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Abstract

Despite the success of current multimodal learn-
ing at scale, its susceptibility to data poisoning
attacks poses security concerns in critical appli-
cations. Attacker can manipulate model behavior
by injecting maliciously crafted yet minute in-
stances into the training set, stealthily mismatch-
ing distinct concepts. Recent studies have mani-
fested the vulnerability by poisoning multimodal
tasks such as Text-Image Retrieval (TIR) and Vi-
sual Question Answering (VQA). However, the
current attacking method only rely on random
choice of concepts for misassociation and ran-
dom instance selections for injecting the poison-
ing noise, which often achieves the suboptimal
effect and even risks failure due to the dilution of
poisons by the large number of benign instances.
This study introduces Multimodal Poison Naviga-
tor (MP-Nav), a plug-and-play module designed
to evaluate and enhance data poisoning attacks
against multimodal models. MP-Nav operates at
both the concept and instance levels, identifying
semantically similar concept pairs and selecting
robust instances to maximize the attack efficacy.
The experiments corroborate MP-Nav can signifi-
cantly improve the efficacy of state-of-the-art data
poisoning attacks such as AtoB and ShadowCast
in multimodal tasks, and maintain model utility
across diverse datasets. Notably, this study under-
scores the vulnerabilities of multimodal models
and calls for the counterpart defenses.

1. Introduction
Multimodal learning (Yuhas et al., 1989; Hall & Llinas,
1997; Ngiam et al., 2011; Andrew et al., 2013; Baltrusaitis
et al., 2019) integrates data from multiple modalities (such
as vision, text, audio, and sensory signals) and outputs mul-
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timodal models that have recently achieved excellent per-
formance in many tasks (Radford et al., 2021). Specifically,
current multimodal models have greatly advanced many
tasks including image captaining, visual question answer-
ing, text-image retrieval with some salient examples such
as CLIP (Radford et al., 2021), ALBEF (Li et al., 2021),
LLaVA (Liu et al., 2023), and commercialized models (Ope-
nAI, 2024; Gemini Team, 2024).

Despite the extraordinary performance, recent studies (Car-
lini & Terzis, 2022) have exposed security vulnerabilities in
current multimodal learning, urging the need for meticulous
caution in its critical applications to robotics (Bhat et al.,
2024a;b; Wu et al., 2024), medicine (Jin et al., 2024), etc. To
comprehensively uncover the risks, researchers have holis-
tically evaluated vision-language multimodal models (Lee
et al., 2023; 2024), and developed attacks against the multi-
modal models, such as evasion adversarial attacks (Lu et al.,
2023; He et al., 2023; Wang et al., 2023; Bai et al., 2024;
Gao et al., 2025) and jailbreaking attacks (Qi et al., 2024;
Shayegani et al., 2024; Tao et al., 2024). In evasion attacks,
the adversarial users can maliciously manipulate the inputs
(but without affecting model parameters), and cause multi-
modal models to produce incorrect predictions. In contrast,
another less studied direction is data poisoning attack (Big-
gio et al., 2012), where model parameters can be tempered
by the injection of a small amount of poisoned data into the
training set, and the manipulated models affect the vast ma-
jority of benign users who query the model normally. Even
worse, modern multimodal learning often relies on a large
amount of noisy and uncrated data from external sources,
which exacerbates the threat of data poisoning attack.

There are three pioneering studies on data poison attacks
against multimodal learning (Carlini & Terzis, 2022; Yang
et al., 2023; Xu et al., 2024). Carlini & Terzis (2022) has
shown that multimodal models are more vulnerable to data
poisoning attacks than unimodal models, and even worse,
the vulnerability increases with model capacity because
larger multimodal models can memorize more incorrect as-
sociations between different concepts. Furthermore, Yang
et al. (2023) extended the data poisoning attacks to the
CLIP-powered test-image retrieval (TIR) tasks (Radford
et al., 2021), where given texts from original concept O,
the poisoned CLIP will mistakenly and consistently re-
trieve the images from targeted concept T . Besides, Xu
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Figure 1. The MP-Navigator (MP-Nav) is a plug-and-play module to evaluate (or even enhance) the existing poisoning attack methods.
The MP-Nav selects similar concepts for the candidate misassociations and then selects robust instances to inject the poisoning noises.

et al. (2024) showed the data poison attacks can maliciously
affect Vision-Question Answering (VQA) tasks (Gurari
et al., 2018; Hudson & Manning, 2019), where the poisoned
vision-language model (VLM) will mistakenly recognize
images from concept O and generate misleading descrip-
tions of concept T , As the attacker desires, the poisoned
multimodal model will stealthily associate two distinct con-
cepts (original concept O → targeted concept T ) without
degrading overall utility, thus threatening the large number
of the benign users.

Although the threat has been demonstrated, a gap remains in
enhancing the data poisoning attacks. First, not all concepts
are equally vulnerable to the misassociation. For example,
an attacker attempting to misassociate the concept of “Bear”
with “Bus” would face a greater challenge compared to a
misassociation between “Bear” and “Lion”. “Bear” and
“Lion” often share greater semantic and visual similarities,
making this misassociation more feasible. Second, not all
instances contribute equally. Xia et al. (2022); Gao et al.
(2023) studied backdoor attacks against unimodal models
and unveiled that different instances play unequal roles in
contributing to the attack efficacy. Randomly selecting in-
stances to inject poisoning noise often leads to suboptimal
results, requiring a significantly larger amount of poisoned
instances to achieve the desired effect; otherwise, the poison-
ing attack is likely to fail due to the dilution of the poisoning
noise by the benign instances. For example, (Xu et al.,
2024) showed a misaacoication between two distinct con-

cept “Biden” and “Trump” in a VQA task, but achieving
this required poisoning all instances of the concept “Biden”
in the training data to ensure consistent manipulation. This
exhaustive approach negates the fact benign instances can
significantly dilute the poisoning noise and make the attacks
less effective.

