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ABSTRACT

The advent of the Transformer has led to the development of large language mod-
els (LLM), which appear to demonstrate human-like capabilities. To assess the
generality of this class of models and a variety of other base neural network ar-
chitectures to multimodal domains, we evaluated and compared their capacity for
multimodal generalization. We introduce a multimodal question-answer bench-
mark to evaluate three specific types of out-of-distribution (OOD) generalization
performance: distractor generalization (generalization in the presence of distrac-
tors), systematic compositional generalization (generalization to new task per-
mutations), and productive compositional generalization (generalization to more
complex tasks structures). We found that across model architectures (e.g., RNNs,
Transformers, Perceivers, etc.), models with multiple attention layers, or mod-
els that leveraged cross-attention mechanisms between input domains, fared bet-
ter. Our positive results demonstrate that for multimodal distractor and systematic
generalization, either cross-modal attention or models with deeper attention lay-
ers are key architectural features required to integrate multimodal inputs. On the
other hand, neither of these architectural features led to productive generalization,
suggesting fundamental limitations of existing architectures for specific types of
multimodal generalization. These results demonstrate the strengths and limita-
tions of specific architectural components underlying modern neural models for
multimodal reasoning. Finally, we provide Generic COG (gCOG), a configurable
benchmark with several multimodal generalization splits, for future studies to ex-
plore.

1 INTRODUCTION

Recent LLMs appear to exhibit remarkable cognitive abilities. On the surface, these models perform
exceptionally well on cognitive tasks, such as language comprehension, mathematical reasoning,
and coding (Bubeck et al., 2023; Webb et al., 2023). However, many of these demonstrations are
limited to a single modality (e.g., language). Moreover, the mechanisms driving performance among
these models are opaque. Even when both the model and dataset are publicly available, the sheer
scale of the model and training data make it difficult to isolate which architectural mechanisms
influence generalization behavior, in part due to the difficulty in controlling for confounding factors
in large pretraining datasets (Kim et al., 2022). To quantify the relationship between mechanism and
generalization on multimodal cognitive tasks, we sought to evaluate a set of base neural network
architectures (RNN, GRU, Transformer, Perceiver) on a carefully controlled multimodal task.

Recent studies have suggested that the impressive behaviors exhibited by LLMs are due to superficial
data interpolation, rather than “emergent cognition” (Schaeffer et al., 2023; Kim et al., 2022; Wu
et al., 2023). One approach to adjudicate between possibilities is to first curate carefully controlled
training and test sets generated from compositional task experiments (Keysers et al., 2020; Dziri
et al., 2023; Bahdanau et al., 2020; Ontañón et al., 2022; Csordás et al., 2022; Hupkes et al., 2020;
Lake & Baroni, 2018; Yang et al., 2018; Kim et al., 2022). By design, compositional tasks enable
experimenters to measure OOD generalization – the ability to perform tasks beyond the training
distribution – by programmatically composing a test set using novel task components. Indeed, when
controlling for confounding factors in a training set, studies have shown that neural models cannot
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generalize OOD (Kim et al., 2022; Dziri et al., 2023). However, most prior demonstrations have
been limited to evaluating tasks within a single modality (e.g., natural language). Thus, it remains
unclear to what extent previous unimodal models generalize to multimodal reasoning tasks.

Given recent studies demonstrating that pretraining can actually degrade downstream systematic
generalization (Kim et al., 2022), and that OOD generalization performance can inversely scale
with model size (McKenzie et al., 2023), we focused on training models from scratch rather than
fine-tuning large pretrained models. This ensured full experimental control over training data and
architectural choices. We introduce Generic COG (gCOG), a task abstracted from the previous COG
task (Yang et al., 2018). Our variant employs generic feature sets that are not tied to any specific
modality, and relaxes previous experimental constraints to broaden its capacity to test compositional
generalization splits (Fig. 1). This design allowed us to comprehensively evaluate a variety of
model architectures on tasks that test for three different forms of OOD generalization: 1) Distractor
generalization (generalization in the presence of a different noise distribution), 2) Systematic com-
positional generalization (generalization to new permutations of task structures, i.e., combinatorial
generalization), and 3) Productive compositional generalization (generalization to task structures of
greater complexity). We find that models that integrate multimodal inputs with either deeper atten-
tion layers or cross-attention mechanisms (such as Perceiver-like models) performed best, and were
capable of excellent distractor generalization, reasonably good systematic compositional generaliza-
tion, yet (as with all models tested) no productive compositional generalization. Our results illustrate
the successes and fundamental limitations of modern neural architectures’ nascent multimodal rea-
soning abilities, and we provide a configurable multimodal reasoning benchmark for future studies
to build upon.
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Figure 1: gCOG task. We adapted the previously-developed COG task (Yang et al., 2018). Our modifications
to COG included different task operators, the ability to use categorical tokens to allow for generic testing of
multimodal reasoning, and the ability to allow for arbitrarily long task instructions to allow for the evaluation
of compositional productivity. A) Task operators and objects serve as the core units of the gCOG task. A task
operator (e.g., Exist) is paired with a specific feature combination (e.g., orange + “t”). Feature categories
correspond to shape (i.e., letters “a” through “z”) and color (i.e., 10 discretely coded colors), but can be naturally
extended. B) At minimum, a task must comprise of one specific task operator (e.g., Exist) and a feature
combination (e.g., orange “t”). An arbitrary number of stimuli (e.g., images) can be constructed on-the-fly
to satisfy this task instruction (i.e., produce a TRUE or FALSE response). C) Tasks can be combined with a
conditional operator (e.g., an IF-THEN-ELSE conditional) to increase the task complexity. This enables the
construction of arbitrarily complex tasks. While the original COG task explored only task trees of depth 3
(i.e., a single conditional), we relaxed this constraint to allow for arbitrarily long task trees. Dataset: https:
//github.com/IBM/gcog

