, the model au-
tomatically infers the left node attachment and right node
placement, relieving the generation from the additional bur-

C1 C C C CC1 C1 C2

Init Next Edge Attach Place

C1 C2

C3

C1 C2

C3

C

C

C1 C2

C3C
C C

Case 1: is a new atom

Case 2: is a historical atom

Figure 3: Overview of edge-centric graph generation.
den of generating atom types and edge connections, result-
ing in a reduced complexity of O(1). With edge-centric
generation, we balance the classification complexities of
predicting nodes and edge as constants. Notably, the overall
generation complexity is reduced to O(n+ n′).

Next, we introduce the edge-centric generation in detail.

Step 0: First Node Initialization. The first node token of
FTSeq is generated by:

hv1
[BOS]←−−−− GraphGPT([W,[BOS]])

pv1 = Predv(hv1
)

v1 = argmaxpv1 Node Type
gv1 = [o1,o1] GPE

. (4)

Here, Predv(·) denotes a linear layer employed for the
initial node generation, producing a predictive probabil-
ity vector pv1 ∈ R|Dv|. The output v1 corresponds to the
predicted node type, and o1 represents the node position
encoding retrieved from the position Codebook B′p of the
decoder, where we should explicitly note that the encoder
Codebook Bp and the decoder Codebook B′p are not shared.

Step 1: Next Edge Generation. The edge-centric graph
generation method creates the next edge by:

hei+1

ei←− GraphGPT([W,[BOS],FTSeq1:i])

pei+1 = Prede(hei+1)

ei+1 = argmaxpei+1
Edge Type

,

(5)
where Prede is a linear layer for the next edge prediction,
and pei+1

∈ R|De|+1 is the predictive probability. ei+1 be-
longs to the set De ∪ {[EOS]}, and the generation process
will stop if ei+1 = [EOS]. Note that the edge position
encoding [oeli+1

,oeri+1
] remains undetermined. This infor-

mation will affect the connection of the generated edge

to the existing graph, as well as the determination of new
atoms, i.e., left atom attachment and right atom placement.

Training Token Generation. The first node and next edge
prediction tasks are optimized by the cross entropy loss:

Ltoken = −
∑
i

yi · log pi. (6)

Step 2: Left Node Attachment. For the newly predicted
edge ei+1, we further determine how it connects to existing
nodes. According to the principles of FTSeq construc-
tion, it is required that at least one endpoint of ei+1 con-
nects to existing atoms, namely the left atom eli+1. Given
the set of previously generated atoms {v1, v2, · · · , vj}
and their corresponding graph position encodings Oj =
[ov1 ,ov2 , · · · ,ovj] ∈ Rj,C in B′p, we predict the position
encoding of the left node using a linear layer PredPosl(·):

ĝl
ei+1

= PredPosl(hei+1) ∈ R1,C . (7)

We compute the cosine similarity between ĝl
ei+1

and Oj by
cl = ĝl

ei+1
OT

j ∈ Rt. The index of existing atoms that eli+1

will attach to is ul = argmax cl. This process implicitly
infers edge connections by querying over existing atoms,
instead of generating all potential edges from scratch. We
update the graph position encoding of the left node as:

gl
ei+1

= ovul
Left Node GPE. (8)

Step 3: Right Node Placement. As for the right node
eri+1, we consider two cases: (1) it connects to one of the
existing atoms; (2) it is a new atom. Similar to the step 2,
we use a linear layer PredPosr(·) to predict the position
encoding of the right node:

ĝr
ei+1

= PredPosr(hei+1) ∈ R1,C . (9)

We get the cosine similarity score cr = ĝr
ei+1

OT
j and the

index of node with the highest similarity ur = argmax cr.
Given a predefined threshold ϵ, if ck > ϵ, we consider ei+1

is connected to vur
, and update:

gr
ei+1

= ovur
Right Node GPE, Case 1; (10)

otherwise, eri+1 is a new atom vj+1, and we set:

gr
ei+1

= oj+1 Right Node GPE, Case 2. (11)

Finally, we update the FTSeq by:{
FTSeq← [FTSeq, ei+1] Case 1
FTSeq← [FTSeq, ei+1, vj+1] Case 2

. (12)

By default, we set ϵ = 0.5.

5

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Training Node Attachment & Placement. We adopt a
contrastive objective to optimize left node attachment and
right node placement problems. Taking left node attach-
ment as an example, given the ground truth t, i.e., the in-
dex of the attached atom in the original graph, the posi-
tive score is s+ = eli+1o

T
vt , while the negative scores are

s− = |vec(OOT)| ∈ R|B′
p|×(|B′

p|−1), where vec(·) is a flat-
ten operation while ignoring the diagonal elements. The
final contrastive loss is:

Lattach = (1− s+) +
1

|B′
p| × (|B′

p| − 1)

∑
s−. (13)

Block-Wise Causal Attention. In our method, node gen-
eration is closely entangled with edge generation. Specifi-
cally, on its initial occurrence, each node is connected to an
edge, creating what we term a block. From the block view,
we employ a causal mask for auto-regressive generation.
However, within each block, we utilize the full attention.
We show the block-wise causal attention in Figure 4.

edge C-C

[BOS]

B4

B5

Query

B0

B1

B2

B3

[GW 1]

[GW 2]

[GW 3]

edge C-C

node C

edge C=O

node O

node C

node C

edge C-C

ed
ge

 C
-C

[B
O

S]

K
ey

no
de

 C

no
de

 C

ed
ge

 C
-C

ed
ge

 C
-C

no
de

 C

ed
ge

 C
=O

no
de

 O

[G
W

 1
]

[G
W

 2
]

[G
W

 3
]

Figure 4: Block-Wise causal attention with grey cells in-
dicating masked positions. Graph Words contribute to the
generation through full attention, serving as prefix prompts.

4. Experiments
4.1. Experiment Settings

We extensively conduct experiments to assess GraphsGPT,
delving into the following questions:

• Representation (Q1): Can Graph2Seq effectively learn
expressive graph representation through pretraining?

• Generation (Q2): Could pretrained GraphGPT serve
as a strong structural prior model for graph generation?

• Euclidean Graph Words (Q3): What opportunities do
the Euclidean Graph Words offer that were previously
considered challenging?

4.2. Datasets

ZINC (Pretraining). To pretrain GraphsGPT , we select
the ZINC database (Irwin & Shoichet, 2005) as our pretrain-
ing dataset, which contains a total of 870, 370, 225 (870M)
molecules. we randomly shuffle and partition the dataset
into training (99.7%), validation (0.2%), and test sets (0.1%).
The model does not traverse all the data during pretraining,
i.e., a total of about 100M molecules are used.

MoleculeNet (Representation). Wu et al. (2018) is a
widely-used benchmark dataset for molecular property pre-
diction and drug discovery. It offers a diverse collection of
property datasets ranging from quantum mechanics, phys-
ical chemistry to biophysics and physiology. Both classi-
fication and regression tasks are considered. For rigorous
evaluation, we employ standard scaffold splitting, as op-
posed to random scaffold splitting, for dataset partitioning.