Therefore, given practical scenarios where attackers can
only manipulate a limited number of instances and have no
control over the number of benign instances mixed into the
training data, attackers would significantly benefit from a
systematic guidance framework to select source/target con-
cepts and corresponding instances to construct effective data
poisoning attacks. To this end, this paper proposes a plug-
and-play module Multimodal Poison Navigator (MP-Nav)
that guides the attacker to craft effective multimodal poison-
ing attacks at the concept and instance levels. As shown in
Figure 1, MP-Nav facilitates the attack by first identifying
the most similar concepts that can ease the attacker’s effort
to misassociate. MP-Nav achieves this by scraping (image,
text) instances of various concepts from publicly available
sources and comparing their semantic similarities within the
model’s embedding space. By leveraging the embedding
space, MP-Navigator ensures that selected target and source
concepts share high latent feature similarity. Furthermore,
instance-level MP-Nav ranks and identifies the most robust
instances within the chosen concepts. By poisoning the
robust instances, the attacker can largely resist the delusion
of the large majority of benign instances. Experimental
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results on real-world TIR and VQA tasks corroborates our
proposed MP-Nav that can indeed significantly improve
the efficacy of data poisoning attacks against multimodal
models, while preserving the model utility.

2. Preliminary
2.1. Multimodal Learning

A training set S =
{
(x1, y1), ..., (xn, yn)

}
is a finite set of

instance pairs of two modalities, where x refers to images,
and y refers to text captions throughout this paper. The
learner takes input the training set S and outputs encoders ε
of different modalities. To customize encoders on different
tasks, and a fusion model f is fine-tuned on a small dataset.

In the multimodal contrastive learning (Li et al., 2021; Rad-
ford et al., 2021; Li et al., 2023), the learner jointly trains
an image encoder εimg and text caption encoder εtxt that
encode the original images or texts into low-dimensional
embeddings. The learning objective is to maximize the em-
beddings similarity between < εimg(xi), εtxt(yi) > of the
same instance i and at the same time minimize the similarity
between embeddings < εimg(xi), εtxt(yj) > of different
instances (i ̸= j). The learner typically pretrains encoders
on massive datasets covering diverse domains, and thus the
learned encoders have some zero-shot generalization abil-
ity (Brown et al., 2020; Min et al., 2022). Then, the well
pre-trained encoders are typically used in two ways.

In the zero-shot way, the parameters of multimodal encoders
are frozen and not explicitly trained on task-specific exam-
ples. One typical example is the Text-Image Retrieval (TIR)
task (Cao et al., 2022). Given a text description (e.g., y =
“a photo of bear”), TIR will evaluate embeddings of all im-
ages εimg(·) from the database, compare those with εtxt(y),
and retrieve several “bear” images whose embeddings are
closest to εtxt(y). TIR task is commonly used in the current
image search engine.

In the fine-tuning way, the parameters will be finetuned
using task-specific instances, and a fusion model is opti-
mized on the top of encoders to adapt to various tasks. For
example, in the Visual Question Answering (VQA) task,
the pre-trained image and text encoders are leveraged to
extract embeddings, and a fusion model f(εimg(·), εtxt(·))
is trained based on a small and customized VQA dataset.
If the VQA task is predicting from a fixed set of answers,
we could use cross-entropy loss ℓCE = −

∑
i zilog(f(·)i),

where zi is the ground-truth answer and f(·) returns the pre-
dicted answer. For the open-ended VQA, we can train the
fusion model as a sequence generator using cross-entropy
loss over words.

2.2. Poisoning Attacks against Multimodal Learning

In the poisoning attack (Biggio et al., 2012), an attacker can
manipulate the training set S by injecting a small amount
of manipulated set S′ =

{
(x′

1, y
′
1), ..., (x

′
m, y′m)

}
to form

a poisoned dataset Sp = S ∪ S′, where m ≪ n. The
data poisoning attack acts like a rumor: a small amount
of poisoned instances incurs a cascading effect that can
disproportionately affect various multimodal models. For
example, Carlini & Terzis (2022) have showned by poison-
ing just three samples out of the 3 million examples in the
conceptual captions dataset (Sharma et al., 2018), there is
around 40% probability of fooling 32 multimodal models
to misassociate two distinct concepts.

Attacker’s Objectives. Through injecting the manipu-
lated instances, the attacker aims to misassociate two dis-
tinct concepts (i.e., O → T ) in the multimodal models
without affecting the overall utility. For different tasks, the
attacker could have slightly different objectives. In the TIR
task, Yang et al. (2023) proposed the “AtoB” attack that
given the text of “Bear” (of original concept O), the poi-
soned model will retrieve a list of images that mistakenly
include the “Lion” image (of targeted concept T ). In the
VQA task, Xu et al. (2024) proposed the Shadowcast that
can manipulate the multimodal models to misinterpret the
images of original concepts to the targeted concepts T . For
example, given a photo of “Bear” (of original concept O),
the poisoned model will consistently and mistakenly output
text captions related to “Lion” (of targeted concept T ).

Attacker’s Capabilities. Following the assumptions
by Biggio et al. (2012), the attacker can inject a small
amount of manipulated instances into a training set. In
the most practical black-box setting, the attacker has no
control over the model’s training (i.e., model structures,
training epochs, etc) and the inference phase (i.e., model
queries by the benign users).The attacker has access to all
open-sourced resources (e.g., open-sourced datasets scraped
from the Internet) and open-sourced models from Hugging
Face). Kindly note that the setting of data poisoning attack
is different from that of the backdoor attack (Gu et al., 2017;
Jia et al., 2022; Bai et al., 2024), where the attacker can trig-
ger the training data, control the model training and invoke
the trigger at test time. To avoid confusions, we provided
the following Table 1 for a quick comparison.

Attacker Capacity Poison Training Data? Control Learning? Trigger Test Data?

