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Abstract
Multi-task model merging offers a promising
paradigm for integrating multiple expert models
into a unified model without additional training.
Existing state-of-the-art techniques, such as Task
Arithmetic and its variants, merge models by ac-
cumulating task vectors—the parameter differ-
ences between pretrained and finetuned models.
However, task vector accumulation is often hin-
dered by knowledge conflicts, leading to perfor-
mance degradation. To address this challenge,
we propose Conflict-Aware Task Merging (CAT
Merging), a novel training-free framework that
selectively trims conflict-prone components from
the task vectors. CAT Merging introduces sev-
eral parameter-specific strategies, including pro-
jection for linear weights and masking for scal-
ing and shifting parameters in normalization lay-
ers. Extensive experiments on vision, language,
and vision-language tasks demonstrate that CAT
Merging effectively suppresses knowledge con-
flicts, achieving average accuracy improvements
of up to 2.5% (ViT-B/32) and 2.0% (ViT-L/14)
over state-of-the-art methods.

1. Introduction
Fine-tuning pretrained foundation models has become a
standard paradigm for addressing downstream applications
(Brown et al., 2020). However, as the number of applica-
tions grows, managing and deploying numerous finetuned
models introduces significant costs and operational com-
plexity. To address this issue, multi-task model merging has
emerged as a promising solution by consolidating multiple
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Figure 1. Illustration of merging two conflicting task vectors.
While masking low-magnitude components (the horizontal com-
ponent of Task 2) mitigates some interference, high-magnitude
dimensions (the vertical component of Task 1) can still induce
significant conflicts. In contrast, the proposed CAT Merging proac-
tively identifies and trims high-conflict components, stabilizing
model merging.

expert models into a single unified model without additional
training (Matena & Raffel, 2022).

A notable advancement in model merging is Task Arithmetic
(Ilharco et al., 2023b), which introduces the concept of task
vectors—defined as the difference vector between the pre-
trained and finetuned models in the parameter space. Task
Arithmetic demonstrates that task-specific knowledge can
be effectively integrated into the pretrained model through
simple arithmetic operations, such as model merging by
adding task vectors to the pretrained parameters. Despite
its effectiveness, the technique is vulnerable to performance
degradation caused by knowledge conflict (Sun et al., 2025;
Ortiz-Jimenez et al., 2023), or the imbalance and contradic-
tion among the accumulated task vectors.

To address knowledge conflict, prior research has explored
enhancing Task Arithmetic by trimming unimportant com-
ponents within task vectors. One typical importance metric
is the parameter magnitude. For instance, Ties-Merging
(Yadav et al., 2023) trims small-magnitude elements in task
vectors. PCBMerging (Du et al., 2024) refines this impor-
tance measure by considering inter-task correlations. Simi-
larly, Twin-Merging (Lu et al., 2024) applies singular value
decomposition to task vectors; leveraging singular values as
the importance metric, it retains components corresponding
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to large singular values.

Despite the significant progress made by magnitude-based
methods, they often overlook the risk of merging high-
magnitude components that may overwrite task-specific
knowledge during integration. As illustrated in Figure 1,
methods like Ties-Merging prioritize dimensions with larger
magnitudes (e.g., the vertical component of the Task 1 vec-
tor), which can unintentionally overwrite critical informa-
tion from Task 2. This imbalance skews the merged model
towards Task 1, degrading performance on Task 2 and un-
dermining the overall multi-task capability. In contrast, the
low-magnitude horizontal component of Task 2 carries valu-
able information while exerting minimal negative impact on
Task 1. Trimming these components is therefore counter-
productive. This example highlights the dual objectives of
effective model merging: (1) suppressing conflicts where
dominant knowledge from one task undermines the perfor-
mance of others, and (2) preserving the unique and essential
knowledge required by each task.

Motivated by the dual objectives outlined above, we propose
Conflict-Aware Task Merging (CAT Merging), a feature-
centric framework that addresses knowledge conflicts by
trimming conflict-prone components from task vectors.
Specifically, we focus on feature-level conflicts by analyzing
task vector components layer by layer. By adhering to the
dual objectives above, CAT Merging involves tailored opera-
tions for different types of parameters: feature projection for
linear weights, and masking for normalization scalers and
shifts. These strategies ensure that CAT Merging effectively
mitigates knowledge conflicts in a training-free manner, rely-
ing solely on a lightweight forward pass with few unlabeled
exemplars. We evaluate CAT Merging on diverse visual,
language, and visual-language datasets, demonstrating its
superiority over state-of-the-art methods while maintaining
robustness with limited exemplars.

2. Related Work
2.1. Traditional Multi-Task Learning

Multi-task learning (MTL) seeks to enhance performance by
transferring knowledge from related tasks (Zhang & Yang,
2022). In MTL, the major challenge is referred to as nega-
tive transfer (Liu et al., 2017; Zhang et al., 2023b), where
the conflict knowledge among tasks results in degraded per-
formance compared to training them independently. To
address this, researchers have explored strategies such as
sparsification (Ding et al., 2021; Sun et al., 2020; Liu et al.,
2019a), modularization (Tang et al., 2020; Ma et al., 2018),
and soft parameter sharing (Gao et al., 2020; Hazimeh et al.,
2021). Others focus on the optimization process, such as
dynamically weighting task-specific loss (Sener & Koltun,
2018; Liu et al., 2019a; 2022; Hu et al., 2023; Chen et al.,

2022), resolving gradient direction conflicts (Chen et al.,
2020; Liu et al., 2021; Javaloy & Valera, 2022; Navon et al.,
2022; Guo et al., 2022), or preventing over-prioritization of
certain tasks (Chen et al., 2018; He et al., 2022; Yang et al.,
2023).

2.2. Multi-Task Learning through Model Merging

Model merging has emerged as a promising approach for
integrating knowledge across different models without re-
training. Early techniques like Stochastic Weight Averag-
ing (SWA) (Izmailov et al., 2018) averages model weights
averaging during the final stages of training to enhance
generalization. This concept was further advanced by ap-
proaches like SWAD (Cha et al., 2021) and Ensemble of
Averages (EoA) (Arpit et al., 2022). Additionally, Ilharco
et al. (2023a) empirically demonstrate that parameter av-
eraging can effectively combine knowledge from models
trained on diverse tasks. Based on this, Fisher-Merging
(Matena & Raffel, 2022) applies the Fisher information ma-
trix (Fisher, 1925) to weigh the averaging process. Similarly,
RegMean (Jin et al., 2023) formulates model merging as the
minimization of the distances between the merged model
and individual finetuned models in the parameter space.