MOSES & ZINC-C (Generation). For few-shot gener-
ation, we evaluate GraphsGPT on MOSES (Polykovskiy
et al., 2020) dataset, which is designed for benchmarking
generative models. Following MOSES, we compute molecu-
lar properties (LogP, SA, QED) and scaffolds for molecules
collected from ZINC, obtaining ZINC-C. The dataset pro-
vides a standardized set of molecules in SMILES format.

4.3. Pretraining

Model Configurations. We adopt the transformer as our
model structure. Both the Graph2Seq encoder and the
GraphGPT decoder consist of 8 transformer blocks with
8 attention heads. For all layers, we use Swish (Ramachan-
dran et al., 2017) as the activation function and RMSNorm
(Zhang & Sennrich, 2019) as the normalizing function. The
hidden size is set to 512, and the length of the Graph Po-
sition Encoding (GPE) is 128. The total number param-
eters of the model is 50M. Denote K as the number of
Graph Words, multiple versions of GraphsGPT, referred
to as GraphsGPT-KW, were pretrained. We mainly use
GraphsGPT-1W, while we find that GraphsGPT-8W has
better encoding-decoding consistency (Section 6, Q2).

Training Details. The GraphsGPT model undergoes train-
ing for 100K steps with a global batch size of 1024 on
8 NVIDIA-A100s, utilizing AdamW optimizer with 0.1
weight decay, where β1 = 0.9 and β2 = 0.95. The maxi-
mum learning rate is 1e−4 with 5K warmup steps, and the
final learning rate decays to 1e−5 with cosine scheduling.

4.4. Representation

Can Graph2Seq effectively learn expressive graph represen-
tation through pretraining?

6

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Table 1: Results of molecular property prediction. We report the mean (standard deviation) metrics of 10 runs with standard
scaffold splitting (not random scaffold splitting). The best results and the second best are highlighted.

ROC-AUC ↑ RMSD ↓

Tox21 ToxCast Sider HIV BBBP Bace ESOL FreeSolv Lipo

Molecules 7,831 8,575 1,427 41,127 2,039 1,513 1128 642 4200

Tasks 12 617 27 1 1 1 1 1 1

N
o

pr
et

ra
in GINs 74.6 (0.4) 61.7 (0.5) 58.2 (1.7) 75.5 (0.8) 65.7 (3.3) 72.4 (3.8) 1.050 (0.008) 2.082 (0.082) 0.683 (0.016)

Graph2Seq-1W 74.0 (0.4) 62.6 (0.3) 66.6 (1.1) 73.6 (3.4) 68.3 (1.4) 77.3 (1.2) 0.953 (0.025) 1.936 (0.246) 0.907 (0.021)

Relative gain to GIN -0.8% +1.4% +12.6% -2.6% +3.8% +6.3% +10.2% +7.5% -24.7%

Pr
et

ra
in

InfoGraph (Sun et al., 2019) 73.3 (0.6) 61.8 (0.4) 58.7 (0.6) 75.4 (4.3) 68.7 (0.6) 74.3 (2.6)

GPT-GNN (Hu et al., 2020b) 74.9 (0.3) 62.5 (0.4) 58.1 (0.3) 58.3 (5.2) 64.5 (1.4) 77.9 (3.2)

EdgePred (Hamilton et al., 2017) 76.0 (0.6) 64.1 (0.6) 60.4 (0.7) 64.1 (3.7) 67.3 (2.4) 77.3 (3.5)

ContextPred (Hu et al., 2019) 73.6 (0.3) 62.6 (0.6) 59.7 (1.8) 74.0 (3.4) 70.6 (1.5) 78.8 (1.2)

GraphLoG (Xu et al., 2021) 75.0 (0.6) 63.4 (0.6) 59.6 (1.9) 75.7 (2.4) 68.7 (1.6) 78.6 (1.0)

G-Contextual (Rong et al., 2020) 75.0 (0.6) 62.8 (0.7) 58.7 (1.0) 60.6 (5.2) 69.9 (2.1) 79.3 (1.1)

G-Motif (Rong et al., 2020) 73.6 (0.7) 62.3 (0.6) 61.0 (1.5) 77.7 (2.7) 66.9 (3.1) 73.0 (3.3)

AD-GCL (Suresh et al., 2021) 74.9 (0.4) 63.4 (0.7) 61.5 (0.9) 77.2 (2.7) 70.7 (0.3) 76.6 (1.5)

JOAO (You et al., 2021) 74.8 (0.6) 62.8 (0.7) 60.4 (1.5) 66.6 (3.1) 66.4 (1.0) 73.2 (1.6) 1.120 (0.003) 0.708 (0.004)

SimGRACE (Xia et al., 2022a) 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.5 (2.0) 71.2 (1.1) 74.9 (2.0)

GraphCL (You et al., 2020) 75.1 (0.7) 63.0 (0.4) 59.8 (1.3) 77.5 (3.8) 67.8 (2.4) 74.6 (2.1) 0.947 (0.038) 2.233 (0.261) 0.739 (0.009)

GraphMAE (Hou et al., 2022) 75.2 (0.9) 63.6 (0.3) 60.5 (1.2) 76.5 (3.0) 71.2 (1.0) 78.2 (1.5)

3D InfoMax (Stärk et al., 2022) 74.5 (0.7) 63.5 (0.8) 56.8 (2.1) 62.7 (3.3) 69.1 (1.2) 78.6 (1.9) 0.894 (0.028) 2.337 (0.227) 0.695 (0.012)

GraphMVP (Liu et al., 2021b) 74.9 (0.8) 63.1 (0.2) 60.2 (1.1) 79.1 (2.8) 70.8 (0.5) 79.3 (1.5) 1.029 (0.033) 0.681 (0.010)

MGSSL (Zhang et al., 2021) 75.2 (0.6) 63.3 (0.5) 61.6 (1.0) 77.1 (4.5) 68.8 (0.6) 78.8 (0.9)

AttrMask (Hu et al., 2019) 75.1 (0.9) 63.3 (0.6) 60.5 (0.9) 73.5 (4.3) 65.2 (1.4) 77.8 (1.8) 1.100 (0.006) 2.764 (0.002) 0.739 (0.003)

MolCLR (Wang et al., 2022) 75.0 (0.2) 58.9 (1.4) 78.1 (0.5) 72.2 (2.1) 82.4 (0.9) 1.271 (0.040) 2.594 (0.249) 0.691 (0.004)

Graphformer (Rong et al., 2020) 74.3 (0.1) 65.4 (0.4) 64.8 (0.6) 62.5 (0.9) 70.0 (0.1) 82.6 (0.7) 0.983 (0.090) 2.176 (0.052) 0.817 (0.008)

Mole-BERT (Xia et al., 2023) 76.8 (0.5) 64.3 (0.2) 62.8 (1.1) 78.9 (3.0) 71.9 (1.6) 80.8 (1.4) 1.015 (0.030) 0.676 (0.017)

Relative gain to GIN +2.9% +6.0% +11.3% +4.8% +9.9% +14.1% +14.9% -4.5% +1.0%

Pr
et

ra
in Graph2Seq-1W 76.9 (0.3) 65.4 (0.5) 68.2 (0.9) 79.4 (3.9) 72.8 (1.5) 83.4 (1.0) 0.860 (0.024) 1.797 (0.237) 0.716 (0.019)

Relative gain to GIN +3.1% +6.0% +17.2% +5.2% +10.8% +15.2% +18.1% +13.7% -4.8%

Relative gain to Graph2Seq-1W +3.9% +4.5% +2.4% +7.9% +6.6% +7.9% +9.8% +7.2% +21.1%

Setting & Baselines. We finetune the pretrained
Graph2Seq-1W on the MoleculeNet dataset. The learned
Graph Words are input into a linear layer for graph classifica-
tion or regression. We adhere to standard scaffold splitting
(not random scaffold splitting) for rigorous and meaning-
ful comparison. We do not incorporate the 3D structure of
molecules for modeling. Recent strong molecular graph
pretraining baselines are considered for comparison.

