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ABSTRACT

Language emergence is a hallmark of human intelligence, as well as a key indi-
cator for assessing artificial intelligence. Unlike prior studies grounded in multi-
agent reinforcement learning, this paper asks whether machine language, poten-
tially not human-interpretable, can emerge between large language model (LLM)
agents. We study this in the stylish paradigm of referential games, where a speaker
describes a target object into a message with a predefined alphabet, and a listener,
given the message, must identify the target among distractors. We propose an
agent design that enables the speaker to retrieve semantically similar words before
composing a message, and the listener to decode the message based on structural
proximity between words. We observe that even given a set of 541 objects, the
two agents successfully develop a shared language: they acquire meanings for
each object through only 4 rounds of communication, with at most 3 attempts per
communication. Additionally, analyses reveal that the emergent language exhibits
compositionality, generalizability, morphemes, and polysemy, which are defining
features of human language. Our project can be accessed via the following link:
https://anonymous.4open.science/r/ELofLLM-1746/.

1 INTRODUCTION

Language is a hallmark of human intelligence (Peters et al.,[2025}; [Lazaridou & Baronil,2020). Its de-
velopment relies on several advanced cognitive and social abilities, including social learning (Snow,
2013)), where individuals associate meanings with arbitrary symbols through shared understanding,
syntactic reasoning (Ramer,|1976), which allows us to structure words to convey meaning, and men-
tal flexibility (Jacques & Zelazo, 2005)), allowing the creation of infinite expressions from a finite
set of elements. Given these complexities, it is no surprise that enabling the emergence of language
has been a significant challenge for Al over the years, and continues to serve as a crucial yardstick
for assessing progress toward artificial general intelligence (Peters et al.l 2025} |Cowen-Rivers &
Naradowskyl, 2020).

Recent studies on language emergence in Al primarily focus on multi-agent reinforcement learn-
ing (MARL) (Foerster et al., |2016; Havrylov & Titov, |2017). A number of approaches have been
proposed to enable agents to develop language that supports not only agent-to-agent but also agent-
to-human communication, mirroring the characteristics of human natural language (Wagner et al.,
2003; [Bouchacourt & Baroni, [2018; [Noukhovitch et al., 2021). Notable studies such as DIAL (Fo-
erster et al.,[2016), CommNet (Sukhbaatar et al., 2016)), and IC3Net (Singh et al.)) enabled agents to
acquire differentiable communication in an end-to-end manner, driven by the objective of maximiz-
ing task rewards.

In this paper, we explore whether language can emerge through communication between large lan-
guage model (LLM)-based agents. Unlike MARL agents, LLM-based agents are inherently able
to understand and generate human natural language, due to their extensive pre-training on vast hu-
man corpora (Gao et al.,|2024; Ren et al., |2024; [Wang et al., 2024). Thus, while communication
between these agents using human natural language might seem trivial, the true challenge—and the
focus of this study—Ilies in investigating the emergence of machine language that does not exist in
training data nor is interpretable by humans. Specifically, we ask: Are LLM-based agents able to
develop machine language through interactions? If so, does the emergent machine language exhibit
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characteristics typical of human natural language, which are defining features of human cognitive
abilities?

We explore these questions within the framework of referential games (Lewis, |1969), a well-
established paradigm for studying language emergence (Figure 1). In this game, two agents are
randomly assigned roles as either a speaker or a listener. Given an arbitrary object defined by a set
of semantic features, the speaker creates a symbolic word for the object using letters from a pre-
defined alphabet, deliberately avoiding human natural language. The listener, upon receiving the
word, attempts to identify the object it corresponds to, selecting it from a set of distractors. Machine
language emerges if the two agents can successfully communicate—measured by the listener’s ac-
curately identifying the object the speaker intends to convey—across multiple objects. For agent
behaviors, we make simple yet principled assumptions: agents are allowed to retrieve and utilize
words from their vocabulary that share similar semantic features or structural proximity. This de-
sign aims to keep the system minimal, avoiding unnecessary complexity, and allowing us to focus
on understanding, at the simplest level, whether and how LLM-based agents can develop machine
language.

In our experiments, we consider a total of 541 objects and two variants of alphabets, where each let-
ter is randomly represented by 2-3 characters. Machine language is considered to emerge if the two
agents achieve successful communication on the majority of 400 objects, using the alphabet that is
not interpretable by humans. We find that a machine language successfully emerges within the refer-
ential game, starting from successful communication of 268 objects (67%) by the first round, to 388
objects (97%) by the third round, and all 400 objects (100%) by the fourth round. Within only four
rounds, agents achieve successful communication on all objects, highlighting the efficiency of the
emergent language. Additionally, to evaluate whether the emergent language enables agents to com-
municate about objects never seen before, we introduced 141 novel objects beyond the previous four
rounds, and found that agents could immediately communicate about most of them using the emer-
gent language. Further analysis shows that the emergent language also exhibits hallmarks of human
natural language, such as compositionality (e.g., the ability to create “apple-pie” based on the mean-
ings of “apple” and “pie”), morphemes, and polysemy. Finally, we examine key factors that influence
language emergence, including alphabet size, maximum word length, and number of objects, and
show how these factors affect the quality of emergent machine language. The repository is accessible
via the following link: https://anonymous.4open.science/r/ELofLLM-1746/.