The pioneering work of Task Arithmetic (Ilharco et al.,
2023b) introduces the concept of ”task vectors”—parameter
offsets of finetuned models from a pretrained model as the
origin. By scaling and combining these vectors, Task Arith-
metic effectively balances task-general and task-specific
knowledge and achieves notable enhancement in model
merging. Building on this idea, Ties-Merging (Yadav et al.,
2023) and PCBMerging (Du et al., 2024) enhance the pro-
cess by removing components in task vectors with negligible
magnitudes. PEFT (Zhang et al., 2023a) and MoLE (Wu
et al., 2024) integrate Task Arithmetic with LoRA mod-
ules (Hu et al., 2022) to enhance flexibility. Additionally,
STA (Zhou et al., 2025) randomly shuffle network layers to
eliminate knowledge conflict.

Some advanced approaches incorporate test-time train-
ing techniques to further improve merging performance.
AdaMerging (Yang et al., 2024b) trains layer-specific merg-
ing coefficients. Additionally, representation surgery (Yang
et al., 2024a) and MoE router (Tang et al., 2024) train an
extra adapter to align representations. Since test-time adap-
tation requires additional training and samples, their appli-
cation may be limited. Therefore, this paper focuses on
training-free model merging.

3. Preliminary
Notations. Let W0 = {W l

0}Ll=1 denote the parameters
of a pretrained network with L layers, where W l

0 repre-
sents the parameters of layer l. The network is finetuned
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independently on K tasks using their respective datasets
D1, . . . , DK , yielding finetuned parameters W1, . . . ,WK .
For a given task k, the task vector Tk = {T l

k}Ll=1 is defined
as the difference between the finetuned parameters Wk and
the pretrained parameters W0:

Tk = Wk −W0 = {W l
k −W l

0}Ll=1. (1)

The dimensions of W l
0 and T l

k vary depending on the param-
eter type in layer l. Specifically, if layer l is a linear layer,
then W l

0, T
l
k ∈ Rdl×dl+1 , where dl and dl+1 are the input

and output dimensions of layer l, respectively. For other
parameters, such as element-wise scale or shift parameters
(e.g., in layer normalization), W l

0, T
l
k ∈ Rdl .

Task Arithmetic. Our objective is to merge K finetuned
models {Wk}Kk=1 into a single multi-task model Wmtl that
performs well on all tasks. Task Arithmetic (Ilharco et al.,
2023b) achieves this by simply adding task vectors to W0:

Wmtl = W0 + α

K∑
k=1

Tk, (2)

where α > 0 is a manual scaling factor (we let α = 1 for
notational simplicity; our method allows for different α val-
ues). Despite its simplicity, this approach often suffers from
knowledge conflicts when task vectors interfere, motivating
our more refined trimming strategy.

4. Knowledge Conflict
Knowledge conflict (Sun et al., 2025) arises in model merg-
ing when task vectors are misaligned due to divergent mag-
nitudes or directions. Direct aggregation, as employed in
Task Arithmetic, often leads to performance degradation
across tasks. We formally define knowledge conflict in Task
Arithmetic as the increase in task-specific loss incurred by
incorporating other task vectors. On a given task k, associ-
ated with the loss function Lk(.), the conflict introduced by
another task vector Ti (i ̸= k) is quantified as:

∆Lk|i = Lk (Wk + Ti)− Lk (Wk) . (3)

As mentioned, a task vector Ti can be separated into network
layers Ti = {T 1

i , . . . , T
L
i }, where the superscript denotes

the layer index. The effect of a perturbation Ti propagates
through the layers. Without loss of generality, we suppose
all layers are sequentially stacked, i.e., the input to layer l
is the output of layer l − 1, where the l-th layer feature on
task k, denoted as f l

k(.), can be written as:

f l
k(Wk + Ti) = f l

k(f
l−1
k (Wk + Ti);W

l
k + T l

i ). (4)

To isolate the local effect of T l
i , we define:

f̂ l
k(Wk + Ti) = f l

k(f
l−1
k (Wk);W

l
k + T l

i ), (5)

where the input features are computed using only the unper-
turbed parameters {W 1

k , . . . ,W
l−1
k }. This allows the total

feature shift at layer l, ∆f l
k|i = f l

k(Wk + Ti)− f l
k(Wk), to

be controlled under a mild Lipschitz assumption:

Assumption 4.1 (Lipschitz Continuity of Network Layers).
On the line segment between Wk and Wk +Ti, the function
of layer l, denoted as f l

k, is γl-Lipschitz continuous with
respect to its input (i.e., the output of layer l − 1).

Lemma 4.2. By Assumption 4.1, we have:

∥∆f l
k|i∥ ≤ γl∥∆f l−1

k|i ∥+ ∥∆f̂ l
k|i∥, (6)

where ∆f̂ l
k|i = f̂ l

k(Wk + Ti)− f l
k(Wk).

Intuitively, Lemma (4.2) decomposes the feature shift at
layer l into (i) the propagated feature shift ∆f l−1

k|i from the
previous layer and (ii) the layer-wise parameter perturbation
∆f̂ l

k|i caused by T l
i . We refer the reader to Section A.1 for

the detailed proof.

We further consider how perturbations in the features ex-
tracted from the network affect the task-specific loss and
impose a continuity condition on the loss function:

Assumption 4.3 (Lipschitz Continuity of Loss Function).
On the line segment between Wk and Wk + Ti, the loss
function L is β-Lipschitz continuous with respect to the
final output of the network.

Combining the above, we have

Theorem 4.4 (An Upper Bound on Knowledge Conflict).
Suppose that Assumptions 4.1 and 4.3 hold for any task k
and task vector Ti, the knowledge conflict follows

|∆Lk|i| ≤ β

L∑
l=1

( L∏
m=l+1

γm

)
∥∆f̂ l

k|i∥. (7)

The proof is provided in Section A.2. Theorem 4.4 suggests
that to reduce the upper bound on knowledge conflict, we
can directly minimize the layer-wise perturbations ∥∆f̂ l

k|i∥
for each layer. In the next section, we develop a practical
merging algorithm to do so.

5. Methodology
As introduced in Section 4, our approach adopts a layer-wise
strategy to analyze and mitigate knowledge conflict locally
at each layer. Several existing methods attempt to reduce
conflict by preserving components deemed important to
each task. For example, Fisher Merging (Matena & Raffel,
2022) utilizes the Fisher Information Matrix to retain task-
important weights, while Ties Merging (Yadav et al., 2023)
and PCB Merging (Du et al., 2024) prune low-magnitude
parameters.
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Although suppressing unimportant parameters can reduce
some conflicts, these approaches overlook a critical issue:
high-magnitude parameters—often considered important—
can themselves be major sources of knowledge conflict.
These components may overpower others during merging,
distorting or suppressing the feature representations vital
to different tasks. As a result, even when low-magnitude
parameters are pruned, significant knowledge conflict still
exists, degrading multi-task performance.

