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Abstract

The doubly robust (DR) estimator, which consists of two nuisance parameters, the
conditional mean outcome and the logging policy (the probability of choosing an
action), is crucial in causal inference. This paper proposes a DR estimator for
dependent samples obtained from adaptive experiments. To obtain an asymptoti-
cally normal semiparametric estimator from dependent samples with non-Donsker
nuisance estimators, we propose adaptive-fitting as a variant of sample-splitting.
We also report an empirical paradox that our proposed DR estimator tends to
show better performances compared to other estimators utilizing the true logging
policy. While a similar phenomenon is known for estimators with i.i.d. samples,
traditional explanations based on asymptotic efficiency cannot elucidate our case
with dependent samples. We confirm this hypothesis through simulation studies.

1 Introduction

Adaptive experiments, including efficient treatment effect estimation (van der Laan, 2008; Hahn et al.,
2011), treatment regimes (Zhang et al., 2012a; Zhao et al., 2012), and multi-armed bandit (MAB)
problems (Gittins, 1989; Lattimore & Szepesvári, 2020), are widely accepted and used in real-world
applications, for example, in social experiments (Hahn et al., 2011), online advertisement (Zhang
et al., 2012b), clinical trials (Chow & Chang, 2011; Villar, 2018), website optimization (White, 2012),
and recommendation systems (Li et al., 2010). In those various applications, there is a significant
interest in off-line counterfactual inference using samples obtained from past trials generated by a
logging policy (the probability of choosing an action: Li et al., 2010, 2011). Among several off-line
evaluation criteria, this paper focuses on off-policy value estimation (OPVE: Li et al., 2015). The
goal of OPVE is to estimate the expected value of the weighted outcome, which includes average
treatment effect (ATE) estimation as a special case (Hirano et al., 2003; Bang & Robins, 2005).

In OPVE, when the true logging policy is known, there are mainly three types of estimators: inverse
probability weighting (IPW: Horvitz & Thompson, 1952), direct method (DM), and augmented IPW
(AIPW Bang & Robins, 2005) estimators. IPW-type estimators refer to a sample average of the
outcomes weighted by the true logging policy. DM-type estimators refer to a sample average of an
estimated conditional outcome. AIPW-type estimators consist of two components: the IPW part
and the DM part. More details are given in Section 3. In addition, when the true logging policy
is unknown, we call IPW-type and AIPW-type estimators that use the estimated logging policy
EIPW-type and DR-type estimators, respectively. In particular, and the focus of this paper, DR-type
estimators are crucial in OPVE, since in most applications of interest the true logging policy is either
unknown, difficult, or costly to obtain, making IPW and AIPW-type estimators often infeasible.

While existing OPVE methods typically assume that the samples are independent and identically
distributed (i.i.d.: Hirano et al., 2003; Dudík et al., 2011), adaptive experiments usually allow logging
policies to be updated based on past observations, under which the generated samples are non-i.i.d.

∗masahiro_kato@cyberagent.co.jp

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



In this case, theoretical results shown under i.i.d. assumptions, such as consistency and asymptotic
normality, are not guaranteed. In particular, the asymptotic normality is critical, as we can obtain√
T -rate confidence intervals, where T is the sample size. For this problem, van der Laan (2008)

proposed an asymptotically normal AIPW estimator under dependent samples, with several follow-up
studies, including Luedtke & van der Laan (2016, 2018), Hadad et al. (2021), Kato et al. (2020),
and Zhan et al. (2021). However, a DR-type estimator for dependent samples has not been formally
proposed, despite its importance.

Readers might think that, in many experimental designs, the experiment can be manipulated by the
experimenter, thus the information of the logging policy is always accessible. However, the logging
policy is often not recorded. This is because it is costly to do so in adaptive experiments, since we
need to preserve a policy for each sample. Consider the case of Thompson sampling, where we select
the arm with the highest expected reward sampled from the posterior distribution (Thompson, 1933).
In this case, if we want to know the logging policy, we need to calculate the probability that each arm
is chosen from the posterior distribution. The calculation of this probability is not necessary for the
bandit algorithm itself, but is an additional task for policy evaluation. In addition, to compute the
logging policy, we not only need to record the information of the posterior distribution, but also need
to calculate the probability by Monte Carlo simulation from the posterior distribution, if no analytical
solution is available. This is a difficult task in terms of both computational volume and computational
resource. Moreover, in adaptive experiments in industry (e.g. AB tests), the number of logs is often
in the order of several million. In such cases, storing the logging policy is also a difficult task. By
using DR-type estimators, we can alleviate this cost. Further, as we report below as a paradox, it is
even possible that DR-type estimators, that do not use the true logging policy, outperform estimators
using the true logging policy,

This paper proposes an asymptotically normal DR estimator for dependent samples. We call this
DR estimator the adaptive DR (ADR) estimator. There are mainly two difficulties concerning this
estimator. First, we cannot use the central limit theorem (CLT) for i.i.d. or martingale difference
sequences directly, as done in van der Laan (2008), Hadad et al. (2021), and Kato et al. (2020).
Second, when nuisance parameters are estimated with complicated models, the Donsker condition
does not hold in general, which is required to show the asymptotic normality of semiparametric
estimators, such as our proposed ADR estimator. In this paper, to solve these problems, we propose
adaptive-fitting, inspired by the double/debiased machine learning for i.i.d. samples (Chernozhukov
et al., 2018). We also find that by using the ADR estimator, not only can OPVE be done without
knowing the true logging policy, the ADR estimator paradoxically often outperforms the performance
of AIPW estimators that use the true logging policy. We list our contributions as follows.