In summary, our key contributions are as follows:

1. We present a novel paradigm to investigate language emergence between LLM-based
agents, focusing on their ability to develop language while minimizing the influence of
human semantic knowledge embedded in training data.

2. We present an agent design with minimal complexity that allows agents to retrieve and
utilize words from their vocabulary based on semantic similarity and structural proximity,
ultimately leading to emergence of machine languages.

3. We show that the emergence of machine language is efficient and robust. Moreover, the
emergent language enjoys generalizability, compositionality, morphemes and polysemy,
which are features typical of human natural language and their cognitive abilities.

2 RELATED WORK

Communication between Al systems has been a long-standing challenge . Earlier studies have exam-
ined agents’ symbol-based communication using carefully designed experimental simulations with
simple, largely hand-crafted agents (Steels| |1997; [Nowak & Krakauer, 1999} |Cangelosi & Parisi,
2002; (Christiansen & Kirby, 2003). For example, [Batali| (1998) conducted simulations in which
a speaker agent, given a binary vector representing the meaning of a simple phrase, encodes it as
a sequence of characters. In recent years, MARL is also employed to explore how language can
emerge between RL-based agents in partially observable environments (Lazaridou et al., 2016} [Fo-
erster et al., 2016; [Lee et al.l 2017} |[Kaji¢ et al., 2020). [Foerster et al.| (2016) introduces two deep
learning approaches that enable agents to learn communication protocols in end-to-end manner us-
ing centralized learning with decentralized execution. |[Havrylov & Titov| (2017) investigated the
emergence of natural language in referential games, where agents develop discrete, symbol-based
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Figure 1: Schematic illustration of object representation and referential games. (a) An apple is used
to illustrate how objects are represented as a set of semantic features rather than by their lexical
label in natural language. (b) In the referential game paradigm, the speaker encodes a target object,
represented through semantic features, into a symbolic message using a given alphabet, and the
listener must identify the target object from among multiple distractors.

communication protocols. [Kaji¢ et al.| (2020) showed that agents in cooperative gridworld navi-
gation tasks can develop interpretable communication protocols through spatially grounded signals
and basic compositional structures, improving coordination efficiency. [Li et al.| (2024) proposed a
language-grounded communication framework, enabling zero-shot generalization in ad-hoc team-
work scenarios. Unlike most prior studies grounded in hand-crafted simulations or MARL, our
work explores language emergence in LLM-based agents and introduces a new paradigm of ma-
chine language emergence, which allows for focusing on agents’ ability to develop language while
minimizing the influence of human semantic knowledge embedded in LLMs’ training data.

It is worth mentioning that, more recently, a few studies examined language evolution in the context
of LLM-based agents. [Kouwenhoven et al.[ (2025) explored how inductive biases in LLMs help
maintain alignment with humans, thereby shaping a shared language for successful human—-machine
interaction. |Ashery et al.|(2025) investigated whether LLM-based agents could spontaneously boot-
strap social conventions in a naming game, establishing consistent references to individuals’ names
from a given naming pool. In contrast to our work, which explores language emergence from scratch,
these studies assume a pre-defined vocabulary for each agent, where language already exists from the
outset. To the best of our knowledge, our work is the first to demonstrate that machine language—
non-interpretable by humans—can emerge from scratch between LLM-based agents, while also
exhibiting defining features of human natural language.

3 PRELIMINARY

Object representation. Language is a system of communication in which words organized by
grammatical structure to transmit information (Simpson & Weiner, [1989). Such information, at its
simplest, can be an object—for instance, an apple, a car, or any other tangible entity. Since agents
may only perceive objects in context, the brain region taxonomy offers a way to conceptualize them
beyond their lexical labels (e.g., the word “apple”). It represents objects through ten categories of
semantic features (Cree & McRae} 2003): color, form and surface, motion, smell, sound, tactile,
taste, function, encyclopedic, and taxonomy. Hence, an object is represented as a combination of
characteristic features rather than by its lexical label. For example, as shown in Figure [T(a), the
object “apple” can be represented color: is red / green, taste: tastes sweet, tactile: is juicy, etc.
Such representations capture the perceptual and functional essence of the object without naming it
explicitly.