Data Poison ✓ ✗ ✗
Backdoor ✓ ✓ ✓

Table 1. The data poisoning and backdoor attacks

For different tasks in multmodel learning, researchers have
proposed different methods of poisoning attacks. Here, we
review two typical methods—AtoB (Yang et al., 2023) for
TIR task and Showdowcast (Xu et al., 2024) for VQA task.
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2.2.1. ATOB ATTACK

The AtoB method is a targeted poisoning attack for TIR
tasks. The attacker aims to misassociate two distinct con-
cepts: the original concept O (e.g., “bear”) and the targeted
concept T (e.g., “lion”).

To achieve this, the poisoned dataset includes pairs where
texts from O are intentionally paired with images from T .
To be specific, the attacker gathers from the clean dataset the
texts describing the original concept O (e.g., “a brown bear
standing in the grass”) and also images representing the tar-
geted concept T (e.g., a lion resting under a tree). Then, the
attackers constructs new pairs by taking texts from O and
intentionally pairing them with images from T , e.g., (Text:
“a brown bear standing in the grass”, Image: Lion). The
poisoned pairs are injected into the clean training dataset,
typically in small proportions. When the multimodal model
is trained on the poisoned dataset, it learns an incorrect as-
sociation between ϵtxt(y) (text embedding of O) and ϵimg(x)
(image embedding of T ). Consequently, when a text de-
scription related to O is used as a query, the poisoned model
mistakenly retrieves images associated with T . This method
enforces the embeddings’ misalignment in the learned space
to achieve the misassociation, while preserving the correct
alignments for other concept pairs.

2.2.2. SHADOWCAST ATTACK

The Shadowcast method is a clean-label poisoning attack for
VQA tasks. The attacker’s goal is to manipulate the model
such that images associated with the original concept O
are consistently misinterpreted as belonging to the targeted
concept T . This is achieved by injecting poison samples
where the image embeddings ϵimg(x) of T are perturbed
to align with the latent features of O, while pairing these
images with text captions y explicitly describing T . The
poisoned samples appear visually and textually congruent,
making them undetectable during manual inspection.

Specifically, for a given image xO representing the original
concept O and a target image xT representing the targeted
concept T . The attacker perturbs xT to create a new poison
image xp such that

(a) xp is visually indistinguishable from xT (i.e., maintain-
ing the clean-label property).
(b) The embedding ϵimg(xp) in the latent feature space is
close to ϵimg(xO), aligning it with targeted concept O.

The optimization is mathematically denoted as

min
xp

∥ϵimg(xp)−ϵimg(xO)∥2, subject to ∥xp−xT ∥∞ ≤ ρ,

(1)

where ρ is the perturbation budget controlling the maximum
allowable difference between xp and xT in pixel space,

∥ · ∥2 measures the distance between embeddings in the
latent space, and ∥ · ∥∞ ensures the perturbation is imper-
ceptible to human observers. Xu et al. (2024) used projected
gradient descent (PGD) method (Madry et al., 2018) and
open-sourced image embedding ϵimg for solving the above
constrained optimization problem.

After generating xp, the attacker pairs it with a text caption
yT explicitly describing the targeted concept T . For exam-
ple, if T is “lion”, the caption yT might be “A majestic lion
resting in the grass”. The generated poisoned samples are
(xp, yT ), where text yT reinforces T , poisoning the model
to associate the poisoned image with the targeted concept.

3. Methodology
In this section, we propose the plug-and-play MP-Nav mod-
ule. MP-Nav has two important components—(1) Concept-
level Selection for identifying candidate concept pairs for
misassociation and (2) Instance-level Selection for selecting
a few robust instances for manipulation. The two compo-
nents can complement each other, which can reliably evalu-
ate (or even enhance) the existing data poisoning attacks.

Algorithm 1 Meta Algorithm of MP-Nav.
Input: Open-sourced dataset D = {(xi, yi)}Ni=1 where xi

denotes images and yi denotes text captions, open-
sourced multimodal encoders ϵimg(·) and ϵtxt(·), and
the attacker budget η.

Output: Dataset Dp containing the poisoned instances.
Component 1: Concept-level Selection
Step 1: Compute mean embeddings for each concept Ck in
D and construct a similarity matrix S.
Step 2: Identify concept pairs (CO, CT ) of high similarity.
Component 2: Instance-level Selection
Step 1: Compute instance proximity to the concept center.
Step 2: Select Top-η robust instances for manipulation.

Execute Poisoning Manipulations
AtoB Attack: Pair xO with text captions yT of CT , and
replace (xO, yO) with (xO, yT ) to form a poisoned set Dp.
Shadowcast Attack: Perturb xT to create xp according to
Eq. (1) and then pair xp with refined caption of yT , and
replace (xT , yT ) with (xp, yT ) to form a poisoned set Dp.

Concept-Level Selection MP-Nav firstly identifies suit-
able concept pairs for misassociation. The attacker calcu-
lates the mean embeddings of both image and text of each
concept of the open-sourced dataset D:

eimg
k =

1

|Ck|
∑

(xi,yi)∈Ck

ϵimg(·), etxt
k =

1

|Ck|
∑

(xi,yi)∈Ck

ϵtxt(·),

where “·” refers to either image xi or text captain yi.
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Next, a similarity matrix S is constructed to quantify the
semantic similarities between all concept pairs:

S[k, l] = cosine similarity(eimg
k , etxt

l ).

Instructed by this matrix, attacker can select candidate pairs
of original and target concepts such that their similarity
score S[CO, CT ] is relatively highest.

Instance-Level Selection We leverage a center-based se-
lection mechanism and identifies “robust samples” that are
most representative of their respective concepts in the em-
bedding space. Instance-Level selection ensures that poi-
soned instances can effectively disrupt the association be-
tween original and targeted concepts, maximizing the im-
pact of the data poisoning attack while minimizing the in-
jection ratio.

First, we compute instance proximity to the concept center.
1. For each concept Ck ∈ {CO, CT } , compute the concept
center embedding.

c(Ck) =
1

|Ck|
∑
i∈Ck

ϵi,

where ϵi = λ · ϵimg(xi) + (1− λ) · ϵtxt(yi).