1.1 RELATED WORK

A number of recent studies have evaluated the compositional generalization properties of LLMs,
documenting several of their generalization shortcomings (Dziri et al., 2023; Keysers et al., 2020;
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Kim et al., 2022; Wu et al., 2023). However, evaluations were limited to massive pretrained lan-
guage models, making it difficult (if not impossible) to assess the interplay between training data,
architecture, and generalization, as noted by Kim et al. (2022). Smaller scale studies demonstrated
the limitations of modern neural network architectures (e.g., Transformers, RNNs) on compositional
tasks, but have been focused primarily on a single modality (e.g., language) (Csordás et al., 2022;
Ontañón et al., 2022; Hupkes et al., 2020; Lake & Baroni, 2018; Andreas, 2019; Bahdanau et al.,
2019; Furrer et al., 2021). Other neural models trained on multimodal question-answer datasets
like CLEVR (Johnson et al., 2017) also failed to generalize systematically when proper training and
test splits were curated (e.g., CLOSURE) (Bahdanau et al., 2020). Related hybrid neuro-symbolic
approaches have demonstrated great success at compositional generalization tasks (Klinger et al.,
2023; Nye et al., 2020; Bahdanau et al., 2019; Shaw et al., 2021), although these approaches require
customized symbolic architectures, possibly rendering them difficult to scale. Extending these stud-
ies, our aim is to evaluate the performance of base neural models on generic multimodal reasoning.

Our approach to constructing arbitrarily complex compositions of simple tasks is similar to gSCAN
(Ruis et al., 2020). However, it differs in three key ways. First, we focus on question-answer
tasks (which require encoder-only architectures), rather than sequence-to-sequence learning tasks
(which require decoder architectures, e.g., Qiu et al. (2021)). Sequence decoding tasks introduce
the added complexity of requiring autoregressive responses, which are susceptible to fundamental
statistical challenges, such as exposure bias (Wang & Sennrich, 2020). Second, gCOG includes a
distractor generalization split, in addition to systematic and productive compositional generalization
splits. Finally, we methodically characterize different forms of generalization using simpler under-
lying abstractions (i.e., without the explicit use of image pixels). Indeed, the experimental design
is most similar to the original COG (Yang et al., 2018), SQOOP (Bahdanau et al., 2019) and CLO-
SURE (Bahdanau et al., 2020) in that it is multimodal and can generate synthetic trials on-the-fly.
However, those previous tasks did not include productive compositional generalization benchmarks
(i.e., evaluation of arbitrarily complex task commands), systematic compositional generalization
benchmarks on deeper task trees (e.g., task trees of depth 3), and explicit splits for OOD distractor
generalization. In gCOG, we uniquely designed splits that target these three distinct forms of OOD
generalization. gCOG therefore provides a scalable design (e.g., more than two modalities can be
straightforwardly accommodated) to broadly evaluate multimodal generalization (Fig. 1).

1.2 CONTRIBUTIONS

Specific contributions center around the configurability and flexibility of gCOG for three forms of
OOD generalization, as well as the comprehensive evaluation of a variety of base neural network
architectures on this task. We highlight three principal contributions of this study:

1. A configurable dataset that complements and extends prior tasks (i.e., gSCAN, SQOOP,
COG) on multimodal compositional generalization to include productivity splits, system-
aticity splits on deeper task trees, and OOD distractor generalization splits.

2. A comprehensive evaluation of commonly-used base neural models (RNNs, GRUs, Trans-
formers, Perceivers) on distractor, systematic, and productive generalization splits. We find
that for distractor and systematic generalization, including a cross-attention mechanism
across input modalities is important. However, all models fail on the productivity split.

3. A comprehensive evaluation of how scaling standard encoder-only Transformer models
improves distractor and systematic generalization, but not productive generalization.

Finally, we include analysis of internal model representations in Appendix A.1, revealing the influ-
ence of base neural architecture on internal model representations.

2 EXPERIMENTAL DESIGN

2.1 GCOG FOR MULTIMODAL AND COMPOSITIONAL EVALUATION

gCOG is a configurable question-answer dataset, originally inspired from COG (Yang et al., 2018),
that programmatically composes task instructions, and then generates synthetic stimuli to satisfy
those instructions on-the-fly (Fig. 1). The primary modifications in gCOG are 1) differences in the
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set of task operators, 2) the ability to use categorical tokens to allow for generic testing of mul-
timodal reasoning, and 3) the ability to allow for arbitrarily long task trees to assess productive
compositional generalization, in addition to distractor and systematic generalization (e.g., see Ap-
pendix Fig. 8). Importantly, the original COG task did not allow for tasks with more than a single
conditional statement, e.g., a task tree of depth 3, making it difficiult to evaluate productive com-
positional generalization. The use of categorical stimulus tokens and instruction tokens generically
tests the capacity of neural architectures to maintain, manipulate, and generalize novel composi-
tions. Importantly, if models are unable to generalize using simple categorical encodings, then it is
unlikely that these models will generalize when presented with the same task in a modality-specific
domain. The total number of unique individual tasks (i.e., task trees of depth 1) is 8 operators ∗ 26
shapes ∗ 10 colors = 2080 unique individual task commands, but can be straightforwardly extended
with modifications to the configuration file. The number of total unique task structures explodes ex-
ponentially when task trees exceed depth 1 (e.g., 5,624,320,000 unique task structures for task trees
of depth 3). We additionally provide functionality in the dataset that allows the choice to generate
samples using either categorical task encodings, or task encodings with image pixels and natural
language instructions. (All evaluations performed in this paper used categorical task encodings.)

