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ABSTRACT 
Graph self-supervised learning aims to mine useful information 
from unlabeled graph data, and has been successfully applied to 
pre-train graph representations. Many existing approaches use 
contrastive learning to learn powerful embeddings by learning 
contrastively from two augmented graph views. However, none 
of these graph contrastive methods fully exploits the diversity of 
diferent augmentations, and hence is prone to overftting and lim-
ited generalization ability of learned representations. In this paper, 
we propose a novel Graph Self-supervised Learning method with 
Augmentation-aware Contrastive Learning. Our method is based 
on the fnding that the pre-trained model after adding augmenta-
tion diversity can achieve better generalization ability. To make full 
use of the information from the diverse augmentation method, this 
paper constructs new augmentation-aware prediction task which 
complementary with the contrastive learning task. Similar to how 
pre-training requires fast adaptation to diferent downstream tasks, 
we simulate train-test adaptation on the constructed tasks for fur-
ther enhancing the learning ability; this strategy can be deemed as a 
form of meta-learning. Experimental results show that our method 
outperforms previous methods and learns better representations 
for a variety of downstream tasks. 

CCS CONCEPTS 
• Information systems → Web mining. 
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1 INTRODUCTION 
Graphs are ubiquitous in our lives, and their applications are com-
mon in real-world systems, such as social network graphs, molecu-
lar structure graphs, and trafc road maps [2, 27, 35]. These graph 
structures often contain rich structural patterns and semantic in-
formation, which can support many downstream tasks, such as 
recommendation systems, molecular properties prediction and traf-
fc forecasts systems. 

The past few years have witnessed rapid advances in graph 
representation learning using graph neural networks (GNNs) [16], 
which refers to the use of neural networks to extract and discover 
features and patterns in graph-structured data [5, 15]. Despite great 
successes of GNNs in addressing graph-based tasks, these successes 
rely heavily on using massive amounts of carefully labeled data 
to conduct supervised learning. However, accurate annotation is 
very time-consuming and labor-intensive. In addition, trained with 
supervised data alone may result in models that are overftting and 
may fail to generalize well [23]. Recently, self-supervised learning 
becomes an efective technique to address the above two problems, 
as it allows models to acquire knowledge from unlabeled data. Sub-
stantial work has shown that self-supervised learning, on the large 
language corpus and image datasets, can learn universal represen-
tations, which are benefcial for downstream tasks and can avoid 
training a new model from scratch [10, 22]. 

In recent years, contrastive learning has become the prevalent 
form of self-supervised learning, and has achieved many successes. 
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Figure 1: Diference between MoCo-like and Bootstrapping 
contrastive learning 

It aims to build efective representation by pulling the representa-
tions of semantically similar (or positive) pairs together and pushing 
those of the dissimilar (or negative) pairs apart. We can construct a 
positive pair by creating two augmented versions of the same sam-
ple, and a negative pair by pairing two irrelevant samples [1, 31]. 
Restricted by the requirement of the large batch for obtaining nu-
merous negative samples, MoCo [10] maintains the dictionary as a 
queue of data samples, allowing it to be large to store more negative 
samples. 

Nowadays, contrastive learning have been successfully adopted 
to graphs [29]. In the earlier graph contrastive learning meth-
ods [9, 30], the positive and negative pairs in the graph are gen-
erated by fxed graph augmentation methods, such as node/edge 
perturbation and node feature masking. One critique for these tra-
ditional methods is that they require numerous negative samples 
for achieving promising results. The emergence of bootstrapping 1 

contrastive modes has been proposed to tackle this problem [24]. As 
shown in Figure 1, a training example � is separately augmented by 
two augmentation function �1 and �2, then two encoder �� and �� 
are applied in augmented example � and � ′, which � is momentum 
updated by � [10]. The diference between MoCo-like Contrastive 
Learning and Bootstrapping Contrastive Learning is Bootstrap-
ping CL adopts bootstrapping strategy [6] to get away from large 
amounts of negative samples. 

The augmentation procedure defned in computer vision is ex-
tending the family of augmentations and composing them stochas-
tically to achieve better generalization performance [1]. However, 
existing graph contrastive learning method use fxed augmentation 
method. The fxed augmentation in graph CL methods may limit 
the diversity of the augmentations, resulting in overftting and poor 
generalization. Another augmentation-free contrastive learning, 
such as AFGRL [17] throws away the augmentation procedure and 
constructs positive samples by complex node transformation, they 
also didn’t need negative samples and avoided the choice of aug-
mentation. But it adds more complexity to constructing a positive 
sample, which is far more time-consuming and memory-consuming 
than applying an augmentation operation. We also analyze the time 
and space complexity in Section 5. 

Due to the lack of diversity during the training, the quality of the 
learned graph representation of the previous contrastive method 
still has much room for improvement. Inspired by aforementioned 
problem, we propose a self-supervised learning framework for 
graphs, called Augmentation-aware Bootstrapping via Graph Meta-
Learning (ABGML). Precisely, our proposed ABGML is formed by 

1“Bootstrap” is used in its idiomatic sense rather than the statistical sense. 

a meta-learning framework, which contains two branches, i.e., the 
contrastive branch and augmentation-aware prediction branch. We 
improve augmentation diversity by constructing an augmentation 
pool. Then, at each iteration, two augmentation methods are ran-
domly sampled in augmentation pool. The contrastive branch has 
more augmentation diversity, which originated from the newly 
designed augmentation pool. Specifcally, two diferent augmenta-
tions are sampled from this pool frst instead of use fxed on the 
entire training process. 

