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Abstract

Simulating transition dynamics between metastable states is a fundamental chal-1

lenge in dynamical systems and stochastic processes with wide real-world appli-2

cations in understanding protein folding, chemical reactions and neural activities.3

However, the computational challenge often lies on sampling exponentially many4

paths in which only a small fraction ends in the target metastable state due to5

existence of high energy barriers. To amortize the cost, we propose a data-driven6

approach to warm-up the simulation by learning nonlinear interpolations from local7

dynamics. Specifically, we infer a potential energy function from local dynamics8

data. To find plausible paths between two metastable states, we formulate a gener-9

alized flow matching framework that learns a vector field to sample propable paths10

between the two marginal densities under the learned energy function. Furthermore,11

we iteratively refine the model by assigning importance weights to the sampled12

paths and buffering more likely paths for training. We validate the effectiveness of13

the proposed method to sample probable paths on both synthetic and real-world14

molecular systems.15

1 Introduction16

Transition dynamics simulation aims to sample transition paths between two metastable states, which17

is a fundamental challenge in dynamical systems, stochastic processes, and molecular simulations,18

with broad applications [5, 30, 2, 21, 9, 10]. The key computational obstacle lies in the rarity of19

transition events such that it requires long-run molecular dynamics (MD) simulations to go over high20

energy barriers. In addition, there exists an infinite amount of paths that do not end in the target state.21

To address these limitations, early work leverage Markov chain Monte Carlo (MCMC) approaches to22

mix the path distributions [7]. However, MCMC-based simulation in such high-dimensional spaces23

suffer from slow mixing time. Alternatively, later work formulate it as a path integral control problem24

such that an external control is learned to guide the stochastic process for certain terminal conditions25

(i.e. arrive at the target in finite time ) [12, 31, 6, 24]. Nevertheless, the path integral control method26

is known as a shooting method with high variance (i.e. the probability to hit the target is very low).27

Recently, a variational formulation of learning Doob’s h-transform is proposed, which leads to a28

collocation method that optimizes a family of tractable probability paths [8].29

Nevertheless, all previous work require an extensive amount of expensive energy evaluations to sample30

from the path distributions. In this paper, we study the possibility to find a low-cost approximation of31

the transition paths distribution. In many studies of rare events in molecular systems, local short-run32

molecular simulations are used to provide information about transitions [28]. Our approach builds33

on the idea that even with very short-run local molecular simulations, we can initialize transition34

paths more effectively than common methods like linear interpolation or heuristic-based method [26].35
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Specifically, we aim to learn a “potential energy” from these short-run trajectories which indicates36

the likelihood of the states despite they are by no means well-equilibrated.37

Building on the recent progress of Schrödinger bridge and flow matching models [15, 19, 13], we38

formulate the problem as a generalized flow matching problem which introduces an additional39

potential energy as constraint than the normal flow matching setup [14]. We solve the generalized40

flow matching problem by learning a vector field to moving from the distribution of one metastable41

state to another that minimizes the overall transportation cost. To further improve the quality of the42

learned path, we apply importance sampling to resample transition paths reweighted by the path43

probability induced by the true energy function.44

We validate the effectiveness of the proposed method on both synthetic data and real-world molecular45

systems. The results demonstrate that our method can sample high-quality transition paths (close to46

saddle points) with a significantly less energy evaluations to generate local dynamics data.47

2 Background48

2.1 Score & Flow Matching49

Score-based generative models or diffusion models [27, 11] build a generative process from tractable50

prior distribution pT (x) (e.g. Gaussian) to complex data distribution p0(x) ≈ pdata(x) where x ∈ Rd.51

It can be learned by reversing a forward stochastic process from p0(x) to pT (x), as follows:52

dxt = f(xt, t)dt+ g(t)dWt (1)

dxt =
[

f(xt, t)− g2(t)∇x log pt(xt)
]

dt+ g(t)dW̄t (2)

where f : Rd × R → Rd is the drift, g : R → R is the scalar diffusion coefficient, Wt, W̄t are53

d-dimensional Wiener process and the score network sθ(xt, t) is learned to match the conditional54

score function ∇x log pt(xt|x0):55

min
s

EU(t)Ep0
Ept|0

[
∥sθ(xt, t)−∇x log pt(xt|x0)∥2

]
(3)

Flow matching [14, 1, 17] generalizes the idea of score matching by extending it to a general family of56

Gaussian conditional probability paths pt(xt|x0) = N (xt|µt(x0), σt(x0)
2I) and regress the vector57

field vθ(xt, t) to the conditional vector field ut(xt|x0) = σ′
t(x0)

σt(x0)
(xt−µt(x0))+µ

′
t(x0) corresponding58

to the Gaussian path pt(xt|x0):59

min
v

EU(t)Ep0
Ept|0

[
∥vθ(xt, t)− ut(xt|x0)∥2

]
(4)

2.2 Generalized Schrödinger Bridge Matching60

One key ingredient behind the success of score-based generative and flow matching models is the61

simulation-free forward process (diffusion paths or Gaussian paths) that can be evaluated analytically.62

However, there is a broader class of problems with nonlinear drift or constraint that require simulation63

of the forward process. The generalized Schrödinger bridge problem is more general such that in64

addition to learn a stochastic process with minimal kinetic energy that connects p0(x) and pT (x), it65

further minimizes the potential energy V (·) along the path as [15]:66

min
f,pt

∫ T

0

∫ (
1

2
∥fθ(xt)∥2 + V (xt)

)
pt(xt)dxdt, (5)

s.t. ∂tpt(xt) = −∇ ·
(
pt(xt)fθ(xt, t)

)
+

1

2
g(t)∆pt(xt), p0 = µ0, pT = µT (6)