The original COG dataset formulated tasks as directed acyclic graphs (DAGs). To simplify this
representation (and to ensure a unique, topologically sorted solution of operators), we constrained
tasks to binary trees. Unless otherwise stated, stimuli were mapped from a 10x10 spatial grid to a
sequence of 100 binary tokens, where each token represented a specific location in the grid. If a
location contained an object, the embedding was encoded as the specific attributes of that object.
All task rule tokens were appended with an EOS statement, which was previously demonstrated to
improve generalization (Csordás et al., 2022). (See Appendix for additional details on experimental
design A.2, and how the task inputs were configured for model training and inference A.3.)

2.2 MODEL ARCHITECTURES

We evaluated performance of six encoder-only model architectures (Fig. 2). All models were trained
to perform classification in a supervised manner. Outputs were projected to a vector with 138 ele-
ments, with each element in the vector representing a True/False boolean or a feature label (e.g., the
color “Red”, letter “a”, or the spatial location (2, 1)). Models that included a Transformer compo-
nent in the main figures used absolute positional encoding (Vaswani et al., 2017), though we also
report results in the Appendix with Transformers that used relative positional encoding (Shaw et al.,
2018; Huang et al., 2018) (Appendix Fig. 9 and Fig. 10). Importantly, there were no discernible
differences between these choices of positional encoding. Finally, we report additional evaluations
on deeper and larger SSTfmr models (i.e., BERT-style models) in Fig. 6 for all generalization splits.
Those results demonstrate that improved distractor and systematic generalization performance can
be achieved by scaling models (i.e., increasing encoder depth and attention heads), but not produc-
tive compositional generalization.

RNNs and GRUs. We trained both RNNs and GRUs with 512 units on gCOG (Fig. 2a). Task
trees (i.e., instructions) were presented as a sequence of token embeddings, one for each node in the
binary tree. The end of the rule sequence was marked with an EOS token. Stimuli were flattened
from a 10 × 10 ×D matrix to a 100 ×D matrix (where D is the embedding dimension, and were
presented simultaneously (i.e., not tokenized).

Single stream Transformer (SSTfmr). We trained a single stream Transformer, where the task
instructions and stimuli were concatenated into a single matrix (with zero-padding), then passed
through a shared Encoder block (Vaswani et al., 2017) (Fig. 2b). Thus, in the Transformer block,
self-attention was applied on both rule and stimulus embeddings simultaneously. The output of the
Transformer was then processed through a 2-layer MLP before projection to the output layer.

Dual stream Transformer (DSTfmr). We used a Transformer-based model to process task in-
structions and stimuli separately through modality-specific parallel Transformer blocks (Fig. 2c).
Outputs from the Transformers were subsequently processed through a shared MLP.

Transformers with Cross Attention (CrossAttn). Like the DSTfmr, this Transformer-based model
processed task instructions and stimuli separately through modality-specific Transformers. How-
ever, the outputs of the parallel Transformers were integrated through a cross-attention mechanism
(Fig. 2d). Specifically, cross-attention was estimated by computing the query from the output of
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Figure 2: Model architectures. We evaluated generalization across six base neural network architectures. A)
RNNs and GRUs with 512 hidden units. B) Single Stream Transformer (SSTfmr), which processes task rules
and stimuli in a single Transformer, applying self-attention in the Transformer block. C) Dual Stream Trans-
former (DSTfmr). In contrast to the SSTfmr, two parallel Transformer blocks process rule and image tokens
separately, and then process them together in a shared MLP. D) Transformers with cross-attention (CrossAttn).
The outputs of two parallel Transformer blocks are processed with a cross-attention mechanism, where the out-
put of the task rule Transformer produces a query, and then the stimulus Transformer block produces a key and
value matrix. E) A Perceiver-like architecture, which integrates both task and stimulus output information in a
latent Transformer through cross-attention (Jaegle et al., 2021). F) The number of parameters for each model.

the task rule Transformer, and the key and value matrix computed from the stimulus Transformer
output. The cross-attention output was processed through a LayerNorm, and then an MLP.

Perceiver-like architecture (Perceiver). Finally, we included a Perceiver-like model (Jaegle et al.,
2021), an architecture designed to generically process multimodal inputs (Fig. 2e). The Perceiver
architecture contained a latent Transformer, which uses cross-attention to process information from
input modalities. Specifically, the latent Transformer produces a query for each modality. The out-
puts of each modality-specific Transformer produced keys and values, which were subsequently
processed through cross-attention with the latent Transformer. The latent Transformer also con-
tained a standard self-attention Transformer block, followed by an MLP.

3 RESULTS

3.1 DISTRACTOR GENERALIZATION

Experimental setup. Distractor generalization evaluates the degree to which a model can generalize
a task to a stimulus or environment with more distractors than it was trained on. For example, good
distractor generalization requires that a model can correctly discern if a “red a” exists, independent
of the number or configuration of distractors presented. We evaluated distractor generalization on
an independent and identically distributed (IID) split and an OOD split. The IID split tests for
generalization to stimuli with the same number of distractors that the model was trained on, but with
a different configuration. The OOD split evaluates generalization to stimuli with more distractors
than observed during training. Models were trained on individual task operators for simplicity (i.e.,
task trees of depth 1). Stimuli in the training set were randomly generated with a minimum of one
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distractor and a maximum of five distractors. Models were trained on the same number of training
steps (Appendix A.3). All models converged to greater than 94% training set accuracy (Fig. 3a-c).

BA

C

Train set (up to 5 distractors) Test set (10, 20, 30, 40 distractors)
5 distractors 20 distractors 40 distractors

generalize

ED

Figure 3: Distractor generalization. A) Experimental evaluation for distractor generalization. We trained mod-
els on individual task operators (e.g., “Exist red d”) on stimuli that included 1 to 5 distractors, and then
evaluated OOD generalization performance on stimuli with 10, 20, 30, and 40 distractors. B) Loss and C)
accuracy trajectories during training for all models. All models converged to greater than 94% accuracy. D)
Distractor generalization performance for each model. We assessed IID distractor generalization (novel stimuli,
but with 1 or 5 distractors), and OOD distractor generalization (10, 20, 30, or 40 distractors). For most models,
performance reduced as the number of distractors increased. E) We directly compared IID vs. OOD distrac-
tor generalization by averaging performance for IID and OOD splits. Models incorporating a cross-attention
mechanism – CrossAttn and Perceiver – clearly exhibited the best performance.