The augmentation-aware prediction branch uses the node repre-
sentation to predict the type of augmentation applied to the graph; 
this prediction enables the model to know how the current graph is 
being perturbed so that each node can learn information about the 
structure of the entire graph, hence, we named it augmentation-
aware prediction task. This task with global-level perspective can 
be complementary with contrastive learning to better learn the 
representations. 

Besides, for imitate the fne-tuning process when applying the 
pre-trained model to downstream tasks, we create several sub-tasks 
with diferent train/test splits and diverse combinations of augmen-
tation. In each sub-tasks, we perform the above contrastive learning 
branch and the augmentation-aware prediction branch, which can 
be deemed as multi-task learning process. Therefore, we integrated 
the above multi-task learning process with model-agnostic meta-
learning (MAML)[3], which can provide good initialization for fast 
adaptation to a new task, and naturally meets the requirement of 
self-supervised graph representation. To the best of our knowledge, 
ABGML frst work that learns representations of graphs with multi-
task learning and meta-learning framework, which jointly improve 
the ability of generalization. 

Our contributions are summarized as follows: 
• We propose an augmentation sample strategy that can bring 
more diversity to the training process when constructing 
contrastive pairs in bootstrapping mode. 

• We propose an augmentation prediction branch to enhance 
the global-level perspective training and can be complemen-
tary with contrastive learning to better learn the representa-
tion. 

• We propose a framework to combine meta-learning with 
graph self-supervised, and such a training pipeline can fur-
ther improve the generalization ability in downstream tasks. 

• Our extensive experiments demonstrate the superiority of 
our ABGML model in performance on three downstream 
tasks: node classifcation, clustering, and similarity search; 
then detailed ablation studies show the efectiveness of each 
component. 

2 RELATED WORK 

2.1 Graph Contrastive Learning 
Motivated by the great success of contrastive methods on self-
supervised learning, plenty of graph contrastive learning methods 
have been proposed. Most of them can be roughly divided into three 
categories, i.e., traditional graph contrastive learning, bootstrapping 
contrastive learning, and augmentation-free contrastive learning. 
The traditional graph contrastive method aims to maximize the 
agreement of node embeddings across two corrupted views of the 
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Figure 2: The overall framework of ABGML. The contrastive branch builds representation through the use of two graph 
encoders, an online encoder �� , a target encoder �� and an online predictor �� , where � and � denote two distinct sets of 

′ ′ parameters. � and � is the intermediate adaptation parameter only for meta-train. 

graph and minimize the agreement of embeddings across diferent 
nodes. It is usually time-costly because it requires numerous neg-
ative samples. DGI [26] is a pioneering work highly inspired by 
Deep InfoMax [11], it leverages corruption to construct negative 
pairs and maximizing the mutual information between local (node) 
and global (graph) representation. GRACE [32] and GCA [34] use 
SimCLR-style [1] in-batch negatives, which frst create two aug-
mented views of a graph by randomly perturbing nodes/edges and 
their features. Then, it learns node representation by pulling to-
gether the representation of the same node in the two augmented 
graphs, while pushing apart the representation of other node. For 
building large negatives in limited resources, GCC [21] uses MoCo-
style negative queues. The queue decouples the dictionary size from 
the mini-batch size, allowing it to be large. 

BYOL [7] is the frst work to present the bootstrap method in 
image contrastive learning, which is to learn representations by 
predicting previous versions of its outputs, without using negative 
samples. BGRL [24] introduces the bootstrap method into graph 
contrastive learning, it adopts BYOL and uses fxed augmentations 
to learn node representation. The diference between BGRL and 
BYOL is BGRL does not use a projector network, which is used for 
dimensionality reduction. 

Another contrastive learning form is AFGRL [17], an augmentation-
free method, which requires neither augmentation method nor neg-
ative samples for learning representations of graphs. It changed the 
focus of positive sample construction from diferent augmentation 
methods to selecting neighbor similar points as positives. However, 
these additional positive select operations will bring more time and 
space complexity. This makes it difcult for the model to handle 
large datasets, which is the purpose of the pre-training model. 

Besides, high-quality and informative data augmentation plays 
a central role in the success of contrastive learning[25]. In the 
graph domain, diferent views of a graph provide diferent contexts 

for each node. Existing works[33] propose to corrupt the original 
graph at both structure and attribute levels, i.e., Remove edges (RE) 
randomly remove a portion of edges in the original graph. Mask 
features (MF) apart from removing edges, instead randomly mask 
a fraction of node feature with zeros. 

2.2 Meta Learning 
In recent years, meta-learning has turned out to be an important 
framework to address the shortcomings of deep learning systems 
when applied in few-shot tasks. The main idea behind meta-learning 
is to design learning algorithms that can leverage prior learning 
experience to adapt to a new problem quickly and learn a useful 
algorithm with few samples. Some research has use meta-learning 
to enhance the learning ability of existing video self-supervised 
approaches [18]. Most of the existing literature adopts the method 
called model-agnostic meta-learning (MAML), which can be com-
bined with any learning approach trained with gradient descent. 
In graph domain, Huang et al.[13] consider the node classifcation 
problem where the input graphs, as well as the labels, can be dif-
ferent across tasks. Wang et al.[28] consider the few-shot node 
classifcation problem for a setting where the network structure is 
fxed, but the features of the nodes change with tasks. In this work, 
we utilize MAML to improve the performance of graph contrastive 
self-supervised learning. Diferent from prior eforts, we try to en-
hance the adaptation between the self-supervised train and test 
domain. 

