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ABSTRACT

Offline reinforcement learning (RL) holds the promise of training effective policies
from static datasets without the need for costly online interactions. However, offline
RL faces key limitations, most notably the challenge of generalizing to unseen
or infrequently encountered state-action pairs. When a value function is learned
from limited data in sparse-reward environments, it can become overly optimistic
about parts of the space that are poorly represented, leading to unreliable value
estimates and degraded policy quality. To address these challenges, we introduce
a novel approach based on contrastive preference learning that bypasses direct
value function estimation. Our method trains policies by contrasting successful
demonstrations with failure behaviors present in the dataset, as well as synthetic
behaviors generated outside the support of the dataset distribution. This contrastive
formulation mitigates overestimation bias and improves robustness in offline learn-
ing. Empirical results on challenging sparse-reward offline RL benchmarks show
that our method substantially outperforms existing state-of-the-art baselines in both
learning efficiency and final performance.

1 INTRODUCTION

Offline reinforcement learning (RL) (Levine et al., 2020; Prudencio et al., 2024) aims to learn
high-quality decision policies purely from static datasets, without requiring additional environment
interactions. This paradigm offers a compelling route for deploying RL in real-world domains where
data collection is costly, risky, or constrained—such as robotics, healthcare, or recommendation
systems. However, offline RL remains fundamentally challenging due to the distributional mismatch
between the policy being learned and the limited data it learns from.

A core issue lies in the extrapolation error that arises when learned value functions are queried on
state-action pairs not well represented in the dataset. This is particularly problematic in sparse-reward
settings, where the dataset may lack sufficient reward-bearing trajectories or behavioral diversity.
As a result, value-based methods can become overly optimistic in poorly covered regions of the
state-action space, leading to unstable or suboptimal policies (Levine et al., 2020).

To address this, prior work has largely focused on three classes of solutions. First, pessimism-based
approaches mitigate overestimation by explicitly penalizing uncertain or unsupported regions in
the learned value function. Techniques such as conservative Q-learning (Kumar et al., 2020) or
uncertainty-aware backups enforce value suppression on out-of-distribution actions. However, these
methods often rely on assumptions about the behavior policy and require careful calibration of the
degree of pessimism, which becomes increasingly difficult in high-dimensional or sparse settings
(Liu et al., 2020; Xie et al., 2021). Second, regularization-based methods constrain policy updates to
remain close to the behavior policy by adding policy divergence penalties (Wu et al., 2019; Kumar
et al., 2019; Fujimoto & Gu, 2021). While effective in well-covered datasets, these methods can be
brittle when tuning the regularization strength and may fail to explore beyond suboptimal behaviors
(Lee et al., 2021; Brandfonbrener et al., 2021; Lyu et al., 2022). Third, importance sampling-based
techniques, including DICE-style distribution correction (Cen et al., 2024; Lee et al., 2021), attempt to
re-weight observed rewards based on estimated marginal state-action densities. Although theoretically
sound and behavior-agnostic, these methods are sensitive to support mismatches and can suffer from
high variance or instability, especially when the data are limited or reward signals are sparse (Xie
et al., 2021; Li et al., 2022; Cen et al., 2024).
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In this paper, we propose a fundamentally different approach that avoids direct value function
estimation altogether. We introduce PREFORL (PREFerence-based Optimization for Offline RL), a
contrastive preference learning framework that optimizes policies by comparing successful (preferred)
and unsuccessful (nonpreferred) behaviors from a static dataset. Previous work such as CPL (Hejna
et al., 2024) and DPPO (An et al., 2023) has considered this setting, although not explicitly in the
offline RL context. Nonetheless, simply contrasting successful and unsuccessful behaviors does
not resolve overestimation in datasets with limited state–action coverage, since the policy can still
become overly optimistic in poorly represented regions due to the absence of strong counterexamples.
Crucially, in PREFORL, we extend the contrastive signal beyond failure behaviors present in the
dataset to include synthetic behaviors generated outside the dataset’s support. By contrasting both
types of behaviors against successful demonstrations, our method trains policies to imitate not just
what succeeds, but to actively avoid what likely fails or lies outside the dataset’s support.