Generalization performance. While all base models performed IID generalization well, only mod-
els that contained cross-attention mechanisms (CrossAttn and Perceiver models) exhibited excellent
OOD distractor generalization (Fig. 3e). A related result was also reported in Qiu et al. (2021)
using cross-modal self-attention. Though the GRU, SSTfmr, and DSTfmr models were able to per-
form some degree of OOD generalization (e.g., generalization on 10 distractors), performance was
markedly reduced as the number of distractors increased from 10 to 20 (Fig. 3d).

3.2 SYSTEMATIC COMPOSITIONAL GENERALIZATION

The evaluation of Transformer models on systematic generalization problems has been of recent
interest (Ontañón et al., 2022; Csordás et al., 2022; Hupkes et al., 2020; Keysers et al., 2020; Dziri
et al., 2023). However, most evaluations have been limited to sequence-to-sequence tasks in a sin-
gle modality (e.g., natural language). Here we extend prior work, and provide an evaluation of
systematic generalization in the gCOG task using encoder-only architectures.

Experimental setup. Evaluating systematic compositional generalization requires a test set that is
a novel recombination of previously seen tasks. In gCOG, this train/test split can manifest in several
ways. The simplest split is to evaluate generalization on individual task operators (e.g., Exist)
with objects (e.g., “red b”) that it has not been paired with before. For example, if the model was
trained on “Exist blue a” and “Get Location red b”, it would have to systematically combine the
notion of “red b” with the Exist operator – a configuration not seen in the training set (Fig. 4a).

Additionally, a more challenging test of systematicity is to evaluate generalization performance on
more complex task tree structures. Prior question-answer benchmarks that evaluated systematic
generalization typically were limited to assessing systematicity on individual task operations, rather
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Figure 4: A) Systematicity on individual task operators, where specific objects (e.g., a blue “a”) are trained on
a subset of operators, and then tested on distinct set of operators. This evaluates if the model can generalize
to new operator and object combinations. B) Training trajectories. C) CrossAttn and Perceiver-like models
exhibit excellent systematicity generalization, while other models performed at reduced rates. D) Another test
of systematicity is to train on task trees of depth 3, and then test on novel combinations of task trees of depth 3.
E) Training trajectories. All models were able to efficiently learn this task variant. (Note that periodic spikes in
the loss function are due to a resampling of the training dataset due to model checkpointing and/or disruption
to a compute job.) F) While overall generalization performance is lower (even on IID generalization), cross-
attention models still perform systematic compositional generalization well above chance.

than on task trees with greater dependencies (e.g., COG, SQOOP; Yang et al. (2018); Bahdanau
et al. (2019; 2020). Here, we trained on a subset of task trees of depth 1 and 3, and then evaluated
performance on an a novel combination of task structures of depth 3 (Fig. 4d). In this particular
train/test split, we ensured that every individual task operator was previously trained on, but that a
specific combination of task operators in a task tree was novel.

Generalization performance. On the systematicity test with individual task operators (Fig. 4a), all
models converged on the training set with greater than 92% performance (Fig. 4b). All models ex-
hibited reasonably good performance (>78%; chance=33.10%) on OOD systematic generalization
(Fig. 4c). (Note that chance was determined as the average probability of each output classifica-
tion given the distribution of the training set.) Across all models, models containing cross-attention
mechanisms performed the highest on systematic generalization, with the CrossAttn and Perceiver
architectures exhibiting the highest OOD generalization performance (>97%; Fig. 4c).

On systematic generalization on depth 3 tasks (Fig. 4d), IID generalization was markedly reduced
across the board, despite convergence on the training set for all models (all models achieved >98%
accuracy on the training set) (Fig. 4e,f). (Note, however, that increasing depth (encoder layers)
to Transformers improves IID generalization on these splits; Fig. 6.) The Perceiver model outper-
formed all other models, exhibiting 75.4% IID systematic generalization, and 65.7% OOD gener-
alization. The next best performing models had 59.2% IID generalization performance (CrossAttn
model), and 54.1% OOD generalization performance (RNN). These results suggest that the Per-
ceiver was best suited for systematic multimodal generalization, indicating its promise as a generic,
amodal architecture for multimodal systematic generalization.

3.3 PRODUCTIVE COMPOSITIONAL GENERALIZATION

Experimental setup. Productive compositional generalization involves generalizing to tasks of
greater complexity (e.g., a task tree of depth 3 to a task tree of depth 5). We evaluated productive
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generalization in the context of gCOG. We trained all models on task trees of depth 1 and depth 3,
and then evaluated generalization performance to task trees of depth 5 and depth 7 (Fig. 5a). (We
also show in Appendix Fig. 11 how models trained only on task tress of depth 1 fail to generalize to
task trees of depth 3, 5, and 7.)

A

B

Productive compositional generalization

TRAIN SET
TEST SETgeneralize

C D

depth 1

depth 3

depth 5

depth 7

Figure 5: Productive compositional generalization performance. A) OOD productivity performance of all
models to novel tasks of greater complexity (i.e., deeper task trees). We trained models on task trees of depth
1 and depth 3, and then tested generalization to task trees of depth 5 and 7. While the B) training loss and
C) training accuracy converged for all models, D) all models failed to perform OOD productive compositional
generalization to more complex task trees. (Note that periodic spikes in the loss function are due to a resampling
of the training dataset due to model checkpointing and/or disruption to a compute job.)