In contrast to existing trimming techniques, we propose a
method that explicitly balances two objectives: (1) mini-
mizing interference between tasks and (2) preserving the
knowledge encoded in task vectors. For each task k, we
define the task-specific transformation Φk that trims other
task vectors in the same layer, i.e., Ti (i ̸= k). The objective
for Φk(.) is to minimize the layer-wise knowledge conflict
∆f l

k,i while maintaining the representational integrity of Ti.
Formally, considering all task vectors yields the following
objective for Φk(.):

min
Φk

∑
i ̸=k

∥∥∥f̂k(Wk +Φk(Ti)
)
− fk(Wk)

∥∥∥2︸ ︷︷ ︸
Inter-task Knowledge Conflict ∆f̂ l

k|i

+ λ
∥∥∥f̂i(W0 +Φk(Ti))− fi(Wi)

∥∥∥2︸ ︷︷ ︸
Intra-task Knowledge Deviation

,

(8)

where λ controls the trade-off between reducing conflict and
preserving knowledge.

Based on the computational rules of different parameter
types, we design tailored trimming operations. Specifically,
for modern transformer-based networks, the parameters can
be broadly classified into three categories:

• Weight parameters in linear layers, which involve ma-
trix multiplication operations;

• Scale parameters in normalization layers, which scale
normalized features through element-wise Hadamard
products;

• Shift parameters, which modify features through
element-wise addition.

Most parameters in modern architectures fall into these
categories. Notably, convolutional weights are treated analo-
gously to linear weights, since convolution can be expressed
as a linear operation (Sun et al., 2023). Furthermore, com-
plex modules such as attention blocks can be decomposed
into multiple linear transformations—e.g., for query, key,
and value projections—allowing the trimming strategy to be
applied independently to each component. In the following
section, we provide detailed layer-wise implementations of
Φk(.) tailored to each parameter type.

5.1. Linear Weight Trimming

Linear layers transform features via matrix multiplica-
tion. Given Xk ∈ Rn×dl extracted by former layers
{W 1

k , . . . ,W
l−1
k }, the weight matrix W ∈ Rdl×dl+1 pro-

duce the output as follows:

f(Xk;W ) = XkW. (9)

To mitigate knowledge conflicts at this layer, we aim to
remove interfering components from other task vectors
Ti, i ̸= k. We introduce a removal basis Bk ∈ Rdl+1×c,
representing a c-dimensional core sub-parameter space for
task k. For any i ̸= k, we define a projection operator
Φk(Ti) = Ti − TiBkB

⊤
k which discards components of Ti

aligned with Bk, preserving task-specific knowledge while
minimizing interference with task k.

Using the layer-wise loss from Eq. (8), we formulate the
optimization objective for Bk as:

∑
i ̸=k

∥∥∥Xk

(
W0+Tk+Ti−TiBkB

⊤
k

)
−Xk(W0+Tk)

∥∥∥2
F

+ λ
∑
i ̸=k

∥∥Xi(W0+Ti−TiBkB
⊤
k )−Xi(W0+Ti)

∥∥2
F

=
∑
i ̸=k

(∥∥XkTi−XkTiBkB
⊤
k

∥∥2
F
+λ

∥∥XiTiBkB
⊤
k

∥∥2
F

)
.

(10)

Applying the identity ∥XkTi∥2F =
∥∥XkTiBkB

⊤
k

∥∥2
F

+∥∥XkTi−XkTiBkB
⊤
k

∥∥2
F

(see Appendix A.3 for the proof),
we recast the objective as a maximization problem:

max
Bk

∑
i ̸=k

(∥∥XkTiBkB
⊤
k

∥∥2
F
−λ

∥∥XiTiBkB
⊤
k

∥∥2
F

)
. (11)

The optimal removal basis Bk is constructed from the top-c
eigenvectors of the matrix:

∑
i ̸=k T

⊤
i (X⊤

k Xk−λX⊤
i Xi)Ti,

where the full derivation is provided in Appendix A.4. Here,
c is a manually defined dimensionality hyperparameter. A
higher value of c corresponds to the removal of more in-
formation. In low-sample regimes, we recommend setting
c = 2 or 3 to avoid introducing noise.

5.2. Scaling Parameter Trimming

Normalization layers are crucial for stabilizing the training
of modern neural networks. Although normalization itself
is a parameter-free operation, widely used layers such as
batch normalization and layer normalization typically in-
clude an affine transformation, which consists of scale and
shift parameters. In this section, we focus on merging the
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scale parameters across tasks. At a normalization layer l,
the scaler W ∈ Rdl performs element-wise multiplication
on the normalized feature xk ∈ Rdl :

f(xk;W ) = xk ◦W, (12)

where ◦ denotes element-wise (Hadamard) multiplication.

To reduce interference at this layer, we introduce a binary
removal mask mk ∈ {0, 1}dl applied to task vectors Ti (i ̸=
k), such that the refined task vector Φk(Ti) = Ti − Ti ◦mk

has minimal influence on task k. Adapting the layer-wise
loss from Eq. (8), we define the objective:

∑
i ̸=k

∑
xk

∥∥∥xk◦
(
W0+Tk+Ti−Ti◦mk

)
−xk◦(W0+Tk)

∥∥∥2
+λ

∑
xi

∥xi◦(W0+Ti−Ti◦mk)−xi◦(W0+Ti)∥2

=
∑
i ̸=k

(∑
xk

∥xk◦Ti−xk◦Ti◦mk∥2+λ
∑
xi

∥xi◦Ti◦mk∥2
)
.

(13)
Using the identity ∥xk ◦ Ti − xk ◦ Ti ◦mk∥2 +

∥xk ◦ Ti ◦mk∥2 = ∥xk ◦ Ti∥2, we reformulate the
problem as a maximization objective:

max
mk

∑
i̸=k

(∑
xk

∥xk◦Ti◦mk∥2−λ
∑
xi

∥xi◦Ti◦mk∥2
)
.

(14)

This motivates selecting the top-c dimensions in mk

corresponding to the largest components of the vector:∑
i ̸=k

(∑
xk
(xk ◦ Ti)

2 − λ
∑

xi
(xi ◦ Ti)

2
)
, with remain-

ing entries set to 0. The selection of c is match the number
of basis Bk used in the previous linear weight trimming to
reduce noise from limited exemplars. Full mathematical
derivations are provided in Appendix A.5.