(I) Asymptotic normality of the ADR estimator. We show the asymptotic normality of our pro-
posed ADR estimator. To the best of our knowledge, a DR-type estimator for dependent samples
obtained in adaptive experiments has not been formally proposed.

(II) Adaptive fitting. While the asymptotic normalities of IPW and AIPW estimators are shown by
the martingale CLT, we cannot directly apply this technique to our proposed ADR estimator. This
is because the martingale condition does not hold when the true logging policy is unknown. To
solve this problem, we utilize a novel sample-splitting method called adaptive-fitting to show the
asymptotic normality of the ADR estimator. We generalize this technique as a variant of sample-
splitting (Chernozhukov et al., 2018) for semiparametric inference with dependent samples without
the Donsker condition. Unlike existing sample-splitting methods, which assume that samples are
i.i.d., the proposed adaptive-fitting is applicable to non-i.i.d. samples.

(III) Empirical paradox on using estimated logging policy. Through experimental studies, we
investigate the empirical performance of our proposed ADR estimator. We find that the ADR estimator
often exhibits improved performances over other estimators using the true logging policy, such as the
AIPW estimator. Estimators requiring the true logging policy tend to empirically be unstable due to
the instability of the nuisance parameter; the instability being caused by the logging policy being near
zero before convergence. Our finding implies that the ADR estimator mitigates this instability. We
call this phenomenon a paradox concerning logging policy because using more information (the true
logging policy) does not improve empirical performance. A similar paradox is known for IPW-type
estimators for i.i.d. samples (Hahn, 1998; Henmi & Eguchi, 2004). However, we cannot explain our
paradox from a conventional semiparametric efficiency perspective (Hahn, 1998; Hirano et al., 2003),
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as the asymptotic variances are the same between the ADR estimator (with an estimated logging
policy) and the AIPW estimator (with the true logging policy), unlike IPW-type estimators.

Organization of this paper. In Section 2, we formulate our problem. In Section 3, we introduce
existing OPVE estimators for dependent samples. In Section 4, we propose the ADR estimator,
which is our main contribution. We call the method used for the ADR estimator adaptive-fitting, and
generalize it in Section 5. In Section 6, we report a paradox through simulation studies and explain
the cause of this phenomenon. In Section 7, we conduct experiments using benchmark datasets.

2 Problem setting

Suppose that there is a time series 1, 2, . . . , T , and denote the set as [T ] = {1, . . . , T}. For t ∈ [T ],
let At be an action in A = {1, 2, . . . ,K}, Xt be a covariate observed by a decision maker when
choosing an action, and X be its space. Following the Neyman–Rubin causal model (Rubin, 1974),
let a reward at period t be Yt =

∑K
a=1 1[At = a]Yt(a), where Yt(a) : A → R is a potential (random)

outcome. In summary, we have a dataset
{

(Xt, At, Yt)
}T
t=1

with the following data-generating
process (DGP):

Step 1: we observe a covariate Xt ∼ p(x);
Step 2: we choose At = a with probability pt(a|x);

Step 3: we observe an outcome Yt =
∑K
a=1 1[At = a]Yt(a), where Yt(a) ∼ pa(y|x),

where p(x) denotes the density of the covariate Xt, pt(a|x) denotes the probability of choosing an
action a conditional on a covariate x at period t, and pa(y|x) denotes the density of a reward Yt(a)
conditional on a covariate x. We assume that p(x) and pa(y|x) are invariant across periods, and Xt

and Yt(a) are drawn from these densities independently of the other period random variables; that is,
{(Xt, Yt(1), . . . , Yt(K))}Tt=1 is i.i.d., but pt(a|x) can take different values across periods based on
past observations. In this case, the samples

{
(Xt, At, Yt)

}T
t=1

are correlated over time, that is, the
samples are not i.i.d. Let Ωt−1 = {Xt−1, At−1, Yt−1, . . . , X1, A1, Y1} be the history andMt−1 be
a set of possible histories until the t-th period. The probability pt(a|x) is determined by a logging
policy πt : A× X ×Mt−1 → (0, 1), such that

∑K
a=1 πt(a|x,Ωt−1) = 1, which is a function of a

covariate Xt, an action At, and history Ωt−1. We also assume that πt is conditionally independent of
Yt(a) to satisfy unconfoundedness (Remark 2).
Remark 1 (Stable unit treatment value assumption (SUTVA)). The DGP implies SUTVA; that is,
pa(y|x) is invariant to random assignments in other periods (Angrist et al., 1996).
Remark 2 (Unconfoundedness). In this paper, unconfoundedness refers to independence between
(Yt(1), . . . , Yt(K)) and At, conditional on Xt and Ωt−1, which is required for identification.

2.1 OPVE

The goal of OPVE is to estimate the expected value of the sum of the outcomes Yt(a) weighted by an
evaluation function πe : A×X → R; that is,

R(πe) := E(Xt,Yt(1),...,Yt(K))

[
K∑
a=1

πe(a|Xt)Yt(a)

]
,

where the expectation E(Xt,Yt(1),...,Yt(K)) is taken over (Xt, Yt(1), . . . , Yt(K)). We denote it as E,
when there is no ambiguity. As with Dudík et al. (2011), the evaluation function is usually referred to
as an evaluation policy, where πe(a|x) ∈ [0, 1] and the sum is 1. However, to not restrict it so we can
include other forms, such as the ATE, we refer to it differently. The ATE is also a special case of
OPVE for A = {1, 2}, where πe(1|x) = 1 and πe(2|x) = −1. To identify R(πe), we assume the
overlap in the distributions of policies, convergence of πt−1, and the boundedness of reward.
Assumption 1. For all t ∈ [T ], a ∈ A, x ∈ X , and Ωt−1 ∈Mt−1, there exists a constant Cπ > 0,

such that
∣∣∣ πe(a|x)
πt(a|x,Ωt−1)

∣∣∣ ≤ Cπ .