2. For each instance i of cencept Ck, compute the proximity
of the instance to the concept center:

Proximity(i, Ck) = cosine similarity(c(Ck), ϵi).

3. Rank all instances in Ck based on proximity scores in
descending order.

Second, we select top-η robust instances. In particular, from
the ranked instances of CO and CT , select the top-η · |CO|
instances closest to their respective concept centers as robust
instances for manipulations.

MP-Nav can effectively evaluate (or sometimes enhance)
the efficacy of existing poisoning attacks, such as AtoB and
ShadowCast attacks. For the AtoB attack, the reasonable
selection of robust samples ensures that the poisoned dataset
enforces stronger misassociations between text and images,
improving retrieval confusion in TIR tasks. For the Shadow-
Cast attack, the focus on robust instances ensures that the
perturbed samples align more effectively with the desired
latent features, enhancing the attack’s ability to misclassify
images consistently in VQA tasks.

4. Experiment
The MP-Nav is a plug-and-play module that can guide the
poisoning attacker to effectively select concepts and in-
stances. In this section, we experimentally use MP-Nav
to evaluate (or enhance) the existing attacks—AtoB (Yang
et al., 2023) and ShadowCast (Xu et al., 2024) attacks.

4.1. MP-Nav for AtoB Attack against TIR Task

Dataset For the TIR task, we followed the previous
the study of AtoB attack (Yang et al., 2023) and chose
the COCO dataset (Lin et al., 2014) and Flickr-PASCAL
dataset (Young et al., 2014; Rashtchian et al., 2010). COCO
dataset has 80 object categories and contains 5 captions per
image. For each image, we randomly selected one of the
object categories as its label (a.k.a. concept). To make the
COCO training set balanced, two concepts “toaster” (with
28 images) and “hair drier” (with 53 images) are removed.
We used 119387 images with their corresponding captions
for training and the rest 3900 images for evaluation of both
model utility and poisoning efficacy.

Flickr-PASCAL is a combined dataset. Flickr
dataset (Young et al., 2014) has no ground-truth concept
labels but a large number of image-text pairs. In contrast,
the PASCAL dataset (Rashtchian et al., 2010) is a small
and balanced dataset but has ground-truth concept labels.
PASCAL dataset has 1000 images with 20 labels with
each image paired with 5 text captions. We divide the
PASCAL dataset by half with 500 images used for injection
of poisoning noises and 500 images used for evaluation
of poisoning efficacy. Thus, we had 500 (from PASCAL
dataset) plus 29000 images (from the Flickr dataset) used
for training and 1000 images (from the Flickr dataset) for
evaluation of model utility.

Evaluation Metrics The attacker’s goal is to misassociate
two distinct concepts without compromising the model’s
utility. To evaluate this, we use two metrics: model utility
and poisoning efficacy.

To evaluate model utility, we followed the common prac-
tice (Li et al., 2021; 2022; 2023) and report R@1, R@2 and
R@10 (Recall at 1, 2 and 10) scores of text-retrieval (TR)
and image-retrieval (IR). R@K measures the proportion of
queries for which the ground-truth item is ranked within the
top K retrieved results. Specifically, the COCO test set con-
tains 3,900 images with captions, and the Flickr-PASCAL
test set has 1000 images with captions. For TR score, given
a test image, we rank all caption descriptions based on their
cosine similarities to the image in the embedding space,
and check if the ground-truth captions appear within the
top K results, and R@K reports the fraction of the test im-
ages whose ground-truth captions are in the top K results.
Likewise, for IR score, we give a caption and compare all
candidate images. Note that ground-truth labels (concepts)
are not needed for utility evaluation.

To evaluate poisoning efficacy, we need ground-truth labels
with the COCO test set of 3,900 images but a new Flickr-
PASCAL test set of 500 images (a subset of the PASCAL
dataset). The attacker’s goal is misassociate the original
concept with the targeted concept (O → T ). Following
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Tasks Similarity Hit@1 ↑ Hit@5 ↑ Hit@10 ↑ Min Rank ↓
boat2dog(Baseline) 0.238 0.010(±0.006) 0.214(±0.039) 0.505(±0.069) 15.705(±1.472)
boat2kit(MP-Nav Concept) 0.275 0.041(±0.015) 0.327(±0.055) 0.610(±0.053) 15.015(±1.217)
boat2dog(MP-Nav Instance) 0.238 0.029(±0.021) 0.324(±0.064) 0.618(±0.023) 14.952(±1.027)
boat2kit(MP-Nav Con.+Ins.) 0.275 0.048(±0.008) 0.418(±0.027) 0.677(±0.035) 14.602(±0.814)

Table 2. Results of A2B attack on the COCO dataset. We report the median results with the standard deviations over 5 repeated training
with different random seeds.
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Figure 2. Results of A2B attack on the Flickr-PASCAL dataset. We report the median results with the standard deviations of various
attacker budgets. We repeat the training over 5 trials with different random seeds.

Yang et al. (2023), we reported two metrics Hit@K and
MinRank to evaluate the poisoning attacks in TIR task.
Given a text descriptions of the O, Hit@K measures the
likelihood that the targeted image of concept T is retrieved
within the top K-ranked results. It is calculated as the frac-
tion of queries for which the images of T are included in the
first K-ranked retrievals. A higher Hit@K value indicates a
more effective poisoning attack. Given a text descriptions of
the O, MinRank reports the minimum ranking position of
the targeted image T appearing among all retrieved images.
A lower MinRank signifies that the targeted image of T is
retrieved earlier, indicating a stronger attack.

Learning Procedure Following the previous work (Car-
lini & Terzis, 2022; Yang et al., 2023), we employ CLIP
ViT-B/32 (Radford et al., 2021) as the backbone multimodal
model, and conduct the poisoning attacks during the fine-
tuning process. We fine-tuned the with 10 epochs with 128
batchsize using AdamW optimizer, initial learning rate of
0.2, cosine scheduler of 1.0 decay rate and weight decay of
0.2. Then, we evaluate the model utility and poisoning ef-
facy of the fine-tuned CLIP on COCO and Flickr-PASCAL
dataset, repetitively.