5.3. Shifting Parameter Trimming

Shift parameters W ∈ Rdl adjust features via element-wise
addition, the transformation applied to input xk ∈ Rdl is
defined as:

f(xk;W ) = xk +W. (15)

We also adopt a binary removal mask mk ∈ {0, 1}dl , yield-
ing a refined vector Φk(Ti) = Ti − Ti ◦ mk. The corre-
sponding objective function becomes:

Algorithm 1 The model merging process
Input: Pretrained model W0; Task vectors {T1, . . . , TK};

Unlabeled exemplar-set {M1, . . . ,MK}
Output: Merged model Wmtl

1 // Collecting the input features
for k = 1 to K do

2 Initialize task inputs: X1
k = Mk

for l = 1 to L do
3 X l+1

k = f(X l
k;W

l
0 + T l

k)

4 // Compute basis or mask
for k = 1 to K; l = 1 to L do

5 Φl
k = argminΦl

k

∑
i ̸=k

∥f l
k

(
W l

0 + T l
k +Φl

k(T
l
i )
)
− f l

k(W
l
0 + T l

k)∥2

+ λ∥f l
i (W

l
0 +Φl

k(T
l
i ))− f l

i (W
l
0 + T l

i )∥2, // Eq. (8)

6 // Edit all task vectors
for k = 1 to K; l = 1 to L; i = 1 to K, i ̸= k do

7 T l
i = Φl

k(T
l
i )

8 // Merging
Wmtl = W0 + α

∑
k Tk

return Wmtl

∑
i ̸=k

∑
xk

∥xk+(W0+Tk+Ti−Ti◦mk)−xk−(W0+Tk)∥2

+λ
∑
xi

∥xi+(W0+Ti−Ti◦mk)−xi−(W0+Ti)∥2

=
∑
i ̸=k

(∑
xk

∥Ti−Ti ◦mk∥2+λ
∑
xi

∥Ti ◦mk∥2
)
.

(16)

Similarly, the mask mk can be determined by a maximiza-
tion problem:

max
mk

∑
i ̸=k

(∑
xk

∥Ti ◦mk∥2−λ
∑
xi

∥Ti ◦mk∥2
)
. (17)

Assuming data is approximately balanced across tasks, the
optimal mask mk is obtained by selecting the top-c compo-
nents of

∑
i ̸=k(Ti)

2 and setting the corresponding entries of
mk to 1, with the rest set to 0. Full derivations are provided
in Appendix A.6.

We have now finished discussing the trimming strategy for
all major parameter types. During the merging process, we
start with a layer-by-layer forward pass using only a small
number of unlabeled samples—typically two or three per
task—to collect necessary inputs for parameter trimming.
The collected inputs are then processed to compute the
corresponding basis or masks for editing task vectors based
on the parameter type. The computed basis or masks are
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Table 1. Multi-task performance when merging ViT-B/32 models on eight vision tasks. The best and second-best performances are written
in bold and underlined text. The “#best” column represents the number of datasets where the method performs the best.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc #best

Pretrained 62.3 59.7 60.7 45.5 31.4 32.6 48.5 43.8 48.0 -
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5 -
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 88.9 -

Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8 0
Fisher Merging 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 68.3 2
RegMean 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 71.8 0
Task Arithmetic 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1 0
Ties-Merging 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 72.4 0
TATR 62.7 59.3 72.3 82.3 80.5 72.6 97.0 55.4 72.8 0
Ties-Merging & TATR 66.3 65.9 75.9 79.4 79.9 68.1 96.2 54.8 73.3 0
Consensus Merging 65.7 63.6 76.5 77.2 81.7 70.3 97.0 57.1 73.6 0
PCB Merging 63.8 62.0 77.1 80.6 87.5 78.5 98.7 58.4 75.8 3

CAT Merging (ours) 68.1 65.4 80.5 89.5 85.5 78.5 98.6 60.7 78.3 4

Table 2. Multi-task performance when merging ViT-L/14 models on eight vision tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc #best

Pretrained 66.8 77.7 71.0 59.9 58.4 50.5 76.3 55.3 64.5 -
Individual 82.3 92.4 97.4 100.0 98.1 99.2 99.7 84.1 94.2 -
Traditional MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 93.5 -

Weight Averaging 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8 79.6 0
Fisher Merging 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0 82.2 1
RegMean 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8 83.7 1
Task Arithmetic 73.9 82.1 86.6 94.1 87.9 86.7 98.9 65.6 84.5 0
Ties-Merging 76.5 85.0 89.3 95.7 90.3 83.3 99.0 68.8 86.0 0
TATR 74.6 83.7 87.6 93.7 88.6 88.1 99.0 66.8 85.3 0
Ties-Merging & TATR 76.3 85.3 88.8 94.4 90.8 88.7 99.2 68.8 86.5 0
Consensus Merging 75.0 84.3 89.4 95.6 88.3 82.4 98.9 68.0 85.2 0
PCB Merging 76.2 86.0 89.6 95.9 89.9 92.3 99.2 71.4 87.6 0

CAT Merging (ours) 78.7 88.5 91.1 96.3 91.3 95.7 99.4 75.7 89.6 6

applied to all task vectors, enabling the final merging in
Eq. (2) with minimal knowledge conflict. The detailed
implementation of this process is described in Algorithm 1.

To simplify analysis, we have assumed the scaling factor α
(cf. Eq. (2))to be 1 in the above analysis, but setting α to an-
other positive value does not affect the resulting conclusion.
For example, in Eqs. (10) & (11), by explicitly including
α, the optimal vector Bk corresponds to the eigenvector
of the matrix:

∑
i̸=k (αT

⊤
i )(X⊤

k Xk − λX⊤
i Xi)(αTi) =

α2
∑

i ̸=k T
⊤
i (X⊤

k Xk −λX⊤
i Xi)Ti. Since scaling a matrix

by a positive constant α2 does not alter its eigenvectors,
our theoretical conclusions remain valid. In practice, α is a
critical hyperparameter that must be tuned carefully.

6. Experiments
6.1. Settings

Datasets. We select diverse datasets to evaluate our work,
including eight vision datasets: SUN397 (Xiao et al., 2016),
Cars (Krause et al., 2013), RESISC45 (Cheng et al., 2017),
EuroSAT (Helber et al., 2019), SVHN (Netzer et al., 2011),
GTSRB (Stallkamp et al., 2011), MNIST (LeCun & Cortes,
2010), DTD (Cimpoi et al., 2014), six visual-language
datasets: COCO Caption (Chen et al., 2015), Flickr30k
Caption (Plummer et al., 2015), Textcaps (Sidorov et al.,
2020), OKVQA (Marino et al., 2019), TextVQA (Singh
et al., 2019), and ScienceQA (Lu et al., 2022), and eight
NLP tasks in the GLUE benchmark (Wang et al., 2019).

Baselines. We compare our proposed method with various
training-free model merging methods, including the straight-
forward Weight Average, Fisher Merging (Matena & Raffel,

6
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Table 3. Multi-task performance when merging RoBERTa models on eight NLP tasks.