3 PRELIMINARIES 
In this section, we begin by introducing some notations related to 
graph contrastive learning. Then we describe the basic settings of 
self-supervised graph representation learning. 
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3.1 Notations 
Let G = (V, E) be the input graph with node set V = {�� }� 

�=1
and edge set E ⊆ V × V . � = |V| is the number of the node in 
graph G. We denote the adjacency matrix as A ∈ {0, 1}� ×� , where
A� � = 1 indicates node � and � are connected and equal 0 vice versa.
We further denote the feature matrix as X ∈ R� ×� , where � is the
dimension of the node features and X� : indicates the feature vector
of node � (the � th row of X).

3.2 Self-supervised Graph Representation 
Learning 

In the setting of self-supervised graph representation learning, there 
is no given class information of nodes during pre-training. Given the 
graph G along with X and A, we aim to learn an encoder � (·) that
receiving the graph features and structure as input, and produces 
node embeddings in low dimensionality H = � (X, A) ∈ R� ×� ′ ,

′where � ≪ � . These representations can be used in downstream 
tasks, such as node classifcation, clustering, and similarity search. 

4 METHODOLOGY 
In this section, we present our framework ABGML in detail. The 
overall architecture is illustrated in Figure 2. First, we describe the 
full pipeline and make an overview of ABGML. Next, we introduce 
two branches in our framework, which are the contrastive branch 
and the augmentation-aware prediction branch. Last, we explain 
the adaptation procedure in the MAML setting, which simulates 
the process of train-test adaptation during the pre-training. 

4.1 Overview 
To enhance the augmentation diversity, we explicitly propose an 
augmentation sampling strategy to randomly augment graphs. Be-
sides, we add augmentation-aware prediction as an auxiliary task 
for capturing graph-level semantic features which use node fea-
tures to predict the disturbed state of the whole graph. At last, we 
leverage the meta-learning framework on the above two branches 
to improve the generalization ability on downstream tasks. 

4.2 Contrastive branch 
In order to learn expressive nodes’ representation from an input 
network, we frst build the network encoder module. The network 
encoder module is composed of multiple GNN layers that encode 
each node to a low-dimensional latent representation. The GNN 
model involves two key computations for each node � at every layer. 
The frst is Aggregation operation, which aggregates messages
from � ’s local neighbors N� in an iterative manner. The second is
Transform operation, which updates � ’s representation from its
representation in the previous layer and the aggregated messages. 
Formally, a generic GNN layer computes the node representations 
using two key functions: �n o� 

h� = AGGREGATE � h� −1 | ∀� ∈ N� ∪ �� , (1)� N� � � 
h� h� −1 , h� = TRANSFORM � , (2)� � �� 

where ℎ� is the latent representation of node �� at the �-th layer and
� 

N� is the set of frst-order neighboring nodes of node �� . For simplic-
ity, we abstract the composition of the two operation AGGREGATE(·) 
and TRANSFORM(·) with � GNN layer as one parameterized func-
tion �� with parameters � . It is worth noting that the network
encoder is compatible with arbitrary GNN-based architecture, and 
here we employ the GCN [16] in our implementation. 

In the pre-training, ABGML frst sample graph augmentation 
function �1 and �2 from augmentation pool Γ. The augmentation
pool is composed of a set of diferent augmentations functions. In 
this paper, we only use Edge masking and Feature masking as the 
base augmentation; we construct new augmentation method based 
the combination of two base methods with diferent probability. 
Then two alternate views of G: G1 = (X̃1, Ã1) and G2 = (X̃2, Ã2)
are produced by applying the above sampled augmentation func-
tions �1 and �2 respectively. The online encoder generates online
representation from the frst augmented graph, H̃1 = �� (X̃1, Ã1);
In the same way, the target encoder produces target representa-
tion from the second augmented graph, H̃2 = �� (X̃2, A2). Then,˜ 
the online representation is fed into a node-level predictor �� that
outputs estimates of the target representation, Z̃1 = �� (H̃1).

The   �  �       
dicted target representation Z̃ 1 closer to the true target representa-
tions H̃ 2 for each node, which through the following loss:

𝑁∑︁1 ˜2 Z 1
⊤− ( ,𝑖 ) H̃
 
 
 (2,𝑖 )L = −𝑐𝑙 
 
 
 

 . (3)

𝑁 

 

 

 


𝑖=0 

Z̃(1,𝑖 )

 

H̃(2,𝑖 )



In the actual training process, we symmetrize this loss, by also 
predicting the target representation of the frst view using the 

online parameters (not ) are updated to make the pre-

online representation of the second view. 
The target network provides the regression targets to train the 

online network, and its parameters � are an exponential moving 
average of the online parameters � . More precisely, given a target 
decay rate � ∈ [0, 1], after each training step, we perform the 
following update (� does not updates through back propagation): 

� ← �� + (1 − �)� . (4) 

4.3 Augmentation-aware prediction branch 
Since the above augmentation method is randomly selected, dif-
ferent augmentation pairs bring more diversity to the contrastive 
branch. But with the contrastive branch only, the model only cap-
tures local semantic feature since each node only contrasting with 
the same node from other view. To capture global-level semantic 
features, we construct an augmentation-aware prediction branch. 
As shown in Figure 2 and Eq 5, by concatenating two features of 
augmented node representation, the multi-class classifcation tasks 
is meant for predicting current augmentation states. We use an 
example to illustrate the label construction process of this branch. 
Suppose that we have only two augmentation method �1 and �2, we
can obtain four diferent augmentation pairs (�1�1,�1�2,�2�1,�2�2)
by randomly permutate. Since the prediction is order-agnostic, we 
treat labels �1�2 and�2�1 as the same label. Thus, two augmentation
methods are able to obtain three types of labels. In our approach, 
we concatenate features from two augmentation views: 

ℎ̃ = Concat(ℎ̃1, ℎ̃2), (5)
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where ℎ̃1, ℎ̃2 are the representation generated by �� and �� .
The multi-class classifcation loss can be complementary with 

contrastive loss to better learn the representations through multi-
task learning process: 

� � ∑ ∑ 
L�� = − �� � log �̂� � , (6) 

�=1 � =1 

where the N is the number of the nodes in a batch, M is the number 
of classes. �� � equal 1 if the true label of � th concatenated feature
is � . �̂� � is the �th position of output after input ℎ̃.