To solve the problem in Eq. (5), [15] propose to approximate the true marginal distribution pt of the67

stochastic process with Gaussian density conditioned on both end points pt|0,T (xt) = N (xt|µt, σ
2
t I)68

where µt and σt can be parameterized by neural networks or spline. Similar to flow matching,69

approximating the marginals using Gaussian paths allows for simulation-free sampling and thus easy70

optimization within the the objective Eq. (5). In the end, fθ is learned by matching against the vector71

field corresponding to the Gaussian path similar to Eq. (4). It is worth noting that a similar general72

framework has also been proposed in [18, 19].73
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3 Generalized Flow Matching for Transition Dynamics Modeling74

3.1 Short-Run Molecular Dynamics75

Molecular dynamics simulation follows Newton’s equation of motion such that Mẍt = −∇xU(xt),76

where M is the mass of the particles, U : RN×3 → R is the potential energy function and x =77

(x1, . . . , xN ) ∈ RN×3 is one state of the molecular system. Nevertheless, one common goal of78

interest to run molecular simulation is to sample from the thermal equilibrium (known as the NVT79

ensemble) with a heat bath at a fixed temperature, which is taken into account by running the following80

Langevin equation.81 (
dxt
dvt

)
=

(
vt

−M−1∇xU(xt)− γvt

)
dt+

(
0 0
0 M−1/2

√
2γkBTp

)
dWt (7)

where γ is the friction coefficient, kB is the Boltzmann constant and temperature Tp. The stationary82

distribution of running this Markov process is the thermal equilibrium p(x) ∝ e−U(x)/kBTp . However,83

with the goal of learning transition paths with a limited number of potential energy evaluations, we84

do not attempt to sample from the equilibrium.85

Instead, we consider two predefined metastable states A and B, which correspond to local minima86

on the potential energy landscape. We run only local molecular dynamics simulations around two87

metastable state to initialize our subsequent methods. In particular, we let Φ→s:t(y) denote simulating88

the dynamics in Eq. (7) initialized at point y and time s for time t − s and t > s. For t < s, we89

integrate backward in time and write Φ←s:t(y).90

For a short time interval s chosen as a design decision, our subsequent methods are initialized from91

the induced distributions µ0(x) = (Φ→−s:0)#δA and µT (x) = (Φ←T+s:T )#δB where we abbreviate92

δA(y) = δ(A− y), δB(y) = δ(B − y).93

We illustrate examples of µ0 and µT resulting from different choices of s in Fig. 1, where A and B94

are indicated using green points and µ0 and µT are indicated using red and blue points, respectively.95

Our hope is that short-run MD simulations provide a useful initialization for our Generalized Flow96

Matching transport problem with learned potentials.97

3.2 Generalized Flow Matching98

Inspired by the generalized Schrödinger bridge problem, we formulate the problem of finding feasible99

transition paths as a distribution matching problem such that we learn a vector field to transport100

between two given marginal distributions:101

LGFM = min
vθ
t ,pt

∫ T

0

∫ (
1

2
∥vθt (xt)∥2 + Vt(xt)

)
pt(xt)dxdt

s.t. ∂tpt(xt) = −∇ ·
(
pt(xt)v

θ
t (xt)

)
, p0 = µ0, pT = µT

(8)

where µ0 and µT are the density of the states explored by a local molecular dynamics simulation102

around the metastable states A and B, described above. In general, the kinetic energy corresponds to103

the speed of transport while the potential energy defines a state cost corresponding to how probable104

the states are (e.g. likelihood). Together these cost functions define an optimal interpolation of105

marginals p∗t between µ0 and µT , which reduces to the dynamic formulation of optimal transport106

for Vt(·) = 0 [22]. It is worth noting that the potential energy function V (·) does not have to be the107

same as U(·) used in molecular dynamics simulation, and we now discuss how to learn a surrogate108

potential energy functions from µ0, µT to guide the sampling of transition paths.109

3.3 Inferring Kinetic and Potential Energy from Data110

As one of the main goal of this study is to reduce the number of potential energy evaluation U(·), we111

show how we can learn a surrogate energy function V (·) from the local dynamics data in two ways.112

Latent interpolation: We propose to learn an autoencoder that maps high-dimensional data into113

low-dimensional representations such that it preserves structural information [15]. The hypothesis is114

that the latent space compresses semantic information from data thus better measure distance than115

the ambient Euclidean space. Specifically, we map data (x0, xT ) to the latent space as (z0, zT ). We116
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define the potential energy as the deviation of the state xt from certain interpolation (e.g. spherical117

interpolation) of x0 and xT in the latent space I(z0, zT , t):118

V (xt) = ∥xt − Decoder(I(z0, zT , t))∥22 (9)

Metric learning: Another natural way to learn the potential energy is through metric learning such119

that the metric informs how dense the data is around a particular location [4, 3]. Once the metric120

G : RN×3 → RN×N is learned, the kinetic energy term in Eq. (8) will become:121

∥vt∥G = vTt G(xt)vt = vTt vt + vTt (G(xt)− I)vt = ∥vt∥2 + V (xt, vt) (10)

where the potential energy is implied as:122

V (xt, vt) = vTt (G(xt)− I)vt (11)

It is worth noting this can be equivalently considered as defining the kinetic energy under a learned123

metric tensor G because potential energy often only depends on xt, where in the other case, the124

kinetic energy is defined under the trivial diagonal metric in Euclidean space. We leave the details125

about metric learning in App. A.126

3.4 Conditional Generalized Flow Matching Objective127

To facilitate optimization of Eq. (8), we derive the following conditional or ‘bridge’ objective.128

