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Abstract. Brownian motion is widely used to model random processes
across various domains. However, many practical scenarios only provide
aggregated data over time intervals, rather than direct measurements
of the underlying process. This poses significant challenges for accurate
modeling, as conventional Brownian kernels are not designed to account
for the uncertainty introduced by these aggregates. We introduce the
Brownian integral kernel (BIK), the first analytical kernel specifically
developed to model aggregated data from Brownian motion. Through
extensive experiments on synthetic and real-world datasets, we demon-
strate the BIK’s superiority in prediction accuracy, uncertainty estima-
tion, and data synthesis compared to existing Kernels. To support adop-
tion, we provide a Python implementatiorﬂ compatible with GPy, along
with all code and data to reproduce our experiments.

Keywords: Integral Measurements- Learning from Aggregated Data-
Integrated Brownian Motion- Gaussian Process Regression- Kernels

1 Introduction

Brownian motion (Figure [lp) is central to modeling various physical and tech-
nological processes, such as: (1) The movement of particles in a fluid [7]. (2)
The movement and loosening of machine elements due to vibration [13]. (3) The
behavior of financial and other markets [17], population behavior and effects. (4)
The load profile of electrical grids where producers and consumers with vary-
ing loads are plugged in or out of the grid at any time. These processes often
involve stochastic uncertainties, which are effectively modeled using Gaussian
processes and Brownian kernels [4], enabling synthesis of process data, regres-
sion of real-world data with associated uncertainty, and the combination of both,
i.e., synthesis of data from partially conditioned models.

However, in many real-world scenarios, data collection pipelines contain “in-
tegrators” that implicitly or explicitly aggregate data over time intervals [19]

3 git: https://github.com/belal27/Brownian-Integral-Kernel
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(Figure [Lp). Direct observation of the quantity of interest is not possible in such
scenarios. Examples include sensors with inherent integration properties (e.g.,
temperature sensors with heat capacity) or practical constraints (e.g., smart
meters providing 15-minute aggregated load data for value privacy). This aggre-
gation obscures the underlying behavior and increases uncertainty, which con-
ventional Brownian kernels cannot model accurately (Figure ) For instance,
load forecasting requires precise variance estimation to manage short-term peaks
in energy consumption [8,18,28]. Without this, providers risk grid instability or
legal penalties due to insufficient capacity [3|. Similar problems arise in other
domains like disease monitoring and simulation [34]. As emphasized by [5], the
importance of integral kernels for modeling integrating processes is undisputed
in many fields.
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Fig. 1. Comparison of modelling and synthesis of integrated Brownian data with the
conventional Brownian Kernel (BK) and our Brownian Integral Kernel (BIK).

While a few integral kernels exist (e.g., RBF Integral Kernel), they are of-
ten computationally expensive or lack a direct connection to physical processes,
making them unsuitable for integrated Brownian motion.

To address these challenges, we derive the Brownian Integral Kernel (BIK), a
novel analytical solution for modeling aggregated data from Brownian motions.
The BIK accurately estimates variance and supports Gaussian process regres-
sion, enabling better predictions and uncertainty quantification (Figure [1 ) as
well as data synthesis (Figure|l ) We validate its performance through extensive
experiments on synthetic and real-world datasets. Further, to foster accessibil-
ity, we provide a Python implementation of the BIK compatible with the widely
used [9] framework for Gaussian Process modeling. For brevity of this paper, we
provide proofs, theoretical findings, and additional experiments in our extensive
Supplementary material.
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2 Related Work

Gaussian processes (GPs) are a standard tool for modeling continuous processes,
offering flexible kernels that enable accurate regression, uncertainty quantifica-
tion, and data generation [4]. Their robustness to overfitting and scalability make
them well-suited for both small and large datasets [6]. A key strength of GPs
is their use of kernel functions, which allow for modeling complex, non-linear
relationships without explicit parametric assumptions. The general workflow for
using GPs is outlined in Algorithm [T}

Algorithm 1 Generic Use-Case of a Gaussian Processes

1: Input: Training data tirain, Ytrain, 1est data tiest

2: Qutput: Predicted mean p(tiest), uncertainty o(tiest), generated data ygen

3: Step 1: Kernel Selection. Choose a kernel function k(-,-) (e.g., RBF, Matérn,
our BIK, etc., or combination).

4: Step 2: Training. Train the Gaussian process model on tirain, Ytrain using the
kernel k(+, ). Learn hyperparameters 6 of the kernel by maximizing the log marginal
likelihood.

5: Step 3: Prediction and Uncertainty Estimation. For test points tiess, com-
pute the posterior mean p(ttest) and variance o2 (ttest) using the trained model.

6: Step 4: Data Generation from Posterior Distribution. Sample from the
posterior A (pu(teest), 02 (trest)) to generate new data ygeen.

Despite their strengths, conventional kernels face limitations when modeling
aggregated data. The RBF Integral Kernel [5,29] lacks physical grounding, while
numeric integration-based methods [20,33] and MCMC approximations [34] are
computationally expensive. Spectral approximations [10,30] succeed for smooth
kernels but fail for discontinuous ones like the Brownian kernel [22].

The Brownian kernel, in contrast, is closely tied to physical processes such
as load profiles and market behavior. However, it assumes direct observations,
limiting its utility for aggregated data. Efforts to adapt Kalman filters [12,15,24,
25,31,32,35,36] and integrate numeric methods [16,20] have resulted in problem-
specific or approximate solutions. For more details, see the extended related work
in Supp.Mat.