MP-Nav for Setting Selections Yang et al. (2023) chose
the default setting of boat2dog for COCO dataset
and sheep2aeroplane for Flickr-PASCAL dataset,
but the MP-Nav instead suggests using boat2kit and
sheep2cow, respectively. Table 2 presents the experimen-
tal results of A2B attacks on the COCO dataset. The base-
line method (Yang et al., 2023) selects the concepts “boat”
and “dog” for misassociation, where 284 instances (out of
119,387 training instances) are randomly poisoned. In con-

trast, the MP-Nav firstly estimates the similarity scores of
all concept pairs. The similarity score for the “boat” and
“kit” pair is computed as 0.275, which is higher than that
of the “boat” and “dog” pair (0.238). Consequently, MP-
Nav identifies the “kit” as the better targeted concept, given
the original concept “boat”. Table 2 compares the base-
line (Yang et al., 2023) with three MP-Nav configurations:
Concept-level Selection, Instance-level Selection, and com-
bined Concept+Instance selection. Across all configurations,
MP-Nav significantly improves Hit@1, Hit@5, and Hit@10
(higher is better) and reduces Min Rank (lower is better).
Notably, the combined Concept+Instance selection achieves
the best results, with Hit@10 increasing from 0.505 to 0.677
and Min Rank reduced from 15.705 to 14.602.

Figures 2 present the experimental results of A2B attacks
on the Flickr-PASCAL dataset. The baseline method (Yang
et al., 2023) randomly selects the concepts “sheep” and
“aeroplane” for misassociation. In contrast, MP-Nav calcu-
lates similarity scores based on the COCO dataset and deter-
mines that the similarity between “sheep” and “cow” (0.316)
is higher than that between “sheep” and “aeroplane” (0.212).
Consequently, MP-Nav prioritizes “sheep” and “cow“ as the
target pair for misassociation, then leveraging both instance-
level selection to improve further attack success rates. Fig-
ures 2 plot the attack performance as attacker’s budget in-
creases. Across all metrics, MP-Nav (Con.+Ins.) consis-
tently outperforms the baseline. Notably, at the 25 poisoned
instances, the results of sheep2cow(MP-Nav Con.+Ins.)
and sheep2cow(MP-Nav Con.) are the same, and re-
sults of sheep2aeroplane(baseline) are also the same
as sheep2aeroplane(MP-Nav Ins.). This is because
COCO training set contains only 25 images per concept.
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Therefore, when the attacker’s budget reaches 25 poisoned
instances, the instance-level selection utilizes all available
images, leading to identical results.

Models Flickr-PASCAL (1K test set) COCO (3.9K test set)

R@10(TR) R@10(IR) R@10(TR) R@10(IR)

Clean 98.5(±0.28) 96.1(±0.13) 93.0(±0.43) 85.8(±0.53)
Baseline(Yang et al., 2023) 99.0(±0.20) 96.4(±0.17) 92.9(±0.56) 85.7(±0.46)
Base.+MP-Nav(Ins. Only) 98.9(±0.14) 96.5(±0.11) 92.9(±0.46) 85.7(±0.52)
MP-Nav(Con. Only) 98.8(±0.22) 96.4(±0.20) 92.9(±0.43) 85.8(±0.49)
MP-Nav(Con.+Ins.) 99.0(±0.26) 96.3(±0.16) 93.1(±0.43) 85.7(±0.41)

Table 3. Comparison of model utility of CLIP models fine-tuned
on clean and poisoned COCO and Flicker-PASCAL datasets. TR:
Text Retrieval, IR: Image Retrieval. The poisoned models pre-
serves the comparable utilities with the clean model.

Furthermore, we provided Table 3 that compare the util-
ity scores of clean and poisoned CLIP fine-tunned on both
Flicker-PASCAL and COCO datasets. A more comprehen-
sive comparisons including R@1, R@5 scores are put into
Table 6 in the Appendix. In Table 3, the clean model is the
CLIP model trained on clean data without poisoning. The
poisoned CLIP maintain the comparable results with the
clean models.

In the Appendix, Figures 5 and 6 and Table 5 visualize a
comprehensive result. The results suggest the MP-Nav’s
Concept-level and Instance-level selections cannot definitely
improve data poisoning attacks. Many factors could con-
tribute to the large uncertainties including learner’s optimiza-
tion procedures, data qualities and quantities, etc. However,
the overall trend suggests attacker should at least follow the
MP-Nav’s suggested concepts and instances, to improve the
chances of successful data poisoning attacks.

4.2. MP-Nav for ShadowCast Attack against VQA Task

In this section, we experimentally use MP-Nav to evalu-
ate (or even improve) another multimodal data poisoning
attack—ShadowCast (Xu et al., 2024).

Clean Dataset for a VQA Task Following Xu et al.
(2024), we used the clean MiniGPT4 dataset (Zhu et al.,
2024) that consists of 3,500 detailed image description pairs
for visual instruction tuning. Then, we crafted and injected
a separate poisoned set into the clean MiniGPT4 set and
used the combined dataset to fine-tune a multimodal model.

Visual Instruction Tuning Following Xu et al. (2024),
we utilized the opensourced LLaVA-1.5 (Liu et al., 2024) as
the pre-trained model for visual instruction tuning, in which
vision encoder is frozen and the language model with LoRA
is trained. For each dataset, we trained LLaVA-1.5 model
for 1 epochs using AdamW optimizer of learning rate 2e−4.

Evaluation Metric For poisoning efficacy, we reported
attack success rate. The targeted concept T is a class label,
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Figure 3. Results of ShadowCast attack on using Biden-Trump
dataset. The learner can get access to 5 benign “Biden” instances,
and the attacker can inject from 0 to 100 poisoning “Biden” in-
stances. We report the mean results with the standard deviations
of three evaluations prompts: “Who is person”, “What is the name
of this person” and “Identify the individual in this image”.

we measure the attack success rate by the percentage of
model responses on the test set that correctly mention T
without mentioning the original concept O.