Generalization performance. Though all models converged on the training dataset (Fig 5b,c), all
models completely failed to OOD generalize to task trees of 5 and 7 (Fig. 5d) (performance was at
or below chance for all OOD splits). Prior work has shown that Transformer-based models exhibit
improved productivity generalization when using a relative positional encoding (Csordás et al., 2022;
Ontañón et al., 2022). Though we used absolute positional encodings in our Transformer-based
models in Fig. 5, we found that using relative positional encodings did not improve productive
generalization performance on gCOG (Appendix Fig. 10). One possible explanation for the disparity
between systematic and productive generalization in neural models is that systematicity requires the
ability to exchange semantics (or tokens) from a known syntactic structure (e.g., a tree of certain
depth). In contrast, productive generalization requires generalizing to an entirely new syntactic
structure (e.g., a task tree of different size or depth). This requires understanding the syntax –
how to piece together syntactic structures on-the-fly – requiring another level of abstraction. To our
knowledge, there is no mechanism in modern Transformers that would enable this. Thus, productive
compositional generalization remains a difficult capability for purely neural models to achieve.

3.4 IMPACT OF LAYER DEPTH AND ATTENTION HEADS ON GENERALIZATION

Our previous experiments evaluated the performance of base neural network models on gCOG. How-
ever, these “base” models did not assess the impact of model scale (e.g., depth) on performance. To
complement those previous experiments, we evaluated the impact of scale (layer depth and attention
heads) of a standard Transformer encoder model (e.g., BERT-style, and similar in base architecture
to the SSTfmr; Devlin et al. (2019)) on generalization. We assessed the influence of encoder layers
(1, 2, 3, and 4 layers), and the number of attention heads per encoder layer (1, 4, and 8 heads).
We found that increasing encoder layers improves generalization across distractor (Fig. 6a,b) and
systematic generalization (Fig. 6d,e,g,h). Increasing attention heads per layer also marginally im-

8



Published as a conference paper at ICLR 2024

proved distractor and systematic generalization, but to a lesser extent than adding layers (Fig. 6c,f,i).
Importantly, the largest model we tested (a BERT-small-sized model; 4 layers and 8 attention heads)
demonstrated excellent systematic and distractor generalization. However, model scale failed to il-
lustrate any improvement on productive generalization (Fig. 6j,k). These results demonstrate that
increasing scale of standard Transformer architectures may be sufficient for distractor and systematic
generalization with a well-designed dataset, but that productive generalization remains a significant
challenge.

A B C

D E F

G H I

J K L

Figure 6: Evaluating generalization splits on BERT-like single-stream transformer models with varying layers
(L) and attention heads (A). Overall, increasing layers and attention heads can improve generalization across
distractor and systematic generalization, but not productive generalization. A) Evaluation on distractor gener-
alization across all model parameters. B) The effect of adding additional encoder layers on distractor general-
ization performance (averaged across all attention head configurations). C) The effect of adding attention heads
on distractor generalization performance (averaged across all layer depth configurations). D-F) Evaluation on
systematicity for depth 1 tasks (generalization split in Fig. 4a). G-I) Evaluation on systematicity for depth 3
tasks (generalization split in Fig. 4d). J-L) Evaluation on productivity split (generalization split in Fig. 5a).

4 CONCLUSION

Identifying neural architectures that can robustly generalize OOD is a central goal in artificial intelli-
gence. Compositional generalization benchmarks, which explicitly evaluate for generalization, pro-
vide a good testbed for measuring these capabilities. However, the most successful models for mul-
timodal compositional generalization tend to be hybrid neuro-symbolic models rather than purely
neural models (Bahdanau et al., 2020). While useful for some applications, current neuro-symbolic
models require a priori knowledge of what rules and operations to include, making them difficult to
train end-to-end, and limiting their broader use and overall scalability. In this study, we sought to
evaluate how different architectural mechanisms in purely neural models influence OOD multimodal
generalization. We introduced gCOG, which provides explicit OOD generalization splits for generic
multimodal reasoning that can be extended in future studies. Our experimental results demonstrate
that while current neural models fall short of exhibiting any productive compositional generaliza-
tion, increasing layer depths and/or targeted cross attention mechanisms between multiple domains
provide paths towards improving systematic and distractor OOD generalization on multimodal tasks.
Thus, we hope this study inspires future work towards identifying the neural architectures capable
of performing multimodal OOD generalization, with the goal of advancing the broader reasoning
capacities of modern AI systems.
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REPRODUCIBILITY STATEMENT

Code for this paper and dataset can be found at https://github.com/IBM/gcog. Additional
details regarding the experimental design can be found in Appendix A.2. Additional details regard-
ing the model architectures and training can be found in Appendix A.3. Additional details regarding
representation analysis can be found in Appendix A.1.
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A APPENDIX

A.1 REPRESENTATION ANALYSIS OF MODEL ARCHITECTURES

We performed representation analysis to identify the relationship between how a model’s archi-
tecture constrains its internal representations, and in turn, its generalization behavior. Originally
developed to analyze and interpret neuroscience data, representational similarity analysis (RSA)
facilitates the interpretability of a model’s internal activation patterns (Kriegeskorte et al., 2008;
Klabunde et al., 2023). In brief, RSA summarizes the geometry of representations in a neural net-
work layer (or layers) by measuring the similarities (or distances) between the activation vectors
during the presentation of different inputs. This explicitly measures the relations between input
samples, facilitating insight into how this neural network layer processes different samples. More-
over, transforming individual representations into a sample-by-sample matrix of representational
similarities enables direct comparison between neural network layers both within and across net-
works, since the matrix dimensions can be made equal. (In contrast, layer activations across models
or even within models are hard to compare, due to the lack of a 1-to-1 mapping of units.) In our
specific case, we evaluated how different task features (stimulus input and target representaions)
emerge in the penultimate layer of neural network models. This was done by computing the sim-
ilarities of stimuli (the vectorized stimulus encoding) and target responses (one-hot codes for each
target response), and then computing the distance of these similarity matrices to the representational
similarity matrices of the model’s penultimate layer.