This formulation enables us to sidestep the estimation pitfalls of value-based methods while di-
rectly combating overestimation. Our empirical evaluation on challenging sparse-reward offline RL
benchmarks shows that this contrastive approach leads to more stable learning and substantially
outperforms existing state-of-the-art offline RL baselines.

2 PROBLEM FORMULATION AND MOTIVATIONS

We formulate the reinforcement learning problem in the context of a Markov Decision Process (MDP)
M = ⟨S,A, T, r, γ, ρ0⟩, where S is the state space, A is the action space, T : S × A × S →
[0, 1] is the transition probability function T (s′ | s, a), r : S × A → R is the reward function,
γ ∈ (0, 1) is the discount factor, and ρ0 : S → [0, 1] is the initial state distribution. A policy
π : S × A → [0, 1] maps each state to a distribution over actions. Let τ = {s0, a0, s1, a1, . . .}
denote a trajectory sampled by interacting with the MDP under policy π, i.e., s0 ∼ ρ0, at ∼ π(· | st),
st+1 ∼ T (· | st, at). Then, the discounted state-action distribution induced by π is defined as
dπ(s, a) = (1 − γ)

∑∞
t=0 γ

tEτ∼π [1[st = s, at = a]]. The goal is to learn a policy πθ(a|s) that
maximizes the expected discounted return: Es0,a0,s1,...∼dπθ [Σ∞

0 γtr(st, at)]. In offline RL, the
agent does not have access to the environment M , and instead must learn a policy solely from
a static dataset D collected from some (possibly unknown) behavior policy πβ . We define D =⋃N

i=1 τi, where τi = {(s(i)t , a
(i)
t , r

(i)
t , s

(i)
t+1)}

Ti
t=1, with N trajectories in total and Ti denoting the

length of the i-th trajectory. The empirical state-action distribution of the dataset is denoted dD(s, a),
which approximates dπβ (s, a). We consider the challenging setting of sparse reward offline RL, where
informative reward signals are infrequent and the dataset D predominantly consists of transitions
with zero or low rewards, making it difficult to identify and generalize from successful behaviors.
Formally, we assume D = (D+,D−), where D+ contains successful trajectories and D− contains
unsuccessful trajectories. For a trajectory τ = {(st, at, rt, st+1)}Tt=1, let R(τ) =

∑T
t=1 rt denote

its cumulative return. We define D+ = {τ ∈ D | R(τ) > η}, and D− = {τ ∈ D | R(τ) ≤ η},
where η is a threshold. For example, in many sparse-reward environments η = 0, since trajectories
that terminate in goal states receive a positive terminal reward, while those that do not yield zero
cumulative return. We define d∗(s) as the optimal state marginal, which can be viewed as a state
distribution of successful trajectories D+ in the dataset D.

The Advantage Preference Model. In Direct Preference Optimization (DPO) (Rafailov et al.,
2023), a Bradley-Terry (BT) (Bradley & Terry, 1952) model is built on top of the hidden reward model
rE given by expert users to capture the preferences of pairs of answers (y1, y2) ∼ πθ(y|x). While
DPO and other reinforcement learning from human feedback (RLHF) algorithms (Christiano et al.,
2017) have shown strong performance for large language models (LLMs)—which can be framed as
contextual bandit problems—they are not directly suited for general RL tasks where trajectory-level
preferences are crucial for solving long-horizon problems. To that end, we define a trajectory of length
n as τ = (s0, a0, . . . , sn−1, an−1), and introduce the notion of a length-k representative segment,
denoted by ς = Σ(τ, k) = (ŝ0, â0, . . . , ŝk−1, âk−1), which approximates the overall quality and
semantics of its original trajectory τ = T (ς). Each (ŝt, ât) in the segment is sampled from τ , with
the constraint that their original indices Iτ (t) are strictly increasing to preserve temporal order. We
denote a segment-level preferences as ς+ > ς−, which we assume it reflects overall preference for
their corresponding full trajectories, i.e., T (ς+) > T (ς−). Recent work such as Knox et al. (2024)
estimates such preferences by comparing partial discounted returns