Definition 1. Assume the path of marginals pt decomposes such that pt(xt) =129 ∫ ∫
p0,T (x0, xT )pt|0,T (xt)dx0dxT and there exists vt|0,T such that ∂tpt|0,T = −∇ ·

(
pt|0,T vt|0,T

)
.130

We define the following conditional GFM objective131

LcGFM(x0, xT ) := min
pt|0,T ,vt|0,T

∫ T

0

∫ (
1

2
∥vt|0,T (xt)∥2 + Vt(xt)

)
pt|0,T (xt|x0, xT )dxtdt (12)

s.t. ∂t pt|0,T (xt) = −∇ ·
(
pt|0,T (xt)vt|0,T (xt)

)
, p0|0,T = δx0

, pT |0,T = δxT
.

where we abbreviate the boundary condition p0|0,T (x) = δ(x − x0) and optimize a conditional132

objective for each sample from the joint distribution (x0, xT ) ∼ p0,T .133

The objective in Def. 1 is a deterministic analogue the conditional stochastic control objective in Prop.134

2 of [15]. We next show that the optimizing the conditional objective yields an upper bound on the135

marginal objective, which was not emphasized by [15]. See App. C.2 for proof.136

Proposition 1. Taking the expectation of the conditional objective over (x0, xT ) ∼ p0,T and137

enforcing that p0,T ∈ Π(µ0, µT ) satisfies the boundary conditions yields an upper bound on LGFM,138

LGFM ≤ Ep0,T (x0,xT )

[
LcGFM(x0, xT )

]
s.t. p0 = µ0, pT = µT . (13)

For a learned potential energy (Sec. 3.3), our computational approach seeks to find an approximate139

solution to the marginal GFM problem (Eq. (8)) by representing a coupling p0,T and parameterizing140

pt|0,T and vϕt|0,T . However, to generate unconditional transition paths from an initial x0 or xT and141

facilitate a parameterization of p0,T , we also consider learning a marginal vector field vθt in Eq. (8).142

Neural Spline Parameterization of vϕt|0,T The conditional objective in Def. 1 requires pt|0,T and143

vϕt|0,T which satisfy the continuity equation and respect the boundary conditions δx0
, δxT

. To satisfy144

these desiderata, we use neural networks to parameterize a spline interpolation in the sample space145

that satisfies the boundary conditions:146

xϕt = (1− t)x0 + txT + t(1− t)NNϕ(x0, xT , t) (14)

This spline induces a path of marginal distributions pt|0,T , where the velocity vt|0,T satisfying the147

continuity equation in Eq. (12) is directly tractable as [1, 29]148

vϕt|0,T (xt) = xT − x0 + t(1− t)ṄNϕ(x0, xT , t) + (1− 2t)NNϕ(x0, xT , t) (15)

This choice of vϕt|0,T thus satisfies both the endpoint constraints in Eq. (14) and the conditional149

continuity equation constraint for the marginals pϕt|0,T induced by xϕt sampling.150
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Algorithm 1 Generalized Flow Matching Algorithm
Require: data p0, pT , learned potential energy V (·), neural spline network NNϕ, velocity network

vθ (initialized as the solution to initial coupling, e.g. µ0 ⊗ µT ), replay buffer B, maximum replay
buffer size |B|

1: while not converged do
2: Sample x0 ∼ p0, xT ∼ ODE([0, T ], x0, vθ), t ∼ U(0, T )
3: xϕt = (1− t)x0 + txT + t(1− t)NNϕ(x0, xT , t) eq. (14)
4: vϕt|0,T (xt) = xT − x0 + t(1− t)ṄNϕ(x0, xT , t) + (1− 2t)NNϕ(x0, xT , t) eq. (15)

5: Lp0,T

spline(ϕ) =
1
2∥v

ϕ
t|0,T ∥

2 + V (xt) eq. (17)

6: Lflow(θ) = ∥vθt (xt)− sg
(
vϕt|0,T (x0, xT , t)

)
∥2 eq. (19)

7: Update ϕ, θ using ∇ϕLspline(ϕ), ∇θLflow(θ)
8: if Replay Buffer then
9: {xi0}Ni=0 ∼ p0

10: {γi}Ni=0 = ODE([0, T ], {xi0}Ni=0, vθ), γ = x0:T
11: Compute weight w̃i for γi, add (γi, w̃i) to B eq. (20)
12: while Replay Buffer not converged do
13: Sample γ ∼ B, t ∼ U(0, T ), x0 ∼ p0, xT ∼ ODE([0, T ], x0, vθ)
14: Lreplay(ϕ) = ∥xϕ(x0, xT , t)− γt∥2 + ∥vϕ(x0, xT , t)∥2 eq. (21)

15: Lflow(θ) = ∥vθt (xt)− sg
(
vϕt|0,T (x0, xT , t)

)
∥2

16: Update ϕ, θ using ∇ϕLreplay(ϕ), ∇θLflow(θ)
17: end while
18: end if
19: end while
20: return NNϕ, vθ

Definition 2. Define Lϕ
cGFM(x0, xT ) as the value of the objective in Eq. (12) for possibly suboptimal151

xϕt ∼ pt|0,T and vϕt|0,T which satisfy the constraints, as is guaranteed by our parameterization above.152

Using Eq. (12) and Eq. (13), we have153

LcGFM(x0, xT ) ≤ Lϕ
cGFM(x0, xT ), LGFM ≤ Ep0,T

[
Lϕ

cGFM(x0, xT )
]
∀p0,T ∈ Π(µ0, µT ). (16)

Using this parameterization, we can tractably optimize the objective Lϕ
cGFM(x0, xT ) as a function154

of ϕ. Expanding to write an expectation over samples from p0,T , we minimize the following the155

objective over vϕt|0,T ,156

Lp0,T

spline(ϕ) = Ep0,T

[
Lϕ

cGFM(x0, xT )
]