Method CoLA MNLI MRPC QNLI QQP RTE SST2 STS-B Average #best

Task Arithmetic 6.68 66.23 78.46 78.62 72.69 53.43 83.49 27.10 58.34 1
Ties-Merging 9.46 59.34 74.71 65.93 41.29 47.29 72.13 9.21 47.42 0
TATR 10.20 65.44 72.56 75.73 74.58 55.18 78.87 37.46 58.39 0
PCB Merging 11.40 50.85 77.63 78.22 55.78 60.29 75.57 67.01 59.59 1

CAT Merging (ours) 33.20 72.33 68.22 82.92 76.05 62.82 89.33 15.57 62.56 6

Table 4. Multi-task performance when merging BLIP models on six vision-language tasks.
Method COCO Caption Flickr30k Caption Textcaps OKVQA TextVQA ScienceQA #best

CIDEr CIDEr CIDEr Accuracy Accuracy Accuracy

Pretrained 0.07 0.03 0.05 42.80 21.08 40.50 -
Task Arithmetic 0.86 0.50 0.39 17.71 0.49 40.10 1
Ties-Merging 0.53 0.27 0.22 27.95 0.57 40.35 0
TATR 0.46 0.31 0.21 28.30 14.74 42.98 0
PCB Merging 0.71 0.52 0.30 36.04 1.88 43.01 0

CAT Merging (ours) 0.91 0.53 0.36 44.07 19.69 46.36 5

2022), RegMean (Jin et al., 2023), Task Arithmetic (Ilharco
et al., 2023b), Ties-Merging (Yadav et al., 2023), Task Arith-
metic in Trust Region (TATR) (Sun et al., 2025), Consensus
Merging (Wang et al., 2024), and PCB Merging (Du et al.,
2024). We also provide the performance of some baseline
methods, such as the pretrained model, the individual task
model, and the traditional multi-Task learning model.

Implementation details. Our implementation strictly fol-
lows Task Arithmetic (Ilharco et al., 2023b). For the vision
tasks, we employ the vision encoder from CLIP (Radford
et al., 2021) as the pretrained backbone, experimenting with
both ViT-B/32 and ViT-L/14 architectures. Task vectors are
directly sourced from the repository provided by Ilharco
et al. (2023b). After merging the models, we evaluate and
report the accuracy of each task, along with the overall aver-
age accuracy. For the visual-language tasks, we derive task
vectors by finetuning the visual question-answering (VQA)
version of BLIP (Li et al., 2022), training each task for 6,000
steps. The architecture of BLIP includes an image encoder,
a text encoder, and a text decoder, with all components
finetuned during training. We use CIDEr as the evaluation
metric for caption tasks and accuracy for VQA tasks. For
the NLP tasks, we use RoBERTa (Liu et al., 2019b) as the
backbone. Task vectors are obtained from Lu et al. (2024).
Following their setting, we reserve 10% of the training set
for validation and employ the original validation data as the
test set.

6.2. Comparison Results

Evaluation on vision tasks. Tables 1 and 2 present the
merging results on eight image classification benchmarks.
CAT Merging achieves state-of-the-art performance, with

average accuracies of 78.3% on ViT-B/32 and 89.6% on
ViT-L/14. Notably, substantial improvements are observed
on challenging datasets such as EuroSAT (89.5%, ViT-B/32)
and GTSRB (95.7%, ViT-L/14). Additional results for ViT-
B/16 and comparisons with test-time training methods are
provided in the supplementary materials.

Evaluation on NLP tasks. We evaluate CAT Merging on
eight diverse NLP tasks using RoBERTa, covering both clas-
sification and regression (e.g., STS-B). For classification,
we report accuracy, while for regression we report the mean
of Pearson and Spearman correlations. As summarized
in Table 3, CAT Merging consistently outperforms base-
line methods, achieving the best results on six out of eight
tasks, demonstrating strong generalization and robustness
in model merging for language tasks.

Evaluation on visual-language tasks. Table 4 reports re-
sults using the BLIP model on six vision-language tasks
that potentially conflict with each other (Tiong et al., 2024).
CAT Merging achieves top performance on five of six bench-
marks, highlighting its effectiveness in multimodal tasks.

6.3. Ablation Study

This section performs an ablation study to evaluate the ef-
fectiveness of the parameter-specific trimming techniques
in CAT Merging, including the trimming of linear weights,
normalization scalers, and shift parameters. Table 5 presents
the results with ViT-B/32 and ViT-L/14 architectures.

Excluding the trimming of linear weights leads to a signifi-
cant performance drop, with average accuracies of 71.5%
(ViT-B/32) and 85.6% (ViT-L/14). Similarly, removing the
trimming of normalization scalers and shifts also causes
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Table 5. An ablation study of CAT Merging, where we selectively
trim three different types of network parameters.

Trimmed parameters Architecture

Linear
weight

Normalization
scaler Shift ViT-B/32 ViT-L/14

× ✓ ✓ 71.5 85.6
✓ × ✓ 76.8 89.2
✓ ✓ × 77.8 88.7

✓ ✓ ✓ 78.3 89.6
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Figure 2. (a) Average accuracy (%) of CAT Merging on eight
vision tasks with different numbers of exemplars per task. (b)
Average accuracy (%) on eight vision tasks with ViT/L-14 models
versus different α (scaling factor in Task Arithmetic, cf. Eq. (2)).

performance degradation. With all three types trimmed, we
achieve the highest average accuracy. These findings high-
light the importance of mitigating knowledge conflict in all
types of parameters.

6.4. Sensitivity Analysis

Sensitivity analysis of exemplar number. As shown in
Figure 2 (a), CAT Merging is robust to the number of exem-
plars. It achieves strong results even with just one exemplar
per task (76.61% for ViT-B/32 and 89.01% for ViT-L/14).
This is likely due to the patch-based design of ViT, which
splits one image into several patches, ensuring the diversity
of each layer input even with limited samples.

Sensitivity analysis of α. In Figure 2 (b), with different val-
ues of α, CAT Merging achieves more stable performance
than Task Arithmetic. The stability should be attributed to
suppressing knowledge conflict among task vectors, ana-
lyzed further in the next section. A detailed analysis of other
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(a) Task Arithmetic
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1
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(b) CAT Merging

10 3
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10 1

Figure 3. Visualization of knowledge conflict on Cars and RE-
SISC45 (i.e., ∆LCars,RESISC45 + ∆LRESISC45,Cars) when merging
ViT-L/14 models with different merging weights αC and αR.

hyperparameters, including weight λ and c, is provided in
Appendix C.4.

6.5. Analysis of Knowledge Conflict

This section investigates the effectiveness of CAT Merg-
ing in mitigating knowledge conflict. Specifically, we
consider the task vectors corresponding to Cars and RE-
SISC45 and merge them using distinct scaling factors, i.e.,
Wmtl = W0 + αCTCars + αRTRESISC45. Figure 3 visualizes
the knowledge conflict during merging under different merg-
ing coefficients. For Task Arithmetic, regions with minimal
knowledge conflict are primarily concentrated where both
αC and αR are close to 0. In contrast, CAT Merging effec-
tively reduces knowledge conflict, enabling the use of much
larger α values.

7. Conclusion
In this work, we propose CAT Merging, a novel training-free
technique for multi-task model merging. By introducing
parameter-specific strategies, such as projection for linear
weights and masking for normalization and shift parame-
ters, CAT Merging effectively resolves inter-task knowl-
edge conflicts while preserving task-specific information.
Experimental results across diverse vision, language, and
vision-language tasks demonstrate the effectiveness of CAT
Merging. We achieve significant accuracy improvements of
up to 2.5% on ViT-B/32 and 2.0% on ViT-L/14 compared
to existing methods. CAT Merging also exhibits strong ro-
bustness in the case with only a few exemplars, providing a
practical solution for real-world multi-task scenarios where
retraining is infeasible.

