
Graph Self-supervised Learning with Augmentation-aware
Contrastive Learning

Dong Chen Xiang Zhao∗ Wei Wang
National University of Defense National University of Defense The Hong Kong University of Science

Technology Technology and Technology (Guangzhou)
Changsha, Hunan, China Changsha, Hunan, China Guangzhou, Guangdong, China
dongchen@nudt.edu.cn xiangzhao@nudt.edu.cn The Hong Kong University of Science

and Technology
Hong Kong, China
weiwcs@ust.hk

Zhen Tan Weidong Xiao
National University of Defense National University of Defense

Technology Technology
Changsha, Hunan, China Changsha, Hunan, China
tanzhen08a@nudt.edu.cn wdxiao@nudt.edu.cn

ABSTRACT
Graph self-supervised learning aims to mine useful information
from unlabeled graph data, and has been successfully applied to
pre-train graph representations. Many existing approaches use
contrastive learning to learn powerful embeddings by learning
contrastively from two augmented graph views. However, none
of these graph contrastive methods fully exploits the diversity of
diferent augmentations, and hence is prone to overftting and lim-
ited generalization ability of learned representations. In this paper,
we propose a novel Graph Self-supervised Learning method with
Augmentation-aware Contrastive Learning. Our method is based
on the fnding that the pre-trained model after adding augmenta-
tion diversity can achieve better generalization ability. To make full
use of the information from the diverse augmentation method, this
paper constructs new augmentation-aware prediction task which
complementary with the contrastive learning task. Similar to how
pre-training requires fast adaptation to diferent downstream tasks,
we simulate train-test adaptation on the constructed tasks for fur-
ther enhancing the learning ability; this strategy can be deemed as a
form of meta-learning. Experimental results show that our method
outperforms previous methods and learns better representations
for a variety of downstream tasks.

CCS CONCEPTS
• Information systems → Web mining.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583246

KEYWORDS
Graph Neural Networks, Self-supervised Learning, Contrastive
Learning

ACM Reference Format:
Dong Chen, Xiang Zhao, Wei Wang, Zhen Tan, and Weidong Xiao. 2023.
Graph Self-supervised Learning with Augmentation-aware Contrastive
Learning. In Proceedings of the ACM Web Conference 2023 (WWW ’23), April
30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543507.3583246

1 INTRODUCTION
Graphs are ubiquitous in our lives, and their applications are com-
mon in real-world systems, such as social network graphs, molecu-
lar structure graphs, and trafc road maps [2, 27, 35]. These graph
structures often contain rich structural patterns and semantic in-
formation, which can support many downstream tasks, such as
recommendation systems, molecular properties prediction and traf-
fc forecasts systems.

The past few years have witnessed rapid advances in graph
representation learning using graph neural networks (GNNs) [16],
which refers to the use of neural networks to extract and discover
features and patterns in graph-structured data [5, 15]. Despite great
successes of GNNs in addressing graph-based tasks, these successes
rely heavily on using massive amounts of carefully labeled data
to conduct supervised learning. However, accurate annotation is
very time-consuming and labor-intensive. In addition, trained with
supervised data alone may result in models that are overftting and
may fail to generalize well [23]. Recently, self-supervised learning
becomes an efective technique to address the above two problems,
as it allows models to acquire knowledge from unlabeled data. Sub-
stantial work has shown that self-supervised learning, on the large
language corpus and image datasets, can learn universal represen-
tations, which are benefcial for downstream tasks and can avoid
training a new model from scratch [10, 22].

In recent years, contrastive learning has become the prevalent
form of self-supervised learning, and has achieved many successes.

154

https://doi.org/10.1145/3543507.3583246
https://doi.org/10.1145/3543507.3583246
mailto:weiwcs@ust.hk
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583246&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chen et al.

Figure 1: Diference between MoCo-like and Bootstrapping
contrastive learning

It aims to build efective representation by pulling the representa-
tions of semantically similar (or positive) pairs together and pushing
those of the dissimilar (or negative) pairs apart. We can construct a
positive pair by creating two augmented versions of the same sam-
ple, and a negative pair by pairing two irrelevant samples [1, 31].
Restricted by the requirement of the large batch for obtaining nu-
merous negative samples, MoCo [10] maintains the dictionary as a
queue of data samples, allowing it to be large to store more negative
samples.

Nowadays, contrastive learning have been successfully adopted
to graphs [29]. In the earlier graph contrastive learning meth-
ods [9, 30], the positive and negative pairs in the graph are gen-
erated by fxed graph augmentation methods, such as node/edge
perturbation and node feature masking. One critique for these tra-
ditional methods is that they require numerous negative samples
for achieving promising results. The emergence of bootstrapping 1

contrastive modes has been proposed to tackle this problem [24]. As
shown in Figure 1, a training example � is separately augmented by
two augmentation function �1 and �2, then two encoder �� and ��
are applied in augmented example � and � ′, which � is momentum
updated by � [10]. The diference between MoCo-like Contrastive
Learning and Bootstrapping Contrastive Learning is Bootstrap-
ping CL adopts bootstrapping strategy [6] to get away from large
amounts of negative samples.

The augmentation procedure defned in computer vision is ex-
tending the family of augmentations and composing them stochas-
tically to achieve better generalization performance [1]. However,
existing graph contrastive learning method use fxed augmentation
method. The fxed augmentation in graph CL methods may limit
the diversity of the augmentations, resulting in overftting and poor
generalization. Another augmentation-free contrastive learning,
such as AFGRL [17] throws away the augmentation procedure and
constructs positive samples by complex node transformation, they
also didn’t need negative samples and avoided the choice of aug-
mentation. But it adds more complexity to constructing a positive
sample, which is far more time-consuming and memory-consuming
than applying an augmentation operation. We also analyze the time
and space complexity in Section 5.

Due to the lack of diversity during the training, the quality of the
learned graph representation of the previous contrastive method
still has much room for improvement. Inspired by aforementioned
problem, we propose a self-supervised learning framework for
graphs, called Augmentation-aware Bootstrapping via Graph Meta-
Learning (ABGML). Precisely, our proposed ABGML is formed by

1“Bootstrap” is used in its idiomatic sense rather than the statistical sense.

a meta-learning framework, which contains two branches, i.e., the
contrastive branch and augmentation-aware prediction branch. We
improve augmentation diversity by constructing an augmentation
pool. Then, at each iteration, two augmentation methods are ran-
domly sampled in augmentation pool. The contrastive branch has
more augmentation diversity, which originated from the newly
designed augmentation pool. Specifcally, two diferent augmenta-
tions are sampled from this pool frst instead of use fxed on the
entire training process.