Referential Game. The referential game is a widely used paradigm for studying language emer-
gence, involving two agents that interact with one another (Figure Ekb)). At the start of each round,
the agents are randomly assigned the roles of speaker and listener. The speaker encodes a target
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Figure 2: LLM-based agent communication. Given a target object defined by a set of semantic
features, the speaker retrieves words from memory that share similar semantic features and generates
a symbolic message using a predefined alphabet. The listener, upon receiving the message, retrieves
words from memory based on structural proximity and attempts to infer the target object by selecting
it from a set of distractors. Communication is considered successful if the listener correctly identifies
the target object. A language emerges when communication about most objects is consistently
successful.

object—for example, a buffalo—into a symbolic message (e.g. “fi-de-nu-ka”) using an alphabet A.
After receiving this message, the listener must identify the target object among several distractors.

Formally, let O denote a set of objects, with each generic object o defined by a set of n semantic
features f, = {fi}" ;. The speaker is assigned a target object o, € O and produces a symbolic
word w; from the alphabet A. Then, given some distractors o’ € O, 0’ # oy, the listener aims to
distinguish o; through the word w; sent by the speaker. A communication is successful if the listener
can correctly identify the target object. A language is considered to emerge if communications about
most objects in the set O are successful (Lazaridou et all, [2018). In general, the emergence of new
natural-language-like languages from referential games without introducing a priori design is non-
trivial (Rita et al.} 2022} [Steinert-Threlkeld, [2020).

Characteristics of language. To evaluate the quality of an emergent language among individuals,
researchers typically focus on two key characteristics: (i) Compositionality, which refers to the
principle that the meaning of a complex expression is determined by the meanings of its parts and
the manner of their combination (Partee et al.,[1995). For example, we can infer that “apple pie” is a
pie made from apples because the expression is composed of “apple” and “pie”; (ii) Generalizability,
which is the ability to extend learned linguistic structures to novel combinations, thereby supporting
hierarchical descriptions of concepts and relations (Chaabouni et al., 2021} [Mu & Goodman| [2021]).
For instance, if senders have learned to describe a “red square” and a “blue circle”, they should also
be able to generalize and understand a “red circle” or a “blue square” without explicit training.

4 LLM-BASED AGENT COMMUNICATION

In this section, we present an agent design for the LLM-based agent in referential games. We first
describe how the agent’s memory is utilized and updated, and then introduce the design from two
perspectives: the speaker and the listener. An overview of our agent design is shown in Figure [2}
Detailed prompts used for the LLMs are provided in Appendix [A]

4.1 MEMORY

Memory is fundamental to language learning; without it, language cannot be learned or used consis-
tently (Corballis, 2019} [Ullmanl[2004). Each LLM agent is equipped with a memory M that stores a
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vocabulary of m object-word pairs (0;, w;) ;. Initially, both agents’ memories are empty. As suc-
cessful communications accumulate, memory is updated by storing new object—word pairs. When
a new communication on an object o; begins, the speaker first checks whether o; already has an
associated symbolic word w; in memory, which is searched through exact matching of its semantic
features f;. For the listener, upon receiving a symbolic word w;, the most direct strategy is to search
memory by string matching. When a match is found, the listener successfully identifies the target
object among distractors, and both agents update their memories. Otherwise, the speaker generates
a new message using semantically similar words, and the listener attempts to decode it based on
structural proximity between words. These will be described in detail in Section[4.2]and4.3]

m
Jj=

4.2 SPEAKER: MESSAGE GENERATION WITH SEMANTIC SIMILARITY

When no symbolic word in the vocabulary encodes the target object o;, we make the simple yet
principled assumption that the speaker retrieve and utilize words from their vocabulary that share
similar semantic features with o, a process inspired by how humans create new words (Dell, |1986;
Levelt, [1993). To achieve this, we first instruct the speaker to retrieve similar object—word pairs
based on the target object’s semantic features, and then prompt it to generate a symbolic message
for o; based on the retrieved pairs.

Semantic-based Retrieval. To minimize LLMs’ reliance on inherent linguistic knowledge, ob-
jects are represented by semantic features rather than lexical labels in natural language. This enables
the speaker to retrieve semantically similar object—-word pairs by comparing the semantic features
of the target object o, with those of the m pairs (o;, wj);.n:l stored in memory M. Specifically,
we prompt LLMs to identify object—-word pairs by checking for similarity in certain features, such
as when the “taxonomy” of both objects is “a fruit”. The speaker then retrieves and outputs a set
of words that share similar semantic features with o; for message generation. This process can be
represented as an LLM-based operation: (05, ws);_; ¢ SemanticRetrieval(o, (0j,w;)7 ;)
where (05, wS)Z:l denotes the c pairs retrieved from memory M.