Some approaches are out of scope for this work. Time-discrete methods, such
as Kalman filters, lack the continuous modeling required for integrated data,
while extensions for time-continuous modeling [15, 32] require problem-specific
transition functions. Methods like Support Vector Machines (SVMs) do not sup-
port uncertainty estimation, and neural networks lack efficient mechanisms for
data generation and uncertainty quantification. These limitations make them
unsuitable as baselines for this study.

This paper introduces the Brownian Integral Kernel (BIK), an analytical so-
lution for modeling aggregated data. The BIK directly relates to common phys-
ical processes and provides exact covariance estimation for integrated Brownian
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motion, enabling efficient computation within standard GP frameworks while
maintaining a direct connection to physical processes.

3 Problem Statement

For clarity and completeness, the detailed notation and fundamental definitions
are provided in Supp.Mat. [Il Although the notation is designed to be intuitive
and should become clear from the context, readers are encouraged to refer to
Supp.Mat. [T as needed for additional details.

We assume a data-generating process B(t) that behaves like a Brownian
motion. Some real processes that behave like this do not allow observation of
their actual value b(t) (realization) at time ¢. One can only observe average or
integral measurements of B(t), while the true value b(¢) remains unknown.

Definition 1. An integral measurement B(s,e) is the integration over time t of
measurements from b(t) from start time s to end time e:

B(s,e) = /e b(t)ot.

Even if b(t) follows a Brownian motion which is per definition erratic, integral
measurements B(s,e) behave differently, this is because integration smoothes
the values leading to a smoother function. In consequence the measured value
B(s,e) is most certainly not the true value of the underlying process b(t). How-
ever, a Brownian motion model, e.g., a Gaussian process with Brownian kernel
kg (t,t') = vy - min(t,t’) assumes that the observed data points are the true
values. Fitting such a model on integral measurement B(s,e) gives the wrong
predictive variance of zero at measurement locations. To obtain the correct co-
variance, i.e., to correctly model the additional variance due to integration, a
new kernel is necessary.

4 The Brownian Integral Kernel

We propose to model the additional variance (described in the previous section)
directly in a new kernel to solve the problem of mis-estimating the variance.
Thus, this calls for a kernel that yields the covariance between two integrated
time intervals of a Brownian motion. Following [5] we can derive this kernel by
integrating the Brownian kernel:

Definition 2. The Brownian integral kernel (BIK) is the two-time integration
over time intervals (s,e) and (s',¢e') of the Brownian kernel:

kff’((sae),(8,7€/))=11b-/ /mz‘n(t,t’)étét’.
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This kernel generalizes the Brownian kernel to integral measurements by
modeling the higher variance due to integration, which the Brownian kernel
neglects. For intuition and proof of how integrating a kernel is equivalent to
integrating the underlying process, please refer to Supp.Mat. [3] Further, a kernel
needs to fulfill some properties, namely, it needs to be positive-semidefinite [26].
We provide proof for this property in Supp.Mat. [

Theorem 1. The Brownian integral kernel admits the following solution:

krr((s,e), (s €)) =
ifs<s <ée <e:

Fu((et),(s",€) + Foor(s', ) + Fowr((s,8), (s, €))
ifs’ <e <s<e:

Fee((s,€), (s',€))
ifs <s<eée <e:

Fuu((s,€), (5", 8)) + Fu((€', €), (5,€")) + Feor (s, 1)
ifs<s <e<e:

Fov((s,s),(s',€)) + Fuu((s'€), (e, €)) + Fuur (s, ¢)
ifs<e<s <eé:

Fuv((s,e), (s's¢))
ifs'§s<e§e/:

Fee((s,€), (s',8)) + Fuar (s,€) + Frr((5,€), (e, €”))

Vp

, with Fyp, Fy, Fre being sub-parts of the primitive function:

ro _1 2 ’r_ 1 2 g 1 2 / 1 2 gy
ftt((l,u)7(l7u))—2u w = gu l 21 u +21 U, (1)
Foo (', 0, (L)) zlul2 Su— ll/2 cu— 1u'2 I+ El'2 -1, and (2)

t't ) s \by 2 2 2 2 ’
For(lw) =2 (u = 1)* + (u—1)2-1. 3)

3

We provide a detailed proof of this derivation in Supp.Mat. [8]
The resulting kernel kxz calculates the covariance between training data
intervals, i.e., between two integrated time intervals. However, during inference,

. . .. . t
most users are interested in the predictive variance k?;f )

oy . . . . t . . .
Definition 3. The predictive variance k%5;" of a Gaussian process is a variance

within the original space of the non-integrated Brownian motion. For a given
point t, k?(;{ft quantifies how likely a prediction vy, is equal to the unobserved
ground truth g .

The predictive variance k?aﬁt is often used to quantify the uncertainty asso-

ciated with predictions yy [27]. To calculate it, we need to calculate the partly
integrated covariance kr¢.
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Definition 4. The partly integrated covariance kry is the covariance between
an inference point t' (point in the original space of non-integrated Brownian
motion) and an integration time interval (s,e). It is calculated as a one-time
integration of kg :

krp (s, 6),t/) =Up- / min(t,t’)&t.

Theorem 2. The partly integrated kernel admits the following solution:

ift <s<e:
ft(tlas7e)

ifs<t <e:
Fur(s,t') + Fe(t', ' e)

ifs<e<t:
]:t’(sve)

kff/((57e)7tl) = Vb -

with Fy, Fy as follows:

Fet, ' u)y=t-u' —¢t- 1, (4)

! ! 1 7 1/
ft/(l,u):§u2—§l2. (5)

We obtain this partly integrated covariance by one-time integration of ks (¢, ).
The proof follows directly from the proof of Theorem [I] see Supp.Mat. 8] Here,
Equations 4| and [5| are an intermediate result (compare with Equations [1|and
from Supp.Mat. [§

We can now calculate the predictive variance k??ﬁ,t of the Gaussian process,
according to [23] with the standard formula for Gaussian processes. Here we
use matrix notation, where K¢y, Kry, Kpp is the matrix obtained by using the
appropriate kernel kg (x, %), kz (%, %), krr (%, ) and K??St is the result matrix

that corresponds to k?;ft:

Corollary 1.
sz;“ =K;p — KipKpp Kpy.