The augmentation-aware prediction branch uses the node repre-
sentation to predict the type of augmentation applied to the graph;
this prediction enables the model to know how the current graph is
being perturbed so that each node can learn information about the
structure of the entire graph, hence, we named it augmentation-
aware prediction task. This task with global-level perspective can
be complementary with contrastive learning to better learn the
representations.

Besides, for imitate the fne-tuning process when applying the
pre-trained model to downstream tasks, we create several sub-tasks
with diferent train/test splits and diverse combinations of augmen-
tation. In each sub-tasks, we perform the above contrastive learning
branch and the augmentation-aware prediction branch, which can
be deemed as multi-task learning process. Therefore, we integrated
the above multi-task learning process with model-agnostic meta-
learning (MAML)[3], which can provide good initialization for fast
adaptation to a new task, and naturally meets the requirement of
self-supervised graph representation. To the best of our knowledge,
ABGML frst work that learns representations of graphs with multi-
task learning and meta-learning framework, which jointly improve
the ability of generalization.

Our contributions are summarized as follows:
• We propose an augmentation sample strategy that can bring
more diversity to the training process when constructing
contrastive pairs in bootstrapping mode.

• We propose an augmentation prediction branch to enhance
the global-level perspective training and can be complemen-
tary with contrastive learning to better learn the representa-
tion.

• We propose a framework to combine meta-learning with
graph self-supervised, and such a training pipeline can fur-
ther improve the generalization ability in downstream tasks.

• Our extensive experiments demonstrate the superiority of
our ABGML model in performance on three downstream
tasks: node classifcation, clustering, and similarity search;
then detailed ablation studies show the efectiveness of each
component.

2 RELATED WORK

2.1 Graph Contrastive Learning
Motivated by the great success of contrastive methods on self-
supervised learning, plenty of graph contrastive learning methods
have been proposed. Most of them can be roughly divided into three
categories, i.e., traditional graph contrastive learning, bootstrapping
contrastive learning, and augmentation-free contrastive learning.
The traditional graph contrastive method aims to maximize the
agreement of node embeddings across two corrupted views of the

155

Graph Self-supervised Learning with Augmentation-aware Contrastive Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Figure 2: The overall framework of ABGML. The contrastive branch builds representation through the use of two graph
encoders, an online encoder �� , a target encoder �� and an online predictor �� , where � and � denote two distinct sets of

′ ′ parameters. � and � is the intermediate adaptation parameter only for meta-train.

graph and minimize the agreement of embeddings across diferent
nodes. It is usually time-costly because it requires numerous neg-
ative samples. DGI [26] is a pioneering work highly inspired by
Deep InfoMax [11], it leverages corruption to construct negative
pairs and maximizing the mutual information between local (node)
and global (graph) representation. GRACE [32] and GCA [34] use
SimCLR-style [1] in-batch negatives, which frst create two aug-
mented views of a graph by randomly perturbing nodes/edges and
their features. Then, it learns node representation by pulling to-
gether the representation of the same node in the two augmented
graphs, while pushing apart the representation of other node. For
building large negatives in limited resources, GCC [21] uses MoCo-
style negative queues. The queue decouples the dictionary size from
the mini-batch size, allowing it to be large.

BYOL [7] is the frst work to present the bootstrap method in
image contrastive learning, which is to learn representations by
predicting previous versions of its outputs, without using negative
samples. BGRL [24] introduces the bootstrap method into graph
contrastive learning, it adopts BYOL and uses fxed augmentations
to learn node representation. The diference between BGRL and
BYOL is BGRL does not use a projector network, which is used for
dimensionality reduction.

Another contrastive learning form is AFGRL [17], an augmentation-
free method, which requires neither augmentation method nor neg-
ative samples for learning representations of graphs. It changed the
focus of positive sample construction from diferent augmentation
methods to selecting neighbor similar points as positives. However,
these additional positive select operations will bring more time and
space complexity. This makes it difcult for the model to handle
large datasets, which is the purpose of the pre-training model.

Besides, high-quality and informative data augmentation plays
a central role in the success of contrastive learning[25]. In the
graph domain, diferent views of a graph provide diferent contexts

for each node. Existing works[33] propose to corrupt the original
graph at both structure and attribute levels, i.e., Remove edges (RE)
randomly remove a portion of edges in the original graph. Mask
features (MF) apart from removing edges, instead randomly mask
a fraction of node feature with zeros.

2.2 Meta Learning
In recent years, meta-learning has turned out to be an important
framework to address the shortcomings of deep learning systems
when applied in few-shot tasks. The main idea behind meta-learning
is to design learning algorithms that can leverage prior learning
experience to adapt to a new problem quickly and learn a useful
algorithm with few samples. Some research has use meta-learning
to enhance the learning ability of existing video self-supervised
approaches [18]. Most of the existing literature adopts the method
called model-agnostic meta-learning (MAML), which can be com-
bined with any learning approach trained with gradient descent.
In graph domain, Huang et al.[13] consider the node classifcation
problem where the input graphs, as well as the labels, can be dif-
ferent across tasks. Wang et al.[28] consider the few-shot node
classifcation problem for a setting where the network structure is
fxed, but the features of the nodes change with tasks. In this work,
we utilize MAML to improve the performance of graph contrastive
self-supervised learning. Diferent from prior eforts, we try to en-
hance the adaptation between the self-supervised train and test
domain.

3 PRELIMINARIES
In this section, we begin by introducing some notations related to
graph contrastive learning. Then we describe the basic settings of
self-supervised graph representation learning.

156

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chen et al.

3.1 Notations
Let G = (V, E) be the input graph with node set V = {�� }�

�=1
and edge set E ⊆ V × V . � = |V| is the number of the node in
graph G. We denote the adjacency matrix as A ∈ {0, 1}� ×� , where
A� � = 1 indicates node � and � are connected and equal 0 vice versa.
We further denote the feature matrix as X ∈ R� ×� , where � is the
dimension of the node features and X� : indicates the feature vector
of node � (the � th row of X).