= Ep0,T (x0,xT )

[
EU(t)Ept|0,T (xt)

[
1

2
∥vϕ(x0, xT , t)∥22 + V (xϕ(x0, xT , t))

]] (17)

where we have replaced the integral over
∫ T

0
(·)dt = EU(t)[(·)] with an expectation over the uniform157

distribution. In practice, we sample time points t ∼ U(t) during training and use an empirical158

expectation over (x0, xT ) ∼ p0,T .159

Marginal Vector Field vθt To perform unconditional sampling, we need to learn a marginal vector160

field vθt which simulates the marginals pt induced by a particular p0,T , pϕt|0,T , and vϕt|0,T . This also161

corresponds to translating a candidate solution for the objective Ep0,T
[Lϕ

cGFM (x0, xT )] in Eq. (13)162

into a solution to the marginal problem in Eq. (8). Following similar arguments as [14, 1, 29], one163

can show that the marginal vector field164

v
(p0,T ,ϕ)
t (xt) = Ep0,T (x0,xT )

[
pϕt|0,T (xt)

pt(xt)
vϕt|0,T (xt)

]
(18)
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satisfies the continuity equation for the induced marginals pt(xt) = Ep0,T
[pϕt|0,T (xt)], with ∂pt =165

−∇ · (ptv
(p0,T ,ϕ)
t ). We use the notation v(p0,T ,ϕ)

t to indicate that the appropriate vector field is166

induced from our current p0,T , pϕt|0,T , and vϕt|0,T . See App. C Lemma 1,167

We finally can use the flow matching objective to learn an approximate vθt ≈ v
(p0,T ,ϕ)
t for our current168

p0,T and ϕ [14, 1, 29], where sg(·) indicates stop-gradient,169

Lflow(θ) = EU(t)Ep0,T
Epϕ

t|0,T

∥∥∥vθt (xt, t)− sg
(
vϕt|0,T (x0, xT , t)

)∥∥∥2 (19)

Note that we amortize this optimization over training steps by alternating updates for vθt , p0,T , and ϕ,170

so that vθt may not exactly match v(p0,T ,ϕ)
t .171

Coupling Parameterization Finally, the above conditional objectives require samples from a172

coupling distribution p0,T , which should satisfy the boundary constraints p0 = µ0, pT = µT in173

Eq. (13). Note that Prop. 1 requires optimization over p0,T and our initial data from MD simulation is174

unpaired (p0,T = µ0 ⊗ µT ). Thus, optimizing the neural spline on fixed, independent coupling will175

not lead an optimal solution. We introduce two ideas for maintaining and updating couplings p0,T .176

Minibatch Optimal Transport. Following [23, 29], we can consider solving for (entropic) optimal177

transport couplings over an empirical batch of samples (x0, xT ) ∼ µ0 ⊗ µT . However, the choice178

of cost is crucial to defining the solutions. While the objective in Eq. (8) corresponds to dynamical179

OT with the squared error or Euclidean cost for V (·) = 0, calculating the appropriate dynamical180

cost with nonzero potential energy is an optimization problem in its own right [23]. To simplify the181

algorithm, we use OT couplings with the Euclidean cost and introduce resampling based on a replay182

buffer below.183

Rectified Flow. Following [17, 25], an alternative technique to solve for optimal transport couplings is184

to iteratively simulate the marginal vector field vθt . For example, we could sample pθ0,T by sampling185

an initial x0 ∼ µ0 and simulating to obtain xT . For the Euclidean cost or a further family of convex186

costs, iterative simulation and matching vθt approaches the solution to the optimal transport problem187

[16]. However, again, since our GFM problem involves a dynamical cost, we simplify by using the188

rectified coupling induced from vθt and introduce corrections via resampling.189

3.5 Resampling and Replay Buffer190

Noting the fact that our coupling parameterizations above do not reflect the desired dynamical cost191

where V (·) := U(·), we introduce a resampling procedure to reweight paths induced by our coupling192

p0,T and spline parameterization of pϕt|0,T or xϕt (x0, xT ).193

w̃(x|x0, x1) =
∫ T

0

(
1

2
∥vθ(xt)∥2 + U(xt)

)
dt (20)

We aim to assign greater weights to the lower cost paths and smaller weights to the higher cost paths.194

We normalize the cost as weight wi = exp(−w̃(xi))/
N∑

n=1
exp(−w̃(xi)).195

After sampling lower cost transition paths, we push them into a replay buffer B by their importance196

weights. In addition, we refine the learned neural spline by drawing samples from the replay buffer.197

To do so, we sample paths γ = {xt}Tt=0 and optimize the following objective to align the neural198

spline with the paths:199

Lreplay(ϕ) = EU(t)Ep0,T
Eγ∥xϕ(x0, xT , t)− γt∥2 + ∥vϕ(x0, xT , t)∥2 (21)

In addition, we apply a kinetic energy loss function to ensure the smoothness of the learned spline.200

4 Experiment201

4.1 Experiment Set-up202

Müller-Brown Potential. We first employ the Müller-Brown potential which is a commonly used203

mathematical model to study transition paths between metastable states. The energy landscape is204
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characterized by three local minima and two saddle points connecting them and can be written down205

analytically in App. D.1. To simulate this system, we run the first-order Langenvin dynamics around206

each local minima.207

xt+1 = xt −∇xV (xt) · dt+
√

dt · diag(ξ) · ε, ε ∼ N (0, 1) (22)

where we apply Euler discretization of the continuous dynamics. In our experiment, we set dt = 10−4208

and ξ = 5.209

(a) Shorter-run dataset (b) Longer-run dataset

Figure 1: Both datasets in the figure contain 2000
pairs of data points, but randomly sampled from
simulation of 4K and 12K steps, respectively.