5 Experimental Design

We derived the Brownian Integral Kernel (BIK) and highlighted its advantages
over existing kernels.

To validate our findings, we compare the BIK in various scenarios against
the Brownian Kernel (BK), the RBF Integral Kernel (RBFIK) from [5], and the
Brownian Kernel with added white noise (BNK) [2,14]. The comparisons assess
prediction quality, variance estimation, and the plausibility of data generated by
a GP conditioned on integral measurements.
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5.1 Used Data

For our evaluation, we use data from multiple sources: Synthetic data: Synth
from a Gaussian process with a Brownian Kernel and subsequent numeric inte-
gration. Simulated data: Load generated with a realistic and widely used data
generator [21]. Real-world data: Real provided by a private household, HIPE
using the High-resolution Industrial Production Energy (HIPE) data set [1], and
Stock, using daily stock market prices from [11]. More details on the used data
can be found in our Supp.Mat. [5] We provide all used datasets which are other-
wise not easily accessible, together with the experiment code within our GitHub
repository to facilitate reproducibility.

It is important to note that, contrary to the intuition of the name load profile,
load profiles can have both positive and negative values due to generating nodes
such as photovoltaic systems. Especially for short-term modeling of such load
profiles, they behave Brownean-like because of randomly moving cloud cover [37].
For long-term modeling, one almost always has additional periodicity (day and
night). However, the periods are usually much longer than 15 minutes, which is
why they are not relevant for modeling uncertainty due to integration. Our kernel
can be used for long-term modeling with standard kernel composition by just
adding a periodic kernel. Yet such an extension is not necessary for evaluating
the short-term uncertainty effects we are targeting.

5.2 Metrics

We evaluate multiple application-relevant aspects of the kernels. One is often
interested in the prediction error. However, in our scenario (where one can only
observe integrals of the ground truth but not the ground truth itself) predictions
will always be close to the mean within the observed integration interval. There-
fore, standard metrics such as Mean Square Error (MSE) are not meaningful
when comparing the kernels. Instead, this scenario requires an evaluation that
combines prediction and prediction uncertainty. For this, we use the Weighted
Mean Absolute Error (WMAE):

Definition 5. The WMAE quantifies the estimation quality considering the es-
timated likelihood lgp(t') of an estimation yy vs the ground truth g :

1 .
WMAE = m Z lGP(t/) : |yt’ - yt"

t'eT
with T being the set of test points.

The WMAE is an intuitive measure: The estimated likelihood lgp(t') quan-
tifies for a prediction y; how likely this prediction is. If the model is confident
(lgp(t') = 1) and the prediction is accurate, the WMAE is low. WMAE penal-
izes prediction errors more when the model is (wrongly) confident, and less when
it is (correctly) uncertain. Note that we are interested in the likelihood per data
point, thus it is not required to normalize the likelihood across all data points.
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While the WMAE is relevant for the prediction accuracy, we can also di-
rectly evaluate the estimated uncertainty. For this, we calculate the variance
of the ground truth within an integration interval and compare it with the esti-
mated variance, which should be similar. We use the Mean Square Error MSE,,
between true and estimated variance. Please note, that this metric is only mean-
ingful in combination with the prediction error.

Finally, we evaluate whether the generated data (which is partially condi-
tioned on observed integral measurements) matches the process assumptions:
We know that the integral of the ground truth results in the observed integral
measurement. Therefore, the integral of generated data should also result in the
observed integral. Here, we calculate the Mean Absolute Error MAE;,,; between
the integral measurement and the integral value of generated data. We calculate
the integral value of generated data by sampling data at the same points in time
used to calculate the ground truth integrals and then apply the same window-
ing procedure, i.e., summing all the resultant values within the integration time
interval.

5.3 Experiment Procedure and Model

We evaluate each kernel using the same Gaussian process model. As a model,
we use the standard GPy implementation [9]. We also train all configurations
in the same way, using the GPy gradient-based maximum likelihood optimizer
in its standard configuration [9]. In this configuration, the optimizer performs 5
independent optimization runs, each time with random start kernel parameters.
The model then uses the parameters from the best run.

For each dataset, we repeat this procedure 20 times, each time with a different
ground truth time series. We then calculate the mean and the variance across
the runs of the respective metrics.

6 Evaluation

For brevity, we focus here on the quantitative experiments. However, we fea-
ture additional qualitative kernel comparisons and visualizations in Supp.Mat. [6]
These are especially useful for domain experts who like to attain an intuitive /visual
understanding of the superiority of the BIK against other kernels. Further, we
provide an ablation study of process and kernel parameters in Supp.Mat. [7], and
a theoretical runtime analysis in Supp.Mat.