Assumption 1 equivalently means that πt(a|x) > 0 for all a ∈ A and x ∈ X .
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Assumption 2. For all x ∈ X and a ∈ A, πt(a|x,Ωt−1)− π̃(a|x)
p−→ 0, where π̃ : A×X → (0, 1).

Assumption 3. For all t ∈ [T ] and a ∈ A, there exists a constant CY > 0, such that |Yt(a)| ≤ CY .

Although the reader may feel that Assumption 1–2 and the SUTVA 1 are strong, we adopt it as a
simple and basic case for the application, in order to introduce adaptive-fitting and the ADR estimator.
We can extend the proposed method for different cases, such as when the data has the structure of
batches or when the average of logging policy converges (Kato, 2021).

2.2 Notations

We denote E[Yt(a)|x] and Var(Yt(a)|x) as f∗(a, x) and v∗(a, x), respectively. Let f̂t(a, x) be
an estimator of f∗(a, x) constructed from Ωt. Let N (µ, var) be the normal distribution with the
mean µ and the variance var. For a random variable Z with density p(z) and function µ, let

‖µ(Z)‖2 =
( ∫
|µ(z)|2p(z)dz

)1/2

be the L2-norm.

3 Preliminaries of OPVE

3.1 Existing estimators

For estimating R(πe) from dependent samples, existing studies propose various estimators. An adap-
tive version of the IPW estimator is defined as RIPW

T (πe) = 1
T

∑T
t=1

∑K
a=1

πe(At|Xt)1[At=a]Yt
πt−1(At|Xt,Ωt−1) .

If the model specification is correct, the direct method (DM) estimator RDM
T (πe) =

1
T

∑T
t=1

∑K
a=1 π

e(a|x)f̂T (a|Xt) is known to be consistent to R(πe). As an adaptive version of
the AIPW estimator, van der Laan (2008) proposed an estimator R̂AIPW

T (πe) defined as

1

T

T∑
t=1

K∑
a=1

{
πe(a|Xt)1[At = a]

(
Yt − f̂t−1(a,Xt)

)
πt−1(a|Xt,Ωt−1)

+ πe(a|Xt)f̂t−1(a,Xt)

}
.

Using the martingale property, van der Laan (2008) showed asymptotic normality under Assumption 2.

3.2 Asymptotic efficiency

We are often interested in the asymptotic efficiency of estimators. The lower bound of the asymptotic
variance is defined for an estimator under some posited models of the DGP described in Section 2.
As with the Cramér-Rao lower bound for the parametric model, we can also define the lower bound
for the non- or semiparametric model (Bickel et al., 1998). The semiparametric lower bound of the
DGP under p1(a|x) = · · · = pT (a|x) = p(a|x) is given as follows (Hahn, 1998; Narita et al., 2019):

Ψ(πe, p) = E

[
K∑
a=1

(
πe(a|Xt)

)2
v∗(a,Xt)

p(a|Xt)
+

(
K∑
a=1

πe(a|Xt)f
∗(a,Xt)−R(πe)

)2 ]
.

The asymptotic variance of the asymptotic distribution is also known as the asymptotic mean
squared error (MSE); that is, an OPVE estimator R̂T achieving the semiparametric lower bound

also minimizes the MSE to the true value R(πe), E
[(
R̂T −R(πe)

)2
]

, not just obtaining a tight

confidence interval.

3.3 Related work

There are various studies related to OPVE, including ATE estimation, under the assumption that
samples are i.i.d. (Hahn, 1998; Hirano et al., 2003; Dudík et al., 2011; Wang et al., 2017b; Narita
et al., 2019; Bibaut et al., 2019; Oberst & Sontag, 2019). There are also several studies extending
these methods to OPVE from dependent samples (van der Laan, 2008; van der Laan & Lendle, 2014;
Luedtke & van der Laan, 2016, 2018; Hadad et al., 2021; Kato et al., 2020; Zhang et al., 2020, 2021;
Zhan et al., 2021; Bibaut et al., 2021).
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The AIPW estimator for dependent samples are proposed by van der Laan (2008). van der Laan
& Lendle (2014) and Luedtke & van der Laan (2016) proposed an OPVE method without the
convergence of the logging policies by using batches and standardization, respectively. Hadad et al.
(2021) and Zhan et al. (2021) extended the method of Luedtke & van der Laan (2016) and proposed
using an evaluation weight to stabilize the estimator and to evaluate regret minimization algorithms,
where the logging policy converges to 0 for sub-optimal arms. The former shares a similar motivation
with weight clipping, or shrinkage, when i.i.d. samples are given (Bembom & van der Laan, 2008;
Bottou et al., 2013; Wang et al., 2017a; Su et al., 2019, 2020). Howard et al. (2021) and Kato et al.
(2020) showed a non-asymptotic confidence interval of the AIPW estimator. Zhang et al. (2020)
proposed an estimator of a linear regression model for samples with batches. Estimators proposed by
van der Laan (2008), Luedtke & van der Laan (2016), Hadad et al. (2021), Kato et al. (2020), and
Zhang et al. (2020) require the true logging policy, unlike our ADR estimator.