Impact Statement
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A. Theoretical Proofs
A.1. Proof of Lemma (4.2)

Let Wk be the parameters for task k, and let Ti be the task vector of task i. The feature shift at layer l caused by Ti is defined
as:

∆f l
k|i = f l

k(Wk + Ti)− f l
k(Wk).

We aim to prove the following bound:

∥∆f l
k|i∥ ≤ γl∥∆f l−1

k|i ∥+ ∥∆f̂ l
k|i∥.

where ∆f l−1
k|i = f l−1

k (Wk + Ti)− f l−1
k (Wk), and∆f̂ l

k|i = f̂ l
k(Wk + Ti)− f l

k(Wk).

Proof. The feature shift at layer l can be decomposed as:

∆f l
k|i = f l

k(f
l−1
k (Wk + Ti);W

l
k + T l

i )− f l
k(f

l−1
k (Wk);W

l
k)

= f l
k(f

l−1
k (Wk + Ti);W

l
k + T l

i )− f l
k(f

l−1
k (Wk);W

l
k + T l

i ) + f l
k(f

l−1
k (Wk);W

l
k + T l

i )− f l
k(f

l−1
k (Wk);W

l
k).
(18)

Under the norm-induced triangular inequality, we have:

∥∆f l
k|i∥ ≤ ∥f l

k(f
l−1
k (Wk + Ti);W

l
k + T l

i )− f l
k(f

l−1
k (Wk);W

l
k + T l

i )∥+ ∥f l
k(f

l−1
k (Wk);W

l
k + T l

i )− f l
k(f

l−1
k (Wk);W

l
k)∥.

(19)

- For the first part, we apply the γl-Lipschitz continuity of f l
k:

∥f l
k(f

l−1
k (Wk + Ti);W

l
k + T l

i )− f l
k(f

l−1
k (Wk);W

l
k + T l

i )∥ ≤ γl∥∆f l−1
k|i ∥.

- For the second part:
∥f l

k(f
l−1
k (Wk);W

l
k + T l

i )− f l
k(f

l−1
k (Wk);W

l
k)∥ = ∥∆f̂ l

k|i∥.

Combining these two terms, we conclude:

∥∆f l
k|i∥ ≤ γl∥∆f l−1

k|i ∥+ ∥∆f̂ l
k|i∥.

A.2. Proof of Theorem 4.4

Theorem 4.4 (An Upper Bound on Knowledge Conflict).

Suppose that Assumptions 4.1 and 4.3 hold for any task k and task vector Ti, the knowledge conflict follows

|∆Lk|i| ≤ β

L∑
l=1

( L∏
m=l+1

γm

)
∥∆f̂ l

k|i∥. (20)

Proof. Recall that in Lemma (4.2), we derive the following recursive Lipschitz bound:

∥∆f l
k|i∥ ≤ γl∥∆f l−1

k|i ∥+ ∥∆f̂ l
k|i∥.
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We use recursive substitution starting from layer L down to l = 1:

∥∆fL
k|i∥ ≤ γL∥∆fL−1

k|i ∥+ ∥∆f̂L
k|i∥

≤ γL

(
γL−1∥∆fL−2

k|i ∥+ ∥∆f̂L−1
k|i ∥

)
+ ∥∆f̂L

k|i∥ = γLγL−1∥∆fL−2
k|i ∥+ γL∥∆f̂L−1

k|i ∥+ ∥∆f̂L
k|i∥

≤
L∑

l=1

( L∏
m=l+1

γm

)
∥∆f̂ l

k|i∥.

(21)

Using Assumption 4.3, which states that L is β-Lipschitz continuous with respect to the network’s final output, we conclude:

|∆Lk|i| ≤ β

L∑
l=1

( L∏
m=l+1

γm

)
∥∆f̂ l

k|i∥. (22)

A.3. Frobenius Norm Decomposition of Orthogonal Projection

Assume that B has orthonormal columns (i.e., BTB = I), then, for any matrix M , the following equation holds:

∥∥MBB⊤∥∥2
F
+
∥∥M −MBB⊤∥∥2

F
= ∥M∥2F . (23)

Proof. ∥∥MBB⊤∥∥2
F
+
∥∥M −MBB⊤∥∥2

F

=
∥∥MBB⊤∥∥2

F
+
∥∥M(I −BB⊤)

∥∥2
F

=Tr((MBB⊤)⊤MBB⊤) + Tr((M(I −BB⊤))⊤M(I −BB⊤))

=Tr(BB⊤M⊤MBB⊤) + Tr((I −BB⊤)⊤M⊤M(I −BB⊤))

=Tr(BB⊤BB⊤M⊤M) + Tr((I −BB⊤)(I −BB⊤)⊤M⊤M)

=Tr(BB⊤M⊤M) + Tr((I −BB⊤)(I⊤ − (BB⊤)⊤)M⊤M)

=Tr(BB⊤M⊤M) + Tr((I −BB⊤)(I −BB⊤)M⊤M)

=Tr(BB⊤M⊤M) + Tr((I −BB⊤ −BB⊤ +BB⊤BB⊤)M⊤M)

=Tr(BB⊤M⊤M) + Tr((I −BB⊤)M⊤M)

=Tr(M⊤M)

= ∥M∥2F

(24)

A.4. Solution of Eq.(9)

Let Xk ∈ Rn×d be the feature and Ti ∈ Rd×h represent the task vector of the task i. Now our target is learning a group of
removal basis Bk ∈ Rh×c for task k such that:

max
Bk

∑
i ̸=k

∥∥XkTiBkB
⊤
k

∥∥2
F
− λ

∥∥XiTiBkB
⊤
k

∥∥2
F

(25)

Then we have:
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∑
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(26)

The above equation implies that the largest c eigenvectors of G admit an optimal solution.

A.5. Solution of Eq.(12)

Let xk ∈ Rd be the feature and Ti ∈ Rd represents the task vector of the task i for a scaler of a normalization layer. Now
our target is learning a group of removal binary mask mk ∈ {0, 1}d for task k such that:

max
mk

∑
i ̸=k

∑
xl
k

∥∥xl
k ◦ T l

i ◦ml
k

∥∥2 − λ
∑
xl
i

∥∥xl
i ◦ T l

i ◦ml
k

∥∥2 . (27)

Then we have:
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mi,kgz.