A comparison of the different approaches, in Table [I} shows that BIK is
superior to its competitors in every regard evaluated: The integral of generated
data has at least 10 times lower MAE;,,; compared to all baselines. (The RBFIK
from [5] cannot generate data.) For our BIK, we provide a more detailed analysis
of MAE;,,; in Supp.Mat. [7}

Regarding the prediction with uncertainty, BIK has at least 2 times better
WMAE on Load and Synth w = 25 than with all competitors. On Synth w =
50, 100, 200 the baselines catch up a bit, but BIK still beats them by 30% less
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Table 1. Evaluation metrics for different kernels and data sets. Bold entries mark the
best result within one metric

Metrics
Data Kernel MSE, . MAE;,; WMAE
BIK 5.82 + 12. 7.6 + .45 3.79 + 2.9
Synth RBFIK 24.9 + 25. — 44.2 + 60.
w=25 BK 15.6 + 20. 72.8 + 4.6 6.9 + 133
BNK 15.6 + 20. 73.0 + 6.0 6.9 + 133
BIK 5.87 + 14. 3.67 + .26 2.33 + 2.0
Synth RBFIK 24.6 + 27. — 13.5 + 19.
w=50 BK 20.8 + 25. 71.1 + 5.8 3.38 + 42.
BNK 20.8 + 25. 72.4 + 4.3 3.38 + 42.
BIK 4.7 + 13. 2.0 + .14 4.35 + 3.3
Synth RBFIK 20.6 + 25. — 44.8 + 62.
w=100 BK 17.8 + 23. 68.5 + 5.2 5.95 + 89.
BNK 17.8 + 23. 70.0 + 4.7 5.95 + 89.
BIK 5.41 + 9.2 1.12 + .09 4.27 + 3.5
Synth RBFIK 22.4 + 19. — 50.9 + 71.
w=200 BK 20.6 + 18. 63.2 + 5.4 5.50 + 51.
BNK 20.6 + 18. 62.9 + 4.2 5.50 + 51.
BIK .50 + 1.2 .39 + .006 .35 + .74
Load RBFIK 64+ 1.6 - 354+ 7.4
oa BK 66+ 1.6 3.3 + .07 12. + 26.
BNK 56 + 1.4 3.7 4+ .08 80 + 1.7
BIK 12.5 + 26. .69 + .031 0.42 + 0.3
RBFIK 43.1 + 43. — 8.02 + 6.5
HIPE BK 45.5 + 44. 5.84 + .21 518. + 429
BNK 45.5 + 44. 5.69 + .19 476. + 395
BIK 1.13 + 2.9 14.8 + 1.1 0.32 + 0.3
Stock RBFIK 3.65 + 5.1 — 4.48 + 3.9
o¢ BK 3.98 + 5.3 63.1 + 3.2 46k + 38k
BNK 3.98 + 5.3 60.9 + 2.6 45k + 38k

error. Also, the WMAE variance suggests that the baselines are very unstable
across data sets.

The MSE,,, between predicted variance and actual variance during mea-
surement on Synth, HIPE, Stock is 2.6 times better for BIK than any baseline.
On Load BIK is still 10% better.

Note that the results of BK and BNK are similar on synthetic data. This
similarity arises because BNK learns a noise of zero. Indeed, BNK only gives
good uncertainty estimates when trained on several different observations of the
same data point (or with a smaller time step). With integral measurements, such
data cannot be observed, leading to BNK learning incorrect small variances.
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One may also notice that the variance in predictive variance (measured with
MSE, ) is high across the experimental runs for all kernels. This is to be ex-
pected, since by chance the ground truth is sometimes simply close to the average
within the integration interval, leading to a high deviation. Even with this high
deviation, MSE,,; is still meaningful for comparing the quality of the uncertainty
quantification as long as the prediction error is similar. Even though BNK es-
timates a similar uncertainty as BIK, the metrics MAE;,; and WMAE show
that the uncertainty estimation of BNK is useless because of its much higher
prediction error.

7 Conclusions

Integrated Brownian motions are crucial in many physical processes and data
collection techniques. The conventional Brownian kernel, while effective for mod-
eling Brownian motion, falls short in capturing the uncertainties associated with
integrated data.

This study has tackled modeling integrated Brownian motions precisely, by
providing an analytical solution to the novel Brownian integral kernel (BIK).
The BIK enables precise estimation of variance associated with the underlying
quantity of interest. Further, the BIK is a valuable tool for tasks like regres-
sion with uncertainty estimation and for data synthesis partially conditioned on
measurements, as shown in our experiments.

Our contributions bridge a significant gap in modeling integrated processes.
Our Brownian integral kernel enhances the accuracy and reliability of Gaussian
process modeling in such uncertain and dynamic environments by a factor of
at least 2 on every dataset and against every baseline. Data synthesis with our
integral kernel is better by a factor of at least 10 compared to all baselines.

While our Brownian integral kernel is a substantial advancement, there are
avenues for further exploration: First, the challenge of concept drift, i.e., changes
of behavior of the underlying ground truth stream, and how to handle it, is a
relevant research direction. Additionally, investigating the properties of other
integrated processes besides the Brownian integrated process could result in
additional new kernels useful for modeling such processes. Finally, using our
kernel in applied research could lead to advances in several directions, such as
estimating privacy violations and disaggregating load data from smart meters.

Supplementary Material We include detailed notation, additional experiments, and
proofs in our Supp.Mat. published on Git Hubﬂ
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Abstract. This document contains the supplementary materials to our
work The Brownian Integral Kernel: a New Kernel for Modeling Inte-
grated Brownian Motions. Here, we feature additional experiments, and
visualizations useful for experts to obtain an intuition of our Brownian
integral kernel (BKI). Further, we perform an ablation study, present
the detailed proof by derivation of the BKI, and analyze its runtime.
In addition to this document, we offer a Python implementatiorﬂ of our
kernel, compatible with the widely adopted GPy framework for Gaussian
Process modeling. Together with the implementation, we publish all the
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1 Notation

Random Variables X,Y, Z, ... are denoted in uppercase, with their realizations
T,Y, %, ... in corresponding lowercase. X ~ A(0,1) signifies that X follows a
standard normal distribution. As a shorthand, one can also write z + N(0,1)
to express that a realization is drawn from a normal distribution.