We show property prediction results in Table 1, finding that:

Pure Transformer is Competitive to GNN. Without pre-
training, Graph2Seq-1W demonstrates a comparable perfor-
mance to GNN. Specifically, in 4 out of 9 cases, Graph2Seq-
1W outperforms GIN with gains exceeding 5%, and in an-
other 4 out of 9 cases, it achieves similar performance with
an absolute relative gain of less than 5%. In addition, pure
transformer runs much faster than GNNs, i.e., we finish the
pretraining of GraphsGPT within 6 hours using 8 A100.

GPT-Style Pretraining is All You Need. Pretrained
Graph2Seq demonstrates a non-trivial improvement over 8
out of 9 datasets when compared to baselines. These results
are achieved without employing complex pretraining strate-
gies such as multi-pretext combination and hard-negative
sampling, highlighting that GPT-pretraining alone is suf-
ficient for achieving SOTA performance and providing a
simple yet effective solution for graph SSL.

Graph2Seq Benefits More from GPT-Style Pretraining.
The non-trivial improvement has not been observed by pre-
vious GPT-GNN (Hu et al., 2020b), which adopts a node-
centric generation strategy and GNN architectures. This
suggests that the transformer model is more suitable for
scaling to large datasets. In addition, previous pretrained
transformers without the GPT-style pretraining (Rong et al.,
2020) perform worse than Graph2Seq. This underscores that
generating the entire graph enhances the learning of global
topology and results in more expressive representations.

7

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

4.5. Generation

Could pretrained GraphGPT serve as a strong structural
prior model for graph generation?

GraphGPT Generates Novel Molecules with High Valid-
ity. We assess pretrained GraphGPT-1W on the MOSES
dataset through few-shots generation without finetuning. By
extracting Graph Word embeddings {hi}Mi=1 from M train-
ing molecules, we construct a mixture Gaussian distribution
p(h, s) =

∑M
i=1N (hi, sI), where s is the standard vari-

ance. We sample M molecules from p(h, s) and report the
validity, uniqueness, novelty and IntDiv in Table 2. We ob-
serve that GraphGPT generates novel molecules with high
validity. Without any finetuning, GraphGPT outperforms
MolGPT on validity, uniqueness, novelty, and diversity. Def-
inition of metrics could be found in the Appendix B.

Table 2: Few-shot generation results of GraphGPT-1W. We
use M = 100K shots and sample the same number of Graph
Word embeddings under different variance s.

Model Validity ↑ Unique ↑ Novelty ↑ IntDiv1 ↑ IntDiv2 ↑

U
nc

on
di

tio
na

l

HMM 0.076 0.567 0.999 0.847 0.810
NGram 0.238 0.922 0.969 0.874 0.864
Combinatorial 1.0 0.991 0.988 0.873 0.867
CharRNN 0.975 0.999 0.842 0.856 0.850
VAE 0.977 0.998 0.695 0.856 0.850
AEE 0.937 0.997 0.793 0.856 0.850
LatentGAN 0.897 0.997 0.949 0.857 0.850
JT-VAE 1.0 0.999 0.914 0.855 0.849
MolGPT 0.994 1.0 0.797 0.857 0.851

Fe
w

Sh
ot GraphGPT-1Ws=0.25 0.995 0.995 0.255 0.854 0.850

GraphGPT-1Ws=0.5 0.993 0.996 0.334 0.856 0.848
GraphGPT-1Ws=1.0 0.978 0.997 0.871 0.860 0.857
GraphGPT-1Ws=2.0 0.972 1.0 1.0 0.850 0.847

GraphGPT-C is a Controllable Molecule Generator.
Following (Bagal et al., 2021), we finetune GraphsGPT-
1W on 100M molecules from ZINC-C with properties and
scaffolds as prefix inputs, obtaining GraphsGPT-1W-C. We
access whether the model could generate molecules satis-
fying specified properties. We present summarized results
in Figure 5 and Table 3, while providing the full results
in the appendix due to space limit. The evaluation is con-
ducted using the scaffold “c1ccccc1”, demonstrating that
GraphGPT can effectively control the properties of gen-
erated molecules. Table 3 further confirms that unsuper-
vised pretraining enhances the controllability and validity
of GraphGPT. More details can be found in Appendix B.2.

4.6. Euclidean Graph Words

What opportunities do the Euclidean Graph Words offer that
were previously considered challenging?

For graph classification, let the i-th sample be denoted as
(Gi,yi), where Gi and yi represent the graph and one-hot
label, respectively. When considering paired graphs (Gi,yi)
and (Gj ,yj), and employing a mixing ratio λ sampled from
the Beta(α, α) distribution, the mixed label is defined as

0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

10

12

De
ns

ity

QED
0.5
0.7
0.9
Dataset

(a) QED

2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity

logP
0.0
2.0
4.0
Dataset

(b) logP
Figure 5: Property distribution of generated molecules on
different conditions using GraphsGPT-1W-C. “Dataset” de-
notes the distribution of the training dataset (ZINC-C).

Table 3: Comparison with MolGPT on different properties.
“MAD” denotes the Mean Absolute Deviation in generated
molecule properties compared to the oracle value. “SD”
denotes the Standard Deviation of the generated property.

Pretrain Metric QED=0.5 SA=0.7 logP=0.0 Avg.

M
ol

G
PT MAD ↓ 0.081 0.024 0.304 0.136

% SD ↓ 0.065 0.022 0.295 0.127
Validity ↑ 0.985 0.975 0.982 0.981

G
ra

ph
G

PT
-1

W
-C MAD ↓ 0.041 0.012 0.103 0.052

% SD ↓ 0.079 0.055 0.460 0.198
Validity ↑ 0.988 0.995 0.980 0.988
MAD ↓ 0.032 0.002 0.017 0.017

" SD ↓ 0.080 0.042 0.404 0.175
Validity ↑ 0.996 0.995 0.994 0.995

ymix = λyi+(1−λ)yj . However, due to the irregular, un-
aligned, and Non-Euclidean nature of graph data, applying
mixup to get Gmix is nontrivial. Recent efforts (Zhou et al.,
2020b; Park et al., 2022; Wu et al., 2022; Zhang et al., 2023;
Guo & Mao, 2023) have attempted to address this challenge
by introducing complex hand-crafted rules. Additionally,
G-mixup (Han et al., 2022) leverages estimated graphons
for generating mixed graphs. To our best knowledge, there
are currently no learnable model for mixing in Euclidean
space while generating new graphs.