A semiparametric estimator usually requires the Donsker condition for its asymptotic normality
(Bickel et al., 1998). For semiparametric inference without the Donsker condition, sample-splitting
is a typical approach (Klaassen, 1987; Zheng & van der Laan, 2011; Chernozhukov et al., 2018).
Chernozhukov et al. (2018) referred to sample-splitting as cross-fitting and the semiparametric
inference using cross-fitting as double-debiased machine learning (DML). The DML has been
extended for several settings (Chiang et al., 2019; Chang, 2020; Jung et al., 2021). For off-policy
evaluation of reinforcement learning from dependent samples, Kallus & Uehara (2019) proposed a
mixing-based sample-splitting, which requires a different assumption from martingales.

In the recent literature, there has been a growing interest in the evaluation of regret minimization
algorithms, where the logging policy πt(a|x) converges to 0 for sub-optimal arms a ∈ A. In this
case, Assumption 1 does not hold. Note that if the logging policy does not converge to 0, we incur a
linear regret in the regret minimization problem. Along with stabilizing unstable behavior with the
logging policy, Hadad et al. (2021) showed that their proposed method can estimate the policy value
of regret minimization algorithms with expected regret close to log T order. Because the method
of Hadad et al. (2021) cannot deal with covariates, Zhan et al. (2021) extended the method in this
direction. Their method can evaluate algorithms with the expected regret close to

√
T order. Unlike

those studies, our proposed ADR estimator may not be applicable to this setting. However, we do
not consider this to be a practical limitation. The evaluation of regret minimization algorithm is a
very important problem, but in industry, uniformly random arm selection and regret minimization
algorithm are often used together for sanity checks, in which Assumption 1 is satisfied. It is also
believed that using such a uniformly random arm selection will stabilize the logging policy and
improve the empirical performance of OPVE. In our paper, we instead focus more on the instability
caused by the time-varying logging policy.

4 The ADR estimator

For OPVE with dependent samples, this paper proposes the ADR estimator R̂ADR
T (πe) defined as

1

T

T∑
t=1

K∑
a=1

{
πe(a|Xt)1[At = a]

(
Yt − f̂t−1(a,Xt)

)
ĝt−1(a|Xt)

+ πe(a|Xt)f̂t−1(a,Xt)

}
,

where ĝt−1 is an estimator of πt−1, constructed only from Ωt−1. We can use standard regression
methods for constructing f̂t−1 and ĝt−1 if they satisfy the following assumptions.
Assumption 4. For p, q > 0 such that p+ q = 1/2, ‖ĝt−1(a|Xt)−πt−1(a|Xt,Ωt−1)‖2 = op(t

−p),
and ‖f̂t−1(a,Xt)− f∗(a,Xt)‖2 = op(t

−q), where the expectation of the norm is taken over Xt.

Assumption 5. There exists a constant Cf such that |f̂t−1(a, x)| ≤ Cf ∀a ∈ A, x ∈ X .

Assumption 6. There exist a constant Cg such that 0 <
∣∣∣ πe(a|x)
ĝt−1(a|x)

∣∣∣ ≤ Cg ∀a ∈ A, x ∈ X .

Assumption 4 requires convergence rates standard in regression estimators. For instance, we can
apply nonparametric estimators proposed in MAB problems (Yang & Zhu, 2002; Qian & Yang, 2016).
Under the assumptions, we show the asymptotic normality of the ADR estimator.
Theorem 1 (Asymptotic distribution of an ADR estimator). Under Assumptions 1–6,

√
T
(
R̂ADR
T (πe)−R(πe)

)
d−→ N (0,Ψ(πe, π̃)) .
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Let us put forward the following assumption.

Assumption 7. For all x ∈ X and a ∈ A, f̂t−1(a, x)− f∗(a, x)
p−→ 0.

The proof is shown in Appendix B, which uses the following proposition from Kato et al. (2020).
Proposition 1 (Asymptotic distribution of an AIPW estimator (Corollary 1, Kato et al. (2020)).).
Under Assumptions 1–3, 5, and 7,

√
T
(
R̂AIPW
T (πe)−R(πe)

)
d−→ N (0,Ψ(πe, π̃)).

Remark 3 (Consistency and double robustness). The ADR estimator has double robustness, as with
standard DR estimators; that is, if either f̂ or ĝ is consistent, the ADR estimator is also consistent.

Theorem 2 (Consistency). Under Assumptions 1–3 and 5–6, if either f̂t−1 or ĝt−1 is consistent,
R̂ADR
T

p−→ R(πe).

We can prove this by the law of large numbers for martingales (Proposition 3 in Appendix A).

Donsker condition. The main reason for using step-wise estimators {f̂t−1}Tt=1 and {ĝt−1}Tt=1 is
to regard them as constants in the expectation conditioned on Ωt−1. The motivation is shared with
DML. For asymptotic normality shown in Theorem 1, we do not impose the Donsker condition on
the nuisance estimators, f̂t−1 and ĝt−1, but only require the convergence rate conditions. We call this
sample-splitting method, using f̂t−1 and ĝt−1, adaptive-fitting and discuss again in Section 5. In the
MAB problem, convergence rate conditions in nonparametric regression, such as a nearest-neighbor
regression (Yang & Zhu, 2002), Nadaraya-Watson regression (Qian & Yang, 2016), random forest
(Féraud et al., 2016), kernelized linear models (Chowdhury & Gopalan, 2017), and neural networks
(Dongruo Zhou, 2020), have been shown. Note that we need to slightly modify the results for each
situation because they are influenced by time-series behavior of logging probabilities.