∑k
t γ

tr(st, at) for trajectory
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segments. However, in settings with sparse or highly imbalanced rewards, this return-based signal
may be too weak or misleading to support reliable comparisons. To mitigate this, we instead adopt an
advantage-based preference model in Contrastive Preference Learning (CPL) (Hejna et al., 2024),
which focuses on distinguishing successful behaviors not just based on returns, but through their
relative quality under advantage estimation:

PA∗ [τ+ > τ−] = PA∗ [ς+ > ς−] =
exp

∑
ς+ γtA∗(ŝ+t , â

+
t )

exp
∑

ς+ γtA∗(ŝ+t , â
+
t ) + exp

∑
ς− γtA∗(ŝ−t , â

−
t )

, (1)

where A∗ denotes the optimal advantage function, and τ+ = T (ς+) and τ− = T (ς−) are two
complete trajectories. We use the shorthand "+" and "-" to denote the preferred / less preferred
representative segments.

Contrastive Preference Learning (CPL). Hejna et al. (2024) eliminates the hidden optimal
advantage function A∗ in the advantage-based preference model in the context of maximum entropy
RL (Ziebart, 2018; Ziebart et al., 2008; Haarnoja et al., 2017). The derivation is straightforward, as
Ziebart (2018) provides a critical insight, i.e., the optimal advantage function A∗ and optimal policy
π∗(a|s) has a direct relationship:

A∗(s, a) = αlogπ∗(a|s), (2)

assuming that the optimal advantage function is normalized
∫
eA

∗(s,a)/α da = 1. This means that
instead of learning an implicit optimal advantage function, CPL can leverage the preference model to
acquire the optimal policy directly. Given an offline preference dataset D = (D+,D−), the learning
objective is to minimize the following loss function while increasing the likelihood of actions in the
datasets.

LCPL(πθ,D) = E(ς+,ς−)∼D[−log
exp

∑
ς+ γtαlogπθ(s

+
t , a

+
t )

exp
∑

ς+ γtαlogπθ(s
+
t , a

+
t ) + expλ

∑
ς− γtαlogπθ(s

−
t , a

−
t )

],

(3)

where (ς+, ς−) ∼ D denotes drawing a pair with ς+ ∼ D+, ς− ∼ D−, and λ ∈ (0, 1] denotes the
asymmetric "bias" regularizer (An et al., 2023) that down-weights the negative segments.

3 PREFERENCE-BASED POLICY OPTIMIZATION

In Section 2, we reviewed contrastive preference learning (CPL) and its potential for effective policy
learning in sparse-reward offline RL by leveraging a static preference dataset Dpref. However,
simply contrasting successful (preferred) and unsuccessful (non-preferred) behaviors does not resolve
overestimation in datasets with limited state–action coverage, as the policy can still become overly
optimistic in underrepresented regions due to the lack of strong counterexamples. In this section, we
address the support mismatch issue by developing a practical offline RL algorithm called PREFORL
for sparse-reward offline datasets.

3.1 DEGRADATION

To mitigate the support mismatch issue, our key idea is to augment the offline dataset D with
synthetically generated suboptimal trajectories, treated as non-preferred examples. By training
policies to prefer successful trajectories over both observed and synthetic failure cases, the framework
encourages imitation of high-quality behavior while simultaneously improving robustness against
failure modes and distributional drift.

Specifically, given a sparse-reward offline dataset D = (D+,D−), we take a successful trajectory
τ+ ∈ D+ and construct a corresponding less-preferred trajectory τ− by applying a controlled
degradation operator—either action-based (↓a) or state-based (↓s).

Action-based Degradation ↓a. To achieve the requirement above, our action-based degrada-
tion method injects noises into the actions within the dataset (see Figure 1 left). Given D+ =

3
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Figure 1: Two variants of degradation. In the left figure, action-based degradation (↓s) is applied to
degrade the action a to ā using Gaussian noise. In the right figure, state-based degradation (↓s) is
used to degrade the action a in trajectory τ1 by finding a substitution action ā correspond a neighbor
state in a less preferred trajectory τ2. Red arrows with solid lines denotes the original actions, and the
red arrows with dashed lines denotes degraded actions.