(a) Sampled paths (shorter) (b) Sampled paths (longer)

Figure 2: Sampled paths from models trained
on both the shorter-run and longer-run datasets
(Saddle points are stared).

Alanine Dipeptide. We validate our proposed method on a real-world molecular system, Alanine210

Dipeptide, which contains 22 atoms. The transition between two metastable states (C7eq and211

C7ax) is characterized by a two-dimensional free energy surface (ϕ, ψ dihedral angles). The212

molecular configurations are sampled by conventional molecular dynamics (cMD). MD simulations213

are performed in vacuum for 1.2 ns with 2 fs time step for each metastable state with the AMBER99SB-214

ILDN force field. Trajectories and CVs are recorded every 40 fs. Langevin integrator are used to215

maintain the system temperature to 300 K. HBonds were constrained during simulations.216

The free energy surface (FES) is obtained by 800-ns well-tempered metadynamics (WT-MetaD)217

simulations. Two backbone dihedral angles are chosen as collective variables (CV). Each CV axis218

is evenly discretized with 25 grid points and the Gaussian bias potential are deposited every 2 ps219

along the CVs grids. The height and width of the bias potential are set to 0.2 kj/mol and 0.05 radians220

respectively. The 2D FES is collected and summed from the Gaussian deposits. FES is converged to221

0.1 kcal/mol after 800 ns by examining the RMSE of FES between adjacent time stamps. To improve222

the convergence, we employ the well-tempered version of MetaD with a scaling factor of 8. The223

simulation is performed via the OpenMM1 software.224

To achieve translation and rotation equivariance, we use the internal coordinate system in addition to225

the Cartesian coordinate system, more details can be found in App. B.226

Hardware. All experiments are conducted on two NVIDIA GeForce RTX 4090 GPU cards.227

4.2 2D Toy Potential: Muller-Brown Potential228

Method Evaluations MinMax Energy Max Energy Distance d12 Distance d23

MCMC 1.03B -40.21 -17.80 ± 14.77 - -
Doob’s Lagrangian 1.28M -40.56 -14.81 ± 13.73 - -
Linear (Random) N/A -37.01 7.51 ± 13.0 0.62 ± 0.16 0.13 ± 0.09
Linear (OT) N/A -38.98 5.22 ± 17.82 0.59 ± 0.22 0.20 ± 0.14
Ours (shorter) 4K -40.67 -19.97 ± 12.20 0.29 ± 0.14 0.09 ± 0.07
Ours (longer) 12K -40.67 -27.98 ± 21.76 0.15 ± 0.11 0.18 ± 0.15
Ours-10K 20K -40.67 -32.71 ± 16.95 0.12 ± 0.084 0.13 ± 0.12

Table 1: Müller-Brown potential quantitative evaluation. 1,000 paths sampled from models trained
on both datasets in Figure 1 and one additional 20K simulation steps dataset. For each sampled 1,000
paths, we report the distribution of maximum energy state along the path and minimum energy of the
maximum energy states, and the shortest distance points to the two saddle points.

1https://openmm.org/
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The Müller-Brown potential has three local minima and two saddle points following the closed-form229

potential energy surface in Equation (44). Starting from the initial and final local minima located at230

(-0.56, 1.44) and (-0.05, 0.47) in Figure 1, we generate the training data by simulating the first-order231

Langevin Dynamics Equation (22) for 4,000, 12,000, and 20,000 steps with dt = 10−4. As shown232

in Table 1, a minimum of 4,000 steps simulation of molecular dynamics around local minima can233

give us decent paths that are close to the saddle points. As the simulation increases to 12,000 and234

20,000 steps, it further improves the performance. In addition, our method requires much fewer data235

compared to MCMC’s 1.03B and Doob’s Lagrangian’s 1.28M simulation steps. It is worth noting236

that our methods cannot sample from the true transition path distribution as MCMC [7] and Doob’s237

Lagrangian [8], but we show we can hit around the saddle points quite efficiently.238

4.3 Molecular System: Alanine Dipeptide239

(a) Metric (Cartesian) (b) Metric (Internal) (c) Latent (Cartesian) (d) Latent (Internal)

Figure 3: Alanine Dipeptide qualitative evaluation. 50 randomly sampled transition paths are shown
for both parameterization in Cartesian and internal coordinate systems with two learned potential
energies. Each models are trained over 30,000 data sampled uniformly from a 1.2ns simulation on
each metastable states.

Figure 4: Alanine Dipeptide low-energy path visualization. A total of 500 timesteps from one
mestable state to another going through an energy barrier.

In Figure 3, we visualize 50 randomly sampled transition paths from our method, we can observe240

that most of the paths find the correct collective variable (ϕ, ψ) dihedral angles in a much higher241

(66) dimensional space only by learning potential energy from a short-run molecular dynamics242

simulation around the local minima. In addition, the two ways of learning potential energy result243

in similar sampled path distributions. Nevertheless, we find the sampled transition paths with the244

flipped dihedral angles. In Figure 4, we demonstrate a qualitative showcase from a low-energy path,245

transitioning between the two metastable states.246

As shown in Table 2, the sampled paths by our method is way better than linear interpolating the two247

metastable states, in both Cartesian and internal coordinate systems. In addition, we observe that248

the distributions of the maximum energy state over a path sampled by both approaches of learning249

potential energies are also close with the latent interpolation method being way faster. Next, we show250

how different sample sizes (5K, 10K, 20K and 30K) affect the quality of the sampled paths. In general,251

we find the performance improves with more data samples. We also compare different coupling252