Table 4: Graph mixup results. We compare Graph2Seq with
G-mixup on multiple tasks from MoleculeNet.

mixup HIV ↑ BBBP ↑ Bace ↑ Tox21 ↑ ToxCast ↑ Sider ↑

G
-M

ix % 77.1 68.4 75.9
" 77.1 70.2 77.8

gain +0.0 +1.8 +1.9

O
ur

s % 79.4 72.8 83.4 76.9 65.4 68.2
" 79.8 73.4 85.4 77.2 65.5 68.9

gain +0.4 +0.6 +2.0 +0.3 +0.1 +0.7

GraphsGPT is a Competitive Graph Mixer. We mixup
the learned Graph Words encoded by Graph2Seq-1W, then
generate the mixed graph using GraphGPT-1W. Formally,
the Graph Words of Gi and Gj areWi = Graph2Seq(Gi)
andWj = Graph2Seq(Gj), and the mixed graph is Gmix =
GraphGPT(λWi + (1− λ)Wj). We conduct experiments
on MoleculeNet and show the results in Table 4. We ob-
serve that the straightforward latent mixup outperforms the
elaborately designed G-mixup proposed in the ICML’22
outstanding paper (Han et al., 2022).

Due to page limit, more results are moved to the appendix.

8

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

5. Conclusion
We propose GraphsGPT, the first framework with pure
transformer that converts Non-Euclidean graph into Eu-
clidean representations, while preserving information using
an edge-centric GPT-style pretraining task. We show that
the Graph2Seq and GraphGPT serve as strong graph learn-
ers for representation and generation, respectively. The
Euclidean representations offer more opportunities previ-
ously known to be challenging. The GraphsGPT may create
a new paradigm of graph modeling.

6. Rebuttal Details
Q1 Missing discussion on diffusion-based molecular gen-
erative models.

R1 We conduct additional experiments following (Kong
et al., 2023) to compare GraphGPT-1W with the diffusion-
based methods on ZINC-250K. We follow the same few-
shots generation setting described in the Section 4.5, where
we set M = 10K for fair comparison. As shown in Table
5, we find that GraphGPT-1W surpasses these methods in a
large margin on various metrics, which can further validate
the strong generation ability of GraphGPT.

Table 5: Comparison with diffusion-based methods on
ZINC-250K. We use M = 10K shots and sample the same
number of Graph Word under different variance s.

Model Valid ↑ Unique ↑ Novel ↑ NSPDK ↓ FCD ↓
GraphAF (Shi et al., 2020) 68.47 98.64 100 0.044 16.02
GraphDF (Luo et al., 2021) 90.61 99.63 100 0.177 33.55
MoFlow (Zang & Wang, 2020) 63.11 99.99 100 0.046 20.93
EDP-GNN (Niu et al., 2020) 82.97 99.79 100 0.049 16.74
GraphEBM (Liu et al., 2021a) 5.29 98.79 100 0.212 35.47
SPECTRE (Martinkus et al., 2022) 90.20 67.05 100 0.109 18.44
GDSS (Jo et al., 2022) 97.01 99.64 100 0.019 14.66
DiGress (Vignac et al., 2022) 91.02 81.23 100 0.082 23.06
GRAPHARM (Kong et al., 2023) 88.23 99.46 100 0.055 16.26
GraphGPT-1Ws=0.25 99.67 99.95 93.0 0.0002 1.78
GraphGPT-1Ws=0.5 99.57 99.97 93.6 0.0003 1.79
GraphGPT-1Ws=1.0 98.44 100 98.0 0.0012 2.89
GraphGPT-1Ws=2.0 97.64 100 100 0.0056 8.47

Q2 How do the method consider the symmetry of graphs?
Graph data is invariant to permutation.

R2 In Section 3.2, we mention that “we introduce a ran-
dom shuffle of the position Codebook”. We should ex-
plicitly state that this random shuffle of position vectors is
equivalent to randomly shuffling the input order of atoms.
This allows the model to learn from the data with random
order augmentation. We point that building a permutation-
invariant encoder is easy and necessary, however, develop-
ing a decoder with permutation invariance poses a signifi-
cant challenge for auto-regressive generation models. We
randomly shuffle the position vectors, allowing the model
to learn representations with different orders for molecules.

To further verify the effectiveness of our method in handling
the permutation invariance, we conduct an additional ex-

Table 6: Self-consistency of decoded sequences. “C@N”
denotes the decoded results of N out of the total 1024 per-
mutations for each molecule are consistent. “Avg.” denotes
the average consistency of all test data.

Models C@256 C@512 C@768 C@1024 Avg.

GraphsGPT-1W 100% 99.2% 94.1% 77.3% 96.1%
GraphsGPT-8W 100% 99.4% 96.5% 85.3% 97.9%

periment. Given an input molecular graph sequence, we
randomly permute its order for 1024 times and encode
the shuffled sequences with Graph2Seq, obtaining a set
of 1024 Graph Words. We then decode them back to the
graph sequences and observe the consistency, which is de-
fined as the maximum percentage of the decoded sequences
that share the same results. Table 6 shows the results on
1000 molecules from the test set, where we find both mod-
els are resistant to a certain degree of permutation invari-
ance, i.e., 96.1% and 97.9% of the average consistency for
GraphsGPT-1W and GraphsGPT-8W, respectively.

In addition, there is a contradiction between permutation-
invariant model and auto-regressive model. Previous
work (TokenGT (Kim et al., 2022)) focuses on represen-
tation learning, therefore, do not suffer from the issue of
permutation-invariant. We combine representation with gen-
eration tasks in the same model, and propose the technique
of randomly shuffling position vectors so that all tasks can
work well. We should note that randomly shuffling the po-
sition vector Codebook is more effective than shuffling the
atom order itself. Readers can read the openreview rebuttal.

Acknowledgements
This work was supported by the Science & Technology In-
novation 2030 Major Program Project No. 2021ZD0150100,
National Natural Science Foundation of China Project No.
U21A20427, Project No. WU2022A009 from the Center of
Synthetic Biology and Integrated Bioengineering of West-
lake University, and Project No. WU2023C019 from the
Westlake University Industries of the Future Research. Fi-
nally, we thank the Westlake University HPC Center for
providing part of the computational resources.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here. GraphsGPT provides a new
paradigm for graph representation, generation and manip-
ulation. The Non-Euclidean to Euclidean transformation
may affect broader downstream graph applications, such as
graph translation and optimization. The methodology could
be extend to other modalities, such as image and sequence.