Message Generation. ~Given the retrieved semantically similar pairs (o5, w,)S_,, the speaker gen-
erates a symbolic message from a predefined alphabet A to describe the target object o,. We prompt
the LLM to reference the retrieved pairs when composing the message and to output a symbolic
word w; with a maximum length of £. Formally, this process is defined as an LLM-based operation:
w; ¢+ MessageGeneration (ot, (0s, ws)§:1)~ In cases where no semantically similar words are
available (e.g., when the memory is empty initially), the speaker instead produces a symbolic word
by randomly sampling from .4, with its length constrained by L.

It is non-trivial to communicate using a novel pre-defined alphabet without any prior linguistic
grounding, as agents must autonomously develop a machine language from scratch. Consequently,
communication failures are common, particularly at the beginning when only few object—word pairs
are available for reference. When a communication attempt fails, we prompt the speaker to learn
from the failure by regenerating a message not only based on the words retrieved through similar se-
mantic features, but also by referencing previously failed symbolic messages. Each agent is allowed
at most 7 attempts to communicate. If all 7 attempts fail, the object is skipped for communication.

4.3 LISTENER: OBJECT SELECTION WITH STRUCTURAL PROXIMITY

When encountering an unfamiliar word w; sent by the speaker, we assume a simple principle: the
listener infers its meaning based on the structural proximity between w; and the words in the vocab-
ulary, and then attempts to distinguish the target object o, from multiple distractors. To this end, we
first instruct the listener to retrieve similar object—word pairs based on the structure of w;, and then
we prompt the listener to select the target object from the distractors. Communication is considered
successful once the listener identifies o; based on the message w; sent by the speaker.

Structure-based Retrieval. For the listener, the only way to infer the meaning of an unfamiliar
message is to compare structural proximity between the word w; and those m object-word pairs
(05, wj);”:l stored in memory M. Specifically, we prompt the LLM to retrieve structurally sim-
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ilar object—word pairs based on the form of w;. For example, “su-ke-he” and “su-ke-he-fe” are
structurally proximate words. The listener then retrieves and outputs a set of structurally simi-
lar pairs for object inference. Formally, this process is represented as an LLM-based operation:

(op,wp)zz1 + StructuralRetrieval(wy, (0, w;)] ), where (op,wp)z | denotes the d
pairs retrieved from memory M.

Object Inference. Given the retrieved structurally similar pairs (o0,, wp);l:l, the listener attempts
to infer the meaning of the symbolic message wy, i.e., to infer the semantic features of the ob-
ject symbolized by w;. We prompt the LLM to reference the retrieved pairs when distinguishing

among options and to select the object it infers to be the target o,. Formally, this process is defined

as an LLLM-based operation:o; < ObjectInference (wt, (0ps w,,);l:l), where o; is the object
selected by the listener. If 0, = o0;, communication is considered successful, as the listener has
identified the correct object. In cases where no structurally similar words are available (e.g., when
the memory is initially empty), the listener instead infers the object by randomly selecting from all

available options.

5 EXPERIMENT

Our experimental study aims to address three key questions: (i) Are LLM-based agents able to
develop machine language through interactions? (ii) If so, does the emergent machine language
exhibit characteristics typical of human natural language, which are defining features of human
cognitive abilities? (iii) What factors may influence its emergence? We outline the experimental
setup in Section [5.1] We answer the following questions in Section [5.2] Experimental code is
available at: https://anonymous.4open.science/r/ELofLLM-1746/.

5.1 SETTINGS

Referential game. Adapted from previous work (Havrylov & Titov,[2017}Van Eecke et al.,|2022),
our experiments have two stages: (i) Stage 1: Repeated communication. Agents play a repeated
four-round referential game. One round covers all objects. For each object, agents are randomly as-
signed as either speaker or listener and have at most 3 attempts to communicate. In each attempt, the
speaker encodes the target object (e.g., a buffalo) into a symbolic message (e.g., “fi-de-nu-ka”) using
a predefined alphabet. The listener must identify the target object among 4 distractors. If commu-
nication succeeds, they move to the next object. If all three attempts fail, the object is skipped. (ii)
Stage 2: Generalizability. Agents play a one-round referential game with previously unseen objects.
Since this stage tests whether the emergent language generalizes to new objects, words generated
for unseen objects are not stored in agent memory. All experiments use gpt—4.1-mini. Details
on model parameters and prompts are in Appendix [A]