Random Functions F :x — F(z) associate each value x; of a variable z € R
with a random variable F'(z;) [11]. As such, a random function extends the
notion of random variables to a continuous function space. Sample Functions
f(x) « F(x) are functions f : z — f(z) drawn from a random function F(x).

Stochastic Processes S or random processes are random functions S : ¢ — S(t)
where ¢ € T is interpreted as time, i.e., T =R,.

3 git: https://github.com/belal27/Brownian-Integral-Kernel



The Brownian Integral Kernel: 15

Brownian Motions B :t > B(t) are stochastic processes characterized by ran-
dom increments: dB(dt) = B(t + dt) — B(t), these increments follow the nor-
mal distribution §B(dt) ~ N (0, t). Brownian motion occurs in many scenarios
where many small, random, and independent changes lead to a random overall
change [11].

Gaussian Processes (GPs) are stochastic processes such as:

GP(z) ~ N (m(z),v(x)), illustrating that the process GP(z) comes from a nor-
mal distribution with mean m(x) and variance v(z) depending on z [11]. One
often uses GPs for applications other than time series modeling, which is why x
is used instead of ¢. For instance, [8] uses a GP as a random function, i.e., as a
probabilistic prior over smooth functions, and to model functions with associated
uncertainty.

Kernel Functions k(z,z’), also called covariance functions, can define a GP
instead of using a mean and variance function. Here, z,z’ are two points from
the regime of the GP, and k(x,2") returns the covariance of the GP according
to these given points.

The Brownian Kernel kg (t,t") = vy - min(t,t’), with points in time ¢ and ¢’ has
a variance parameter vp. It translates to the drift speed of the resulting Brownian
motion [11], i.e., how fast a time series diverges from a given starting point.

Primitive Functions , also called antiderivative, commonly use upper case let-
ters. However, to avoid overlap in notation with random functions, we will use
calligraphic letters F to denote primitive functions. In addition, we will use index
notation to denote partly integrated functions, which is required for multivariate
functions. For example:

k(t,t') = kyp(t,') is the original function, kzp (t,t') = ["kysp(t, )6t is the
one time integration and kxz (t,t') = [7 [5 kpp (t,t')0t'St the full (two-time)
integration. Indexes of a primitive function F;; (denoted with a calligraphic
letter) are simply used for naming and do not have any special meaning if not
otherwise specified in the text.
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2 Extended Discussion of Related Work

Our work focuses on modeling time-continuous processes that contain integra-
tors and on generating data from such learned models with Gaussian process
regression. Such Gaussian processes (GPs) are the typical approach for this ap-
plication 3], see Algorithm [2| A key strength of GPs is their use of flexible kernel
functions, which allow for modeling complex, non-linear relationships in continu-
ous data without explicit parametric assumptions, see step 1 in Algorithm [2] Af-
ter training (step 2), GPs provide a posterior distribution over functions, making
it possible not only to predict outcomes (step 3) but also associated uncertainty
and to generate new realistic (continuous) data (step 4). This capability is par-
ticularly valuable for simulations and uncertainty quantification. Furthermore,
GPs automatically adjust their complexity based on the data, making them ro-
bust to overfitting in small datasets and scalable to larger ones, unlike methods
that require fixed parametric structures, manual tuning, or large datasets [5].

Algorithm 2 Generic Use-Case of a Gaussian Processes

Input: Training data tirain, Yerain, Lest data tiest

Output: Predicted mean pi(tiest), uncertainty o(tiest), generated data ygen

Step 1: Kernel Selection

Choose a kernel function k(, ) (e.g., RBF, Matérn, our BIK, etc., or combination).
Step 2: Training

Train the Gaussian process model on tirain, Yirain using the kernel k(-, -).

Learn hyperparameters 6 of the kernel by maximizing the log marginal likelihood.
Step 3: Prediction and Uncertainty Estimation

For test points tiest, compute the posterior mean pi(ttest) and variance o2 (trest)
using the trained model.

10: Step 4: Data Generation from Posterior Distribution

11: Sample from the posterior N (p(tiest), 02 (trest)) to generate new data ygen.

There do exist extensions of Kalman filters for time-continuous modeling
[12,23]. However, the needed time-transition functions are challenging to drive
and often problem-specific. This is why the work of [10] goes so far as using GPs
as a noise model for Kalman filters. Which would, in turn, require a kernel like
we proposed. Further, [20,26] have shown that such Kalman filters are equivalent
to Gaussian processes under certain assumptions, i.e., it is possible to transform
the kernel of a GP to a transition function for a Kalman filter or even use the
kernel directly in an adapted Kalman filter implementation [19].

The closest related kernel is the Radial Basis Function (RBF) integral kernel,
introduced by [4,21]. Independently of this work [13] also derived a line-RBF inte-
gral kernel, which calculates the covariance between lines and measurements. [6]
claimed that there is no analytic solution to the line-RBF integral kernel (which
was disproven by [13]) and provided an approximate solution by only solving a
part of the integration and solving the missing part with numeric integration.
While the RBF kernel is widely used because of its universal approximation
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property [14], it has no relation to actual physical processes. This questions
the usefulness of its integral version. The Brownian kernel, on the other hand,
directly relates to physical processes such as load profiles or market behavior.