3.2 Self-supervised Graph Representation
Learning

In the setting of self-supervised graph representation learning, there
is no given class information of nodes during pre-training. Given the
graph G along with X and A, we aim to learn an encoder � (·) that
receiving the graph features and structure as input, and produces
node embeddings in low dimensionality H = � (X, A) ∈ R� ×� ′ ,

′where � ≪ � . These representations can be used in downstream
tasks, such as node classifcation, clustering, and similarity search.

4 METHODOLOGY
In this section, we present our framework ABGML in detail. The
overall architecture is illustrated in Figure 2. First, we describe the
full pipeline and make an overview of ABGML. Next, we introduce
two branches in our framework, which are the contrastive branch
and the augmentation-aware prediction branch. Last, we explain
the adaptation procedure in the MAML setting, which simulates
the process of train-test adaptation during the pre-training.

4.1 Overview
To enhance the augmentation diversity, we explicitly propose an
augmentation sampling strategy to randomly augment graphs. Be-
sides, we add augmentation-aware prediction as an auxiliary task
for capturing graph-level semantic features which use node fea-
tures to predict the disturbed state of the whole graph. At last, we
leverage the meta-learning framework on the above two branches
to improve the generalization ability on downstream tasks.

4.2 Contrastive branch
In order to learn expressive nodes’ representation from an input
network, we frst build the network encoder module. The network
encoder module is composed of multiple GNN layers that encode
each node to a low-dimensional latent representation. The GNN
model involves two key computations for each node � at every layer.
The frst is Aggregation operation, which aggregates messages
from � ’s local neighbors N� in an iterative manner. The second is
Transform operation, which updates � ’s representation from its
representation in the previous layer and the aggregated messages.
Formally, a generic GNN layer computes the node representations
using two key functions: �n o�

h� = AGGREGATE � h� −1 | ∀� ∈ N� ∪ �� , (1)� N� � �
h� h� −1 , h� = TRANSFORM � , (2)� � ��

where ℎ� is the latent representation of node �� at the �-th layer and
�

N� is the set of frst-order neighboring nodes of node �� . For simplic-
ity, we abstract the composition of the two operation AGGREGATE(·)
and TRANSFORM(·) with � GNN layer as one parameterized func-
tion �� with parameters � . It is worth noting that the network
encoder is compatible with arbitrary GNN-based architecture, and
here we employ the GCN [16] in our implementation.

In the pre-training, ABGML frst sample graph augmentation
function �1 and �2 from augmentation pool Γ. The augmentation
pool is composed of a set of diferent augmentations functions. In
this paper, we only use Edge masking and Feature masking as the
base augmentation; we construct new augmentation method based
the combination of two base methods with diferent probability.
Then two alternate views of G: G1 = (X̃1, Ã1) and G2 = (X̃2, Ã2)
are produced by applying the above sampled augmentation func-
tions �1 and �2 respectively. The online encoder generates online
representation from the frst augmented graph, H̃1 = �� (X̃1, Ã1);
In the same way, the target encoder produces target representa-
tion from the second augmented graph, H̃2 = �� (X̃2, A2). Then,˜
the online representation is fed into a node-level predictor �� that
outputs estimates of the target representation, Z̃1 = �� (H̃1).

The � �
dicted target representation Z̃ 1 closer to the true target representa-
tions H̃ 2 for each node, which through the following loss:

𝑁∑︁1 ˜2 Z 1
⊤− (,𝑖) H̃

 (2,𝑖)L = −𝑐𝑙

 . (3)

𝑁

𝑖=0

Z̃(1,𝑖)

H̃(2,𝑖)

In the actual training process, we symmetrize this loss, by also
predicting the target representation of the frst view using the

online parameters (not) are updated to make the pre-

online representation of the second view.
The target network provides the regression targets to train the

online network, and its parameters � are an exponential moving
average of the online parameters � . More precisely, given a target
decay rate � ∈ [0, 1], after each training step, we perform the
following update (� does not updates through back propagation):

� ← �� + (1 − �)� . (4)

4.3 Augmentation-aware prediction branch
Since the above augmentation method is randomly selected, dif-
ferent augmentation pairs bring more diversity to the contrastive
branch. But with the contrastive branch only, the model only cap-
tures local semantic feature since each node only contrasting with
the same node from other view. To capture global-level semantic
features, we construct an augmentation-aware prediction branch.
As shown in Figure 2 and Eq 5, by concatenating two features of
augmented node representation, the multi-class classifcation tasks
is meant for predicting current augmentation states. We use an
example to illustrate the label construction process of this branch.
Suppose that we have only two augmentation method �1 and �2, we
can obtain four diferent augmentation pairs (�1�1,�1�2,�2�1,�2�2)
by randomly permutate. Since the prediction is order-agnostic, we
treat labels �1�2 and�2�1 as the same label. Thus, two augmentation
methods are able to obtain three types of labels. In our approach,
we concatenate features from two augmentation views:

ℎ̃ = Concat(ℎ̃1, ℎ̃2), (5)

157

Graph Self-supervised Learning with Augmentation-aware Contrastive Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

where ℎ̃1, ℎ̃2 are the representation generated by �� and �� .
The multi-class classifcation loss can be complementary with

contrastive loss to better learn the representations through multi-
task learning process:

� � ∑ ∑
L�� = − �� � log �̂� � , (6)

�=1 � =1

where the N is the number of the nodes in a batch, M is the number
of classes. �� � equal 1 if the true label of � th concatenated feature
is � . �̂� � is the �th position of output after input ℎ̃.

4.4 Meta-learning Optimization
The aim of meta-learning perfectly meets the target of the graph
pre-training, which meant to improve the generalization ability of
the model. Given the contrastive learning (CL) and augmentation-
aware prediction (AP) tasks, we fuse the two losses, i.e., contrastive
loss and cross-entropy loss, for fnal optimization. See from Figure 2,
during the pre-training process, we employ a two-stage process
including meta-train and meta-test for imitating the train-test adap-
tation. The procedure of the two-stage basically the same, however,
the parameter of meta-train is update temporarily only use for
meta-test adaptation. To train the model’s ability to adapt between
diferent tasks, we randomly construct task at each training step,
the details of task construction are list as follows:

4.4.1 Task Construction. A task involves a graph G with � nodes,
consisting of a support set SG and a query set QG . Consider a set

, ...,������ of augmentation pool Γ = {� 1,� 2 }, ����� is the size of
augmentation pool. Each tasks sample two augmentation method in
Γ, which is �1 and �2. Then, two alternate views of G is produced by
applying two diferent augmentation method. We randomly sample
� percent node to compose the support set and the remaining
1 − � node as the query set. As illustrated in Figure 2, the task TG
contains o �� tw child tasks (CL and AP), i.e., TG = �� (T , T)G . We G use
� ∈ {��, ��} denote the child tasks, which is defned as: ({ 	})

𝑐
G = 𝑐 𝑐T S = {(𝑛𝑠) ∼G 𝑝V } ,Q = () ∼G 𝑛𝑞 𝑝V ,

s.t. 𝑐 𝑐S ∩ QG G = ∅, 𝑇1,𝑇2 ∼ Γ (7)
𝑐 𝑐|S | = 𝛼𝑁, |Q | (G G = 1 − 𝛼)𝑁

where the support � S G and query � Q des �� and �G contain no �

separately, which are randomly sampled from the node distribution
�V of the graph; and they are mutually exclusive, | ∗ | is represent
the number of nodes in ∗.