In our analysis, we sought to understand why models with different architectures (e.g., the presence
of a cross-attention mechanism) better performed OOD distractor generalization. We focused our
analysis to the distractor generalization benchmark, since we observed the strongest discrepancy in
OOD generalization performance across models. To evaluate what task information was retained
within the representations of each model during OOD distractor generalization, we randomly sam-
pled 800 task samples with 40 to 50 distractors and quantified the vectorized cosine similarities
between every pair of task stimuli (in the input space) (Fig. 7a). (Note, however, that other distance
metrics can also be used Klabunde et al. (2023).) This resulted in a stimulus similarity matrix, from
which we could directly compare a model’s internal representational similarities using the same 800
samples. Next, we measured each model’s representational similarity matrix to the same set of stim-
uli using activations in the models’ penultimate layer (Fig. 7a). To measure how much stimulus
information the neural network’s layer retained, we computed the L2 norm between matrices after
aligning the two matrices through the orthogonal Procrustes transform. (The same procedure could
be applied to measure the representational alignment to target resposne information (Fig. 7c).) The
orthogonal Procrustes transform between the representational similarity matrix, X , and stimulus (or
target) matrix Y , was computed by solving for the orthogonal transformation

Q∗ = arg min
Q∈O(D)

||XQ− Y ||F

where Q∗ is the best orthogonal transformation to align X and Y , O(D) is the group of orthogonal
transformations, and || · ||F denotes the Frobenius norm. Then, to compute the alignment A between
matrices X and Y , we compute

A = ||XQ∗ − Y ||F
We used this distance metric as it has been previously shown to be a proper distance metric (i.e., it
obeys the triangle inequality; Klabunde et al. (2023). However, this measure alone does not control
for potential biases in representational distances due to architecture. Thus, to control for the potential
confound that some model architectures have different innate distances, we computed the relative
alignment by computing the difference of A before and after training the model. Importantly, relative
alignment can be negative, since it provides a metric of how the representations change relative to
the randomly initialized model architecture. We use this measure of relative alignment to measure
how much stimulus or target response information each model architecture retained in Figure 7.
We found that the best performing models (CrossAttn and Perceiver models) on OOD distractor
generalization, had the highest alignment to the stimuli, while the lowest performing models (e.g.,
RNNs and GRUs), were least aligned to stimulus information (Fig. 7b). We found a similar trend
when estimating the model’s alignment to the correct response (i.e., target) (Fig. 7c). Thus, the best
OOD distractor generalization models were able to retain both stimulus and response information in
the penultimate internal representations.
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Figure 7: Representation analysis across model architectures. A) To measure task information in each model’s
internal representations, we measured the representational similarity matrices of the stimulus (or target) sam-
ples, and compared those to the models’ representational similarity matrices during those same samples. Re-
tainment of stimulus (or target) information in the model’s representations could then be measured as the L2
norm between model and the task stimulus (or target) matrices. B) Model alignment to stimulus information.
Models with cross-attention mechanisms best retained stimulus information in the penultimate layer. C) Model
alignment to target (response) information.

A.2 ADDITIONAL DETAILS ON TASK DESIGN

gCOG was modified from the original COG task to enable the measurement of various OOD bench-
marks (Yang et al., 2018). While we employed some similar task operations (e.g., the Exist oper-
ator), we also implemented a number of new task operators that were not in the original dataset. We
also lifted the constraint of maximally including only a single conditional (i.e., an IF-THEN-ELSE
statement, originally referred to as a “Switch” clause in COG), allowing us to flexibly evaluate pro-
ductive compositional generalization. A few example queries from the original COG task include:
“What is the color of the latest triangle? Point to the latest red object. If a square exists, then point
to the current x, otherwise point to the last b.”

Construction of task samples was algorithmically consistent with how samples were constructed
in COG and CLEVR (Johnson et al., 2017). Construction of a task sample (i.e., task instructions,
stimuli, and target) began by first constructing the task instruction, and then determining the specific
task path (i.e., which operators will be encountered in the task tree). Depending on what the target
response is, a backward pass is taken through the task path (i.e., bottom-up). Objects are then
incrementally added to the stimulus to satisfy all task nodes from the bottom-up. This ensures that
the stimulus will necessarily satisfy the chosen task path while guaranteeing a unique solution for
each task node. More specifically, there will always be a unique object or object feature to satisfy a
task operator. (If the task operator is to Get the Color of the “a”, the task algorithm guarantees that
there will only be a single “a” in the image. If the task operator is Does the red “a” exist?, there
is guaranteed to be a maximum of one red “a”.) Additional algorithmic details on task construction
can be found in Yang et al. (2018) and Johnson et al. (2017), and the task code will be publicly
released. We will additionally release specific benchmarks that were used in this study.

Note that in the IID split for each test, it is theoretically possible that the model will be tested on a
sample that it was trained on due to random sampling, though this is highly unlikely: the probability
that two identical stimuli are presented is less than 10−14 due to the total number of distractor
combinations.

A.2.1 TASK OPERATORS

Exist. The Exist operator is paired with an object (i.e., color and shape feature combination),
and asks whether that object exists in the stimulus. The correct response returns a boolean (True
or False). Example: Does the red “a” exist?

GetColor. The GetColor operator is paired with a shape feature, and asks to return the color of
that shape. The correct response is a color feature (1 out of 10 possible color features). Example:
Get the color of the “a”. (In the task construction, there is guaranteed to be a unique solution (i.e.,
one “a”) in the image.
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GetShape. The GetShape operator is paired with a color feature, and asks to return the shape
of the object with that color. The correct response is a shape feature (1 out of 26 possible shape
attributes). Example: Get the shape of the red object. (In the example, there will always be a single
red object.)

GetLocation. The GetLocation operator is paired with an object, and asks to return its
location. The correct response is the (x, y) coordinates of that object (1 out of 100 possible locations
in a 10 by 10 grid). Example: Get the location of the red “a”.