Obtaining an integral kernel from any kernel by pure numerical integration is
possible and was done for classification [15]. Similarly, in [24] a mixture of Gaus-
sian processes and numeric integration is used to learn from spatially integrated
data. However, this approach is always an approximation, and the approximation
error only decreases with a quadratic number of evaluation points. Coupled with
the quadratic complexity of Gaussian process regression, this becomes compu-
tationally challenging for larger datasets. Fully analytic solutions, such as ours,
are superior because they only require constant calculation time and provide
an exact solution to the integral [13]. [25] uses Markov chain Monte Carlo to
approximate the integral during training. However, such a method requires an
adaptive training strategy, preventing one from using existing Gaussian process
models and standard training algorithms. We provide a more detailed analysis
of training complexity in our Supp.Mat. [0}

For smooth kernels, it is feasible to approximate the integral kernel by a finite
spectral approximation on a Hilbert space [7,22]. [17] uses this approximation
to solve kernel line integrals associated with the problem of x-ray tomographic
reconstruction. However, the Brownian kernel is discontinuous, which renders
such an approximation intractable.
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3 How Kernel Integration yields an Integrated Process

Theorem 1. The BIK krr/((s,e),(s',€')) yields the covariance between two
integral measurements B(s,e) and B(s',e') taken from a Brownian motion b(t):

’
(&

Cov[B(s,e), B(s',¢'))] = Cov[/e b(t)ét,/ b(t")ot']

’

Theorem (1] implies that the double integral over the covariance kg (t,t')
of a Brownian motion b(t) is equal to the covariance between two integrated
measurement regions B(s,e) and B(s',¢), i.e., equal to the covariance of an
integrated Brownian motion:

Cov[/:b(t)ét,/:/ b(t")ot') /: /: Cov[b(t), b(t")]dt'ot.

[4] features a respective proof for this relation which holds for integrals of any
kernel, by decomposing the covariance as Cov[X,Y] = E[XY] — E[X]E[Y]. An
additional proof can be obtained by interchanging the sequence of integration
(Fubini) [18], [1]. This also guarantees that the resulting stochastic process is
again a Gaussian process.

4 Proof of BIK Correctness

Theorem 2. The Brownian integral kernel is positive-semidefinite:

n n

Zzaiajkff’((si, ei),(sj,e5)) >0

j=1i=1
for any s;,e;,s5,e; € Tls; < e;, 85 < ej and for any a;,a; € R.

Proof. Theorem [2] directly follows from the derivation of the BIK as an integra-
tion of an existing kernel. The well-known Brownian kernel ks (¢,t') is known
to be positive-semidefinite [11]. Any integral of a kernel is again a kernel [1].
Therefore, the two times integral of kg (¢,t"), which results in the Brownian
integral kernel, is positive-semidefinite. O
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5 Details on used Data Sets

— For Synth, we draw data from a Gaussian process with a Brownian Kernel
to obtain true Brownian motion behavior. To obtain integral measurements,
we integrate this data numerically by summing over given equidistant time
intervals. We generate 20 such time series, each with a length of 2.5k, 5k, 10k,
and 20k time steps, and integrate over a window size w € [25,50, 100, 200]
steps, respectively. This results in the constant number of 1000 integral mea-
surements for training.

— For Load, we use 17 consumer load profiles with one-minute resolution and
a length of 7 days (time series of the electricity consumption of households)
generated with a widely used data generator [16]. This generator simulates
real-world households according to 400+ parameters, such as household size,
gender and age of household members, employment, photovoltaic, and many
more, and is steadily improved. It is accepted as close to real-world data in
the electricity community as witnessed by the citations listed in [16]. Like
smart meters, we aggregate the resulting one-minute profiles in 15-minute
intervals.

— For Real, we use real-world load profiles provided by a private household,
that are already aggregated in 15-minute intervals. Here no ground truth is
available, and thus we only use it for evaluating the quality of the time series
generated by the GP within Supp.Mat. [0}

— For HIPE, we use the High-resolution Industrial Production Energy (HIPE)
data set [2]. It contains readings of ten machines and the main terminal of
a power-electronics production plant.

— For Stock, we use daily stock market prices from [9]. Weekly aggregation
provides us with integrated training data.
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6 Providing Intuition about the BIK by A Comparative
Visualization with BK

For domain experts, it is interesting to understand in which scenarios our BIK
brings benefits. In this regard, we provide intuition by visualizing and discussing
the similarities and differences between a Gaussian process model (Brown) with
the Brownian kernel (BK) and a model (Int_ Brown) with our BIK. For brevity,
we omit BNK from this visual comparison because the quantitative evaluation
in Section [ has shown that this kernel is nearly equivalent to the BK for integral
measurements.

We examine the estimates and estimated variances as well as the synthe-
sized data. For this, we visualize the fitted relation and its variance together
with the integrated measurements and true underlying data, as well as gener-
ated load profiles that satisfy the conditions imposed by the observed integral
measurements and the used kernel.

Model: Brown Model: Int Brown

Non-Integrated GT Data L
X Measurements . ﬁ
— Estimation gy ot w

- st N

target-variable y

0 2 4 6 8 10 12 0 2 4 6 8 10 12
time ¢ time ¢

(a) (b)

Fig. 1. Comparison between estimated variance v.s; of the two kernels; @the standard
Brownian kernel; our new Brownian integral kernel.

Figure[l]illustrates the differences between the two models in estimation and
estimation variance vs (shown as a == dotted line). We integrate Brownian mo-
tion data (Synth data), which gives us integral measurements as by definition
(marked as X). These measurements are inherently imprecise due to integration.

With integral measurements, the most likely function should be a smooth
function. This is because integrating over time intervals acts like a sliding window
smother. Comparing the fitted functions (depicted by the == line) in terms of
smoothness, the Brown model exhibits roughness, whereas the function modeled
by Int_Brown is smooth as expected.