Object dataset. Following the brain region taxonomy, McRae et al.[(2005) introduced a dataset of
541 objects, classified into 25 categories, including living types (e.g., fruits, mammals) and nonliving
types (e.g., furniture, tools). Each object is described through ten categories of semantic features,
without explicitly referring to its name in natural language. For example, as aforementioned in
Figure[Ifa), the object “apple” can be represented as color: is red/green, taste: tastes sweet, tactile:
is juicy, etc. We randomly split the dataset into two subsets corresponding to the two game stages:
(1) 400 objects in Stage 1, used to investigate whether agents can autonomously develop a machine
language for communication, and (ii) 141 objects in Stage 2, used to evaluate whether the emergent
language generalizes to previously unseen objects. Further details of the object representations are
provided in Appendix B]

Alphabet design. We design an alphabet distinct from natural language to ensure that LLM-based
agents communicate solely through symbols rather than relying on linguistic knowledge acquired
from large human corpora (Devlin et all [2019; Brown et al., [2020). We define an alphabet A
consisting of 16 letters, with each letter being a syllable formed by a combination of consonants
and vowels (Kirby et al.| 2008)). Specifically, we consider two types of letters: (i) consonant-vowel
(CV) pairs (e.g., “ho”, “da”, “xa”), and (ii) vowel-consonant-vowel (VCV) triplets (e.g., “eno”,

13 EEIENT3

uza”, “eca”). Words generated by agents contain at most six letters (L = 6). For example, the
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Figure 3: Language emergence across 541 objects under two alphabet settings.(a) Stage 1 (Repeated
Communication): Success rates over four rounds, with blue shades indicating success rates at differ-
ent attempt numbers. (b) Stage 2 (Generalizability): Success rates for previously unseen objects. (c)
Compositionality of the emergent language evaluated using topographic similarity. Each experiment
was repeated 10 times.

word “chicken” can be represented in CV pairs as “su-su-ke-pe,” while in VCV triplets it can be
represented as “‘une-ile-ahu-aji-anu-eze”.

Evaluation Metrics. To evaluate whether a machine language emerges and to characterize its
properties, we consider two metrics:

(1) Success rate, the proportion of successful communications in each stage. A communication is
successful if the speaker sends a symbolic message describing an object and the listener correctly
identifies the target among four distractors. The success rate in Stage 1 indicates whether a machine
language has emerged, while the success rate in Stage 2 evaluates whether the emergent language
generalizes to previously unseen objects.

(i) Topographic similarity (TopSim), a common measure of compositionality in emergent machine
language, captures the structural correspondence between meanings and symbols
[2018). It is computed as the Spearman correlation between the rankings of pairwise distances in se-
mantic and symbol spaces. We use the Hamming distance for object meanings and
the Levenshtein distance (Levenshtein, [1965)) for the corresponding words. The correlation ranges
from —1 (perfect negative) to 1 (perfect positive), with values near 0 indicating no association.

5.2 EMERGENT PHENOMENA OF MACHINE LANGUAGE

Machine language successfully emerges. Our most significant finding is that, given 400 objects,
the two agents successfully develop a shared language after only four rounds of communication, with
at most three attempts per object. Figure [3{a) shows the emergence process in Stage 1 under both
alphabet settings. At first, agents succeed in communicating about half of the objects in a single
attempt, often requiring two or three attempts to identify the target object. As rounds progress,
success rates rise quickly—surpassing 90% by the third round and reaching 100% in the final round.
By the end, agents successfully communicate each object in a single attempt, demonstrating the
emergence of a machine language independent of the predefined alphabet.

Emergent machine language generalizes to unseen objects. With the emergence of machine
language, agents can immediately communicate about previously unseen objects. Figure[3(b) shows
one-round generalizability performance across 141 unseen objects in Stage 2: 76% success with
the CV-pair alphabet and 74% with the VCV-triplet alphabet. These results show that the emergent
language generalizes efficiently to novel objects—capturing a defining feature of human language.

Emergent machine language exhibits compositionality. The emergent language shows a struc-
tural correspondence between meanings and symbols. Figure [3{(c) presents topographic similarity,
with the highest value being 0.123 under the CV-pair alphabet and 0.134 under the VCV-triplet
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Figure 4: Case studies on the emergence of morphemes and polysemy. (a) Distribution of dominant
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morpheme. (b) Examples of polysemy, where a single word represents multiple related objects. The
line plots illustrate how maximum word length (blue) and alphabet size (red) affect the prevalence
of polysemy. Results are averaged over five runs, with error bars denoting 95% confidence intervals.

alphabetﬂ These values indicate a positive correlation between semantic and symbolic distances,
quantitatively reflecting the compositional quality of the emergent language.