4.4 Meta-learning Optimization 
The aim of meta-learning perfectly meets the target of the graph 
pre-training, which meant to improve the generalization ability of 
the model. Given the contrastive learning (CL) and augmentation-
aware prediction (AP) tasks, we fuse the two losses, i.e., contrastive 
loss and cross-entropy loss, for fnal optimization. See from Figure 2, 
during the pre-training process, we employ a two-stage process 
including meta-train and meta-test for imitating the train-test adap-
tation. The procedure of the two-stage basically the same, however, 
the parameter of meta-train is update temporarily only use for 
meta-test adaptation. To train the model’s ability to adapt between 
diferent tasks, we randomly construct task at each training step, 
the details of task construction are list as follows: 

4.4.1 Task Construction. A task involves a graph G with � nodes, 
consisting of a support set SG and a query set QG . Consider a set

, ...,������ of augmentation pool Γ = {� 1,� 2 }, ����� is the size of
augmentation pool. Each tasks sample two augmentation method in 
Γ, which is �1 and �2. Then, two alternate views of G is produced by
applying two diferent augmentation method. We randomly sample 
� percent node to compose the support set and the remaining 
1 − � node as the query set. As illustrated in Figure 2, the task TG
contains o ��  tw  child tasks (CL and AP), i.e., TG = �� (T , T )G . We G use
� ∈ {��, ��} denote the child tasks, which is defned as: ( { 	})

𝑐
G = 𝑐 𝑐T S = {(𝑛𝑠 ) ∼G 𝑝V } ,Q = ( ) ∼G 𝑛𝑞 𝑝V ,

s.t. 𝑐 𝑐S ∩ QG G = ∅, 𝑇1,𝑇2 ∼ Γ (7)
𝑐 𝑐|S | = 𝛼𝑁, |Q | (G G = 1 − 𝛼)𝑁

where the support � S  G and query � Q des �� and �G contain no �

separately, which are randomly sampled from the node distribution 
�V of the graph; and they are mutually exclusive, | ∗ | is represent
the number of nodes in ∗. 

4.4.2 Meta Training. Given the two training tasks and support set, 
the above Figure 2 is show the meta-training process. As motivated, 
to enhance the generalization ability of the pre-training model, it 
is necessary to optimize the model’s ability to quickly adaptation 
during pre-training itself. We combine CL loss and AP loss from 
the two branches are combined together to get the fnal meta loss, 
which is defned as: 

L���� = � ∗ L�� + (1 − �) ∗ L�� , (8) 

where � is a hyper-parameter that is used to control the importance 
of CL and AP loss. During the meta-train stage, the model parame-
ters are trained by optimization L���� with respect to � across all
learning tasks. More concretely, the update procedure of parameter 
in meta-train is defned as follows: 

�L���� (�, S� )G′ � = � − � , (9)
�� 

where � is the learning rate of the meta training process. In this 
process, the actual parameters of the model are not updated, but 

′change the temporarily parameters � we created for next stage 
adaptation. 

4.4.3 Meta Test. To mimic the testing process with the fne-tuned 
model, the model is initialized by temporarily parameters � ′, then 
optimize the adapted parameters � on the query set Q� over all G 
training task. That is, the transferable prior � will be optimized 
through the backpropagation of the query loss given by 

′ , Q� )�L���� (� G
� = � − � . (10)

�� 

We set the adaptation learning rate � as the same as the learning 
rate � for simplicity. Through the meta-test process, the training 
object of the model is to achieve better generalization ability, which 
well fts the requirements of the pre-train task. 

5 COMPLEXITY ANALYSIS 
In this section, we provide a brief description of the time and space 
complexities of the ABGML update step, and illustrate its advan-
tages compared to augmentation-free contrastive methods such as 
AFGRL. The same analysis applies to traditional contrastive learn-
ing methods such as GRACE and bootstrapping method such as 
BGRL. 

Consider a graph with � nodes and � edges, and simple one 
layer encoders �� that compute embeddings in time and space
� (�� ), � is the average degree of node. ABGML performs two 
encoder computations per update step, a node-level prediction 
step and an augmentation-aware prediction step. Since the data 
used by Meta-train and Meta-test in the meta-learning framework 
are divided by the whole graph, each node also performs only one 
update. Both methods backpropagate the learning signal twice (once 
for each augmentation), and we assume the backward pass to be 
approximately as costly as a forward pass. The cost for computation 
of the augmentations is � (� + �). 

The total time and space complexity per update step for ABGML 
is 6�������� � (�� ) +4������������ (� ) +4��������� (� ) +2� (� +
�). Since AFGRL need to update the distence between each node 
for performing k-NN and K-mean clustering, the time and space 
complexity for AFGRL is 6�������� � (�� ) + 4������������ (� ) +
� (� 2), compared to 6�������� � (�� )+4������������ (� )+2� (� +
�) for BGRL and 4�������� � (�� ) +4������������ (� ) +� (� 2) for
GRACE; where � are constants depending on architecture of the 
diferent components. Since augmentationa-ware prediction uses 
only one layer MLP, the ABGML is faster than AFGRL and GRACE 
on a sufciently large dataset, which have quadratic complexity. 
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6 EXPERIMENTS SETUP 
To evaluate the efectiveness of our method ABGML, we conduct 
three downstream tasks (Node classifcation, Node clustering, and 
Similarity search) on fve widely used datasets, including WikiCS, 
Amazon-Computers, Amazon-Photo, Coauthor-CS, and Coauthor-
Physics. Then, to measure the performance of the model on a much 
larger dataset, we further test the performance on the ogbn-arxiv 
dataset [12]. Finally, we also show the sensitivity analysis on dif-
ferent hyperparameters, especially on the size of augmentation 
pools. 