Convergence rate of the logging policy. In the main theorem, we do not explicitly describe the
convergence rate of the logging policy. However, from Assumption 4, which requires ‖ĝt−1(a|Xt)−
πt−1(a|Xt,Ωt−1)‖2 = op(t

−p), ‖π̃(a|x)− πt−1(a|Xt,Ωt−1)‖2 = op(t
−p) is also required.

Theoretical comparison between AIPW and ADR estimators. There are two major differences
between AIPW and ADR estimators. First, the AIPW estimator requires a priori knowledge of the
true logging policy, but the ADR estimator does not. Another main difference between the two is the
convergence rate of nuisance estimators ĝt−1 and f̂t−1. For the AIPW estimator, only the uniform
convergence in probability is required, but the ADR estimator requires specific convergence rates on
ĝt−1 and f̂t−1. This difference comes from unbiasedness. The AIPW estimator is unbiased; therefore,
the convergence of the asymptotic variance is essential, where it converges with op(1) if f̂ and πt is
op(1). Thus, the AIPW estimator does not require specific convergence rates. On the other hand, the
ADR estimator requires the asymptotic bias term to vanish in a specific order. For this purpose, it
imposes specific convergence rates on the nuisance estimators. From another perspective, a standard
DML for i.i.d. samples and Theorem 1 require ‖ĝt−1(a|Xt) − πt−1(a|Xt,Ωt−1)‖2 = op(t

−p),
‖f̂t−1(a,Xt)− f∗(a,Xt)‖2 = op(t

−q), and p+ q = 1/2.
Asymptotic efficiencies. As shown in Theorem 1 and Proposition 1, ADR and AIPW estimators
achieve the semiparametric lower bound under the DGP defined in Section 2 with p1(a|x) = · · · =
pT (a|x) = p(a|x). On the other hand, the asymptotic variance of the IPW estimator using the true
logging policy πt is larger than the lower bound (Hirano et al., 2003; van der Laan, 2008; Kato et al.,
2020). Although it is known that the IPW estimator using the estimated logging policy can achieve
the lower bound under some conditions with i.i.d. samples (Hirano et al., 2003), the asymptotic
property under dependent samples is still unknown.

5 Adaptive-fitting: DML for dependent samples

We generalize the method used to derive the asymptotic normality of the ADR estimator as a variant of
DML. Let us define the parameter of interest θ0 that satisfies E[ψ(Wt; θ0, η0)] = 0, where {Wt}Tt=1
are observations, η0 is a nuisance parameter, and ψ is a score function. We consider obtaining an
asymptotic normal estimator of θ0 when using complex and data-adaptive regression methods, such
as random forests, neural networks, and Lasso, to estimate the nuisance parameter η0. Under such a
situation, the Donsker condition does not hold, in general. Sample-splitting is a typical approach to
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control the complexities of semiparametric inference without the Donsker condition (Klaassen, 1987;
Zheng & van der Laan, 2011; Chernozhukov et al., 2018). In DML of Chernozhukov et al. (2018),
the dataset with i.i.d. samples {Wt}Tt=1 is separated into several subgroups. Then, a semiparametric
estimator for each subgroup is constructed, but the nuisance estimators are constructed from the
other subgroups. Here, the nuisance estimators are independent in the expectation conditioned on the
other subgroups. Thus, the complexities are controlled without the Donsker condition, and standard
nonparametric convergence rate conditions on nuisance estimators suffice to show the asymptotic
normality of the semiparametric estimator. Chernozhukov et al. (2018) called the method cross-fitting.

Figure 1: The difference between cross-fitting (left)
and adaptive-fitting (right).

However, cross-fitting of Chernozhukov et al.
(2018) cannot be applied when samples
{Wt}Tt=1 are dependent. Therefore, the ADR es-
timator uses step-wise nuisance estimators based
on past observations Ωt−1. This construction
is inspired by van der Laan & Lendle (2014),
which proposed a sample-splitting for batched
dependent samples. The nuisance estimators
are independent in the expectation over the t-th
samples conditioned on Ωt−1. Thus, we can re-
gard our sample-splitting as another approach
for DML. We call this step-wise construction adaptive-fitting, in contrast to cross-fitting. We briefly
summarize the procedure as follows: (i) at each step t = 1, 2, . . . , T , we estimate η0 only using
{Ws}t−1

s=1 and denote the estimators as {ηt−1}Tt=1; (ii) then, we substitute Wt and ηt−1 into ψ and
obtain an estimator θ̂T of θ0 by solving 1

T

∑T
t=1 ψ(Wt, θ̂T , ηt−1) = 0. Under this construction, if

(a) an estimator θ̌T obtained by solving 1
T

∑T
t=1 ψ(Wt, θ̌T , η0) = 0 has the asymptotically normal

distribution and (b) the asymptotic bias decays with the rate faster than op(−1/
√
t), we can obtain the

asymptotically normal estimator of θ0. In Figure 1, we illustrate the difference between cross-fitting
(left) and adaptive-fitting (right). The y-axis represents samples used for constructing the OPVE
estimator with nuisance estimators using samples represented by the x-axis. In the left graph, for
T/K samples, we calculate the sample average of the component including nuisance estimators
based on the other (K − 1)T/K samples. In the right graph, at period t, we use nuisance estimators
constructed from samples at t = 1, 2, . . . , t− 1. To satisfy (a), we assumed that the convergence of
the logging policy (Assumption 2). There are other ways to satisfy this condition. For example, we
can assume the existence of batches as van der Laan & Lendle (2014) and Zhang et al. (2020). We
briefly introduce the ADR estimator with this case in Appendix C.