4.4.2 Meta Training. Given the two training tasks and support set,
the above Figure 2 is show the meta-training process. As motivated,
to enhance the generalization ability of the pre-training model, it
is necessary to optimize the model’s ability to quickly adaptation
during pre-training itself. We combine CL loss and AP loss from
the two branches are combined together to get the fnal meta loss,
which is defned as:

L���� = � ∗ L�� + (1 − �) ∗ L�� , (8)

where � is a hyper-parameter that is used to control the importance
of CL and AP loss. During the meta-train stage, the model parame-
ters are trained by optimization L���� with respect to � across all
learning tasks. More concretely, the update procedure of parameter
in meta-train is defned as follows:

�L���� (�, S�)G′ � = � − � , (9)
��

where � is the learning rate of the meta training process. In this
process, the actual parameters of the model are not updated, but

′change the temporarily parameters � we created for next stage
adaptation.

4.4.3 Meta Test. To mimic the testing process with the fne-tuned
model, the model is initialized by temporarily parameters � ′, then
optimize the adapted parameters � on the query set Q� over all G
training task. That is, the transferable prior � will be optimized
through the backpropagation of the query loss given by

′ , Q�)�L���� (� G
� = � − � . (10)

��

We set the adaptation learning rate � as the same as the learning
rate � for simplicity. Through the meta-test process, the training
object of the model is to achieve better generalization ability, which
well fts the requirements of the pre-train task.

5 COMPLEXITY ANALYSIS
In this section, we provide a brief description of the time and space
complexities of the ABGML update step, and illustrate its advan-
tages compared to augmentation-free contrastive methods such as
AFGRL. The same analysis applies to traditional contrastive learn-
ing methods such as GRACE and bootstrapping method such as
BGRL.

Consider a graph with � nodes and � edges, and simple one
layer encoders �� that compute embeddings in time and space
� (��), � is the average degree of node. ABGML performs two
encoder computations per update step, a node-level prediction
step and an augmentation-aware prediction step. Since the data
used by Meta-train and Meta-test in the meta-learning framework
are divided by the whole graph, each node also performs only one
update. Both methods backpropagate the learning signal twice (once
for each augmentation), and we assume the backward pass to be
approximately as costly as a forward pass. The cost for computation
of the augmentations is � (� + �).

The total time and space complexity per update step for ABGML
is 6�������� � (��) +4������������ (�) +4��������� (�) +2� (� +
�). Since AFGRL need to update the distence between each node
for performing k-NN and K-mean clustering, the time and space
complexity for AFGRL is 6�������� � (��) + 4������������ (�) +
� (� 2), compared to 6�������� � (��)+4������������ (�)+2� (� +
�) for BGRL and 4�������� � (��) +4������������ (�) +� (� 2) for
GRACE; where � are constants depending on architecture of the
diferent components. Since augmentationa-ware prediction uses
only one layer MLP, the ABGML is faster than AFGRL and GRACE
on a sufciently large dataset, which have quadratic complexity.

158

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chen et al.

6 EXPERIMENTS SETUP
To evaluate the efectiveness of our method ABGML, we conduct
three downstream tasks (Node classifcation, Node clustering, and
Similarity search) on fve widely used datasets, including WikiCS,
Amazon-Computers, Amazon-Photo, Coauthor-CS, and Coauthor-
Physics. Then, to measure the performance of the model on a much
larger dataset, we further test the performance on the ogbn-arxiv
dataset [12]. Finally, we also show the sensitivity analysis on dif-
ferent hyperparameters, especially on the size of augmentation
pools.

For a comprehensive comparison, the datasets are collected from
real-world networks from diferent domains; their detailed statistics
are summarized in Appendix. For WikiCS dataset, which provides
20 canonical train/valid/test splits, we directly used the given splits.
For Amazon and Coauthor datasets, we randomly split nodes 20
times into train/valid/test (10/10/80) as these datasets do not provide
standard splits. For ogbn-arxiv dataset, we report results on both
validation and test sets, as is convention for this task since the
dataset is split based on a chronological ordering.

6.1 Method Compared
We primarily compare ABGML against AFGRL [17], BGRL [24]
and GCA [34], which are the current state-of-art self-supervised
methods on graphs. We also report performances of other previ-
ously published results of another representative method, such as
DeepWalk [20], DGI [26], GMI [19]and MVGRL [8], as done in [17].

6.2 Implementation details
We use GCN model as the base encoder � (�) as done in [24], the
formal defnition of encoder architecture is:� �

H(�) = GCN(�) (X, A) = � D̂ −1/2Â D̂ −1/2XW(�) , (11)

where H(�) is represent node embedding matrix of the nodes, � is
represent the current layer of GCN, � ∈ [1, ..., �]. A = A + I is the ˆÍ
adjacency matrix with self-loops, D̂ = Â

� is the degree matrix, �
� (∗) is a nolinear activation function, we use ReLU in this paper,
and W(�) is the trainable weight matrix for the layer � .

We use a combination of random node feature masking and edge
masking with diferent masking probabilities � � and �� for a fair
comparison with [24].

In this work, to add more augmentation diversity, we create an
augmentation pool for sampling in meta-training. We set size of
augmentation pool ����� = 4 across the experiment. We perform
parameter search on several hyperparameters, such as masking
probabilities � � and �� , learning rate �, node embedding dimension
� , number of layer of GCN � , support set proportion � , contrastive
loss importance � . The best confguration of these parameters are
shown in Appendix. We set � = 0.99 which same as other method.
More detail is shown in the supplementary.