For a comprehensive comparison, the datasets are collected from 
real-world networks from diferent domains; their detailed statistics 
are summarized in Appendix. For WikiCS dataset, which provides 
20 canonical train/valid/test splits, we directly used the given splits. 
For Amazon and Coauthor datasets, we randomly split nodes 20 
times into train/valid/test (10/10/80) as these datasets do not provide 
standard splits. For ogbn-arxiv dataset, we report results on both 
validation and test sets, as is convention for this task since the 
dataset is split based on a chronological ordering. 

6.1 Method Compared 
We primarily compare ABGML against AFGRL [17], BGRL [24] 
and GCA [34], which are the current state-of-art self-supervised 
methods on graphs. We also report performances of other previ-
ously published results of another representative method, such as 
DeepWalk [20], DGI [26], GMI [19]and MVGRL [8], as done in [17]. 

6.2 Implementation details 
We use GCN model as the base encoder � (� ) as done in [24], the 
formal defnition of encoder architecture is:� � 

H(� ) = GCN(� ) (X, A) = � D̂ −1/2Â D̂ −1/2XW(� ) , (11) 

where H(� ) is represent node embedding matrix of the nodes, � is 
represent the current layer of GCN, � ∈ [1, ..., �]. A = A + I is the ˆÍ
adjacency matrix with self-loops, D̂ = Â 

� is the degree matrix, � 
� (∗) is a nolinear activation function, we use ReLU in this paper, 
and W(� ) is the trainable weight matrix for the layer � . 

We use a combination of random node feature masking and edge 
masking with diferent masking probabilities � � and �� for a fair 
comparison with [24]. 

In this work, to add more augmentation diversity, we create an 
augmentation pool for sampling in meta-training. We set size of 
augmentation pool ����� = 4 across the experiment. We perform 
parameter search on several hyperparameters, such as masking 
probabilities � � and �� , learning rate �, node embedding dimension 
� , number of layer of GCN � , support set proportion � , contrastive 
loss importance � . The best confguration of these parameters are 
shown in Appendix. We set � = 0.99 which same as other method. 
More detail is shown in the supplementary. 

6.3 Evaluation protocol 
We evaluate ABGML on fve public benchmarks (WikiCS, Amazon 
Photo & Computer, Coauthor CS & Physics) with three node-level 
tasks, such as node classifcation, node clustering and node similar-
ity search. To validate the efectiveness on a much larger dataset, 
we also conduct a node classifcation experiment on ogbn-arxiv. 

For all these experiments, we use the fxed learned embeddings to 
train and test a simple linear classifer. We report the performance 
when the model has the best performance on validation data. For 
node clustering and similarity search, we follow the AFGRL setting, 
which reports the best performance report in the training process. 

7 EXPERIMENTAL ANALYSIS 
We present an extensive empirical study of performance. All these 
experiments is conducted by linear classifcation on frozen features, 
following a common protocol [17]. 

7.1 Overall Performance 
Table 1 shows the node classifcation performance of various meth-
ods on fve challenging medium-scale datasets specifcally proposed 
for rigorous evaluation of the semi-supervised node classifcation 
method. �, �,� correspond to node features, the adjacency matrix, 
and labels respectively. The highest performance of unsupervised 
models is highlighted in boldface. The second highest performance 
is highlighted with underline. OOM indicates Out-Of-Memory on 
a 24GB RTX 3090 GPU. All experiments are over 20 random dataset 
split and model initialization. 

We have the following observations: Overall, our proposed model 
ABGML shows strong performance across all fve datasets com-
pared with other methods. The performance empirically verifes 
the superiority of our augmentation-aware contrastive learning 
framework. 

As shown in Table 2 and 3, we also evaluate ABGML on node 
clustering and similarity search for testing generalization perfor-
mance. Note that the best hyperparameters for node classifcation 
task we adopted. It is worth noting that traditional contrastive 
methods perform worse than their counterparts on various tasks 
and our method generally outperforms other methods on almost 
all datasets. Since the primary aim of the pre-training model is 
achieving higher generalization performance under diferent down-
stream tasks, the experiments of the Tables 1, 2 and 3 are combined 
to illustrate that our method surpasses the previous state-of-art 
method AFGRL on diferent downstream tasks. 

In summary, the superior performance of ABGML compared to 
existing state-of-the-art methods verifes the efectiveness of our 
proposed method. 

7.2 Ablation studies 
In this section, we conduct ablation studies on the above fve 
datasets to comprehensive verify the beneft of each component 
of ABGML. The results are presented in Table 4, The Meta, CL, 
Aug. Aware and Aug. Pool are represent the Meta-Learning frame-
work, Contrastive Learning Branch, Augmentation-Aware predic-
tion Branch, and Augmentation pool. w/o. means without in Table 4. 
We have concluded several fndings that summarized some results 
and analyze the phenomenon behind the numbers: 

Firstly, the performance of the model has been degraded to vary-
ing degrees when each component is removed as shown in frst 
four rows in table. Especially when contrastive learning is removed, 
the efect is the most obvious, which also shows that contrastive 
learning is one of the most important components in our model. 
Secondly, as shown in row 2, 5 and 6, when separately remove 
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Table 1: Performance on node classifcation in terms of accuracy in percentage with stadard deviation. 