9

https://openreview.net/forum?id=zxxSJAVQPc

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josi-
fovski, V., and Smola, A. J. Distributed large-scale nat-
ural graph factorization. In Proceedings of the 22nd
international conference on World Wide Web, pp. 37–48,
2013.

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I.,
Hasson, Y., Lenc, K., Mensch, A., Millican, K., Reynolds,
M., et al. Flamingo: a visual language model for few-shot
learning. Advances in Neural Information Processing
Systems, 35:23716–23736, 2022.

Bagal, V., Aggarwal, R., Vinod, P., and Priyakumar,
U. D. Molgpt: molecular generation using a transformer-
decoder model. Journal of Chemical Information and
Modeling, 62(9):2064–2076, 2021.

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C.
Guacamol: benchmarking models for de novo molecular
design. Journal of chemical information and modeling,
59(3):1096–1108, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chanpuriya, S. and Musco, C. Infinitewalk: Deep network
embeddings as laplacian embeddings with a nonlinearity.
In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
1325–1333, 2020.

Chen, D., O’Bray, L., and Borgwardt, K. Structure-aware
transformer for graph representation learning. In Interna-
tional Conference on Machine Learning, pp. 3469–3489.
PMLR, 2022.

Chen, J., Ma, T., and Xiao, C. Fastgcn: fast learning with
graph convolutional networks via importance sampling.
arXiv preprint arXiv:1801.10247, 2018.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-gcn: An efficient algorithm for training deep
and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 257–266, 2019.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., et al. Scaling vision

transformers to 22 billion parameters. In ICML, pp. 7480–
7512. PMLR, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv:1810.04805, 2018.

Diehl, F. Edge contraction pooling for graph neural net-
works. arXiv preprint arXiv:1905.10990, 2019.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dwivedi, V. P. and Bresson, X. A generalization
of transformer networks to graphs. arXiv preprint
arXiv:2012.09699, 2020.

Gao, Z., Tan, C., and Li, S. Z. Pifold: Toward effective
and efficient protein inverse folding. In The Eleventh
International Conference on Learning Representations,
2022.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864, 2016.

Guo, H. and Mao, Y. Interpolating graph pair to regularize
graph classification. In AAAI, volume 37, pp. 7766–7774,
2023.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Han, X., Jiang, Z., Liu, N., and Hu, X. G-mixup: Graph
data augmentation for graph classification. In ICML, pp.
8230–8248. PMLR, 2022.

Hou, Z., Liu, X., Cen, Y., Dong, Y., Yang, H., Wang, C.,
and Tang, J. Graphmae: Self-supervised masked graph
autoencoders. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 594–604, 2022.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks. arXiv preprint arXiv:1905.12265, 2019.

Hu, Z., Dong, Y., Wang, K., Chang, K.-W., and Sun, Y. Gpt-
gnn: Generative pre-training of graph neural networks.
In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
1857–1867, 2020a.

10

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Hu, Z., Dong, Y., Wang, K., Chang, K.-W., and Sun, Y. Gpt-
gnn: Generative pre-training of graph neural networks.
In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
1857–1867, 2020b.

Hu, Z., Dong, Y., Wang, K., and Sun, Y. Heterogeneous
graph transformer. In Proceedings of the web conference
2020, pp. 2704–2710, 2020c.

Huang, Y., Peng, X., Ma, J., and Zhang, M. 3dlinker: an
e (3) equivariant variational autoencoder for molecular
linker design. arXiv preprint arXiv:2205.07309, 2022.

Hussain, M. S., Zaki, M. J., and Subramanian, D. Edge-
augmented graph transformers: Global self-attention is
enough for graphs. arXiv preprint arXiv:2108.03348,
2021.

Hwang, D., Park, J., Kwon, S., Kim, K., Ha, J.-W., and
Kim, H. J. Self-supervised auxiliary learning with meta-
paths for heterogeneous graphs. Advances in Neural
Information Processing Systems, 33:10294–10305, 2020.

Irwin, J. J. and Shoichet, B. K. Zinc- a free database of
commercially available compounds for virtual screening.
Journal of chemical information and modeling, 45(1):
177–182, 2005.

Jin, W., Derr, T., Liu, H., Wang, Y., Wang, S., Liu,
Z., and Tang, J. Self-supervised learning on graphs:
Deep insights and new direction. arXiv preprint
arXiv:2006.10141, 2020.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International Conference on Machine
Learning, pp. 10362–10383. PMLR, 2022.

Kim, J., Nguyen, D., Min, S., Cho, S., Lee, M., Lee, H., and
Hong, S. Pure transformers are powerful graph learners.
Advances in Neural Information Processing Systems, 35:
14582–14595, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016a.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
arXiv preprint arXiv:1611.07308, 2016b.

Kong, L., Cui, J., Sun, H., Zhuang, Y., Prakash, B. A., and
Zhang, C. Autoregressive diffusion model for graph gen-
eration. In International conference on machine learning,
pp. 17391–17408. PMLR, 2023.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and
Tossou, P. Rethinking graph transformers with spectral

attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Lee, J., Lee, I., and Kang, J. Self-attention graph pooling. In
International conference on machine learning, pp. 3734–
3743. PMLR, 2019.

Li, X., Sun, L., Ling, M., and Peng, Y. A survey of graph
neural network based recommendation in social networks.
Neurocomputing, pp. 126441, 2023a.

Li, Z., Gao, Z., Tan, C., Li, S. Z., and Yang, L. T. General
point model with autoencoding and autoregressive. arXiv
preprint arXiv:2310.16861, 2023b.

Lin, Z., Tian, C., Hou, Y., and Zhao, W. X. Improving
graph collaborative filtering with neighborhood-enriched
contrastive learning. In Proceedings of the ACM Web
Conference 2022, pp. 2320–2329, 2022.

Liu, C., Li, Y., Lin, H., and Zhang, C. Gnnrec: Gated graph
neural network for session-based social recommendation
model. Journal of Intelligent Information Systems, 60(1):
137–156, 2023a.

Liu, M., Yan, K., Oztekin, B., and Ji, S. Graphebm: Molec-
ular graph generation with energy-based models. arXiv
preprint arXiv:2102.00546, 2021a.

Liu, S., Wang, H., Liu, W., Lasenby, J., Guo, H., and Tang,
J. Pre-training molecular graph representation with 3d
geometry. arXiv preprint arXiv:2110.07728, 2021b.

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang,
J., and Tang, J. Self-supervised learning: Generative or
contrastive. IEEE transactions on knowledge and data
engineering, 35(1):857–876, 2021c.

Liu, Y., Jin, M., Pan, S., Zhou, C., Zheng, Y., Xia, F., and
Philip, S. Y. Graph self-supervised learning: A survey.
IEEE Transactions on Knowledge and Data Engineering,
35(6):5879–5900, 2022.

Liu, Y., Yang, X., Zhou, S., Liu, X., Wang, S., Liang, K., Tu,
W., and Li, L. Simple contrastive graph clustering. IEEE
Transactions on Neural Networks and Learning Systems,
2023b.