6.3 Evaluation protocol
We evaluate ABGML on fve public benchmarks (WikiCS, Amazon
Photo & Computer, Coauthor CS & Physics) with three node-level
tasks, such as node classifcation, node clustering and node similar-
ity search. To validate the efectiveness on a much larger dataset,
we also conduct a node classifcation experiment on ogbn-arxiv.

For all these experiments, we use the fxed learned embeddings to
train and test a simple linear classifer. We report the performance
when the model has the best performance on validation data. For
node clustering and similarity search, we follow the AFGRL setting,
which reports the best performance report in the training process.

7 EXPERIMENTAL ANALYSIS
We present an extensive empirical study of performance. All these
experiments is conducted by linear classifcation on frozen features,
following a common protocol [17].

7.1 Overall Performance
Table 1 shows the node classifcation performance of various meth-
ods on fve challenging medium-scale datasets specifcally proposed
for rigorous evaluation of the semi-supervised node classifcation
method. �, �,� correspond to node features, the adjacency matrix,
and labels respectively. The highest performance of unsupervised
models is highlighted in boldface. The second highest performance
is highlighted with underline. OOM indicates Out-Of-Memory on
a 24GB RTX 3090 GPU. All experiments are over 20 random dataset
split and model initialization.

We have the following observations: Overall, our proposed model
ABGML shows strong performance across all fve datasets com-
pared with other methods. The performance empirically verifes
the superiority of our augmentation-aware contrastive learning
framework.

As shown in Table 2 and 3, we also evaluate ABGML on node
clustering and similarity search for testing generalization perfor-
mance. Note that the best hyperparameters for node classifcation
task we adopted. It is worth noting that traditional contrastive
methods perform worse than their counterparts on various tasks
and our method generally outperforms other methods on almost
all datasets. Since the primary aim of the pre-training model is
achieving higher generalization performance under diferent down-
stream tasks, the experiments of the Tables 1, 2 and 3 are combined
to illustrate that our method surpasses the previous state-of-art
method AFGRL on diferent downstream tasks.

In summary, the superior performance of ABGML compared to
existing state-of-the-art methods verifes the efectiveness of our
proposed method.

7.2 Ablation studies
In this section, we conduct ablation studies on the above fve
datasets to comprehensive verify the beneft of each component
of ABGML. The results are presented in Table 4, The Meta, CL,
Aug. Aware and Aug. Pool are represent the Meta-Learning frame-
work, Contrastive Learning Branch, Augmentation-Aware predic-
tion Branch, and Augmentation pool. w/o. means without in Table 4.
We have concluded several fndings that summarized some results
and analyze the phenomenon behind the numbers:

Firstly, the performance of the model has been degraded to vary-
ing degrees when each component is removed as shown in frst
four rows in table. Especially when contrastive learning is removed,
the efect is the most obvious, which also shows that contrastive
learning is one of the most important components in our model.
Secondly, as shown in row 2, 5 and 6, when separately remove

159

Graph Self-supervised Learning with Augmentation-aware Contrastive Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: Performance on node classifcation in terms of accuracy in percentage with stadard deviation.

Sup.GCN

Training Data WikiCS

77.19±0.12

Amazon-Computers

86.51±0.54

Amazon-Photo

92.42±0.22

Coauthor.CS

93.03±0.31

Couthor.Physics

95.65±0.16

Raw feat.

� , �, �

� 71.98±0.00 73.81±0.00 78.53±0.00 90.37±0.00 93.58±0.00
node2vec � 71.79±0.05 84.39±0.08 89.67±0.12 85.08±0.03 91.19±0.04
DeepWalk � 74.35±0.06 85.68±0.06 89.44±0.11 84.61±0.22 91.77±0.15
DW + feats. � , � 77.21±0.03 86.28±0.07 90.05±0.08 87.70±0.04 94.90±0.09

DGI � , � 75.35±0.14 83.95±0.47 91.61±0.22 92.15±0.63 94.51±0.52
GMI � , � 74.85±0.08 82.21±0.31 90.68±0.17 OOM OOM

MVGRL � , � 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12 95.33±0.03
GRACE � , � 77.97±0.63 86.50±0.33 92.46±0.18 92.17±0.04 OOM
GCA � , � 77.94±0.67 87.32±0.50 92.39±0.33 92.84±0.15 OOM
BGRL � , � 76.86±0.74 89.69±0.37 93.07±0.38 92.59±0.14 95.48±0.08
AFGRL � , � 77.62±0.49 89.88±0.33 93.22±0.28 93.27±0.17 95.69±0.10

ABGML � , � 78.70±0.56 90.17±0.30 93.46±0.36 93.56±0.19 96.05±0.10

Table 2: Performance on node clustering in terms of NMI and
homogeneity

GRACE GCA BGRL AFGRL ABGML

NMI 0.4282 0.3373 0.3969 0.4132 0.4598WikiCS Hom. 0.4423 0.3525 0.4156 0.4307 0.4779

NMI 0.4793 0.5278 0.5364 0.5520 0.5659Com. Hom. 0.5222 0.5816 0.5869 0.6040 0.6239

NMI 0.6513 0.6443 0.6841 0.6563 0.6938Photo Hom. 0.6657 0.6575 0.7004 0.6743 0.7124

NMI 0.7562 0.7620 0.7732 0.7859 0.8033Co.CS Hom. 0.7909 0.7965 0.8041 0.8161 0.8342

NMI OOM OOM 0.5568 0.7289 0.7229Co.Phy. Hom. OOM OOM 0.6018 0.7354 0.7329

Table 3: Performance on similarity search in terms of Sim@5
and Sim@10

GRACE GCA BGRL AFGRL ABGML

Sim@5 77.54 77.86 77.39 78.11 78.51WikiCS Sim@10 76.45 76.73 76.17 76.60 77.38

Sim@5 87.38 88.26 89.47 89.66 90.18Com. Sim@10 86.43 87.42 88.55 88.90 89.20

Sim@5 91.55 91.12 92.45 92.36 92.60Photo Sim@10 91.06 90.52 91.95 91.73 92.12

Sim@5 91.04 91.26 91.12 91.80 92.36Co.CS Sim@10 90.59 91.00 90.86 91.42 92.10

Sim@5 OOM OOM 95.04 95.25 95.65Co.Phy. Sim@10 OOM OOM 94.64 94.86 95.39

the CL and Aug. Aware component under normal setting (without
Meta train and Meta test), the performance has been degraded to
varying degrees; which further proves the efectiveness of CL and
Aug. Aware component under normal setting. Thirdly, when only
the augmentation-aware prediction task is applied (in row 5), its
downstream performance is better than the traditional contrastive
method (GRACE, GCA), which demonstrates the efect of our Aug.
Aware prediction task. Finally, as shown in the last two lines of
Table 4, the performance degradation when Aug. Pool removed.