2d1 is the shortest distance to the first saddle point (-0.77, 0.64)
3d2 is the shortest distance to the second saddle point (0.22, 0.3)
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parameterizations and we observe that the OT coupling is way better than the product measure253

as initial coupling. However, reflow effectively improves over the product coupling and approach254

the performance of the OT coupling. In the end, we validate the effectiveness of the resampling255

procedures. We find in general resampling improves the performance but saturates quickly after one256

iteration. It is also worth noting that resampling can be expensive as it requires calculating importance257

weights over an entire trajectory. Additional experimental results and visualizations can be found258

in App. D.259

Potential Coord Resampling Coupling # sample pairs # evals MinMax Energy Max Energy Run Time (min)
Linear Cartesian N/A Product N/A N/A 2981.64 2.12e+24 ± 2.12e+25 N/A
Linear Cartesian N/A OT N/A N/A 1044.95 4.98e+09 ± 3.39e+10 N/A
Linear Internal N/A Product N/A N/A 558.05 1.75e+18 ± 1.75e+19 N/A
Linear Internal N/A OT N/A N/A 580.10 3.83e+15 ± 2.22e+16 N/A

MCMC* Cartesian N/A N/A N/A 25.82M 28.67 1,212.81 ± 19,444.46 N/A
MCMC Cartesian N/A N/A N/A 1.29B* 60.52 288.46 ± 128.31 N/A
Metric Cartesian N/A OT 30K 1.2M 678.13 987.02 ± 210.77 100
Metric Internal N/A OT 30K 1.2M 526.26 698.83 ± 152.48 112
Latent Cartesian N/A OT 30K 1.2M 600.09 949.69 ± 235.92 18
Latent Internal N/A OT 30K 1.2M 525.68 971.97 ± 1673.66 29

Metric Cartesian N/A OT 5K 1.2M 862.38 1581.29 ± 487.10 N/A
Metric Cartesian N/A OT 10K 1.2M 705.65 1058.79 ± 275.15 N/A
Metric Cartesian N/A OT 20K 1.2M 588.96 979.26 ± 267.62 N/A
Metric Cartesian N/A OT 30K 1.2M 664.36 977.28 ± 215.98 N/A

Metric Cartesian N/A Product 30K 1.2M 1312.88 2903.58 ± 1221.16 N/A

Metric Cartesian N/A Reflow-1 30K 1.2M 1023.45 2316.64 ± 829.71 N/A
Metric Cartesian N/A Reflow-2 30K 1.2M 898.30 1960.67 ± 684.71 N/A
Metric Cartesian N/A Reflow-3 30K 1.2M 944.93 1922.53 ± 629.63 N/A

Metric Cartesian Resample-1 OT 30K 16.2M 538.86 841.33 ± 176.78 N/A
Metric Cartesian Resample-1 OT 30K 31.2M 539.78 848.56 ± 167.92 N/A
Metric Cartesian Resample-1 OT 30K 46.2M 603.21 883.41 ± 189.68 N/A

Table 2: Alanine Dipeptide quantitative results. Top 100-weighted paths are evaluated for each setup
with different ways of learned potential energies, coordinate systems, coupling parameterizations
and resampling steps. In addition, we report the training time for learning potential energy in two
different ways. (MCMC results are taken from [8], * indicates variable-length MCMC.)

5 Conclusion, Limitation and Future Work260

In this paper, we propose to simulate transition dynamics in molecular systems by inferring dynamics261

from the local dynamics around one metastable state to another. We propose a generalized flow262

matching algorithm that additionally optimizes a learned potential energy of the system. In our263

scenario, the potential energy is obtained through metric learning or latent space interpolation. We264

further employ an importance sampling technique and replay buffer to improve the convergence of265

the method. Experimental results demonstrate that the proposed method is capable of finding good266

transition paths, and good approximations of transition states with a significantly small number of267

energy evaluations.268

One main limitation of the current framework is that the sampled path distribution could be far269

from the transition path distribution. One future direction is to use the learned path distribution as a270

proposal distribution for sampling-based approaches, e.g. [12]; another direction is to use the current271

framework as an initialization for transition state search methods.272
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A Additional Details on Metric Learning354

Following [13], given a dataset of data samples {xi}Ni=1, we learn a metric from the Radial Basis355

Function (RBF) such that G(x) = (diag(h(x)) + ϵI)
−1, where ϵ > 0 and the function h(x) is356

defined as:357

h(x) =

K∑
k=1

ωk exp

(
−λk

2
∥x− x̄k∥2

)
(23)

where x̄k is the centroid of the K clusters found by k-means clustering algorithm, wk is learned358

weights and λk is a bandwidth associated with each cluster. The bandwidth around each cluster Ck is359

defined as follows:360

λk =
1

2

(
κ

|Ck|
∑
x∈Ck

∥x− x̄k∥2
)−2

(24)

where Ck is the k-th cluster, x̄k is the centriod of the cluster, and κ is a hyperparameter that controls361

the decay rate of the weight for cluster of different shapes. We then use the following objective362

function to learn the weights wk for each cluster in the dataset D:363

L({ωk}Kk=0) =
∑
x∈D

(1− h(x))
2
=
∑
x∈D

(
1−

K∑
k=1

ωk exp

(
−λk

2
∥x− x̄k∥2

))2

(25)

B Translational and Rotational Invariance364

A function f is G-equivariant if ∀x ∈ Rd, g ∈ G, we have f ◦ g(x) = g ◦ f(x). A special case of365

equivariant function is the invariant function such that a function f is G-invariant if ∀x ∈ Rd, g ∈ G,366

we have f ◦ g(x) = f(x). The kinetic and potential energy of each state of a molecular system is367

invariant to the Euclidean group while the Cartesian coordinate and vector field are equivariant to the368