Sup.GCN 

Training Data WikiCS 

77.19±0.12 

Amazon-Computers 

86.51±0.54 

Amazon-Photo 

92.42±0.22 

Coauthor.CS 

93.03±0.31 

Couthor.Physics 

95.65±0.16 

Raw feat. 

� , �, � 

� 71.98±0.00 73.81±0.00 78.53±0.00 90.37±0.00 93.58±0.00 
node2vec � 71.79±0.05 84.39±0.08 89.67±0.12 85.08±0.03 91.19±0.04 
DeepWalk � 74.35±0.06 85.68±0.06 89.44±0.11 84.61±0.22 91.77±0.15 
DW + feats. � , � 77.21±0.03 86.28±0.07 90.05±0.08 87.70±0.04 94.90±0.09 

DGI � , � 75.35±0.14 83.95±0.47 91.61±0.22 92.15±0.63 94.51±0.52 
GMI � , � 74.85±0.08 82.21±0.31 90.68±0.17 OOM OOM 

MVGRL � , � 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12 95.33±0.03 
GRACE � , � 77.97±0.63 86.50±0.33 92.46±0.18 92.17±0.04 OOM 
GCA � , � 77.94±0.67 87.32±0.50 92.39±0.33 92.84±0.15 OOM 
BGRL � , � 76.86±0.74 89.69±0.37 93.07±0.38 92.59±0.14 95.48±0.08 
AFGRL � , � 77.62±0.49 89.88±0.33 93.22±0.28 93.27±0.17 95.69±0.10 

ABGML � , � 78.70±0.56 90.17±0.30 93.46±0.36 93.56±0.19 96.05±0.10 

Table 2: Performance on node clustering in terms of NMI and 
homogeneity 

GRACE GCA BGRL AFGRL ABGML 

NMI 0.4282 0.3373 0.3969 0.4132 0.4598WikiCS Hom. 0.4423 0.3525 0.4156 0.4307 0.4779 

NMI 0.4793 0.5278 0.5364 0.5520 0.5659Com. Hom. 0.5222 0.5816 0.5869 0.6040 0.6239 

NMI 0.6513 0.6443 0.6841 0.6563 0.6938Photo Hom. 0.6657 0.6575 0.7004 0.6743 0.7124 

NMI 0.7562 0.7620 0.7732 0.7859 0.8033Co.CS Hom. 0.7909 0.7965 0.8041 0.8161 0.8342 

NMI OOM OOM 0.5568 0.7289 0.7229Co.Phy. Hom. OOM OOM 0.6018 0.7354 0.7329 

Table 3: Performance on similarity search in terms of Sim@5 
and Sim@10 

GRACE GCA BGRL AFGRL ABGML 

Sim@5 77.54 77.86 77.39 78.11 78.51WikiCS Sim@10 76.45 76.73 76.17 76.60 77.38 

Sim@5 87.38 88.26 89.47 89.66 90.18Com. Sim@10 86.43 87.42 88.55 88.90 89.20 

Sim@5 91.55 91.12 92.45 92.36 92.60Photo Sim@10 91.06 90.52 91.95 91.73 92.12 

Sim@5 91.04 91.26 91.12 91.80 92.36Co.CS Sim@10 90.59 91.00 90.86 91.42 92.10 

Sim@5 OOM OOM 95.04 95.25 95.65Co.Phy. Sim@10 OOM OOM 94.64 94.86 95.39 

the CL and Aug. Aware component under normal setting (without 
Meta train and Meta test), the performance has been degraded to 
varying degrees; which further proves the efectiveness of CL and 
Aug. Aware component under normal setting. Thirdly, when only 
the augmentation-aware prediction task is applied (in row 5), its 
downstream performance is better than the traditional contrastive 
method (GRACE, GCA), which demonstrates the efect of our Aug. 
Aware prediction task. Finally, as shown in the last two lines of 
Table 4, the performance degradation when Aug. Pool removed. 

(a) (b) 

Figure 3: Node classifcation accuracy in Coauthor-CS dataset 
and Amazon-Computer dataset, the result is obtained by 
linear probing in pre-trained embeddings 

The result proved that increasing the diversity of augmentation 
will boost the performance of pre-train model. 

7.3 Experiment on ogbn-arxiv 
Then, we conduct a node classifcation task on a much larger dataset, 
ogbn-arxiv. Same as BGRL, considering the difculty of this task, 
we expand our model to use 3 GCN layers. Other results are taken 
from previously published work [24]. In addition, we report results 
from [12] for node2vec and supervised-learning baseline. We report 
results on both validation and test sets, as is a convention for this 
task since the dataset is split based on chronological ordering. 

The results are summarized in Table 5, showing that ABGML is 
surpassing another self-supervised learning method. In this case, 
GRACE and AFGRL run out-of-memory on this dataset. These 
results suggest that the performance of contrastive methods such 
as AFGRL and GRACE may sufer due to their quadratic time and 
space complexity when scaling up. 