Remark 4 (The EIPW and DM estimator). To obtain asymptotic normality via DML, we need
a doubly robust structure on the estimator to reduce the asymptotic bias caused by the esti-
mation errors of the nuisance parameters. For this reason, even by using DML, we cannot
show the asymptotic normality of the IPW estimator, with an estimated logging policy (EIPW
estimator), and the DM estimator, which do not have the doubly robust structure. For exam-
ple, let us define the EPW estimator as 1

T

∑T
t=1

∑K
a=1

πe(a|Xt)1[At=a]Yt(a)
ĝt−1(a|Xt) . Then, the bias is∣∣∣ 1

T

∑T
t=1

∑K
a=1

πe(a|Xt)1[At=a]Yt(a)
ĝt−1(a|Xt) − 1

T

∑T
t=1

∑K
a=1

πe(a|Xt)1[At=a]Yt(a)
πt−1(a|Xt,Ωt−1)

∣∣∣. Here, because the

convergence rate of the estimation error ‖πt−1(a|Xt,Ωt−1) − ĝt−1(a|Xt)‖2 will not exceed
Op(1/

√
T ), the bias does not vanish with op(1/

√
T ), which implies that we cannot ignore the

bias when deriving the asymptotic normality. Similarly, the DM estimator also suffers from the
estimation error ‖f∗(a,Xt) − f̂t−1(a,Xt)‖2. On the other hand, when using the DR estimator,
the bias depends on ‖πt−1(a|Xt,Ωt−1)− ĝt−1(a|Xt)‖2‖f∗(a,Xt)− f̂t−1(a,Xt)‖2, which can be
op(1/

√
T ) and ignored to derive the asymptotic normality. Note that when the samples are i.i.d., by

using a specific estimator for πt, we can show the asymptotic normality for the EIPW estimator. See
Hirano et al. (2003) and Hahn et al. (2011) for details.

6 Paradox concerning logging policy

The advantage of the ADR estimator is that, unlike the AIPW estimator, it does not require the true
logging policy. However, we find that the ADR estimator often achieves a smaller MSE than the
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Table 1: The results of Section 6.1 with sample sizes T = 250, 500, 750. We show the RMSE, SD,
and coverage ratio of the confidence interval (CR). We highlight in red bold two estimators with the
lowest RMSE. Estimators with asymptotic normality are marked with †, and estimators that do not
require the true logging policy are marked with ∗.

LinUCB policy
T ADR †∗ IPW † AIPW † AW-AIPW † DM ∗ EIPW ∗

RMSE SD CR RMSE SD CR RMSE SD CR RMSE SD CR RMSE SD CR RMSE SD CR
250 0.061 0.004 0.93 0.205 0.298 0.89 0.158 0.129 0.94 0.179 0.180 0.64 0.073 0.006 0.17 0.097 0.012 0.81
500 0.039 0.002 0.97 0.102 0.029 0.89 0.078 0.012 0.92 0.076 0.011 0.61 0.049 0.003 0.19 0.124 0.014 0.34
750 0.033 0.001 0.95 0.122 0.081 0.92 0.088 0.041 0.95 0.095 0.050 0.72 0.038 0.002 0.21 0.134 0.013 0.13

LinTS policy
T ADR †∗ IPW † AIPW † AW-AIPW † DM ∗ EIPW ∗

RMSE SD CR RMSE SD CR RMSE SD CR RMSE SD CR RMSE SD CR RMSE SD CR
250 0.060 0.004 0.93 0.121 0.025 0.85 0.110 0.026 0.88 0.126 0.038 0.63 0.073 0.006 0.14 0.088 0.010 0.82
500 0.038 0.001 0.96 0.087 0.010 0.94 0.065 0.006 0.97 0.070 0.008 0.63 0.046 0.002 0.10 0.103 0.010 0.46
750 0.030 0.001 0.97 0.059 0.006 0.96 0.060 0.009 0.94 0.062 0.009 0.68 0.038 0.002 0.17 0.116 0.011 0.22

Figure 2: This figure illustrates the error distributions of estimators for OPVE from dependent
samples generated with the LinUcB(left) and LinTS(right) with the sample size 750. We smoothed
the error distributions using kernel density estimation. Estimators with asymptotic normality are
marked with †, and estimators that do not require a true logging policy are marked with ∗.

AIPW estimator, which requires the true logging policy. We refer to this phenomenon as a paradox
concerning logging policy.

6.1 Instability of the AIPW estimator

Hadad et al. (2021) pointed out that the AIPW estimator tends to be unstable, and the statistical
inference becomes difficult when the nuisance parameter πt−1 is close to or converges to 0. To
prevent this instability and make statistical inference possible, Hadad et al. (2021) and Zhan et al.
(2021) proposed the Adaptively Weighted AIPW (AW-AIPW) estimator by adding evaluation weights.
The purpose of these methods is twofold: to stabilize the estimator and expand the algorithm class
whose policy value can be evaluated. In our paper, we focus more on the former stabilization problem.

The ADR estimator replaces the true logging policy πt−1 with its estimator. We find that by
replacing the true logging policy with its estimator, we can control the instability caused from πt−1

by constructing well-formed ĝt−1. For example, if we know that the range of π̃ is (ε, 1 − ε) for
0 < ε < 1− ε < 1, we can add the clipping technique when estimating ĝt−1. For example, in early
periods, we can set ĝt−1 as 0.5. Such techniques is greatly beneficial. Note that if the range of π̃
is truly (ε, 1− ε), the clipping of ĝt−1 does not cause clipping bias; that is, the estimator correctly
converges to the asymptotic distribution shown in Theorem 1.