Euclidean group. We represent the molecular system in internal coordinates following [20] instead369

of Cartesian coordinates which are constructed by invariant quantities, i.e. distances, angles and370

dihedral angles. In this scenario, we remove the unnecessary degrees of freedom, i.e. translations,371

rotations and reflections.372

C Proofs373

C.1 Conditional Probability Paths374

Toward deriving our conditional objective, we begin by showing the following lemma [29].375

Lemma 1. For a given joint distribution p0,T and conditional distribution pt|0,T such that pt(xt) =376

Ep0,T
[pt|0,T (xt)], and a conditional vector field vt|0,T which satisfies the continuity equation,377

∂

∂t
pt|0,T (xt) = −∇ ·

(
pt|0,T (xt) vt|0,T (xt)

)
, (26)

then, under mild conditions, the vector field378

vt(xt) = Ep0,T (x0,xT )

[
pt|0,T (xt)

pt(xt)
vt|0,T (xt)

]
(27)

satisfies the continuity equation379

∂tpt(xt) = Ep0,T

[
∂tpt|0,T (xt)vt|0,T (xt)

]
= −∇ ·

(
pt(xt)vt(xt)

)
(28)

Proof. Assuming the Leibniz rule holds, we decompose380

∂

∂t
pt(xt) =

∂

∂t
Ep0,T (x0,xT )

[
pt|0,T (xt|x0, xT )

]
= Ep0,T (x0,xT )

[
∂

∂t
pt|0,T (xt|x0, xT )

]
(29)

12



We will introduce a vector field vt|0,T which is constrained to satisfy the continuity equation for381

pt|0,T . Omitting explicit conditioning in the arguments, we write382

∂

∂t
pt|0,T (xt) = −∇ ·

(
pt|0,T (xt) vt|0,T (xt)

)
. (30)

Finally, we would like to relate the conditional vector field vt|0,T to the marginal vector field vt in383

Eq. (35). Following [29] Thm 3.1, we confirm that384

vt(xt) = Ep0,T |t(x0,xT |xt)

[
vt|0,T (xt)

]
=

1

pt(xt)
Ep0,T (x0,xT )

[
pt|0,T (xt)vt|0,T (xt)

]
(31)

satisfies the continuity equation relationships in Eq. (29)-Eq. (30), namely385

∂

∂t
pt(xt) = Ep0,T (x0,xT )

[
∂

∂t
pt|0,T (xt)

]
= Ep0,T (x0,xT )

[
−∇ ·

(
pt|0,T (xt) vt|0,T (xt)

)]
(32)

= −∇ · Ep0,T (x0,xT )

[
pt|0,T (xt) vt|0,T (xt)

]
(33)

= −∇ · (pt(xt)vt(xt)) =
∂

∂t
pt(xt) (34)

where, in the second line, we use the linearity of divergence operator and expectation to swap their386

order and, in the third line, we substitute the identity in Eq. (31) to recover ∂
∂tpt(xt).387

C.2 Proof of Conditional Objective388

Proof. We begin from the Fokker-Planck equation formulation of the GFM objective389

LGFM = min
vt,pt

∫ T

0

∫ (
1

2
∥vt(xt)∥2 + Vt(xt)

)
pt(xt)dxdt

s.t. ∂tpt(xt) = −∇ ·
(
pt(xt)vt(xt)

)
, p0 = µ0, pT = µT

(35)

Assume that a path of marginals pt(xt) can be decomposed as pt(xt) = Ep0,T
[pt|0,T (xt)], where we390

assume the joint distribution p0,T ∈ Π(µ0, µT ) satisfies the endpoint constraints and the conditional391

distribution pt|0,T is suitably smooth (e.g. absolute continuity) such that there exists vt|0,T satisfying392

∂tpt|0,T = −∇ ·
(
pt|0,T vt|0,T

)
. Under these assumptions, we show that the objective in Eq. (35), as393

a function of pt, vt, can be upper bounded in terms of the conditional pt|0,T , vt|0,T . 4394

For any pt, vt satisfying the above, we begin by rewriting the continuity equation constraint395

∂tpt(xt) = Ep0,T (x0,xT )

[
∂tpt|0,T (xt)

]
= Ep0,T (x0,xT )

[
−∇ ·

(
pt|0,T vt|0,T

)]
(36)

where assumed p0,T satisfies the endpoint marginal constraints.396

Turning to the objective, we write the expectation using Ept [Vt(xt)] = Ep0,T
Ept|0,T [Vt(xt)],397 ∫ T

0

∫ (
1

2
∥vt(xt)∥2 + Vt(xt)

)
pt(xt)dxdt (37)

=

∫ T

0

∫
1

2
∥vt(xt)∥2pt(xt)dxtdt+ Ep0,T (x0,xT )

[∫ T

0

∫
Vt(xt)pt|0,T (xt)dxtdt

]
(38)

Finally, we would like to express the vt term in terms of vt|0,T to match the constraint in (36). Using
the identity Eq. (31) and then Jensen’s inequality, we write398

=

∫ T

0

∫
1

2

∥∥Ep0,T |t

[
vt|0,T (xt)

]∥∥2 pt(xt)dxtdt+ Ep0,T

[∫ T

0

∫
Vt(xt)pt|0,T (xt)dxtdt

]
(39)

≤
∫ T

0

∫
1

2
Ep0,T |t

∥∥vt|0,T (xt)∥∥2 pt(xt)dxtdt+ Ep0,T

[∫ T

0

∫
Vt(xt)pt|0,T (xt)dxtdt

]
(40)

= Ep0,T

[∫ T

0

∫ (
1

2

∥∥vt|0,T (xt)∥∥2 + Vt(xt)