7.4 Convergence Analysis 
In Figure 3, we plot three models’ (ABGML, AFGRL and BGRL) 
downstream node classifcation accuracy curve throughout training 
for Coauthor-CS and Amazon-Computer dataset. The hyperparam-
eter confguration of these model are select the optimal parameters 
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Table 4: Ablation studies on ABGML 

WikiCS Amazon-Computers Amazon-Photo Coauthor.CS Couthor.Physics 

ABGML 78.70±0.56 90.17±0.30 93.46±0.36 93.56±0.19 96.05±0.10 
- w/o. Meta 78.44±0.65 90.12±0.32 93.35±0.37 93.53±0.19 95.99±0.10 
- w/o. CL 78.11±0.54 89.60±0.27 92.84±0.43 93.30±0.19 95.89±0.15 
- w/o. Aug. Aware 78.39±0.58 90.07±0.37 93.34±0.35 93.34±0.21 95.86±0.12 
- w/o. Meta & CL 77.86±0.55 89.45±0.26 92.76±0.41 93.31±0.18 95.74±0.12 
- w/o. Meta & Aug. Aware 78.38±0.49 90.10±0.39 93.35±0.34 93.33±0.18 95.81±0.12 
- w/o. Meta & Aug. Aware & Aug. Pool 76.86±0.74 89.69±0.37 93.07±0.38 92.59±0.14 95.48±0.08 

Table 5: Classifcation accuracy on the ogbn-arXiv task along 
with standard deviations. 

MLP 57.65±0.12 55.50±0.23 
node2vec 71.29±0.13 70.07±0.13 

Random-Init 69.90±0.11 68.94±0.15 
DGI 71.26±0.11 70.34±0.16 
GRACE OOM OOM 
BGRL 71.46±0.15 70.01±0.20 
AFGRL OOM OOM 
ABGML 72.01±0.11 70.78±0.18 

Supervised GCN 

Validation Test 

73.00±0.17 71.74±0.29 

reported on [17] and [24]. As we see, the downstream node clas-
sifcation accuracy of AFGRL drop quickly when iterating more 
epochs. This may be the fact that AFGRL selects similar surround-
ing nodes as positive examples for contrastive learning, and after a 
long training period, the embedding of the nodes start to converge 
to the same, which makes the learned representations indistinguish-
able after fne-tune on downstream tasks. Then, compared to BGRL, 
we can see that the convergence speed is greatly improved, and 
ABGML achieves the previous BGRL performance with only a few 
epochs, which is attributed to our meta-learning process. 

7.5 Hyperparameter Analysis 
Further, as shown in Figure 4, we conduct hyperparameter sensi-
tivity analysis on Coauthor-CS dataset with the learning rate �, 
support proportion � , task proportion � , edge mask rate �� , feature 
mask rate � � and the size of augmentation pool ����� . 

The green dash line represents the performance of the former 
state-of-the-art method AFGRL. We found that � = 7� − 4 gives 
the best performance, and a small learning rate usually achieves 
better performance. It’s better to use a small learning rate because 
high learning rates increase the risk of losing previous knowledge 
in pre-training. The support proportion also achieves better per-
formance on a low value. This may be the fact that the ratio of 
training set larger than test set at fne-tune, which is consistent 
with pre-training. The performance increases as the proportion 
of contrastive learning increases. This also confrms that the con-
trastive learning module plays a major role in pre-training, which 
consistent with the ablation study. When varying the mask rate 
�� and � � , the performance of the model increases with the mask 

Figure 4: Hyperparameters Analysis on learning rate �, sup-
port proportion � , task proportion � , edge mask rate �� , fea-
ture mask rate � � and size of augmentation pool ����� . 

rate, which suggests that more complex augmentation is benefcial 
for model generalization performance. Then, performance of the 
model frst increases up to a peak and then decreases, suggesting 
that more ways of augmentation can degrade the model. Last, from 
the result of the Figure 4, these numbers verifes that our ABGML 
can be easily trained compared with former methods, i.e., stable 
over hyperparameters, while outperforming them in most cases. 

8 CONCLUSION 
In this work, we propose ABGML, which combines augmentation-
aware prediction task and bootstrapping contrastive learning task 
in a meta-learning framework. ABGML uses random augmentation 
function instead fxed augmentation to increase the diversity of 
the pre-training process. Then we incorporate the augmentation-
aware prediction task to facilitate contrastive learning to capture 
global semantics. Finally, the meta-learning framework further 
improves the generalization ability of ABGML. In terms of time and 
space efciency, our method is superior to AFGRL on large datasets. 
Through experiments on multiple graphs on various downstream 
tasks, we empirically show that ABGML is superior to the state-of-
the-art methods. 
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A DATASETS 
We evaluated the performance of ABGML on node-level tasks, i.e., 
node classifcation, node clustering, and node similarity search. We 
conduct experiments on six widely used datasets, including Wiki-
CS, Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-
Physics, and obgn-arxiv. The detailed statistics are summarized in 
Table 1. 

• WikiCS is a reference network constructed based on Wikipedia. 
Nodes correspond to articles about computer science, and 
edges are hyperlinks between articles. The nodes are la-
beled with ten classes, each class representing a branch of 

Table 6: Statistics of datasets used in experiments. 

Dataset #Nodes #Edges #Features #Classes 
Wiki-Cs 11,701 216,123 300 10 

Amazon-Computers 13,752 245,861 767 10 
Amazon-Photo 7,650 119,081 745 8 
Coauthor-CS 18,333 81,894 6,805 15 

Coauthor-Physics 34,493 247,962 6,805 5 
ogbn-arXiv 169,343 1,166,243 128 40 
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the feld. Node features are an average of GloVE embed-
dings of all words in the article. We directly use 20 canonical 
train/valid/test splits in the dataset. 

• Amazon Computers & Amazon Photos are two networks 
constructed from the Amazon co-purchase graph, in which 
nodes represent goods and edges represent pairs of goods 
frequently bought together. Goods are classifed into 10 and 
8 (Computers and Photos) classes based on the good cate-
gory, and node features are a representation of the product’s 
review. We randomly split the nodes into train/val/test with 
1:1:8 proportion, and repeat 20 times. 