Emergence of morphemes. Morphemes are the smallest units of meaning that combine to form
a wide range of words. In natural language, morphemes such as the plural suffix -s in “cats” or
the prefix un- in “unhappy” systematically mark concepts like “more than one” and “not”. Fig-
ure[d(a) shows the distribution of dominant morphemes across five categories, revealing that certain
morphemes cluster strongly within specific semantic domains. For example, the morpheme “yi-pe-
po” occurs in 80% of fish-related objects: “yi-pe-po-su-fe-ri” represents goldfish, “yi-pe-po-su-fe-
ke” represents trout, and “yi-pe-po-su” represents guppy. Similarly, “ri-su-ka” appears in 83% of
fruit-related objects: “ri-su-ka-he-ri-zu” represents strawberry, “ri-su-ka-he-ya” represents banana,
and “ri-su-ka-pe-he” represents peach. These patterns highlight systematic symbol-meaning cor-
respondences, suggesting that emergent machine languages can develop morpheme-like structures
analogous to those in human languages.

Emergence of polysemy. Polysemy refers to the phenomenon where a single word represents mul-
tiple related objects. Figure f|b) illustrates several examples: “su-ya-su-su” denotes both Caribou
and Moose, while “yi-pe-po-su-fe-ri” refers to both Goldfish and Catfish, and “su-su-ke-fe”” applies
to Crow, Raven. These cases show that emergent machine languages can develop polysemy, with
the same symbol systematically referring to semantically related objects. We further note that the
prevalence of polysemy decreases as alphabet size and word length increase.

Effect of maximum word length. We evaluated five maximum word lengths (£ € 2,6, 10, 14, 18)
and found that word length strongly influences the quality of the emergent language. Figure [5{(a)
shows variation in generalizability success rates and topographic similarity across conditions. With
L = 2, the Stage 2 success rate is 61%, indicating that machine language hardly emerges. As
maximum word length increases, success rates rise from 61% to 77%, while topographic similarity
increases on average from 0.060 to 0.127. These findings suggest that longer words provide greater
expressive capacity, thereby supporting the emergence of higher-quality machine languages.

Effect of alphabet size. We evaluated five alphabet sizes (A € 16, 32, 48, 64, 80) and found that
alphabet size also affects the quality of the emergent language. Figure [5(b) shows variation in
generalizability success rates and topographic similarity (TopSim) across conditions. As alphabet

'In prior MARL-based studies on machine language emergence, this value typically ranges from 0 to 0.16
for datasets comparable to ours (Lazaridou et al.| 2018))
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Figure 5: Effects of maximum word length and alphabet size on language emergence. Panel (a)
depicts the influence of maximum word length. Panel (b) depicts the Influence of alphabet size. The
red line shows the success rate in generalizability (Stage 2), and the blue line shows the topographic
similarity (TopSim) of the emergent language. Results are averaged over 10 runs, with error bars
denoting 95% confidence intervals.

size increases, success rates rise from 75.8% to 83.8%, and topographic similarity improves from
0.093 to 0.149. These findings indicate that larger alphabets offer greater compositional flexibility,
thereby supporting the emergence of higher-quality machine languages.

Table 1: Effect of object number on language emergence. The table shows the accumulated success
rate across attempts in Round 1 of Stage 1, the success rate in Stage 2 and the corresponding to-
pographic similarity (TopSim) of the emergent language. Results are averaged over 10 runs. Bold
values indicate the best performance across all metrics.

Object Number Accumulated Success Rate (Round 1, Stage 1)  Success Rate TopSim

Attemptl(%)  Attempt2(%) Attempt3(%) ‘ (Stage 2,%)

100 objects (27.7+6.7)  (40£74)  (47.6+£8.0) | (48.6+£3.4)  0.084+0.139
200 objects (37.7+3.6) (51.8£3.9)  (58+3.6) | (64.6+£4.8)  0.087+0.028
400 objects (47.2+2.8) (62.6+24) (689+26) | (75.8+2.9) 0.093+0.026

Effect of object number. We varied the number of objects (100, 200, 400) and found that larger
sets promote the emergence of a shared language. Table [5.2] shows that with 100 objects, the first-
round success rate after three attempts in Stage 1 is 47.6%, leaving over half of the objects unable to
communicate using a shared language. As the number of objects increases, success rates rise (from
47.6% to 68.9% in Stage 1, and from 48.6% to 75.8% in Stage 2), and the mean of topographic
similarity increases from 0.084 to 0.093. These results show that larger object sets drive agents to
have faster rate of language emergence and develop higher-quality machine languages.