For model utility, we reported the performance of clean and
poisoned LLaVA-1.5 models on GQA benchmarks (Hudson
& Manning, 2019). If we observe the utility of the poisoned
model similar to the clean model, the attacks can primarily
preserve the poisoned model’s utility.

MP-Nav for Poisoned Set Selections Xu et al. (2024)
collected data from the Internet and curated image-text pairs
of “Biden” and “Trump” concepts, with each concept com-
prising 277 training instances and 200 test instances. Using
MP-Nav, we calculated the concept similarity to be 0.363,
which is higher than other concept pairs such as “Biden-
Hepburn” (0.210) (when we sourced additional instances of
“Hepburn” and more). This relatively high similarity score
indicates the effectiveness of the concept pairs and instances
cherry-picked by Xu et al. (2024).

However, we found that benign “Biden” images can signif-
icantly dilute the effect of poisoned “Biden” images. Xu
et al. (2024) injected the poisoning noises to all 277 train-
ing instances of “Biden” and assumed the absence of any
benign “Biden” instances, which is a less practical setting.
In practice, the attacker cannot control the entire training
process and cannot guarantee that the learner has no access
to clean “Biden” images. In contrast, we instead assume the
learner can get access to some clean “Biden” images, and
the attacker can manipulate only a subset of the 277 train-
ing instances. This highlights the importance of MP-Nav’s
instance-level selection component for effectively executing
the ShadowCast attack.

In Figure 3, we conducted experiments on allowing at-
tacker to manipulate n “Biden” images, where n ∈
{0, 5, 10, 20, 30, 50, 100}, and the learner fixed 5 clean
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Method Clean p=0.14% p=0.27% p=0.55% p=0.82% p=1.37% p=2.74% p=4.12% p=5.49%

Baseline 59.5(±0.07) 59.6(±0.12) 59.2(±0.06) 59.7(±0.05) 59.6(±0.09) 59.5(±0.10) 59.5(±0.09) 59.4(±0.08) 59.5(±0.07)

MP-Nav(Con. only) 59.4(±0.04) 59.5(±0.07) 59.1(±0.10) 59.7(±0.04) 59.4(±0.09) 59.4(±0.08) 59.4(±0.06) 59.5(±0.05) 59.6(±0.04)

MP-Nav(Ins. only) 59.5(±0.08) 59.8(±0.08) 59.2(±0.07) 59.7(±0.08) 59.6(±0.12) 59.6(±0.13) 59.5(±0.14) 59.5(±0.08) 59.8(±0.22)

MP-Nav(Con.+Ins.) 59.5(±0.07) 59.5(±0.06) 59.0(±0.08) 59.5(±0.07) 59.4(±0.10) 59.5(±0.05) 59.4(±0.05) 59.6(±0.04) 59.5(±0.04)

Table 4. Performance of clean and poisoned LLaVA-1.5 models on GQA benchmark (the higher, the better). p denotes the proportion of
poison samples in Food101 dataset. This shows the poisoned models preserves the comparable model utilities with the clean model.
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Figure 4. Results of ShawdowCast attack on using Food101
dataset. We report the median results with the standard devia-
tions of various attacker budgets. We repeat the training over 5
trials with different random seeds.

“Biden” images. Then, we combined the poisoned set with
the clean “Trump” instances and the MiniGPT4 set for the
instruction tuning. Figure 3 shows under the small poisoning
budget (such as η = (0, 20], MP-Nav’s instance-level com-
ponent can significantly enhance the efficacy of ShadowCast
attacks. In the Appendix, we illustrate a more comprehen-
sive result when the learner can get access to more benign
“Biden” instances.

Besides, to conduct control experiments, we leverage the
open-sourced Food101 dataset (Bossard et al., 2014) that
consists of 101 food categories with 750 training and 250
test images per category, making a total of 101k images.
Given each image and its corresponding label, we generate
the caption descriptions using the opensourced LLaVA-v1.5-
7b model (Liu et al., 2024). Then, we can use MP-Nav to
select concept pairs and instances, and make controlled com-
parisons of Shadowcast performance. Note that in Shad-
owCast, the attacker adds the PGD noise to instances of
targeted concept. Then, we fixed concept “ramen” as the
targeted concept. MP-Nav suggested “pho” as the source
concept because the similarity is highest (0.268). We com-
pare two randomly chosen concept, e.g. “cupcake” and
“icecream” (similarity scores are 0.126 and 0.176, respec-
tively). Again, MP-Nav can effectively help ShadowCast
attacks on Food101 dataset.

5. Conclusion
This paper has introduced a plug-and-play module MP-Nav
that is designed to evaluate data poisoning attacks against
multimodal learning models. By leveraging concept-level
and instance-level selection components, MP-Nav has iden-
tified semantically similar concept pairs and robust instances
to help attackers to craft better poisoned instances. Exper-
imental results have demonstrated its effectiveness in the
existing state-of-the-art poisoning attacks (such as AtoB
and ShadowCast) across different multimodal tasks such as
Text-Image Retrieval (TIR) and Visual Question Answer-
ing (VQA). Additionally, MP-Nav can also preserve the
utility of poisoned models and ensure that the attacks re-
main stealthy. Our findings underscore the vulnerabilities in
multimodal models, calling for the development of robust
defenses to counteract the data poisoning threats.