⋃N
i=1{(s

(i)
t , a

(i)
t )}Ti

t=1, we construct a degraded dataset D↓a by adding Gaussian noise to each action:

a
(i)−
t = a

(i)
t + ϵ

(i)
t , ϵ

(i)
t ∼ N (0, σ2I),

D↓a =

N⋃
i=1

{(s(i)t , a
(i)−
t )}Ti

t=1. (4)

Here, σ is a tunable noise parameter whose impact is analyzed in Appendix C. By construction, the
original dataset of successful trajectories is preferred over its degraded counterpart:

D+ > D↓a.

State-based Degradation ↓s. Instead of perturbing actions directly, state-based degradation con-
structs suboptimal behavior by reassigning actions from nearby states (see Figure 1 right). Given
D+ =

⋃N
i=1{(s

(i)
t , a

(i)
t )}Ti

t=1, we build a degraded dataset D↓s by, for each state s
(i)
t , retrieving the

action from a nearest-neighbor state s
(j)
t′ recorded in the non-preferred dataset D−:

a
(i)−
t = a

(j)
t′ , s

(j)
t′ ∈ NearestNeighborSearch(D−, s

(i)
t ),

D↓s =

N⋃
i=1

{(s(i)t , a
(i)−
t )}Ti

t=1. (5)

In practice, nearest neighbors can be retrieved using Euclidean distance in vector-based state spaces
or feature-space distances in high-dimensional (e.g., image-based) environments. By construction,
the dataset of successful trajectories is preferred over its degraded counterpart:

D+ > D↓s.

The philosophy behind both degradation methods is to generate suboptimal datasets that serve as
the basis for constructing preference datasets for policy optimization. State-based degradation D↓s

provides contrastive signals over nearby failure behaviors already present in the dataset, whereas
action-based degradation D↓a introduces synthetic behaviors sampled outside the dataset’s support.
PREFORL can be viewed as a “squeezing" strategy: successful behaviors are sandwiched by synthetic
degradations that bound what is preferable. By contrasting these degraded behaviors against successful
trajectories, PREFORL trains policies not only to imitate what succeeds, but also to explicitly avoid
behaviors that are likely to fail or fall outside the dataset’s support.

3.2 PREFORL LOSS FUNCTION

Given a sparse-reward offline dataset D = (D+,D−), we construct a contrastive preference dataset:

Dpref =
(
D+, D↓s ∪ D↓a).

4
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Algorithm 1 Preference-based Optimization for Offline RL (PREFORL)

Require: Policy parameters θ, offline dataset of trajectories D = (D+,D−), k-length representative
segment sampling function Σ(τ, k), representative segment length k, temperature α, contrastive
bias λ, discount factor γ.

Ensure: Policy πθ(s)
for j = 0, 1, . . . , N − 1 do

D+
j = { },D−

j = { }
for m = 0, 1, . . . ,M − 1 do

τm = (. . . , st, at, . . .)∼D+

ς = Σ(τm, k) = (. . . , ŝt, ât, . . . , ŝl, âk) ▷ Build representative segment ς
D+

j = D+
j ∪ {ς} ▷ Collect preferred segments (+)

end for

Construct D−
j = D↓a

j ∪ D↓s
j from D+

j via Eq. 4 and Eq. 5

θj+1 = argmin
θ

1

|D+
j |T

∑
ς±∈D±

j

T−1∑
t=0

[−log
exp

∑
ς+ γtαL+

exp
∑

ς+ γtαL+ + expλ
∑

ς− γtαL− ],

where L± = logπθ(ŝ
±
t , â

±
t ). ▷ Update the policy πθ

end for

Unlike CPL, which contrasts D+ with D−, PREFORL instead contrasts D+ with the degraded
datasets D↓s ∪ D↓a to guide policy learning. The PREFORL loss function LPREFORL(πθ,Dpref) is
defined as:

E(ς+,ς−)∼Dpref
[−log

exp
∑

ς+ γtαlogπθ(ŝ
+
t , â

+
t )

exp
∑

ς+ γtαlogπθ(ŝ
+
t , â

+
t ) + expλ

∑
ς− γtαlogπθ(ŝ

−
t , â

−
t )