Liu, Y., Yang, X., Zhou, S., Liu, X., Wang, Z., Liang, K.,
Tu, W., Li, L., Duan, J., and Chen, C. Hard sample aware
network for contrastive deep graph clustering. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 37, pp. 8914–8922, 2023c.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In ICCV, pp. 10012–
10022, 2021d.

11

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Luo, Y., Yan, K., and Ji, S. Graphdf: A discrete flow
model for molecular graph generation. In International
conference on machine learning, pp. 7192–7203. PMLR,
2021.

Ma, Y., Wang, S., Aggarwal, C. C., and Tang, J. Graph con-
volutional networks with eigenpooling. In Proceedings
of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 723–731, 2019.

Martinkus, K., Loukas, A., Perraudin, N., and Wattenhofer,
R. Spectre: Spectral conditioning helps to overcome the
expressivity limits of one-shot graph generators. In In-
ternational Conference on Machine Learning, pp. 15159–
15179. PMLR, 2022.

McInnes, L. and Healy, J. Accelerated hierarchical density
based clustering. In Data Mining Workshops (ICDMW),
2017 IEEE International Conference on, pp. 33–42. IEEE,
2017.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Mialon, G., Chen, D., Selosse, M., and Mairal, J. Graphit:
Encoding graph structure in transformers. arXiv preprint
arXiv:2106.05667, 2021.

Min, E., Chen, R., Bian, Y., Xu, T., Zhao, K., Huang, W.,
Zhao, P., Huang, J., Ananiadou, S., and Rong, Y. Trans-
former for graphs: An overview from architecture per-
spective. arXiv preprint arXiv:2202.08455, 2022.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., and Ermon,
S. Permutation invariant graph generation via score-based
generative modeling. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 4474–4484. PMLR,
2020.

Pang, Y., Wang, W., Tay, F. E., Liu, W., Tian, Y., and Yuan,
L. Masked autoencoders for point cloud self-supervised
learning. In ECCV, pp. 604–621. Springer, 2022.

Park, J., Shim, H., and Yang, E. Graph transplant: Node
saliency-guided graph mixup with local structure preser-
vation. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 36, pp. 7966–7974, 2022.

Peng, X., Luo, S., Guan, J., Xie, Q., Peng, J., and Ma, J.
Pocket2mol: Efficient molecular sampling based on 3d
protein pockets. In International Conference on Machine
Learning, pp. 17644–17655. PMLR, 2022.

Peng, Z., Dong, Y., Luo, M., Wu, X.-M., and Zheng, Q.
Self-supervised graph representation learning via global
context prediction. arXiv:2003.01604, 2020a.

Peng, Z., Huang, W., Luo, M., Zheng, Q., Rong, Y., Xu, T.,
and Huang, J. Graph representation learning via graphical
mutual information maximization. In Proceedings of The
Web Conference 2020, pp. 259–270, 2020b.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 701–710, 2014.

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golo-
vanov, S., Tatanov, O., Belyaev, S., Kurbanov, R., Arta-
monov, A., Aladinskiy, V., Veselov, M., et al. Molecular
sets (moses): a benchmarking platform for molecular gen-
eration models. Frontiers in pharmacology, 11:565644,
2020.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M.,
Wang, K., and Tang, J. Gcc: Graph contrastive coding for
graph neural network pre-training. In Proceedings of the
26th ACM SIGKDD international conference on knowl-
edge discovery & data mining, pp. 1150–1160, 2020.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions. arXiv:1710.05941, 2017.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Rong, Y., Bian, Y., Xu, T., Xie, W., Wei, Y., Huang, W., and
Huang, J. Self-supervised graph transformer on large-
scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Shakibajahromi, B., Kim, E., and Breen, D. E. Rimeshgnn:
A rotation-invariant graph neural network for mesh clas-
sification. In WACV, pp. 3150–3160, 2024.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang,
J. Graphaf: a flow-based autoregressive model for molec-
ular graph generation. In International Conference on
Learning Representations, 2019.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang,
J. Graphaf: a flow-based autoregressive model for molec-
ular graph generation. arXiv preprint arXiv:2001.09382,
2020.

Stärk, H., Beaini, D., Corso, G., Tossou, P., Dallago, C.,
Günnemann, S., and Liò, P. 3d infomax improves gnns
for molecular property prediction. In ICML, pp. 20479–
20502. PMLR, 2022.

Sun, F.-Y., Hoffmann, J., Verma, V., and Tang, J. Info-
graph: Unsupervised and semi-supervised graph-level
representation learning via mutual information maximiza-
tion. arXiv preprint arXiv:1908.01000, 2019.

12

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Suresh, S., Li, P., Hao, C., and Neville, J. Adversarial
graph augmentation to improve graph contrastive learning.
Advances in Neural Information Processing Systems, 34:
15920–15933, 2021.

Tan, C., Gao, Z., and Li, S. Z. Target-aware molecular graph
generation. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp.
410–427. Springer, 2023.

Tian, Y., Dong, K., Zhang, C., Zhang, C., and Chawla, N. V.
Heterogeneous graph masked autoencoders. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 9997–10005, 2023.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Vignac, C., Krawczuk, I., Siraudin, A., Wang, B., Cevher,
V., and Frossard, P. Digress: Discrete denoising diffusion
for graph generation. arXiv preprint arXiv:2209.14734,
2022.

Wang, P., Agarwal, K., Ham, C., Choudhury, S., and Reddy,
C. K. Self-supervised learning of contextual embeddings
for link prediction in heterogeneous networks. In Pro-
ceedings of the web conference 2021, pp. 2946–2957,
2021.

Wang, Y., Wang, J., Cao, Z., and Barati Farimani, A. Molec-
ular contrastive learning of representations via graph neu-
ral networks. NMI, 4(3):279–287, 2022.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
ICML, pp. 6861–6871. PMLR, 2019.

Wu, L., Lin, H., Tan, C., Gao, Z., and Li, S. Z. Self-
supervised learning on graphs: Contrastive, generative, or
predictive. IEEE Transactions on Knowledge and Data
Engineering, 2021a.

Wu, L., Xia, J., Gao, Z., et al. Graphmixup: Improving class-
imbalanced node classification by reinforcement mixup
and self-supervised context prediction. In ECML-PKDD,
pp. 519–535. Springer, 2022.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Ge-
niesse, C., Pappu, A. S., Leswing, K., and Pande, V.
Moleculenet: a benchmark for molecular machine learn-
ing. Chemical science, 9(2):513–530, 2018.

Wu, Z., Jain, P., Wright, M., Mirhoseini, A., Gonzalez,
J. E., and Stoica, I. Representing long-range context for
graph neural networks with global attention. NeurIPS,
34:13266–13279, 2021b.

Xia, J., Wu, L., Chen, J., Hu, B., and Li, S. Z. Simgrace: A
simple framework for graph contrastive learning without
data augmentation. In Proceedings of the ACM Web
Conference 2022, pp. 1070–1079, 2022a.

Xia, J., Zhao, C., Hu, B., Gao, Z., Tan, C., Liu, Y., Li, S., and
Li, S. Z. Mole-bert: Rethinking pre-training graph neural
networks for molecules. In The Eleventh International
Conference on Learning Representations, 2022b.