Furthermore, in Figure the Brown model erroneously estimates a vari-
ance of zero at measurement locations, failing to account for the fact that the
measurements are integrated. In contrast, Int_ Brown with our BIK in Figure[ID]
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acknowledges the drift that occurs during measurement periods. It incorporates
this influence by modeling the resulting inaccuracy with a higher variance. The
maximum variance between measurement locations remains roughly consistent
for both models. This is expected for points far away from actual measurements
because the underlying Brownian motion is the same.

Model: Brown Model: Int Brown

0.05 0.05

Non-Integrated GT Data

X Measurements

o stdey

0.04 0.04 q.%

0.03 0.03

0.02 0.02

get-variable y

0.01 0.01

target-variable y

tar,

0.00

; =X
0.00 Ao s E

—0.01 T T T T —0.01 T T T T -
100 500 600 700 100 500 600 700
time ¢ time ¢

(a) (b)

Fig. 2. Comparison using Load Data; [2a] the Brownian kernel; [2b] our new Brownian
integral kernel.

In Figure 2] we observe similar patterns in the synthetic load profiles, which
are integrated over 15-minute intervals (marked as X). Additionally, we display
the high-resolution ground truth (GT) load profile with a one-minute resolution
(depicted by the == line). Upon comparing the actual load profile with the
predicted one, it is evident that the true profile seldom aligns precisely with the
integral measurement points. The Int_Brown model accurately captures this,
exhibiting high variance in the vicinity of these locations.

In Figure 3] we see the ability of the GPs to synthesize data partially condi-
tioned on measurements. Both models (Brown Figure and Int Brown Fig-
ure are conditioned on the data presented in Figure 2l With Brown, all
the generated time series pass through the measurement points (marked as X),
which is incorrect. Integrating the generated data gives random values that are
not equal to the observed measurements. In contrast, Int Brown correctly gen-
erates data that does not necessarily intersect with the measurement locations.
The integration of this data, however, yields the correct measured value. There-
fore, the data generated with our Brownian integral kernel reflects reality more
accurately.

In Figure 4] we trained the models on real-world data (Real) and generated
potential load profiles. The behavior of load profiles produced by our Int_ Brown
model, as shown in Figure B is plausible, as integrating them again yields the
measured data, this is not the case for data generated with Brown.
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500

target-variable y

0.05

0.04

0.03

0.02

0.01

0.00

—0.01

Model: Int Brown

X Measurements

e sty
T —— Sampled Data
Sampled Data
. —— Sampled Data
—— Sampled Data

400
time ¢

(b)

Fig. 3. Data generation from prior conditioned on Load;[3a] data generated with Brow-
nian kernel passes through measurement locations which is wrong; [3b] data generated
with our Brownian integral kernel. It does not need to go through measurement loca-
tions, but its integral is guaranteed to be the same as what was measured.
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Fig.4. Data generated from a model conditioned on real-world data (Real); @ in-
tegrating data from the Brownian kernel does not reflect real behavior; [b] data from
our Brownian integral kernel is much more likely in the real world, and integrating the

data results in the measured data.
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7 Ablation Study of Integral Window Size and Data
Variance

In the following, we will examine how properties of the underlying physical pro-
cess impact the estimation and the estimated uncertainty. First, we will discuss
how the integral window size, i.e., the time constant of the integrator of a physical
process, reflects on estimations. Secondly, we will examine the difference between
Brownian motions with different variances — equivalent to different drift speeds
of the Brownian motion.

7.1 Impact of the Integral Window Size

Integral Error over Integral Window Size

8 - —— MAEjn;
95%CI of MAE;;

MAE nt
s o

——

25 50 75 100 125 150 175 200
w

Fig.5. Comparison of how changing the integral window size changes the integration
error of generated data.

An observant reader may notice that the MAE,,,; decreases with increasing
window size w. See Figure ] We examined this behavior in depth and found
that it is an artifact of the metric calculation rather than our kernel.

We calculate the metric over a fixed number of generated points in time, equal
to the points provided by the original ground truth data, i.e., w points. We then
sum up the values at these points to approximate the integral measurement
and calculate the error in relation to the ground-truth integral. However, as the
generated data is continuous, using a fixed number of points will always introduce
an error in the integral approximation. The smaller the number of points, the
greater the error and the larger the approximation variance (refer to the blue
region in Figure . Indeed, in our experiments, we found that maintaining the
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same start and end times for integration while increasing the number of points
within the interval reduces the metric error. The error approaches zero for large
w, which aligns with our expectations for an exact kernel like ours — integrating
the data generated with the kernel yields the ground-truth integral value.

7.2 Impact of Data Variance

Integral Error over Brownian Variance

—— MAE;;, w=50
6 9 == MAE,, w=200
95%CI of MAE;

Vp

Fig. 6. Comparison of how Brownian ground truth data with different drift speeds vy
changes the integration error of generated data.

The previous observation in Supp.Mat. has shown us that our kernel
gives exact solutions for the same ground truth but with different integration
intervals. Now we will examine how changing the speed of the Brownian motion,
i.e., the Brownian variance v, will impact MAE;,;. In Figure |§| we see that
increasing v, while keeping w = 50 constant increases MAE;,;. This behavior
is again coused by the metric calculation. The Brownian motion within the
same interval now behaves more erratically, requiring more evaluation points to
calculate the integral with the same precision. Increasing the evaluation points
(w = 200) (while keeping training points the same) again leads to a declining
error approaching zero for any vy, which is the expected behavior for an exact
kernel.
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8 Proof for the Brownian Integral Kernel by Derivation

\ Region:
min(t,t') =

Region:
min(t,t') =t

(a) Distinct Cases

t

(c) Sub-Parts (d) Integral Bounds

Fig. 7. Integral case distinction; [7a] The six distinct cases; [7h] The projected integral
borders; [7c| Division of cases into (toned) sub-parts; Bounds of sub-integrals