• Coauthor CS & Coauthor Physics are two academic net-
works from Microsoft Academic Graph, with nodes repre-
senting authors and edges representing pairs of authors who 
have co-author relationships. Authors are classifed into 15 
and 5 (CS and Physics) classes based on the research feld. 
Each node has a sparse bag-of-words feature based on the 
paper keywords of the author. We randomly split the nodes 
into train/val/test with 1:1:8 proportion, and repeat 20 times. 

• ogbn-arXiv is a citation network, where nodes represent 
computer science papers on arXiv and edges also indicate co-
authorship relationships. In our experiment, we symmetrize 
this graph as same as other methods’ experiments for a fair 
comparison. Papers are classifed into 40 classes based on 
arXiv subject area. The node features are computed as the av-
erage word embeddings of all words in the paper. The dataset 
is split based on a chronological ordering as a convention 
setting. 

B THE TRAINING PROCESS OF THE ABGML 
The overall algorithm is summarized in Algorithm 1. 

C COMPARED METHODS 
In this section, we explain methods that are compared with ABGML 
in the experiments. 

• AFGRL is a agumentation-free method which without rely-
ing on manual augmentation techniques and negative sam-
ples. 

• BGRL is a bootstrapping contrastive method which use fxed 
augmentations and alleviates the need for contrasting with 
negative examples. 

• GCA is a variant of GRACE that has the same learning 
objective but trades of more expressive but expensive graph 
augmentations for better performance. 

• GRACE is a traditional contrastive method inspired by Sim-
CLR, which creates two augmented views of a graph by 
randomly pertubing nodes/edges and their features. 

• DGI aims to learn node representations by maximizing the 
mutual information between the node and global summary 
vector of the graph. 

• GMI is advanced version of DGI that learns node represen-
tations by leveraging more fne-grained information. 

• MVGRL constructs views of a graph with difusion kernel 
and subgraph sampling. 

Algorithm 1: Pre-training process of ABGML 
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D IMPLEMENTATION DETAILS 

Input: Augmentation pool: Γ; Split proportion of support 
set: � ; Importance factor � ; Learning rate �; 
Pre-trained model � (� ) parameterized by � 

Output: Model parameters � 
Initialize � randomly; 
while not converged do 

Randomly sample two augmentation function �1 and �2; 
Creating support and query set SG and QG using � ; 

′Creating temporarily parameters � = � ; 
// Meta Train Step: 
Feed sampled support dataset SG into network; 
Evaluate L�� by Eq.3; 
Evaluate L�� by Eq.6; 
Compute L���� = � ∗ L�� + (1 − �) ∗ L�� ; 

′Update � by Eq.9; 
// Meta Test Step: 
Feed sampled support dataset QG into network; 
Evaluate L�� by Eq.3; 
Evaluate L�� by Eq.6; 
Compute overall loss L���� = � ∗ L�� + (1 − �) ∗ L�� ; 
Update � by Eq.10; 

end 

As described in above section, we use GCN [16] encoders. The base 
encoder of ABGML is a GCN model followed by batch normal-
ization and nonlinearity. Following BGRL [24], the predictor �� 
and the augmentation-aware predictor of ABGML is defned as a 
multi-layer perceptron (MLP) with batch normalization. 

For GCA, BGRL, and AFGRL, we adopt the best hyperparameter 
specifcations that are reported in their original paper. For GRACE, 
since the original paper [32] did not evaluate on the datasets used 
in our experiments, we follow the result that are reported in the 
AFGRL paper. 

The augmentation pool is composed by a series of augmenta-
tion, each augmentation is a combination of random node feature 
masking and edge masking with diferent masking probabilities � � 
and �� . We set the size of augmentation pool ����� = 4 across the 
whole experiment, the four expansion methods are: (� � 1, ��1), (� � 2, 
��2), (� � 1, 0), and (0, ��1). For the ffth augmentation in the ablation 
experiment is (� � 1 + 0.1, ��2 + 0.1). For the probability adjustment 
in ablation experiments, we adjusted the corresponding two value, 
such as � � for � � 1 and � � 2. 

We use Glorot initialization [4] the AdamW optimizer [14] with 
a base learning rate � and weight decay set to 1� − 5. The learning 
rate is annealed using a cosine schedule over the course of learning 
of ������ total steps with an initial warmup period of ������� steps. 
Hence, the learning rate at step � is computed as: 
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 � ×�base 
�warmup � if � ≤ �warmup � (� −�warmup )×� (12)�� ≜ �base × 1 + cos × 0.5,�total −�warmup  if �warmup ≤ � ≤ �total . 

We fx ������ to be 4,000 total epochs and ������� to 400 warmup 
epochs. 

The target network parameters � are initialized randomly from 
the same distribution of the online parameters � but with a difer-
ent random seed. The decay parameter � is also updated using a 
cosine schedule starting from an initial value of �base = 0.99 and is 
computed as 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

� � � � 
� × � (1 − �base )

�� ≜ 1 − × cos + 1 (13)
2 �total 

These annealing schedules for both � and � follow the procedure 
used by [7]. 

E EXPERIMENT ENVIRONMENT 
All experiments are conducted on a Linux server with one GPU 
(GeForce RTX 3090) and CPU (Intel(R) Xeon(R) Gold 6240 CPU 
@ 2.60GHz), and its operating system is Ubuntu 18.04.6 LTS. We 
implement the proposed ABGML with deep learning library Py-
Torch and PyTorch Geometric. The Python, PyTorch and Pytorch 
Geometric versions are 3.9.12, 1.11.0 and 2.0.4, respectively. 
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