(28)

The above equation implies that in mk, dimensions corresponding to the largest c values of gz should be set to 1, while
others should be 0.
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A.6. Solution of Eq.(13)

Let xk ∈ Rd be the feature and Ti ∈ Rd represents the task vector of the task i for shift parameters. Now our target is
learning a group of removal binary mask mk ∈ {0, 1}d for task k such that:

max
mk

∑
i ̸=k

(∑
xk

∥Ti ◦mk∥2 − λ
∑
xi

∥Ti ◦mk∥2
)
. (29)

Suppose 0 < λ < 1 and all tasks have an equal amount of data n, then we have:
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(30)

The above equation implies that in mk, dimensions corresponding to the largest c values of gz should be set to 1, while
others should be 0.

B. Experiment Details
This section introduces some additional details of experiments, including the detailes of the experimental environment,
datasets, and baselines.

B.1. Environment

All experiments detailed in our manuscript and appendix were conducted on a workstation running Ubuntu 16.04, equipped
with 2 Intel Xeon 2.60GHz CPUs, 256 GB of memory, and 6 NVIDIA RTX3090 GPUs. We leverage Python 3.8 to
implement all the methods.

B.2. Datasets

Our experiments strictly follow Task Arithmetic (Ilharco et al., 2023b) and leverage the following eight widely-used image
classification datasets:

• SUN397 (Xiao et al., 2016): A large-scale scene classification dataset containing 108,754 images organized into 397
categories. Each category includes at least 100 images, making it a diverse benchmark for scene recognition tasks.

• Stanford Cars (Cars) (Krause et al., 2013): A fine-grained car classification dataset featuring 16,185 images of 196
distinct car models. The dataset is evenly divided into training and test splits, enabling robust model evaluation.
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• RESISC45 (Cheng et al., 2017): A remote sensing image classification dataset with 31,500 images spanning 45 scene
classes. Each class contains approximately 700 images, covering a variety of landscapes and man-made structures.

• EuroSAT (Helber et al., 2019): A satellite imagery dataset designed for land-use and land-cover classification,
consisting of 27,000 labeled and geo-referenced images distributed among 10 categories, such as forests, residential
areas, and agricultural fields.

• SVHN (Netzer et al., 2011): A digit classification dataset derived from real-world house numbers captured in Google
Street View. It includes 10 digit classes, with 73,257 training images, 26,032 test images, and an additional 531,131
samples for extended training.

• GTSRB (Stallkamp et al., 2011): The German Traffic Sign Recognition Benchmark, comprising over 50,000 images
across 43 traffic sign categories. This dataset is widely used for evaluating traffic sign recognition systems.

• MNIST (LeCun & Cortes, 2010): A classic handwritten digit classification dataset containing 60,000 training images
and 10,000 test images, evenly distributed across 10 digit classes.

• DTD (Cimpoi et al., 2014): The Describable Textures Dataset, which includes 5,640 images spanning 47 texture
categories, with around 120 images per category. It is designed for texture recognition tasks.

We also leverage the following six vision-language datasets:

• COCO Caption (Chen et al., 2015): A large-scale image captioning dataset derived from the MS COCO dataset. It
contains over 330,000 images, with each image annotated with five different captions, facilitating training for generating
natural language descriptions of images.

• Flickr30k Caption (Plummer et al., 2015): A dataset for image captioning and retrieval tasks, consisting of 31,000
images sourced from Flickr. Each image is paired with five descriptive sentences, capturing a variety of objects, scenes,
and actions in the images.

• TextCaps (Sidorov et al., 2020): A challenging image captioning dataset focusing on reasoning over both visual and
textual content in images. It includes 145,000 image-caption pairs, where captions must integrate text from the image
to provide meaningful descriptions.

• OKVQA (Marino et al., 2019): A knowledge-based visual question-answering dataset designed to evaluate the ability
to answer open-ended questions about images using external knowledge. It consists of more than 14,000 questions and
corresponding answers requiring reasoning beyond the image content.

• TextVQA (Singh et al., 2019): A dataset for visual question answering where reading and understanding text present
in images is crucial. It includes over 45,336 questions across 28,408 images, requiring the integration of textual and
visual reasoning to generate accurate answers.

• ScienceQA (Lu et al., 2022): A multi-modal dataset designed for science-related question answering. It contains over
21,208 multi-modal multiple-choice questions paired with textual explanations and images across various scientific
disciplines, such as biology, physics, and chemistry, supporting reasoning-based evaluation.

B.3. Baselines.

Our experiments are associated with several baseline approaches. The details of these baselines are as follows:

• Pretrained directly employs a pretrained model to predict across multiple tasks. Since it does not incorporate
any downstream task-specific information during model training, its performance on downstream tasks is typically
suboptimal.

• Individual. In this approach, an independent finetuned model is used for each task. While it avoids interference
between tasks, it cannot perform multiple tasks simultaneously. It serves as a reference upper bound for model merging
approaches.
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• Traditional MTL aggregates the original training data from all tasks to train a single multi-task model.

• Weight Averaging directly averages model parameters from multiple tasks into a single model, enabling multi-task
learning without additional training.

• Fisher Merging (Matena & Raffel, 2022) leverages the Fisher information matrix to assess parameter importance,
merging model parameters based on this importance.

• RegMean (Jin et al., 2023) refines weight matrices by adjusting and linearly combining rows, utilizing statistical
information derived from the training data.

• Task Arithmetic (Ilharco et al., 2023b) introduces the concept of a “task vector,” defined as the difference between
finetuned model parameters and pretrained model parameters. Multiple task vectors are then combined and added to
the pretrained model to facilitate multi-task learning.

• Ties-Merging (Yadav et al., 2023) eliminates unimportant parameters from the task vector and resolves sign conflicts
among parameters, reducing interference during the final task vector merging process.

• TATR (Sun et al., 2025). This method advances task arithmetic by restricting the merging within a trust region to
mitigate knowledge conflict.

• TATR & Ties-Merging (Sun et al., 2025; Yadav et al., 2023). This method combines the trust region restriction in
TATR into Ties-Merging to enhance the performance.

• Consensus Merging (Wang et al., 2024) computing a group of masks for each task vector to minimize the distance in
parameter space between the merged model and the finetuned model.

• PCB Merging (Du et al., 2024) trims components in the task vector that have small magnitudes and are not significantly
related to other tasks.

C. Additional Experiments
C.1. Comparison on ViT-B/16

Table 6 presents the results of various model merging methods using the ViT-B/16 architecture. As we can see, CAT Merging
significantly improves the multi-task performance of Task Arithmetic, raising the average performance from 73.8% to
82.1%.