)
pt|0,T (xt) dxtdt

]
(41)

4We assume the decomposition into suitable pt(xt) = Ep0,T [pt|0,T (xt)] does not change the value of the
optimization. Otherwise, a further bound would be induced.
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where, in the last line, we use the fact that p0,T |tpt = p0, t, T = p0,T pt|0,T for any x0, xt, xT .399

We have thus shown that any feasible, factorizable pt, vt corresponds to an upper bound on the400

objective in terms of a coupling p0,T and conditional pt|0,T , vt|0,T . To formalize our conclusions, we401

define the conditional objective for particular x0, xT ∼ p0,T402

LcGFM(x0, xT ) := min
pt|0,T ,vt|0,T

∫ T

0

∫ (
1

2
∥vϕt|0,T (xt)∥

2 + Vt(xt)

)
pt|0,T (xt|x0, xT )dxtdt (42)

s.t. ∂t pt|0,T (xt) = −∇ ·
(
pt|0,T (xt)v

ϕ
t|0,T (xt)

)
, p0|0,T = δx0

, pT |0,T = δxT

where we abbreviate the boundary condition p0|0,T (x) = δ(x− x0).403

Finally, we reintroduce the outer expectation over p0,T and consider optimizing over p0,T ∈404

Π(µ0, µT ) (such that p0 = µ0, pT = µT ). We can thus conclude that optimizing the conditional405

objective upper bounds LGFM, due to our use of decomposable pt and Jensen’s inequality in (40)406

LGFM ≤ min
p0,T

Ep0,T

[
LcGFM(x0, xT )

]
s.t. p0 = µ0, pT = µT (43)

407

D Additional Experimental Details408

D.1 Müller-Brown Potential409

The Müller-Brown potential can be written down analytically:410

V (x, y) =− 200 exp
(
−(x− 1)2 − 10y2

)
− 100 exp

(
−x2 − 10(y − 0.5)2

)
− 170 exp

(
−6.5(x+ 0.5)2 + 11(x+ 0.5)(y − 1.5)− 6.5(y − 1.5)2

)
+ 15 exp

(
0.7(x+ 1)2 + 0.6(x+ 1)(y − 1) + 0.7(y − 1)2

)
(44)

The potential energy function, neural spline network, and velocity network are trained for 100411

epochs, respectively with a batch size of 256. We use the Adam optimizer for all training with 10−2,412

10−5 and 10−3, respectively. For each neural network, we use a three-layer MLP, with 128 hidden413

units per layer, and the SELU activation function. The clustering bandwidth for metric learning in414

Equation (24) is set to κ = 1.5. The number of clusters K is set to 100 in Equation (23).415

D.2 Alanine Dipeptide416

The potential energy function, neural spline network, and velocity network are trained for 400, 100417

and 100 epochs, respectively with a batch size of 512. We use the Adam optimizer for all training418

with 10−2, 10−5 and 10−3, respectively. For each neural network, we use a three-layer MLP, with419

128 hidden units per layer, and the SELU activation function. The clustering bandwidth for metric420

learning in Equation (24) is set to κ = 1.5. The number of clusters K is set to 150 in Equation (23).421

And in metric formula, we set ϵ to 0.001. To obtain the latent space for interpolation, we train a422

32-dimension latent space VAE with a three-layer MLP encoder with 64 hidden units and anothor423

three-layer MLP decoder with 64 hidden units. Note the learning rate is 10−3 instead of 10−2. For424

all experiments, we use the scale of 0.1 Angstrom as unit length.425
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(a) Linear with OT (b) Linear without OT

Figure 5: Linear interpolation paths
for the Longer-run dataset with and
without OT. Saddle points are la-
beled. Only 100 paths are selected.

(a) Cartesian without OT (b) Cartesian with OT (c) Internal without OT (d) Internal with OT

Figure 6: Linear interpolation paths for Alanine Dipeptide with 30K data, of which 50 pathways are
randomly selected.

(a) Without resampling (b) One iterations (c) Two iterations (d) Three iterations

Figure 7: Qualitative evaluation of resampling procedures on Alanine Dipeptide. Results for resam-
pling in the Cartesian coordinate system with multiple iterations are reported.

(a) Without reflow (b) One iterations (c) Two iterations (d) Three iterations

Figure 8: Qualitative evaluation of reflow procedures on Alanine Dipeptide. Results for reflow
iterations in the Cartesian coordinate system with multiple iterations are reported. 50 paths are
randomly selected.
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(a) With OT (b) Without OT

Figure 9: Qualitative evaluation of
initial coupling on Alanine Dipep-
tide. We show results for both prod-
uct measure and OT couplings.

(a) 5,000 samples (b) 10,000 samples (c) 20,000 samples (d) 30,000 samples

Figure 10: Qualitative evaluation of data sample sizes on Alanine Dipeptide. 50 randomly selected
transition paths are shown for models trained with 5,000, 10,000, 20,000, and 30,000 data samples.

16


	Introduction
	Background
	Score & Flow Matching
	Generalized Schrödinger Bridge Matching

	Generalized Flow Matching for Transition Dynamics Modeling
	Short-Run Molecular Dynamics
	Generalized Flow Matching
	Inferring Kinetic and Potential Energy from Data
	Conditional Generalized Flow Matching Objective
	Resampling and Replay Buffer

	Experiment
	Experiment Set-up
	2D Toy Potential: Muller-Brown Potential
	Molecular System: Alanine Dipeptide

	Conclusion, Limitation and Future Work
	Additional Details on Metric Learning
	Translational and Rotational Invariance
	Proofs
	Conditional Probability Paths
	Proof of Conditional Objective

	Additional Experimental Details
	Müller-Brown Potential
	Alanine Dipeptide