The main difference between the AW-AIPW estimator and the ADR estimator is that the former
requires information of the true logging policy πt−1, while the latter does not by replacing it with its
estimator. Besides, in addition to the stabilization, the AW-AIPW has another purpose: to evaluate the
regret minimization algorithms, in which the logging policy converges to 0, but our proposed method
does not solve the problem because we put an assumption on the bounded support (Assumption 1).
Our finding also shares motivation with weight clipping for i.i.d. samples, such as Bottou et al.
(2013). We can regard the AW-AIPW estimator as a variant of this method, where the weight clipping
can decay as πt converges, and be ignored asymptotically. However, our interest is in asymptotic
normality from dependent samples without the true logging policy, which is not discussed in the
literature.
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6.2 Simulation studies for OPVE estimators

For reasons given in the previous section, the ADR estimator may empirically perform better than the
AIPW estimator because the estimator ĝt−1 stabilizes the ADR estimator by absorbing the instability
of πt−1. We empirically show this paradox using a synthetic dataset. We generate an artificial pair of
covariate and potential outcome, (Xt, Yt(1), Yt(2), Yt(3)). The covariate Xt is a 10 dimensional vec-
tor generated from the standard normal distribution. For a ∈ {1, 2, 3}, Yt(a) = 1 if a is chosen with
probability q(a|x) = exp(g(a,x))∑3

a′=1
exp(g(a′,x))

, where g(1, x) =
∑10
d=1Xt,d, g(2, x) =

∑10
d=1WdX

2
t,d,

g(3, x) =
∑10
d=1Wd|Xt,d|, and Wd is uniform randomly chosen from {−1, 1}. We generate

three datasets, S(1)
T(1)

, S(2)
T(2)

, and S(3)
T(3)

, where S(m)
T(m)

= {(X(m)
t , Y

(m)
t (1), Y

(m)
t (2), Y

(m)
t (3))}T(m)

t=1 .

First, we train an evaluation function πe by solving a prediction problem between X
(1)
t and

Y
(1)
t (1), Y

(1)
t (2), Y

(1)
t (3) using S(1)

T(1)
. Then, we regard the evaluation function πe as a logging

policy and apply it on the independent dataset S(2)
T(2)

to obtain {(X ′t, A′t, Y ′t )}T(2)

t=1 , where A′t is an

action chosen from the evaluation function and Y (m)
t =

∑3
a=1 1[A

(m)
t = a]Y

(m)
t (a). Then, we

estimate the true value R(πe) as 1
T(2)

∑T(2)

t=1 Y
(m)
t . Next, using the datasets S(3)

T(3)
and an MAB

algorithm, we generate a bandit dataset S = {(Xt, At, Yt)}
T(3)

t=1 . For S , we apply the ADR estimator,
IPW estimator with the true logging policy (IPW), AIPW estimator (AIPW), AW-AIPW estimator
(AW-AIPW) IPW estimator with estimated logging policy (EIPW), and DM estimator (DM). For the
AW-AIPW estimator, we use the StableVar weight, proposed in Zhan et al. (2021). For estimating
f∗ and the logging policy, we use the kernelized Ridge least squares and logistic regression, respec-
tively. We use a Gaussian kernel, and both hyper-parameters of the Ridge and kernel are chosen
from {0.01, 0.1, 1}. We define the estimation error as R(πe)− R̂(πe). We conduct ten experiments
by changing sample sizes and MAB algorithms. For the sample size T(3), we use 100, 250, 500,
750, and 10, 000 with the LinUCB and LinTS algorithms. For the sample sizes T(1) and T(2), we
use 1, 000 and 100, 000 respectively. We conduct 100 trials to obtain the root MSEs (RMSEs), the
standard deviations of MSEs (SDs), and the coverage ratios (CRs) of the 95% confidence interval
(percentage that the confidence interval covers the true value). The results with T = 250, 500, 750
are shown in Table 1 and those with T = 750 are shown in Figure 2. The other results are shown in
Appendix D. In all cases, the ADR estimator performs well compared to other methods. Although
the AIPW estimator has asymptotic normality, the performance is not comparable with the ADR
estimator. Although the AW-AIPW estimator enables us to evaluate regret minimization algorithms,
we cannot observe that the AW-AIPW estimator improves the empirical performance of the AIPW
estimator in our setting. The EIPW estimator suffers from the dependency problem.

Remark 5 (Paradox for i.i.d. samples). This paradox is similar to the well-known property that the
IPW estimator using an estimated propensity score shows a smaller asymptotic variance than the
IPW using the true one (Hirano et al., 2003; Henmi & Eguchi, 2004; Henmi et al., 2007). However,
as discussed above, we consider this to be a different phenomenon. In these studies, the paradox is
mainly explained by differences in the asymptotic variance between IPW estimators with the true and
estimated propensity score. On the other hand, for our case, AIPW and ADR estimators have the
same asymptotic variance, unlike IPW-type estimators. Therefore, we cannot resolve the paradox
by the aforementioned explanations. The instability of the AIPW estimator is consistent with the
empirical findings of Hadad et al. (2021), but, in our paper, we suggest using the ADR estimator as
another solution.