] (6)

Relation to BC and Offline RL. PREFORL leverages preference learning to address key limitations
of Behavior Cloning (BC) (Pomerleau, 1988) and offline RL. BC merely imitates demonstrations and
fails under distribution shift, while offline RL often suffers from value overestimation in sparse-reward
datasets with limited coverage. By contrasting successful demonstrations with synthetic degradations
outside the dataset’s support, PREFORL mitigates overestimation and guides policies away from
brittle behaviors toward more robust and reliable trajectories. In other words, contrastive training in
PREFORL encourages policies to learn not just from what succeeds, but also from what fails or lies
outside the support of the dataset’s distribution.

3.3 ALGORITHM OVERVIEW

We present the overview of PREFORL in Algorithm 1. Given an initial policy πθ, in each iteration,
we sample multiple preferred representative segments ς+ from D+, and build their corresponding
less preferred degraded segments ς−. At the end of each iteration, we optimize policy πθ using
PREFORL loss function shows in Equation 6. Note that PREFORL is an offline algorithm that does
not requires online interaction with the environment.

Theoretical Justification. Define the state marginals of dD, dπ , and d∗ as dD(s), dπ(s), and d∗(s),
respectively. Assume π∗ as the optimal policy whose induced state marginal distribution coincides
with d∗(s), i.e., the distribution over states visited by successful trajectories in D+. The following
bound on the performance gap between the learned and optimal policies is established based on the
above assumption in Cen et al. (2024):

|V π(ρ0)− V π∗
(ρ0)| ≤

2Rmax

1− γ
DTV(d

∗(s) ∥ dD(s)) +
2Rmax

1− γ
Ed∗(s) [DTV(π(·|s) ∥π∗(·|s))] ,

where Rmax = maxs,a ∥r(s, a)∥ is the maximum reward. This shows that we can minimize

DTV(π(·|s) ∥π∗(·|s)) to optimize the learned policy π. Let PA∗(ς+k , ς−k ) = Bern( eA
∗(ς

+
k

)

eA
∗(ς

+
k

)+eA
∗(ς

−
k

)
)

and PÂ(ς
+
k , ς−k ) = Bern( eÂ(ς

+
k

)

eÂ(ς
+
k

)+eÂ(ς
−
k

)
), where Bern denotes Bernoulli distribution. Then the cross-
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Pen Hammer Door Relocate

Figure 2: Hand manipulation tasks in Adroit.

entropy LPREFORL loss function in Equation 6 can be re-written in terms of the advantage functions as
follows:

LPREFORL(Â,Dpref) = E(ς+k ,ς−k )∼Dpref

[
DKL

(
PA∗(ς+k , ς−k )∥PÂ(ς

+
k , ς−k )

)]
We show that Algorithm 1 establishes a connection between minimizing LPREFORL(Â,Dpref) and
minimizing the TV divergence between the learned policy π and the expert policy π∗.

Lemma 3.1. Let π(a|s) = eÂ(s,a)/α

Z(s) and π∗(a|s) = eA
∗(s,a)/α

Z∗(s) , with softmax temperature α > 0.
Suppose that the perturbed segments cover the full action space for each state s ∼ d∗. Then:

LPREFORL(Â,Dpref) → 0 =⇒ Es∼d∗ [DTV(π
∗(·|s) ∥π(·|s))] → 0.

The assumption that the perturbed segments cover the action space ensures that segment preferences
sufficiently constrain all state-action pairs. Therefore, minimizing the loss function encourages policy
imitation of the distribution of successful trajectories D+ in the dataset D.

4 EXPERIMENTS AND EVALUATIONS

We implemented our algorithm in a tool called PREFORL1. In this section, we evaluate PREFORL
algorithm in various challenging domains including MetaWorld (Yu et al., 2020a), Adroit and
Maze2D from D4RL (Fu et al., 2021) benchmark, and Sparse-MuJoCo proposed in a previous
offline RL work (Cen et al., 2024).