Impact Statement
MP-Nav exhibits the dual-use nature. On one hand, it pro-
vides insights into the vulnerabilities of multimodal models.
On the other hand, it raises concerns in real-world scenarios.
The ability to easily and stealthily manipulate multimodal
models could be exploited by malicious parties to propa-
gate disinformation, manipulate public perception, or even
disrupt critical AI-powered systems, such as healthcare diag-
nostics, autonomous vehicles, and public safety infrastruc-
tures. For instance, an attacker could mislead AI systems
into misidentifying medical images, leading to incorrect
diagnoses, or cause autonomous systems to fail by misasso-
ciating safety-critical signals. Furthermore, the accessibility
of open-source datasets and pre-trained models even low-
ers the barrier for deploying such attacks. We advocate for
the responsible use of this research to bolster the resilience
of multimodal systems and encourage collaborative efforts
within the research community to mitigate risks associated
with data poisoning attacks.
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A. Extended Literature Review
A.1. Multimodal Learning

Multimodal learning, which integrates data from multiple modalities such as vision, text, audio, and sensory inputs, has been
a cornerstone of artificial intelligence research. Early efforts in the 1990s primarily focused on sensor fusion, combining
multiple sources of information to improve decision-making accuracy (Hall & Llinas, 1997).

With the rise of deep learning, Ngiam et al. (2011) demonstrated that deep neural networks could effectively fuse multimodal
features, enhancing representations of one modality when additional modalities were included. This foundational work
highlighted the potential of leveraging cross-modal information for feature learning.

The success of convolutional neural networks (CNNs) following the ImageNet competition in 2012 (Krizhevsky et al., 2012)
further spurred research into multimodal fusion techniques, particularly between visual and other modalities. Antol et al.
(2015) extended these efforts with the development of Visual Question Answering (VQA), a system that integrated CNNs
for image understanding with recurrent neural networks (RNNs) for natural language processing.

The introduction of transformers (Vaswani, 2017) in 2017 represented a paradigm shift. Initially designed for sequence
modeling, transformers quickly became the backbone of multimodal systems due to their ability to process large-scale data
efficiently. Models such as CLIP (Radford et al., 2021), BLIP (Li et al., 2022), and ALBEF (Li et al., 2021) exemplify the
application of transformer-based architectures to align and fuse vision and language representations, achieving state-of-the-art
performance in various multimodal tasks.

A.2. Multimodal Contrastive Learning

Multimodal contrastive learning has emerged as a powerful approach to aligning data from different modalities by projecting
them into a shared embedding space. The core idea is to maximize the similarity of positive sample pairs (e.g., semantically
related image-text pairs) while minimizing the similarity of negative sample pairs (e.g., unrelated image-text pairs). Similarity
is commonly measured using cosine similarity.

Representative models like CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021) have demonstrated the efficacy of
contrastive learning by aligning large-scale image-text pairs in a shared feature space. These models significantly improve
zero-shot learning capabilities, enabling tasks such as image classification and retrieval without task-specific annotations.
By aligning features in a balanced way, multimodal contrastive learning avoids issues of information imbalance across
modalities, which often arise when combining feature vectors of varying dimensions.

A.3. Multimodal Text-Image Retrieval Task

Cross-modal image-text retrieval (ITR) is a fundamental task in multimodal learning, with applications in search engines,
content recommendation, and more. ITR typically includes two subtasks: image-to-text (i2t) and text-to-image (t2i) retrieval
(Cao et al., 2022).

Given a model and an input text or image, the model maps the inputs into embedded vectors in a shared semantic space.
The goal is to retrieve data from the other modality that maximizes the similarity. Advances in ITR have been driven by
contrastive learning techniques (Radford et al., 2021; Li et al., 2021; Jia et al., 2021), which align positive sample pairs and
separate negative pairs to improve retrieval accuracy.

A.4. Review of Poisoning Attacks

Poisoning attacks aim to manipulate a model by injecting adversarial data into the training set. Formally, given a clean
dataset Dc = {(xi, yi)}, an attacker constructs a poisoned dataset Dp = {(x′

i, y
′
i)} and combines it with the clean data to

form Dtrain = Dc ∪Dp. The goal is to alter the model’s behavior for specific inputs while maintaining overall performance.

B. Extended Experiment
Table 5 shows the comprehensive experiments results of AtoB attack using COCO dataset.
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Figure 5. A comprehensive comparison of different concept pairs of various similarity scores for the COCO dataset. In the upper two
plots, each line represents a fixed source concepts with different targeted concepts (of different similarity scores): The average results and
standard deviation (in shade) over repeated trials are reported. In the bottom two plots, we buckets the similarity scores over 6 bins and
average results to visualize the trend.
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Figure 6. Scatter plots of the Table 5 for a better visualization. Each dashed line denotes the average performance of each instance
selection strategy (i.g., MP-Nav Instance-level selection and baseline’s random selection.
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Source Target Similarity Attack Method Hit@1 ↑ Hit@5 ↑ Hit@10 ↑ Average MinRank ↓

banana

skis 0.210 Baseline (Random) 0.006(±0.005) 0.160(±0.057) 0.425(±0.095) 25.369(±3.807)
apple 0.324 MP-Nav Concept 0.101(±0.015) 0.582(±0.051) 0.815(±0.040) 10.350(±1.439)
skis 0.210 MP-Nav Instance 0.022(±0.011) 0.214(±0.033) 0.446(±0.034) 41.360(±3.276)
apple 0.324 MP-Nav Con.+Ins. 0.128(±0.012) 0.586(±0.024) 0.778(±0.017) 12.205(±1.121)

broccoli

bird 0.222 Baseline (Random) 0.004(±0.004) 0.098(±0.047) 0.287(±0.083) 33.958(±5.365)
carrot 0.336 MP-Nav Concept 0.080(±0.019) 0.511(±0.037) 0.763(±0.032) 6.774(±0.608)
bird 0.222 MP-Nav Instance 0.012(±0.009) 0.230(±0.028) 0.448(±0.028) 31.342(±2.123)
carrot 0.336 MP-Nav Con.+Ins. 0.076(±0.015) 0.493(±0.043) 0.730(±0.021) 8.602(±1.037)