SumEven. The SumEven operator is paired with an object, and asks whether the sum of its x and
y coordinate location is even. The correct response is a True/False boolean. Example: Is the sum
of the x and y coordinate values of the red “a” even?

SumOdd. The SumOdd operator is paired with an object, and asks whether the sum of its x and y
coordinate location is odd. The correct response is a True/False boolean. Example: Is the sum
of the x and y coordinate values of the red “a” odd?

ProductEven. The ProductEven operator is paired with an object, and asks whether the prod-
uct of its x and y coordinate location is even. The correct response is a True/False boolean.
Example: Is the product of the x and y coordinate values of the red “a” even?

ProductOdd. The ProductOdd operator is paired with an object, and asks whether the product
of its x and y coordinate location is odd. The correct response is a True/False boolean. Example:
Is the product of the x and y coordinate values of the red “a” odd?

Note that some of these operators can be used as terminals, i.e., task tree leaves with no chil-
dren. This includes all task operators that do not return a boolean response (GetColor,
GetShape, and GetLocation). This is because a boolean response is required to be input to
an IF-THEN-ELSE clause.

A.3 ADDITIONAL DETAILS ON MODEL ARCHITECTURES AND TRAINING

Code associated with model architectures can be found here: https://github.com/IBM/
gcog. Models were constructed using PyTorch version 2.0.0+cu118. All models could be trained in
under three days on an NVIDIA K80 GPU, and were trained on IBM’s Cognitive Compute Cluster.

For a specific evaluation benchmark (e.g., distractor generalization), all models were trained on
exactly the same number of samples (and training steps). This made it possible to fairly evaluate
and compare performance of different models. For distractor generalization (Fig. 3), all models
were trained on 53,980,000 samples. For systematic generalization on individual operators (Fig.
4a), all models were trained on 47,980,000 samples. For systematic generalization on depth 3 tasks
(Fig. 4d), all models were trained on 53,980,000 samples. For productive generalization (training
on tasks with depth 1 and 3; Fig. 5), all models were trained on 59,980,000 samples.

All models were trained using the AdamW optimizer with a learning rate of 0.0001, and the loss
was computed as the Cross Entropy between the target class and output vector.

A.3.1 MODEL ARCHITECTURES

The inputs to the models comprised of rule tokens (i.e., task instructions) and stimulus. For
Transformer-based models (SSTfmr, DSTfmr, CrossAttn, and Perceiver) the 10x10 stimulus grid
was presented as a sequence of 100 tokens with absolute positional encoding. Each stimulus to-
ken had three features (i.e., embedding dimensions) associated with it: color, shape, and a separate
dimension indicating if the token was an EOS token. For RNN and GRU models, stimuli were
flattened into an array (100 × 3). Rule tokens were embedded into a feature space containing an
dimension for the task operator (e.g., Exist, GetColor, etc.), and separate dimensions for the
operator’s object(s) features (e.g., color, shape, etc.). All models encoded rule tokens as a sequence.

RNN. Inputs to the RNN were a sequence of rule tokens and a flattened stimulus vector, which were
projected to 512 hidden units. Hidden unit activity, ht was determined by the equation

ht = tanh((xr,tW
T
r,h + br,h) + (xs,tW

T
s,h + bs,h) + ht−1W

T
hh + bhh
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Example of task trees of varying depth

Depth 1

Depth 3

Depth 5

Depth 7

Figure 8: Example task trees of depth 1, 3, 5, and 7. In the current design, there are 8 task operators that
can be paired with up to 260 unique objects (26 letters * 10 colors). However, some operators can only be
used as tree leaves (i.e., they have no children in the task tree). These include GetColor, GetShape, and
GetLocation. This is because if a task operator has a child which is an if-else-then clause, the task operator
is required to return a boolean.

where xr,t, WT
r,h, and br,h represented the rule inputs, weights, and biases respectively, and xs,t,

WT
s,h, and bs,h the stimulus inputs, weights, and biases. The stimulus vector was presented every

time a rule token was processed. This avoided the need for the RNN to “remember” the stimulus.
Hidden units were initialized as a vector of zeros prior to each trial. The RNN hidden activation
patterns were processed through a LayerNorm after every iteration, and then subsequently projected
to the output layer (with 138 units) for classification. A Softmax was applied prior to supervised
training of the outputs. Model training was performed with the AdamW optimizer at a learning rate
of 0.0001 (Loshchilov & Hutter, 2019), and the loss was computed as the Cross Entropy between
the target class and the output vector.

GRU. Architecturally, the GRU was structured identically to the RNN. Input and outputs were for-
matted and projected identically, and the placement of LayerNorms remained the same. The primary
distinction was the generation of the hidden unit activity ht, which was determined by the equation

ht = (1− zt)⊙ nt + zt ⊙ ht−1
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where nt, zt, and rt correspond to the new, update, and reset gates, respectively, and are defined by
the equations

nt = tanh(Winxt + bin + rt ⊙ (Whnht−1 + bhn))

zt = σ(Wizxt + biz +Whzht−1 + bhz))

rt = σ(Wirxt + bir +Whrht−1 + bhr))

where σ is the sigmoid function, and ⊙ is the Hadamard product. As in the case of the RNN, the
GRU model was trained with the AdamW optimizer with a learning rate of 0.0001, and the loss was
computed as the Cross Entropy between the target class and the output vector.