Adroit. The Adroit (Rajeswaran et al., 2018) domain is designed for controlling a 24-DoF simulated
Shadow Hand robot to complete different tasks. Demonstration of human experts and scripted
controllers are given to evaluate the effectiveness of different RL or non-RL algorithms. In D4RL
(Fu et al., 2021), Adroit is re-designed for offline RL setting only. We consider four tasks, i.e., pen,
hammer, relocate and door (see Figure 2). In each task, three different types of datasets are provided
to evaluate the robustness of learning algorithm. Among them, two types of datasets are adopted
from the original paper (Rajeswaran et al., 2018): human with 25 trajectories collected from human
experts, and a large amount of expert demonstrations sampled from a fine-tuned RL policy. Besides,
each cloned is a mixing dataset which combines 50 percentage of expert demonstrations, and 50
percentage episodes sampled from a imitation policy trained on the demonstrations. We choose one
imitation learning algorithm BC, and four offline RL algorithms (CQL, IQL, TD3+BC, CDE and
ReBRAC) as baselines. Table 1 denotes the normalized scores of PREFORL algorithms against
other baselines on Adroit tasks. Results indicate that PREFORL algorithm demonstrates competitive
performance against other baselines and outperforms previous state-of-the-art offline RL algorithm in
majority of environments.

Sparse-MuJoCo. The Sparse-MuJoCo benchmark is proposed in CDE (Cen et al., 2024) and
originated from MuJoCo domain in D4RL (Fu et al., 2021) benchmark. Despite all episodes are
collected from inherently dense-reward based environments, the quality of each trajectory can be
classified into success and failed categories by examining the episode return. Following the settings
in CDE, the return thresholds are set to be the 75-percentile of all episode returns in each dataset.
We set rewards to be 0 for all failed trajectories in the lower 75 percent, whereas 1 for other success

1PREFORL will be publicly available in the future when the paper is ready to publish.
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Task BC CQL IQL TD3+BC CDE ReBRAC CPL PREFORL

pen-human 34.4 37.5 81.5±17.5 81.8±14.9 72.1 103.5±14.1 100.1±2.2 119.1±3.1
pen-cloned 56.9 39.2 77.2±17.7 61.4±19.3 42.1 91.8±21.7 91.2±2.2 92.0±3.3
pen-expert 85.1 107.0 133.6±16.0 146.0±7.3 105.0 154.1±5.4 130.9±3.2 144.8±3.1

door-human 0.5 9.9 3.1±2.0 -0.1±0.0 7.7 0.0±0.0 11.9±0.8 15.5±3.2
door-cloned -0.1 0.4 0.8±1.0 0.1±0.6 0.1 1.1±2.6 3.6±3.5 16.3±0.7
door-expert 34.9 101.5 105.3±2.8 84.6±44.5 105.9 104.6±2.4 105.8±0.2 106.0±0.0

hammer-human 1.5 4.4 2.5±1.9 0.4±0.4 1.9 0.2±0.2 15.1±8.7 16.6±3.0
hammer-cloned 0.8 2.1 1.1±0.5 0.8±0.7 7.3 6.7±3.7 13.2±8.1 28.4±3.2
hammer-expert 125.6 86.7 129.6±0.5 117.0±30.9 126.3 133.8±0.7 128.3±0.3 128.6±0.2

relocate-human 0.0 0.2 0.1±0.1 -0.2±0.0 0.3 0.0±0.0 0.6±0.0 0.9±0.3
relocate-cloned -0.1 -0.1 0.2±0.4 -0.1±0.1 0.2 0.9±1.6 0.5±0.1 0.9±0.1
relocate-expert 101.3 95.0 106.5±2.5 107.3±1.6 102.6 106.6±3.2 110.2±0.4 111.2±0.7

Table 1: Normalized scores of PREFORL against other baselines on D4RL Adroit tasks. BC, CQL
and IQL scores were taken from Fu et al. (2021), TD3+BC and ReBRAC scores were taken from
Tarasov et al. (2023), and CDE scores were taken from Cen et al. (2024). Our reported results are
averaged over 5 random seeds, and each data point consists of 20 evaluation trajectories.