Proof. The function min(t,t') is discontinuous, so the solution of the integral:

krri((s,€), (s, €')) = vp - / / min(t, )5tot,

depends on the integration bounds s, e, s', ¢’. To prove Theorem I} we need a case
distinction to cover the different bound configurations. We visualize each bound
configuration in Figure We do so by drawing a boundary into one quadrant
where min(t,t’) switches from yielding ¢ to yielding ¢'. This boundary is the
linear function ¢’ = ¢. In the region above the boundary, the function min(t,t)
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yields ¢. In the region below, it yields ¢. We then see that there are six cases of
possible bound configurations (dotted boxes). Because min(t,t’) is symmetric to
the boundary, we can project s, e, s, ¢’ onto the other axis, receiving an ordering
of the integral borders. This ordering uniquely identifies each of the six cases.
See if-conditions of Theorem [I| and Figure [7b| (thin lines).

We further divide these six cases into smaller partitions and find that three
common sub-parts, highlighted in Figure give solutions for each partition.
While the solution for the sub-parts is structurally similar, the integral bounds
are different. This is why we solve each sub-part independently of the specific
bounds by substituting the upper bounds with u, v’ and the lower bounds with
1,1". We name the resulting three sub-integrals after the regions they are part of:
Integrals with integration bounds u,’, [, 1’ in one region u, v’,1,I' € {¢t | t < t';t,t' € T}
are named F3; and in the other region u,w’, 1,1’ € {t' | t' < t;t,¢' € T} are named
Fup respectively. Integrals with bounds in both regions are named Fy. In Fig-
ure E the sub-integral F;; has color green, Fuy red and Fy orange.

Sub-parts F;; and Fyy: The function min(t,t’) is continuous for these sub-
parts. This allows us to directly integrate once, leading to:

’ ’

u u
t: F(t, U u') = min(t,t")ot' = / tot' =
4 4
Wttt =t-u —t- (1)
u’ '
t<t:Fpl',u)= min(t,t')ot’ = / t'ot =
14 14
;o1 1 1
|3§1‘/:l/ §t/2 _ §u/2 _ 5l/2 (2>

We finish the first part of the proof by integrating twice, which gives us:

l/

1 1 1 1
|, —t? - — t2 ' = u2 Ty VRl A LR T Ny L
2 2 2 2 2
l/
1 1 1 1 1
|Z§L:l 5’111’2'1; l/z t=— 2 /2 U — 5[’2 U — §ul2 l+ ila l

These are the Equations [T and [2] of Theorem

Sub-part F;;.: The third integral F; needs a separate solution because it
intercepts the region border and, thus, is discontinuous. We derive Equation
by looking at min(¢,t") geometrically, see Figure [8 The volume of the geometry
is equivalent to the two-times integration. We decompose the geometry into two
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u
| | ~
1 /
1<u % 2a ;
min(l,u) =1 el
a
u

/

a

(a) Total Volume (b) Pyramid

Fig. 8. Geometric view on integrating; [8a] Total volume; [8B] subvolumes combined to
pyramid.

subvolumes (sv), one cuboid (cub), and one more complex subvolume (com).
We calculate the volume of the cuboid directly, see Figure By merging the
geometry of the complex subvolume four times with itself, we obtain a pyramid,
see Figure We now work out the integral bounds and obtain the solution to
the double integral with the following system of equations:

1
_ = 1
SVeom = 4prr SVeom = 7(” - l)3
1 — 9

prr = g‘/cub a1 SVeub = (U - l) ) ’

Vews =h-w-d h=a ‘Ftt’(la U) = SVeom + SVeub
w=2a
d=2a

which results in Equation [3] of Theorem [T}

Furllou) =§(u P (121,

To combine the three subintegrals into the six original cases, we still need
the integral bounds of the subintegrals corresponding to the original cases. Using
the symmetric property of min(t,t"), we can obtain these bounds, see Figure
With the matching integral bounds, we obtain the solution to the Brownian
integral kernel, Theorem O
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9 Computational Complexity of the BIK

Concerning computational complexity, one has to distinguish between the com-
plexity of the training algorithm without kernel and the complexity of the stand-
alone kernel. We perform all experiments (for our kernel as well as the baseline
kernels) with the standard GP model from the GPy frameworkEl, which has a
complexity of O(n?). Depending on the use case and the needed accuracy, other
less complex models can be employed to approximate GP. For example, one can
use gradient-based models that allow batch training with a complexity of O(n-),
where ¢ is the number of training iterations. Further, new work [19,20,26] has
shown how to use GP kernels directly in an adapted Kalman filter implementa-
tion, thereby reducing the runtime to O(n) as long as certain assumptions are
met. Similarly, methods for training on time series can be used, like sliding win-
dows that discard old measurements to keep n small, thereby losing information
from old measurements. This is possible for all kernels, including ours.

If an exact solution is needed, the standard GP model with complexity O(n?)
must be used. For each of these n? calculations, the kernel is invoked once, which
is why kernel complexity can become an issue when too large. Our analytically
derived BIK achieves the lowest possible complexity of O(1), which makes it
ideal. In comparison, the work [6] has a complexity of O(m) where m are the
number of Montecarlo iterations used to approximate the integral. Here, m needs
to be high to obtain good approximations. While full numerical integration like
in [15] and [24] is possible for any kernel, it comes with a complexity of O(m?)
because of the nested Montecarlo iterations. Coupled with the quadratic com-
plexity of Gaussian process regression, this becomes computationally challenging
for larger datasets.
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