7 Experiments

Following Dudík et al. (2011), we evaluate the estimators using classification datasets by transforming
them into contextual bandit data. From the LIBSVM repository (Chang & Lin, 2011), we use the
mnist, satimage, sensorless, and connect-4 datasets 2. The dataset description is in Table 3 of
Appendix D. We construct a logging policy as πt(a|x) = απmt (a|x) + (1− α) 0.1

K , where α ∈ (0, 1)
is a constant, and πmt (a|x) is a policy such that πmt (a|x) = 1 for an action a ∈ A and πmt (a′|x) = 0
for the other actions (a′ 6= a). The policy πmt (a|x) is determined by logistic regression and MAB

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Table 2: The results of benchmark datasets with the LinUCB policy. We highlight in red bold the
estimator with the lowest RMSE and highlight in under line the estimator with the lowest RMSE
among estimators that do not use the true logging policy. Estimators with asymptotic normality are
marked with †, and estimators that do not require the true logging policy are marked with ∗.

mnist ADR †∗ IPW † AIPW † DM ∗ EIPW ∗
α RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD
0.7 0.046 0.002 0.100 0.011 0.162 0.027 0.232 0.013 0.148 0.014
0.4 0.028 0.001 0.068 0.005 0.112 0.009 0.249 0.010 0.080 0.004
0.1 0.086 0.006 0.078 0.006 0.085 0.008 0.299 0.024 0.091 0.008

satimage ADR †∗ IPW † AIPW † DM ∗ EIPW ∗
α RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD
0.7 0.013 0.000 0.098 0.011 0.060 0.004 0.037 0.001 0.056 0.002
0.4 0.022 0.000 0.078 0.008 0.019 0.000 0.043 0.001 0.060 0.002
0.1 0.029 0.001 0.078 0.005 0.061 0.008 0.041 0.002 0.041 0.002

algorithms. For MAB algorithms, we use upper confidence bound and Thompson sampling with a
linear model, which are denoted as LinUCB (Chu et al., 2011) and LinTS (Agrawal & Goyal, 2013).
The evaluation function is fixed at πe(a|x) = 0.9πd(a|x) + 0.1

K , where πd is a prediction of a logistic
regression.

We focus on the ADR estimator and compare it to the IPW, EIPW, AIPW, and DM estimators, as
done in Section 6.2. We omit the AW-AIPW estimator, as we found that the performance depends
on the choice of the evaluation weight (see Section 6). Additionally, the paper does not consider or
discuss situations where there exist covariates. We compare those estimators using the benchmark
datasets generated through the process explained above. For α ∈ {0.7, 0.4, 0.1} and the sample sizes
800, 1, 000, and 1, 200, we calculate the RMSEs and the SDs over 10 trials. The results of mnist and
satimage with the LinUCB policy and T = 1, 000 are shown in Tables 2. The full results, including
the results with the LinTS policy and i.i.d. samples, are shown in Appendix D. As discussed in
Section 6, the ADR estimator performs well. Although the asymptotic distributions of AIPW and
ADR estimators are the same, the AIPW estimator shows poorer performance. As Section 6.2, we
consider this to be because the estimator of πt is absorbing the instability of πt.

Note that the ADR, IPW, and AIPW estimators are asymptotically normal, but the IPW and APIW
estimators are not feasible when the true logging policy is not given. To the best of our knowledge,
asymptotic normality of the EIPW and DM estimators has not been shown when samples are
dependent, and the proof is non-trivial owing to the dependency and the Donsker condition.

8 Conclusion

DR-type estimators are crucial in causal inference because they do not assume a priori knowledge
of the true logging policy, and they asymptotically follow a normal distribution under standard
convergence rate conditions of nuisance estimators. However, existing studies have rarely discussed
DR-type estimators when samples are dependent. We derived the ADR estimator and proposed
adaptive-fitting as a variant of DML to obtain asymptotic normality. In experiments, we found a
paradox that the ADR estimator tends to be more stable than the AIPW estimator and conjectured
that this is because the ADR estimator absorbs the instability of the true logging policy πt.

In OPVE with dependent samples, to obtain asymptotic normality, we need to put some assumptions
on the behavior of πt, such as Assumption 2 and a decay rate condition assumed in Hadad et al.
(2021) and Zhan et al. (2021). These assumptions can be broken if the time-series is very complicated.
However, we note that this is a limitation of the entire field. The asymptotic normality and double
robustness of OPVE estimators are necessary theoretical properties to avoid deriving false causality.
Since causal inference is often used in applications related closely to public policy, we consider
understanding these limitations critical.
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(b) Did you describe the limitations of your work? [Yes] Please refer the conclusion for
the limitation of this paper.
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(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] Since the most ethical concern is about the dataset and this paper uses
synthetic data in the experiment, this paper conforms to the guidelines.
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material (we included source code and requirements).

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6.2–7 and Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We reported the value of standard deviation for each result
and other information in Appendix D. We also show the distributions of estimation
errors smoothed by kernel density estimation. We did not conduct hypothesis test
because for deciding the best performing method, it is not obvious how to set the
null and alternative hypothesis and conduct statistical hypothesis test. The t-test is
sometimes used in machine learning, but considering the multiplicity of the test, it may
lead to inaccurate inferences. Therefore, we have tried to show information such as
mean, standard deviation, and distribution as much as possible.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A] We described the numbers of trials
of experiments. The computations are very simple and could be done on a personal
laptop, so resource information is not included.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] We used open datasets from LIBSVM

repositories.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See supplementary material. We included source code.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We used only synthetic data in this paper.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] We only have experiments using synthetic
data.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] We did not use a crowdsourcing service.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] We did not use a crowdsourcing service.
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A] We did not use a crowdsourcing service.
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