(a) (b)

Figure 3: Node classifcation accuracy in Coauthor-CS dataset
and Amazon-Computer dataset, the result is obtained by
linear probing in pre-trained embeddings

The result proved that increasing the diversity of augmentation
will boost the performance of pre-train model.

7.3 Experiment on ogbn-arxiv
Then, we conduct a node classifcation task on a much larger dataset,
ogbn-arxiv. Same as BGRL, considering the difculty of this task,
we expand our model to use 3 GCN layers. Other results are taken
from previously published work [24]. In addition, we report results
from [12] for node2vec and supervised-learning baseline. We report
results on both validation and test sets, as is a convention for this
task since the dataset is split based on chronological ordering.

The results are summarized in Table 5, showing that ABGML is
surpassing another self-supervised learning method. In this case,
GRACE and AFGRL run out-of-memory on this dataset. These
results suggest that the performance of contrastive methods such
as AFGRL and GRACE may sufer due to their quadratic time and
space complexity when scaling up.

7.4 Convergence Analysis
In Figure 3, we plot three models’ (ABGML, AFGRL and BGRL)
downstream node classifcation accuracy curve throughout training
for Coauthor-CS and Amazon-Computer dataset. The hyperparam-
eter confguration of these model are select the optimal parameters

160

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chen et al.

Table 4: Ablation studies on ABGML

WikiCS Amazon-Computers Amazon-Photo Coauthor.CS Couthor.Physics

ABGML 78.70±0.56 90.17±0.30 93.46±0.36 93.56±0.19 96.05±0.10
- w/o. Meta 78.44±0.65 90.12±0.32 93.35±0.37 93.53±0.19 95.99±0.10
- w/o. CL 78.11±0.54 89.60±0.27 92.84±0.43 93.30±0.19 95.89±0.15
- w/o. Aug. Aware 78.39±0.58 90.07±0.37 93.34±0.35 93.34±0.21 95.86±0.12
- w/o. Meta & CL 77.86±0.55 89.45±0.26 92.76±0.41 93.31±0.18 95.74±0.12
- w/o. Meta & Aug. Aware 78.38±0.49 90.10±0.39 93.35±0.34 93.33±0.18 95.81±0.12
- w/o. Meta & Aug. Aware & Aug. Pool 76.86±0.74 89.69±0.37 93.07±0.38 92.59±0.14 95.48±0.08

Table 5: Classifcation accuracy on the ogbn-arXiv task along
with standard deviations.

MLP 57.65±0.12 55.50±0.23
node2vec 71.29±0.13 70.07±0.13

Random-Init 69.90±0.11 68.94±0.15
DGI 71.26±0.11 70.34±0.16
GRACE OOM OOM
BGRL 71.46±0.15 70.01±0.20
AFGRL OOM OOM
ABGML 72.01±0.11 70.78±0.18

Supervised GCN

Validation Test

73.00±0.17 71.74±0.29

reported on [17] and [24]. As we see, the downstream node clas-
sifcation accuracy of AFGRL drop quickly when iterating more
epochs. This may be the fact that AFGRL selects similar surround-
ing nodes as positive examples for contrastive learning, and after a
long training period, the embedding of the nodes start to converge
to the same, which makes the learned representations indistinguish-
able after fne-tune on downstream tasks. Then, compared to BGRL,
we can see that the convergence speed is greatly improved, and
ABGML achieves the previous BGRL performance with only a few
epochs, which is attributed to our meta-learning process.

7.5 Hyperparameter Analysis
Further, as shown in Figure 4, we conduct hyperparameter sensi-
tivity analysis on Coauthor-CS dataset with the learning rate �,
support proportion � , task proportion � , edge mask rate �� , feature
mask rate � � and the size of augmentation pool ����� .

The green dash line represents the performance of the former
state-of-the-art method AFGRL. We found that � = 7� − 4 gives
the best performance, and a small learning rate usually achieves
better performance. It’s better to use a small learning rate because
high learning rates increase the risk of losing previous knowledge
in pre-training. The support proportion also achieves better per-
formance on a low value. This may be the fact that the ratio of
training set larger than test set at fne-tune, which is consistent
with pre-training. The performance increases as the proportion
of contrastive learning increases. This also confrms that the con-
trastive learning module plays a major role in pre-training, which
consistent with the ablation study. When varying the mask rate
�� and � � , the performance of the model increases with the mask

Figure 4: Hyperparameters Analysis on learning rate �, sup-
port proportion � , task proportion � , edge mask rate �� , fea-
ture mask rate � � and size of augmentation pool ����� .

rate, which suggests that more complex augmentation is benefcial
for model generalization performance. Then, performance of the
model frst increases up to a peak and then decreases, suggesting
that more ways of augmentation can degrade the model. Last, from
the result of the Figure 4, these numbers verifes that our ABGML
can be easily trained compared with former methods, i.e., stable
over hyperparameters, while outperforming them in most cases.

8 CONCLUSION
In this work, we propose ABGML, which combines augmentation-
aware prediction task and bootstrapping contrastive learning task
in a meta-learning framework. ABGML uses random augmentation
function instead fxed augmentation to increase the diversity of
the pre-training process. Then we incorporate the augmentation-
aware prediction task to facilitate contrastive learning to capture
global semantics. Finally, the meta-learning framework further
improves the generalization ability of ABGML. In terms of time and
space efciency, our method is superior to AFGRL on large datasets.
Through experiments on multiple graphs on various downstream
tasks, we empirically show that ABGML is superior to the state-of-
the-art methods.

161

https://71.74�0.29
https://73.00�0.17

Graph Self-supervised Learning with Augmentation-aware Contrastive Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
This work was supported by NSFC under grants Nos. 62272469,
71971212 and U19B2024. W. Wang was partly supported by HKUST(GZ)
G0101000028 and GZU-HKUST GZU22EG04.

REFERENCES
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geofrey E. Hinton. 2020.