Xia, J., Zhao, C., Hu, B., Gao, Z., Tan, C., Liu, Y., Li, S., and
Li, S. Z. Mole-bert: Rethinking pre-training graph neural
networks for molecules. In The Eleventh International
Conference on Learning Representations, 2023.

Xiao, W., Zhao, H., Zheng, V. W., and Song, Y. Vertex-
reinforced random walk for network embedding. In Pro-
ceedings of the 2020 SIAM International Conference on
Data Mining, pp. 595–603. SIAM, 2020.

Xie, Y., Xu, Z., Zhang, J., Wang, Z., and Ji, S. Self-
supervised learning of graph neural networks: A unified
review. IEEE transactions on pattern analysis and ma-
chine intelligence, 45(2):2412–2429, 2022.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Xu, M., Wang, H., Ni, B., Guo, H., and Tang, J. Self-
supervised graph-level representation learning with local
and global structure. In International Conference on
Machine Learning, pp. 11548–11558. PMLR, 2021.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y.,
and Liu, T.-Y. Do transformers really perform badly for
graph representation? Advances in Neural Information
Processing Systems, 34:28877–28888, 2021.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. Hierarchical graph representation learning
with differentiable pooling. Advances in neural informa-
tion processing systems, 31, 2018.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y.
Graph contrastive learning with augmentations. NeurIPS,
33:5812–5823, 2020.

You, Y., Chen, T., Shen, Y., and Wang, Z. Graph contrastive
learning automated. In International Conference on Ma-
chine Learning, pp. 12121–12132. PMLR, 2021.

Yu, X., Tang, L., Rao, Y., et al. Point-bert: Pre-training 3d
point cloud transformers with masked point modeling. In
CVPR, pp. 19313–19322, 2022.

Zang, C. and Wang, F. Moflow: an invertible flow model for
generating molecular graphs. In Proceedings of the 26th

13

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 617–626, 2020.

Zeng, J. and Xie, P. Contrastive self-supervised learning
for graph classification. In AAAI, volume 35, pp. 10824–
10832, 2021.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

Zhang, J., Luo, D., and Wei, H. Mixupexplainer: General-
izing explanations for graph neural networks with data
augmentation. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
pp. 3286–3296, 2023.

Zhang, Z., Liu, Q., Wang, H., Lu, C., and Lee, C.-K. Motif-
based graph self-supervised learning for molecular prop-
erty prediction. Advances in Neural Information Process-
ing Systems, 34:15870–15882, 2021.

Zhao, J., Li, C., Wen, Q., Wang, Y., Liu, Y., Sun, H., Xie, X.,
and Ye, Y. Gophormer: Ego-graph transformer for node
classification. arXiv preprint arXiv:2110.13094, 2021.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. AI open, 1:57–81, 2020a.

Zhou, J., Shen, J., and Xuan, Q. Data augmentation for
graph classification. In Proceedings of the 29th ACM
International Conference on Information & Knowledge
Management, pp. 2341–2344, 2020b.

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., and Wang, L. Deep
graph contrastive representation learning. arXiv preprint
arXiv:2006.04131, 2020.

Zhu, Y., Xu, Y., Yu, F., et al. Graph contrastive learning
with adaptive augmentation. In Proceedings of the Web
Conference 2021, pp. 2069–2080, 2021.

Zou, D., Wei, W., Mao, X.-L., et al. Multi-level cross-view
contrastive learning for knowledge-aware recommender
system. In SIGIR, pp. 1358–1368, 2022.

14

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

A. Representation
When applying graph mixup, the training samples are drawn from the original data with probability pself and from mixed
data with probability (1− pself). The mixup hyperparameter α and pself are shown in Table 7.

Tox21 ToxCast Sider HIV BBBP BACE ESOL FreeSolv LIPO

batch size 16 16 16 64 128 16 16 64 16
lr 1e-5 5e-5 1e-4 1e-4 5e-4 1e-5 1e-4 1e-4 5e-5
dropout 0.0 0.0 0.0 0.0 0.1 or 0.3 0.0 0.1 0.1 0.0
epoch 50 50 50 50 50 or 100 50 50 50 50
α for mixup 0.5 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.1
pself for mixup 0.7 0.7 0.7 0.5 0.5 0.7 0.7 0.9 0.7

Table 7: Hyperparameters for property prediction.

15

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

B. Generation
B.1. Few-Shots Generation

We introduce metrics (Bagal et al., 2021) of few-shots generation as follows:

• Validity: the fraction of a generated molecules that are valid. We use RDkit for validity check of molecules. Validity
measures how well the model has learned the SMILES grammar and the valency of atoms.

• Uniqueness: the fraction of valid generated molecules that are unique. Low uniqueness highlights repetitive molecule
generation and a low level of distribution learning by the model.

• Novelty: the fraction of valid unique generated molecules that are not in the training set. Low novelty is a sign of
overfitting. We do not want the model to memorize the training data.

• Internal Diversity (IntDivp): measures the diversity of the generated molecules, which is a metric specially designed
to check for mode collapse or whether the model keeps generating similar structures. This uses the power (p) mean of
the Tanimoto similarity (T) between the fingerprints of all pairs of molecules (s1, s2) in the generated set (S).

InvDivp(S) = 1− p

√
1

|S|2
∑

s1,s2∈S

T (s1, s2)p (14)

B.2. Conditional Generation

We provide a detailed description of the conditions used for conditional generation as follows:

• QED (Quantitative Estimate of Drug-likeness): a measure that quantifies the “drug-likeness” of a molecule based on
its pharmacokinetic profile, ranging from 0 to 1.

• SA (Synthetic Accessibility): a score that predicts the difficulty of synthesizing a molecule based on multiple factors.
Lower SA scores indicate easier synthesis.

• logP (Partition Coefficient): a key parameter in studies of drug absorption and distribution in the body that measuring
a molecule’s hydrophobicity.

• Scaffold: the core structure of a molecule, which typically includes rings and the atoms that connect them. It provides
a framework upon which different functional groups can be added to create new molecules.

In order to integrate conditional information into our model, we set aside an additional 100M molecules from the ZINC
database for finetuning, which we denote as the dataset DG . For each molecule G ∈ DG , we compute its property values
vQED, vSA and vlogP and normalize them to 0 mean and 1.0 variance, yielding v̄QED, v̄SA and v̄logP.

The Graph2Seq model takes all properties and scaffolds as inputs and transforms them into the Graph Word sequence
W = [w1,w2, · · · ,wk]. The additional property and scaffold information enables Graph2Seq to encode Graph Words with
conditions. The Graph Words are then subsequently decoded by GraphGPT following the same implementation in Section
3.3. In summary, the inputs of the Graph2Seq encoder comprises:

1. Graph Word Prompts [[GW 1], · · · ,[GW k]], which are identical to the word prompts discussed in Section 3.2.

2. Property Token Sequence [[QED],[SA],[logP]], which is encoded from the normalized property values v̄QED,
v̄SA and v̄logP.