6 CONCLUSION

The study of language emergence has been a longstanding area of research in Al, particularly within
MARL. Yet, it remains an open challenge to enable agents to develop a structured, meaningful,
and generalizable machine language with characteristics comparable to natural language. LLMs,
given their strong capabilities in natural language (Kumar, |[2024; Xu et al.| 2024)), provide a unique
opportunity to investigate whether a machine language—potentially not human-interpretable—can
emerge through agent communication. In this paper, we study language emergence through refer-
ential games and propose an agent design for LLM-based agents, where the speaker retrieves se-
mantically related words before composing a message and the listener decodes it based on structural
proximity. Our experiments show that a machine language emerges with 400 objects and generalizes
to 141 previously unseen objects. Analysis further reveals hallmarks of natural language, including
compositionality, morphemes, and polysemy. Finally, we examine how factors such as alphabet size,
maximum word length, and number of objects affect the quality of emergent language.
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REPRODUCIBILITY STATEMENT

We implemented our proposed communication protocol and experiments in Python. Implemen-
tation details are provided in Section [5.1] (Experimental Settings), with additional information in
Appendix [A] to facilitate reproduction. Anonymous URLSs to our code are included, enabling the
research community to fully access, reproduce, and extend our work on language emergence. The
repository also contains detailed instructions for reproducing our results.
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A MODEL PARAMETERS AND PROMPTS

In Section [5.1] of the main paper, we have already outlined the experimental setup. Next, we will
present more details of the experimental setup, including model parameters and prompts for LLM.
Model Parameters. All LLM based modules generate content using the following parameters:
top-p = 1, frequency_penalty = 0, presence_penalty= 0, temperature=0.1. Constrained by these
parameters, the model will output more deterministic and less random content. Prompt. Inspired
by CoT (Wei et al., 2022), we require the agent to first analyze the task they are facing in the
prompt and then output the final content. Here are the prompts for LLM based operations in our
communication protocol.
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Semantic-based Retrieval

TASK: By determining the semantic features of an object, we can obtain an objective description of that object. Next, we will
provide you with a **GIVEN OBJECT'S SEMANTIC FEATURES**. Then you need to select objects from the **ALL OBJECTS'
SEMANTIC FEATURES** that you think are semantically similar or closely related to the given object.
GIVEN OBJECT'S SEMANTIC FEATURES: JSON

{'encyclopaedic”: ...,

'function”: ...,

‘smell” ...,
'sound": ...,
'tactile’: ...,

'taxonomic’: ...,

ALL OBJECTS' SEMANTIC FEATURES: JSON
Object_i : {'encyclopaedic” ...,
'function”: ...,

'smell” ...,
'sound": ...,
'tactile’: ...,
'taxonomic’: ...,
)

REQUIREMENTS: (i) Before completing the task, please conduct a brief analysis; (ii) follow the EXPECTED FORMAT.
EXPECTED FORMAT: JSON

{

"analysis":"<Provide your analysis of the current task>",
"object_list":[<List selected objects >]

}

Figure 6: Prompt for Semantic-based Retrieval
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Message Generation&Reflection-based Regeneration

TASK: You are studying a special artificial language that has <letter num> letters. You must generate exactly one word in this
artificial language to describe the current object, using only the LETTERS listed. Your task is to generate a word to express
OBJECT FEATURES, which will be sent to other language learner for him to guess the current OBJECT FEATURES. You will
be given your own LEARNED VOCABULARY, which can help you generate correct words. In addition, this is a multi round
communication process, and the FAILED COMMUNICATION RECORDS between you and your partner will be provided.
It is a dictionary in JSON format, with the key being a word you have used before and the value being your partner's incorrect
understanding of the word.
LETTERS: <letter list>
GIVEN OBJECT'S SEMANTIC FEATURES: JSON

{'encyclopaedic ...,

'function’: ...,

'smell': ...,
'sound": ...,
'tactile” ...,

'taxonomic”: ...,

)

LEARNED VOCABULARY: JSON
'Object_i': {'encyclopaedic”: ...,
'function’: ...,

'smell: ...,
'sound": ...,
'tactile” ...,
'taxonomic’: ...,
o}

FAILED COMMUNICATION RECORDS: JSON
'Object_i': {'encyclopaedic”: ..., ...}

REQUIREMENTS: (i) Before completing the task, please conduct a brief analysis; (ii) follow the EXPECTED FORMAT.
EXPECTED FORMAT: JSON
{

"analysis":"<Provide your analysis of the current task>",

"word":<Generated word>

}

Figure 7: Prompt for Message Generation

Structural Proximity-based Retrieval

TASK: You are a language learner. You are studying a special artificial language that has <letter num> letters. You can see them
in the LETTERS section. Your task is to select words from the LEARNED VOCABULARY that have similarity in word form
to the GIVEN WORD, so that you believe they have a semantic connection with the GIVEN WORD.