A Simple Framework for Contrastive Learning of Visual Representations. In ICML
(Proceedings of Machine Learning Research, Vol. 119). PMLR, 1597–1607.

[2] Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester,
Luis Perez, Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W.
Battaglia, Vishal Gupta, Ang Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia
Li, and Petar Velickovic. 2021. ETA Prediction with Graph Neural Networks in
Google Maps. In CIKM ’21: The 30th ACM International Conference on Information
and Knowledge Management, Virtual Event, Queensland, Australia, November 1
- 5, 2021, Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang,
and Hanghang Tong (Eds.). ACM, 3767–3776. https://doi.org/10.1145/3459637.
3481916

[3] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In ICML (Proceedings of Machine
Learning Research, Vol. 70). PMLR, 1126–1135.

[4] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difculty of train-
ing deep feedforward neural networks. In AISTATS (JMLR Proceedings, Vol. 9).
JMLR.org, 249–256.

[5] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In Proceedings. 2005 IEEE international joint conference
on neural networks, Vol. 2. 729–734.

[6] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos,
and Michal Valko. 2020. Bootstrap Your Own Latent - A New Approach to Self-
Supervised Learning. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

[7] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos,
and Michal Valko. 2020. Bootstrap Your Own Latent - A New Approach to
Self-Supervised Learning. In NeurIPS.

[8] Kaveh Hassani and Amir Hosein Khas Ahmadi. 2020. Contrastive Multi-View
Representation Learning on Graphs. In ICML (Proceedings of Machine Learning
Research, Vol. 119). PMLR, 4116–4126.

[9] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-
resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[10] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[11] R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip
Bachman, Adam Trischler, and Yoshua Bengio. 2019. Learning deep represen-
tations by mutual information estimation and maximization. In ICLR. OpenRe-
view.net.

[12] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In NeurIPS.

[13] Kexin Huang and Marinka Zitnik. 2020. Graph Meta Learning via Local Subgraphs.
In NeurIPS.

[14] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR (Poster).

[15] Thomas N Kipf and Max Welling. 2016. Semi-supervised classifcation with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifcation with
Graph Convolutional Networks. In ICLR (Poster). OpenReview.net.

[17] Namkyeong Lee, Junseok Lee, and Chanyoung Park. 2021. Augmentation-free
self-supervised learning on graphs. arXiv preprint arXiv:2112.02472 (2021).

[18] Yuanze Lin, Xun Guo, and Yan Lu. 2021. Self-Supervised Video Representation
Learning with Meta-Contrastive Network. In ICCV. IEEE, 8219–8229.

[19] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang
Xu, and Junzhou Huang. 2020. Graph Representation Learning via Graphical
Mutual Information Maximization. In WWW. ACM / IW3C2, 259–270.

[20] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In KDD. ACM, 701–710.

[21] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. In KDD. ACM, 1150–1160.

[22] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang.
2020. Pre-trained models for natural language processing: A survey. Science
China Technological Sciences 63, 10 (2020), 1872–1897.

[23] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2019. Dropedge:
Towards deep graph convolutional networks on node classifcation. arXiv preprint
arXiv:1907.10903 (2019).

[24] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,
Eva L Dyer, Remi Munos, Petar Veličković, and Michal Valko. 2022. Large-Scale
Representation Learning on Graphs via Bootstrapping. In International Conference
on Learning Representations.

[25] Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra.
2022. Augmentations in Graph Contrastive Learning: Current Methodological
Flaws & Towards Better Practices. In WWW. ACM, 1538–1549.

[26] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2019. Deep Graph Infomax. In ICLR (Poster). OpenRe-
view.net.

[27] Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu,
and Wen Su. 2019. MCNE: an end-to-end framework for learning multiple
conditional network representations of social network. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1064–1072.

[28] Ning Wang, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, and Qinghua
Zheng. 2020. Graph few-shot learning with attribute matching. In Proceedings of
the 29th ACM International Conference on Information & Knowledge Management.
1545–1554.

[29] Yaochen Xie, Zhao Xu, Zhengyang Wang, and Shuiwang Ji. 2021. Self-Supervised
Learning of Graph Neural Networks: A Unifed Review. CoRR abs/2102.10757
(2021).

[30] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[31] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[32] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep Graph Contrastive Representation Learning. CoRR abs/2006.04131 (2020).

[33] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep Graph Contrastive Representation Learning. CoRR abs/2006.04131 (2020).

[34] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.
Graph Contrastive Learning with Adaptive Augmentation. In WWW. ACM /
IW3C2, 2069–2080.

[35] Marinka Zitnik and Jure Leskovec. 2017. Predicting multicellular function through
multi-layer tissue networks. Bioinform. 33, 14 (2017), i190–i198. https://doi.org/
10.1093/bioinformatics/btx252

A DATASETS
We evaluated the performance of ABGML on node-level tasks, i.e.,
node classifcation, node clustering, and node similarity search. We
conduct experiments on six widely used datasets, including Wiki-
CS, Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-
Physics, and obgn-arxiv. The detailed statistics are summarized in
Table 1.

• WikiCS is a reference network constructed based on Wikipedia.
Nodes correspond to articles about computer science, and
edges are hyperlinks between articles. The nodes are la-
beled with ten classes, each class representing a branch of

Table 6: Statistics of datasets used in experiments.

Dataset #Nodes #Edges #Features #Classes
Wiki-Cs 11,701 216,123 300 10

Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8
Coauthor-CS 18,333 81,894 6,805 15

Coauthor-Physics 34,493 247,962 6,805 5
ogbn-arXiv 169,343 1,166,243 128 40

162

https://doi.org/10.1145/3459637.3481916
https://doi.org/10.1145/3459637.3481916
https://doi.org/10.1093/bioinformatics/btx252
https://doi.org/10.1093/bioinformatics/btx252
https://view.net
https://OpenReview.net
https://view.net
https://JMLR.org

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Chen et al.

the feld. Node features are an average of GloVE embed-
dings of all words in the article. We directly use 20 canonical
train/valid/test splits in the dataset.

• Amazon Computers & Amazon Photos are two networks
constructed from the Amazon co-purchase graph, in which
nodes represent goods and edges represent pairs of goods
frequently bought together. Goods are classifed into 10 and
8 (Computers and Photos) classes based on the good cate-
gory, and node features are a representation of the product’s
review. We randomly split the nodes into train/val/test with
1:1:8 proportion, and repeat 20 times.