Table 6. Multi-task performance when merging ViT-B/16 models on eight tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

Pretrained 63.8 64.6 65.7 54.5 52.0 43.3 51.7 45.1 55.0
Individual 81.8 86.8 96.9 99.7 97.8 99.1 99.7 82.0 92.9

Weight Averaging 67.7 70.0 75.3 79.5 74.9 60.1 94.4 43.8 70.7
Fisher Merging 68.5 69.9 75.2 80.4 73.2 61.2 94.5 50.7 71.7
RegMean 69.1 71.6 77.6 88.8 83.7 70.2 96.9 54.6 76.6
Task Arithmetic 61.1 65.9 74.0 76.2 88.0 73.9 98.4 53.0 73.8
Ties-Merging 69.1 72.5 80.5 84.0 85.0 71.5 98.1 54.9 77.0
TATR 67.4 70.4 77.9 81.7 87.6 77.2 98.3 55.6 77.0
CAT Merging (ours) 72.9 75.9 83.1 92.8 88.2 82.7 98.8 62.7 82.1

C.2. Comparing with Test-time Training based Methods

Table 7 shows that our CAT Merging achieves comparable or superior performance relative to two representative training-
based techniques, demonstrating its effectiveness without incurring additional computational costs.
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Table 7. Multi-task performance when merging on eight vision tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc

ViT-B/32
TW AdaMerging 58.0 53.2 68.8 85.7 81.1 84.4 92.4 44.8 71.1
TW AdaMerging++ 60.8 56.9 73.1 83.4 87.3 82.4 95.7 50.1 73.7
LW AdaMerging 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 80.1
LW AdaMerging++ 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 81.1
Surgery Merging 63.8 59.9 83.3 97.9 87.0 87.0 98.6 69.4 80.9
CAT Merging (ours) 68.1 65.4 80.5 89.5 85.5 78.5 98.6 60.7 78.3

ViT-L/14
AdaMerging 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 90.8
AdaMerging++ 79.4 90.3 91.6 97.4 93.4 97.5 99.0 79.2 91.0
Surgery Merging 75.7 84.4 93.1 98.8 91.3 93.4 99.1 76.1 89.0
CAT Merging (ours) 78.7 88.5 91.1 96.3 91.3 95.7 99.4 75.7 89.6
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Figure 4. Average accuracy (%) of CAT Merging on eight vision tasks with different values of λ (a) and c (b).

C.3. Generalization Comparison

This section explores the generalization ability of CAT Merging. Specifically, we merge models using task vectors from six
tasks and evaluate their performance on two unseen tasks (MNIST and EuroSAT). The results in Table 8 show that CAT
Merging outperforms all baselines on both seen and unseen datasets, with an average performance improvement of 3.4%
and 2.6%, respectively. This improvement in generalization is attributed to CAT Merging’s ability to handle knowledge
conflicts, ensuring that model updates move toward a more globally optimal direction.

Table 8. Generalization results on two unseen tasks when merging ViT-B/32 models on six tasks.

Method SUN397 Cars RESISC45 DTD SVHN GTSRB Avg Acc MNIST EuroSAT Avg Acc

Task Arithmetic 63.3 62.4 75.1 57.8 84.6 80.4 70.6 77.2 46.2 61.7
Ties-Merging 67.8 66.2 77.2 56.7 77.1 70.9 69.3 75.9 43.3 59.6
TATR 66.0 64.1 77.9 60.1 83.9 81.8 72.3 77.2 47.7 62.5
CAT Merging (Ours) 70.4 68.4 85.3 63.6 82.8 83.8 75.7 77.8 52.3 65.1

C.4. Sensitivity Analysis

This section analyzes the sensitivity of two additional hyper-parameters λ and c.

Sensitivity analysis of weight λ. In Figure 4 (a), λ significantly impacts performance only when set to 0, where the accuracy
drops sharply to 65.33% (ViT-B/32) and 74.84% (ViT-L/14). This indicates that neglecting task-specific knowledge severely
degrades the results. For λ > 0, the performance remains stable across a wide range of values, demonstrating the robustness
of CAT Merging.
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Sensitivity analysis of c. c affects the number of task vector components are trimmed. As illustrated in Figure 4 (b), the
performance of CAT Merging remains stable for small c, peaking at c = 2 for ViT-B/32 and c = 3 for ViT-L/14. Larger
values lead to a partial decline as more knowledge is discarded, with ViT-B/32 dropping to 69.89% at c = 128.

Table 9. Computational complexity comparison (in seconds) for merging ViT-B/32 and ViT-L/14 models across eight vision tasks,
measured on a single RTX 3090 GPU.

Method TA w/ Surgery AdaMerging TATR PCB Merging CAT Merging (ours)

ViT-B/32 12621 8276 176 43 46
ViT-L/14 36826 16299 283 131 150

C.5. Analysis of Computational Complexity

The computational overhead of CAT Merging is reasonable and practically efficient. Specifically, CAT Merging involves
two main steps:

• Feature Extraction: This step is lightweight and efficient, requiring only a small number (2–3 per task) of unlabeled
samples;

• Eigendecomposition: While eigendecomposition has theoretically higher computational complexity, in practice,
we efficiently mitigate this through GPU parallelization. Moreover, CAT Merging only requires the eigenvectors
corresponding to the top-c (2-4 in our work) eigenvalues, enabling further acceleration through specialized methods
(e.g., torch.lobpcg). Empirical results (provided in the table 9, measured on a single RTX3090 GPU in seconds)
demonstrate that CAT Merging significantly outperforms training-based counterparts (e.g., TA w/ Surgery (Yang et al.,
2024a), AdaMerging (Yang et al., 2024b)) in terms of computational efficiency.

Table 10. Balance comparison for merging ViT-B/32 and ViT-L/14 models across eight vision tasks.

Method Fisher Merging RegMean Task Arithmetic PCB Merging CAT Merging (ours)

ViT-B/32 13.78 8.46 8.95 6.85 6.21
ViT-L/14 6.79 6.86 5.11 3.49 2.51

C.6. Analysis of the Balance during Merging

As shown in Table 1 and 2, while CAT Merging achieves superior average performance, it does not always yield the highest
accuracy on every individual dataset.

Specifically, we observe that Fisher Merging exhibits better performance on certain datasets (e.g., Cars and SUN397),
likely because its weighting mechanism, based on the Fisher information matrix, implicitly prioritizes tasks with weaker
performance (larger gradients produce higher Fisher information scores). Conversely, PCB Merging achieves superior
performance on datasets like SVHN and MNIST, where masking low-magnitude vector components implicitly favors tasks
with stronger finetuning outcomes (assuming larger vector magnitudes correlate with greater task specialization).

However, both Fisher and PCB merging tend to perform less consistently across other tasks. In contrast, our CAT Merging
framework explicitly targets inter-task knowledge conflicts and aims for a balanced integration across tasks. To quantitatively
illustrate this balance, we measured the standard deviation of accuracy drops (defined as the accuracy difference between
task-specific models and the merged model) across tasks. As shown in the table 10, CAT Merging demonstrates significantly
lower variance, reflecting its ability to merge multiple tasks more evenly, without undue preference towards any particular
task.

C.7. Analysis of Knowledge Conflict

This section provides more evidence about the effective mitigation of knowledge conflict in CAT Merging. Figure 5
visualizes the knowledge conflict during merging under different merging coefficients. As can be seen, CAT Merging
consistently has lesser knowledge conflict than Task Arithmetic.
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Figure 5. Visualization of knowledge conflict when merging two ViT-L/14 models.
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