3. Scaffold Flexible Token Sequence FTSeqScaf, representing the sequence of the scaffold for the molecule.

For the sake of comparison, we followed Bagal et al. (2021) and trained a MolGPT model on the GuacaMol dataset (Brown
et al., 2019) using QED, SA, logP, and scaffolds as conditions for 10 epochs. We compare the conditional generation ability
by measuring the MAD (Mean Absolute Deviation), SD (Standard Deviation), validity and uniqueness. Table 8 presents the
full results, underscoring the superior control of GraphGPT-1W-C over molecular properties.

16

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

Pretrain Metric QED=0.5 QED=0.7 QED=0.9 SA=0.7 SA=0.8 SA=0.9 logP=0.0 logP=2.0 logP=4.0 Avg.

M
ol

G
PT

%
MAD ↓ 0.081 0.082 0.097 0.024 0.019 0.013 0.304 0.239 0.286 0.127
SD ↓ 0.065 0.066 0.092 0.022 0.016 0.013 0.295 0.232 0.258 0.118
Validity ↑ 0.985 0.985 0.984 0.975 0.988 0.995 0.982 0.983 0.982 0.984

G
ra

ph
G

PT
-1

W
-C

%
MAD ↓ 0.041 0.031 0.077 0.012 0.028 0.031 0.103 0.189 0.201 0.079
SD ↓ 0.079 0.077 0.121 0.055 0.062 0.070 0.460 0.656 0.485 0.229
Validity ↑ 0.988 0.995 0.991 0.995 0.991 0.998 0.980 0.992 0.991 0.991

"
MAD ↓ 0.032 0.033 0.051 0.002 0.009 0.022 0.017 0.190 0.268 0.069
SD ↓ 0.080 0.075 0.090 0.042 0.037 0.062 0.463 0.701 0.796 0.261
Validity ↑ 0.996 0.998 0.999 0.995 0.999 0.996 0.994 0.990 0.992 0.995

Table 8: Overall comparison between GraphGPT-1W-C and MolGPT on different properties with scaffold SMILES
“c1ccccc1”. “MAD” denotes the Mean Absolute Deviation of the property value in generated molecules compared to the
oracle value. “SD” denotes the Standard Deviation of the generated property.

0.2 0.4 0.6 0.8 1.0 1.2
0

2

4

6

8

10

12

De
ns

ity

QED
0.5
0.7
0.9
Dataset

(a) QED

0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30
De

ns
ity

SA
0.7
0.8
0.9
Dataset

(b) SA

2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity

logP
0.0
2.0
4.0
Dataset

(c) logP
Figure 6: Property distribution of generated molecules on different conditions using GraphGPT-1W-C.

17

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

C. Graph Words
C.1. Clustering

The efficacy of the Graph2Seq encoder hinges on its ability to effectively map Non-Euclidean graphs into Euclidean latent
features in a structured manner. To investigate this, we visualize the latent Graph Words space using sampled features,
encoding 32,768 molecules with Graph2Seq-1W and employing HDBSCAN (McInnes & Healy, 2017) for clustering the
Graph Words.

Figures 7 and 8 respectively illustrate the clustering results and the molecules within each cluster. An intriguing observation
emerges from these results: the Graph2Seq model exhibits a propensity to cluster molecules with similar properties (e.g.,
identical functional groups in clusters 0, 1, 4, 5; similar structures in clusters 2, 3, 7; or similar Halogen atoms in cluster 3)
within the latent Graph Words space. This insight could potentially inform and inspire future research.

0

1

2

3

4

5

6

7

Figure 7: UMAP (McInnes et al., 2018) visualization of the clustering result on the Graph Words of Graph2Seq-1W.

18

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

(a) Cluster 0

(b) Cluster 1

(c) Cluster 2

(d) Cluster 3

(e) Cluster 4

(f) Cluster 5

(g) Cluster 6

(h)Cluster 7

Figure 8: Visualization of the molecules in each cluster.

19

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

C.2. Graph Translation

Graph Interpolation. In exploit of the Euclidean representation of graphs, we explore the continuity of the latent Graph
Words using interpolation. Consider a source molecule Gs and a target molecule Gt. We utilize Graph2Seq to encode them
into Graph Words, represented asWs andWt, respectively. We then proceed to conduct a linear interpolation between these
two Graph Words, resulting in a series of interpolated Graph Words: W ′

α1
,W ′

α2
, . . . ,W ′

αk
, where each interpolated Graph

Word is computed asW ′
αi

= (1− αi)Ws + αiWt. These interpolated Graph Words are subsequently decoded back into
molecules using GraphGPT.

The interpolation results are depicted in Figure 9. We observe a smooth transition from the source to the target molecule,
which demonstrates the model’s ability to capture and traverse the continuous latent space of molecular structures effectively.
This capability could potentially be exploited for tasks such as molecular optimization and drug discovery.

0 (Source) 0.231 0.419 0.606 0.711 0.789 1 (Target)

(a)

0 (Source) 0.395 0.476 0.488 0.538 0.615 1 (Target)

(b)

0 (Source) 0.263 0.396 0.530 0.603 0.654 1 (Target)

(c)

0 (Source) 0.356 0.459 0.510 0.526 0.614 1 (Target)

(d)

Figure 9: Graph interpolation results with different source and target molecules using GraphsGPT-1W. The numbers denote
the values of α for corresponding results.

Graph Hybridization. With Graph2Seq, a graph G can be transformed into a fixed-length Graph Word sequence
W = [w1, · · · ,wk], where each Graph Word is expected to encapsulate distinct semantic information. We investigate the
representation of Graph Words by hybridizing them among different inputs.

Specifically, consider a source molecule Gs and a target molecule Gt, along with their Graph WordsWs = [ws1, · · · ,wsk]
andWt = [wt1, · · · ,wtk]. Given the indices set I ,we replace a subset of source Graph Words with the corresponding
target Graph Words wsi ← wti, i ∈ I , yielding the hybrid Graph WordsWh = [wh1, · · · ,whk], where:

wh =

{
wti, i ∈ I

wsi, i /∈ I
. (15)

20

A Graph is Worth K Words: Euclideanizing Graph using Pure Transformer

We then decodeWh using GraphGPT back into the graph and observe the changes on the molecules. The results are depicted
in Figure 10. From these results, we observe that hybridizing specific Graph Words can lead to the introduction of certain
features from the target molecule into the source molecule, such as the Sulfhydryl functional group. This suggests that
Graph Words could potentially be used as a tool for manipulating specific features in molecular structures, which could have
significant implications for molecular design and optimization tasks.

TargetSource Hybrid-4 Hybrid-4-5 Hybrid-4-5-7

Source Hybrid-4 Hybrid-4-5 Hybrid-4-5-7

Source Hybrid-4 Hybrid-4-5 Hybrid-4-5-7

Figure 10: Hybridization results of Graph Words. The figure shows the changes in the source molecule after hybridizing
specific Graph Words from the target molecule. We use GraphsGPT-8W which has 8 Graph Words in total.

21