• Coauthor CS & Coauthor Physics are two academic net-
works from Microsoft Academic Graph, with nodes repre-
senting authors and edges representing pairs of authors who
have co-author relationships. Authors are classifed into 15
and 5 (CS and Physics) classes based on the research feld.
Each node has a sparse bag-of-words feature based on the
paper keywords of the author. We randomly split the nodes
into train/val/test with 1:1:8 proportion, and repeat 20 times.

• ogbn-arXiv is a citation network, where nodes represent
computer science papers on arXiv and edges also indicate co-
authorship relationships. In our experiment, we symmetrize
this graph as same as other methods’ experiments for a fair
comparison. Papers are classifed into 40 classes based on
arXiv subject area. The node features are computed as the av-
erage word embeddings of all words in the paper. The dataset
is split based on a chronological ordering as a convention
setting.

B THE TRAINING PROCESS OF THE ABGML
The overall algorithm is summarized in Algorithm 1.

C COMPARED METHODS
In this section, we explain methods that are compared with ABGML
in the experiments.

• AFGRL is a agumentation-free method which without rely-
ing on manual augmentation techniques and negative sam-
ples.

• BGRL is a bootstrapping contrastive method which use fxed
augmentations and alleviates the need for contrasting with
negative examples.

• GCA is a variant of GRACE that has the same learning
objective but trades of more expressive but expensive graph
augmentations for better performance.

• GRACE is a traditional contrastive method inspired by Sim-
CLR, which creates two augmented views of a graph by
randomly pertubing nodes/edges and their features.

• DGI aims to learn node representations by maximizing the
mutual information between the node and global summary
vector of the graph.

• GMI is advanced version of DGI that learns node represen-
tations by leveraging more fne-grained information.

• MVGRL constructs views of a graph with difusion kernel
and subgraph sampling.

Algorithm 1: Pre-training process of ABGML

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

D IMPLEMENTATION DETAILS

Input: Augmentation pool: Γ; Split proportion of support
set: � ; Importance factor � ; Learning rate �;
Pre-trained model � (�) parameterized by �

Output: Model parameters �
Initialize � randomly;
while not converged do

Randomly sample two augmentation function �1 and �2;
Creating support and query set SG and QG using � ;

′Creating temporarily parameters � = � ;
// Meta Train Step:
Feed sampled support dataset SG into network;
Evaluate L�� by Eq.3;
Evaluate L�� by Eq.6;
Compute L���� = � ∗ L�� + (1 − �) ∗ L�� ;

′Update � by Eq.9;
// Meta Test Step:
Feed sampled support dataset QG into network;
Evaluate L�� by Eq.3;
Evaluate L�� by Eq.6;
Compute overall loss L���� = � ∗ L�� + (1 − �) ∗ L�� ;
Update � by Eq.10;

end

As described in above section, we use GCN [16] encoders. The base
encoder of ABGML is a GCN model followed by batch normal-
ization and nonlinearity. Following BGRL [24], the predictor ��
and the augmentation-aware predictor of ABGML is defned as a
multi-layer perceptron (MLP) with batch normalization.

For GCA, BGRL, and AFGRL, we adopt the best hyperparameter
specifcations that are reported in their original paper. For GRACE,
since the original paper [32] did not evaluate on the datasets used
in our experiments, we follow the result that are reported in the
AFGRL paper.

The augmentation pool is composed by a series of augmenta-
tion, each augmentation is a combination of random node feature
masking and edge masking with diferent masking probabilities � �
and �� . We set the size of augmentation pool ����� = 4 across the
whole experiment, the four expansion methods are: (� � 1, ��1), (� � 2,
��2), (� � 1, 0), and (0, ��1). For the ffth augmentation in the ablation
experiment is (� � 1 + 0.1, ��2 + 0.1). For the probability adjustment
in ablation experiments, we adjusted the corresponding two value,
such as � � for � � 1 and � � 2.

We use Glorot initialization [4] the AdamW optimizer [14] with
a base learning rate � and weight decay set to 1� − 5. The learning
rate is annealed using a cosine schedule over the course of learning
of ������ total steps with an initial warmup period of ������� steps.
Hence, the learning rate at step � is computed as:

163



Graph Self-supervised Learning with Augmentation-aware Contrastive Learning

 � ×�base
�warmup � if � ≤ �warmup � (� −�warmup)×� (12)�� ≜ �base × 1 + cos × 0.5,�total −�warmup  if �warmup ≤ � ≤ �total .

We fx ������ to be 4,000 total epochs and ������� to 400 warmup
epochs.

The target network parameters � are initialized randomly from
the same distribution of the online parameters � but with a difer-
ent random seed. The decay parameter � is also updated using a
cosine schedule starting from an initial value of �base = 0.99 and is
computed as

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

� � � �
� × � (1 − �base)

�� ≜ 1 − × cos + 1 (13)
2 �total

These annealing schedules for both � and � follow the procedure
used by [7].

E EXPERIMENT ENVIRONMENT
All experiments are conducted on a Linux server with one GPU
(GeForce RTX 3090) and CPU (Intel(R) Xeon(R) Gold 6240 CPU
@ 2.60GHz), and its operating system is Ubuntu 18.04.6 LTS. We
implement the proposed ABGML with deep learning library Py-
Torch and PyTorch Geometric. The Python, PyTorch and Pytorch
Geometric versions are 3.9.12, 1.11.0 and 2.0.4, respectively.

164

	Abstract
	1 Introduction
	2 Related work
	2.1 Graph Contrastive Learning
	2.2 Meta Learning

	3 Preliminaries
	3.1 Notations
	3.2 Self-supervised Graph Representation Learning

	4 Methodology
	4.1 Overview
	4.2 Contrastive branch
	4.3 Augmentation-aware prediction branch
	4.4 Meta-learning Optimization

	5 complexity analysis
	6 Experiments Setup
	6.1 Method Compared
	6.2 Implementation details
	6.3 Evaluation protocol

	7 Experimental analysis
	7.1 Overall Performance
	7.2 Ablation studies
	7.3 Experiment on ogbn-arxiv
	7.4 Convergence Analysis
	7.5 Hyperparameter Analysis

	8 Conclusion
	Acknowledgments
	References
	A Datasets
	B The Training Process of the ABGML
	C Compared Methods
	D Implementation details
	E Experiment Environment