SSTfmr. Rule inputs the the SSTfmr were identical to the RNN, i.e., a sequence of rule tokens.
Stimulus input was represented as a sequence of tokens. Specifically, each location of the stim-
ulus (i.e., each (x,y) coordinate) corresponded to a single token. Since there were 10 rows and 10
columns, there were a total of 100 tokens. We zero-padded concatenated both the rule tokens and the
stimulus tokens into a single context window with zero-padding. Thus, the total number of input to-
kens corresponded to the sum of rule and stimulus tokens. The architecture of the SSTfmr followed
a standard bidirectional Encoder-only Transformer, and is architecturally similar to BERT (Devlin
et al., 2019) (without masking). Since multimodal inputs were concatenated before being fed into the
SSTfmr, self-attention was technically cross-modal. Note, however, that cross-modal self-attention
is distinct from cross-attention, since self-attention always produces a square (quadratic) attention
matrix, while cross-attention can produce a square matrix, depending on the number of tokens in
the query matrix and the number of tokens in the key and value matrices. Input tokens were linearly
embedded into a vector size of 256. For simplicity, we only included a single Transformer layer,
and each layer only included a single attention head, though we do a more extensive evaluation of
this type of architecture in Figure 6. We evaluated models with both absolute positional encoding
(following Vaswani et al. (2017)) and relative positional encoding (following Shaw et al. (2018)).
The position-wise MLP portion of the Transformer block was a 2-layer MLP with 512 units in each
layer. The output of the Transformer block was subsequently processed through a 3-layer feedfor-
ward MLP (512, 1024, and 512 units per layer). We applied a LayerNorm prior to projecting the
activity to the output layer for classification. Model training was performed with the AdamW op-
timizer at a learning rate of 0.0001, and the loss was computed as the Cross Entropy between the
target class and the output vector.

DSTfmr. The DSTfmr was architecturally similar to the SSTfmr, except rule and stimulus to-
kens were processed independently in separate (and in parallel) encoder-only Transformer blocks,
followed by separate 3-layer MLPs. (No zero-padded concatenation was applied to the rule and
stimulus tokens.) The output of the parallel MLPs (Fig. 2c) were then summed together, processed
through a LayerNorm, and then passed through a 3-layer MLP (512, 1024, and 512 units per layer).
Model training was performed with the AdamW optimizer at a learning rate of 0.0001, and the loss
was computed as the Cross Entropy between the target class and the output vector.

CrossAttn. Inputs to the CrossAttn model were processed identically to the DSTfmr model, i.e., in
dual stream encoder-only Transformer blocks. Cross-attention was then computed from the outputs
of the two Transformer blocks. Specifically, the query was computed from the output of the rule
Transformer block, and the keys and values were computed from the output of the stimulus Trans-
former block (Fig. 2d). The cross-attention output was then processed through a LayerNorm (with a
skip connection from the rule Transformer block output), and a 2-layer MLP (both with 512 units).
After a final LayerNorm, the activations were linearly projected to the classification layer. Model
training was performed with the AdamW optimizer at a learning rate of 0.0001, and the loss was
computed as the Cross Entropy between the target class and the output vector.

Perceiver. Inputs to the Perceiver-like model were processed identically to the DSTfmr model, i.e.,
in dual stream encoder-only Transformer blocks. Outputs of the dual-stream Transformer blocks
were processed through separate cross-attention mechanisms with the latent Transformer (Fig. 2e).
The processing of inputs to the latent Transformer followed the structure of the Perceiver model
(Jaegle et al., 2021). In our specific case, the latent Transformer contained 256 latent units, and
was initialized to zero at the start of every trial. We computed cross-attention between the latent
Transformer and the output of the rule Transformer first, and then between the latent Transformer
and the output of the stimulus Transformer. Cross-attention involved computing the query from the
latent units, and the keys and values from the modality-specific Transformers. LayerNorms and
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residual connections were computed after every cross-attention computation, followed by a self-
attention computation. After self-attention was computed after integrating information, the latent
activations were projected to the output layer for classification.

BERT-like SSTfmr. To assess the role of Transformer depth and attention head number in gen-
eralization splits. we performed additional experiments on a range of BERT-like SSTfmr models
(Fig. 6). This included systematically varying number of Transformer layers (1, 2, 3, and 4 layers),
and attention heads per layer (1, 4, and 8 attention heads). The model with 4 encoder layers and
8 attention heads was architecturally identical to BERT-small, with the exception that the embed-
ding dimensionality was limited to 256 (rather than 512). Moreover, unlike the SSTfmr used in the
main manuscript (described above), we removed the additional MLP that was included on top of
the Transformer’s encoder layer. The outputs of the final encoder layer were projected to the ouput
layer for classification (using just a linear layer with a Softmax). For the experiments included in
Fig. 6, all models used relative positional encoding (Shaw et al., 2018). BERT-like SSTfmr models
were trained on a total of 11,980,000 samples before test set evaluation.

A.4 SUPPLEMENTARY RESULTS
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Figure 9: Systematic compositional generalization performance using relative positional encoding (Shaw et al.,
2018; Huang et al., 2018) A) Systematicity evaluation on task trees of depth 3. B) Training trajectories. C)
While we observe overall similar generalization performance patterns as observed using absolute positional en-
coding, we see some reduction in performance in the cross-attention models using relative positional encoding.
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Figure 10: Productive compositional generalization performance using relative positional encoding (Shaw et al.,
2018; Huang et al., 2018) A) OOD productivity performance of all models to novel tasks of greater complexity
(i.e., deeper task trees). We trained models on task trees of depth 1 and depth 3, and then tested generalization
to task tress of depth 5 and 7. While the B) training loss and C) training accuracy converged for all models,
D) all models failed to perform OOD productive compositional generalization to more complex task trees. The
results with relative positional encoding are overall similar to the results with absolute positional encoding (Fig.
5).
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Figure 11: Productive compositional generalization performance, training on task trees of depth 1 (absolute
positional encoding), and testing on task trees of depth 3, 5, and 7. A) In contrast to Figures 5 and 10, we
exclusively train on task trees of depth 1, and then assess generalization to task tress of depth 3, 5, and 7 (i.e.,
deeper task trees). Evaluation on task trees of 3, 5, and 7 are therefore OOD. While the B) training loss and
C) training accuracy converged for all models (> 94%), D) all models performed poorly on OOD productive
compositional generalization.
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