LETTERS: <letter list>

GIVEN WORD: <Word from speaker>
LEARNED VOCABULARY: JSON
Object_i : <Corresponding word>

REQUIREMENTS: (i) Before completing the task, please conduct a brief analysis; (ii) follow the EXPECTED FORMAT.
EXPECTED FORMAT: JSON
{

"analysis":"<Provide your analysis of the current task>",

"object_list":<List selected objects>

}

Figure 8: Prompt for Structural Proximity-based Retrieval
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Object Selection

TASK: You are a language learner. You are studying a special artificial language that has <letter num> letters. You can see them
in the LETTERS section. Your task is to, upon receivinga GIVEN WORD in the current artificial language, select the most

likely SEMANTIC FEATURES that reflect the meaning of the GIVEN WORD, based on LEARNED VOCABULARY.
LETTERS: <letter list>

GIVEN WORD: <Word from speaker>

LEARNED VOCABULARY: JSON
Word_i : {'encyclopaedic”: ...,
'function”: ...,

'smell” ...,
'sound": ...,
'tactile’: ...,

'taxonomic’: ...,

SEMANTIC FEATURES: JSON
A {'encyclopaedic”: ...,
'function”: ...,

‘'smell: ...,
'sound": ...,
'tactile’: ...,
'taxonomic: ...

b
B : {'encyclopaedic" ..., ...}

REQUIREMENTS: (i) Before completing the task, please conduct a brief analysis; (ii) follow the EXPECTED FORMAT.
EXPECTED FORMAT: JSON

{
"analysis":"<Provide your analysis of the current task>",
"option": <Directly return options from "A","B", etc.>

}

Figure 9: Prompt for Object Selection

B OBIECT REPRESENTATION

In our setup, objects are represented as a combination of features, and their natural language rep-
resentation is not provided to the agent. This allows the agent to capture the semantic information
of the object without being influenced by the grammatical priors of natural language. [McRae et al.
(2005) proposes a dataset containing 541 objects that exist in the objective world, where each ob-
ject is labeled with features by human participants, which reflects human semantic memory of these
objects. These features are grouped into ten categories using brain region taxonomy, allowing us to
use a standardized approach to represent objects. Some examples are shown below.

Some examples of object representations

"ANT": "encyclopaedic": ["is strong", "lives in a colony", "lives in a hill", "lives in ground"],
"function": [],

"smell": [],

"sound": [],

"tactile": [],

"taste": [],

"taxonomic": ["an insect"],

"visual_colour": ["is black", "is red"],

"visual_form_and_surface": ["has 6 legs", "has antennae", "is small"],

’

"visual_motion": ["living behavior: bites", "living behavior: crawls"]

Figure 10: Object Representation Examples. 1
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Some examples of object representations

TABLE: encyclopaedic: [found in dining rooms, found in kitchens, has chairs],
function: [used for eating on],

smell: [],

sound: [],

tactile: [],

taste: [],

taxonomic: [furniture],

visual_colour: [],

visual_form_and_surface: [has 4 legs, has legs, is flat, is round, is square, made of wood],
visual_motion: []

COAT: encyclopaedic: [worn for winter],

function: [worn for covering, worn for protection, worn for the cold, worn for warmth],
smell: [],

sound: [],

tactile: [is warm],

taste: [],

taxonomic: [clothing],

visual_colour: [different colours ],

visual_form_and_surface: [has a hood, has a zipper, has buttons, has pockets, has sleeves, is long, made of cotton, made of
different materials, made of fur, made of leather, made of wool],

visual_motion: []

DISH: encyclopaedic: [found in kitchens, is breakable ],

function: [requires washing, used for eating, used for food],

smell: [],

sound: [],

tactile: [],

taste: [],

taxonomic: [],

visual_colour: [different colours],

visual_form_and_surface: [is round, made of ceramic, made of glass, made of plastic],
visual_motion: []

BOOK: encyclopaedic: [found in libraries, found in schools, found on shelves, has authors, non-living behavior: tells stories],
function: [used by reading,used for acquiring/storing knowledge,used for learning],
smell: [],

sound: [],

tactile: [],

taste: [],

taxonomic: [],

visual_colour: [],

visual_form_and_surface: [has a hard cover, has a soft cover, has information, has page numbers, has pages, has pictures, has
words in it, made of paper],

visual_motion: []

Figure 11: Object Representation Examples.2

C THE USE OF LARGE LANGUAGE MODEL

In this study, all the writing, analysis, and viewpoint elaboration of the main content were indepen-
dently completed by the author, without the use of any LLM for auxiliary generation or text editing.
However, during the literature search and preliminary screening stage, we used LLM tools to con-
duct exploratory searches on keywords, research context, and some classic literature in related fields
to assist in sorting out the research background. All clues obtained through this channel have under-
gone strict academic verification and have been confirmed by reviewing original literature through
formal channels, ensuring the rigor of the research process and the accuracy of citations.
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