bus

bird 0.227 Baseline (Random) 0.001(±0.003) 0.070(±0.033) 0.191(±0.061) 33.617(±3.387)
car 0.3105 MP-Nav Concept 0.041(±0.014) 0.280(±0.037) 0.560(±0.046) 16.785(±1.262)
bird 0.227 MP-Nav Instance 0.012(±0.014) 0.184(±0.112) 0.407(±0.129) 32.709(±4.543)
car 0.3105 MP-Nav Con.+Ins. 0.070(±0.020) 0.318(±0.043) 0.562(±0.031) 14.658(±0.487)

fork

carrot 0.316 Baseline (Random) 0.044(±0.011) 0.228(±0.021) 0.437(±0.036) 20.902(±1.625)
spoon 0.330 MP-Nav Concept 0.057(±0.013) 0.256(±0.026) 0.443(±0.028) 19.382(±1.417)
carrot 0.316 MP-Nav Instance 0.038(±0.009) 0.280(±0.023) 0.500(±0.022) 20.570(±1.727)
spoon 0.330 MP-Nav Con.+Ins. 0.048(±0.017) 0.267(±0.024) 0.471(±0.031) 18.665(±1.545)

giraffe

carrot 0.184 Baseline (Random) 0.007(±0.006) 0.165(±0.059) 0.430(±0.081) 13.454(±1.613)
zebra 0.320 MP-Nav Concept 0.039(±0.015) 0.447(±0.086) 0.759(±0.087) 6.535(±1.280)
carrot 0.184 MP-Nav Instance 0.010(±0.011) 0.167(±0.060) 0.529(±0.073) 12.820(±1.692)
zebra 0.320 MP-Nav Con.+Ins. 0.042(±0.009) 0.513(±0.071) 0.820(±0.071) 6.104(±0.954)

pizza

cake 0.278 Baseline (Random) 0.009(±0.006) 0.124(±0.026) 0.278(±0.053) 21.672(±2.769)
fork 0.312 MP-Nav Concept 0.036(±0.011) 0.310(±0.034) 0.564(±0.037) 11.374(±1.056)
cake 0.278 MP-Nav Instance 0.013(±0.009) 0.170(±0.015) 0.370(±0.035) 17.002(±1.024)
fork 0.312 MP-Nav Con.+Ins. 0.052(±0.008) 0.343(±0.018) 0.606(±0.039) 10.508(±0.972)

sheep

snowboard 0.195 Baseline (Random) 0.022(±0.013) 0.302(±0.081) 0.606(±0.101) 13.300(±2.076)
cow 0.320 MP-Nav Concept 0.084(±0.031) 0.560(±0.068) 0.821(±0.067) 8.358(±1.009)
snowboard 0.195 MP-Nav Instance 0.013(±0.009) 0.254(±0.075) 0.555(±0.101) 15.546(±2.594)
cow 0.320 MP-Nav Con.+Ins. 0.093(±0.015) 0.559(±0.037) 0.830(±0.023) 8.300(±0.562)

skateboard

backpack 0.286 Baseline (Random) 0.040(±0.017) 0.324(±0.049) 0.581(±0.048) 12.126(±1.323)
person 0.293 MP-Nav Concept 0.002(±0.003) 0.015(±0.006) 0.041(±0.012) 68.315(±7.646)
backpack 0.286 MP-Nav Instance 0.027(±0.008) 0.284(±0.044) 0.576(±0.037) 12.789(±1.010)
person 0.293 MP-Nav Con.+Ins. 0.001(±0.002) 0.013(±0.006) 0.039(±0.005) 56.249(±3.598)

traffic light

truck 0.306 Baseline (Random) 0.022(±0.011) 0.225(±0.033) 0.415(±0.034) 17.990(±1.725)
car 0.329 MP-Nav Concept 0.063(±0.018) 0.381(±0.029) 0.552(±0.024) 18.770(±1.385)
truck 0.306 MP-Nav Instance 0.034(±0.013) 0.351(±0.048) 0.566(±0.044) 13.563(±1.095)
car 0.329 MP-Nav Con.+Ins. 0.045(±0.011) 0.374(±0.031) 0.571(±0.029) 19.437(±2.201)

Table 5. More results of A2B attack on the COCO dataset in different concept pairs.

Method Flickr-PASCAL (1K test set) COCO (3.9K test set)

TR IR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Clean 86.4(±0.70) 96.6(±0.14) 98.5(±0.28) 73.7(±0.45) 92.8(±0.16) 96.1(±0.13) 63.4(±0.67) 86.8(±0.68) 93.0(±0.43) 48.4(±0.88) 76.6(±0.65) 85.8(±0.53)
Baseline 86.8(±0.66) 97.4(±0.32) 99.0(±0.20) 73.7(±0.39) 92.8(±0.20) 96.4(±0.17) 63.5(±0.94) 86.7(±0.63) 92.9(±0.56) 48.2(±0.81) 76.7(±0.64) 85.7(±0.46)
Base.+MP-Nav(Ins. Only) 87.5(±0.46) 97.3(±0.36) 98.9(±0.14) 74.0(±0.29) 93.1(±0.27) 96.5(±0.11) 63.8(±0.73) 87.0(±0.64) 92.9(±0.46) 48.3(±0.95) 76.6(±0.62) 85.7(±0.52)
MP-Nav(Con. Only) 87.0(±0.60) 97.2(±0.23) 98.8(±0.22) 73.7(±0.43) 92.8(±0.25) 96.4(±0.20) 63.6(±0.98) 86.6(±0.66) 92.9(±0.43) 48.3(±0.85) 76.6(±0.68) 85.8(±0.49)
MP-Nav(Con.+Ins.) 86.9(±0.33) 97.2(±0.43) 99.0(±0.26) 73.9(±0.43) 92.8(±0.34) 96.3(±0.16) 63.3(±0.70) 86.9(±0.59) 93.1(±0.43) 48.2(±0.63) 76.7(±0.54) 85.7(±0.41)

Table 6. Comparison of model utilities clean and poisoned CLIP fine-tuned on Flickr-PASCAL and COCO datasets. TR: Text Retrieval,
IR: Image Retrieval.
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