Task BCQ CQL IQL TD3+BC CDE ReBRAC CPL PREFORL

halfcheetah-medium 57.8±13.2 97.6±4.1 76.6±5.8 41.6±17.6 82.0±8.6 100.0 96.0±2.0 96.8±1.8
walker2d-medium 41.0±11.5 17.7±10.4 19.5±4.2 21.0±16.7 53.0±11.7 42.0 85.3±6.1 98.0±3.5
hopper-medium 2.0±4.0 74.0±5.0 0.0±0.0 0.0±0.0 85.5±5.7 96.0 96.0±0.0 100.0±0.0
halfcheetah-medium-expert 24.8±9.8 4.2±5.8 95.4±4.2 0.0±0.0 95.2±2.9 0.0 47.3±4.6 100.0±0.0
walker2d-medium-expert 87.0±13.4 61.6±23.5 94.6±5.9 32.2±22.8 97.0±2.8 36.0 100.0±0.0 100.0±0.0
hopper-medium-expert 20.0±11.0 0.0±0.0 94.8±2.8 22.0±10.8 97.0±1.4 21.0 0.0±0.0 98.4±3.6

Table 2: Success rate (in percent) of PREFORL against other baselines on Sparase-MuJoCo. CPL
and PREFORL results are averaged over 5 random seeds, and each data point consists of 50 evaluation
trajectories. Results of other baselines are taken from Cen et al. (2024) and Tarasov et al. (2023).

trajectories. In evaluation, a trajectory is considered successful when the return is above the threshold
and failed otherwise. On Sparse-MuJoCo, we choose BCQ, CQL, IQL, TD3+BC and CDE as
baselines. These offline RL algorithms utilize different methods to optimize policies or learn value
functions, and all of them leverage sparse reward information. In Table 2, PREFORL demonstrates
competitive performance against other offline RL algorithms in all domains, yet only utilizing reward
information indirectly to construct a sparse optimizing target. Details of experimental settings
including dataset formulation and return thresholds can be found in Appendix H.

Maze2D. The Maze2D domain includes navigation tasks aiming to instruct a 2D agent to reach
a fixed goal position. Three maze layouts are provided with increasing difficulties, i.e., umaze,
medium, and large (see figures in Table 3). Different from above-mentioned domains, the training
data distribution in Maze2D differs from its evaluation distribution, and the lengths of the trajectories
in the dataset varies. Specifically, in data collection process, a starting position and a goal position are
randomly sampled from valid positions in the maze, and an episode does not terminates if the agent
reach the goal. Instead, a new goal is randomly sampled and the previous successful episode would
be collected as if it is an independent trajectory. In evaluation, an agent that always start from a fixed
position is required to reach as many goals as possible within maximum episode steps. These goals
will be substitute by a newly randomized one if reached. Table 3 demonstrates the average returns of
PREFORL and other baselines (ReBRAC, CDE) on Maze2D tasks. To enable a fair comparison with
CPL on Maze2D, we introduced unsuccessful trajectories by relabeling the goal regions in a subset
of the original dataset trajectories. This generates explicit failure trajectories exclusively for CPL
to contrast successful versus unsuccessful rollouts. The results shows that PREFORL outperforms
the baselines in most environments, and can acquire high-quality policies consistently. It also shows
that PREFORL performs well in both narrow (Adroit) and diverse (Maze2D) dataset distributions.
Beyond Maze2D, we additionally evaluate PREFORL on the AntMaze navigation benchmarks from
D4RL (Fu et al., 2021). Detailed results are presented in Appendix G.
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UMaze Medium Large

ReBRAC 2.07 0.71 0.34
CPL 1.19 0.54 0.34
CDE 1.05 0.57 0.55

PREFORL 2.22 0.67 0.63

Table 3: Figures show navigation tasks in different mazes in Maze2D. In each maze, red and green
balls denote start and goal positions. The table demonstrates average numbers of successes of
PREFORL against other baselines on Maze2D tasks. All results are averaged over 5 random seeds,
and each data point consists of 50 evaluation trajectories. Note that we use sparse rewards in Maze2D
environment, where 1 denotes one successful contact to the sampled goal and 0 otherwise.

MetaWorld. The MetaWorld (Yu et al., 2020a) is a benchmark for meta-reinforcement learning
and multi-task learning. It consists of 50 diverse and challenging robotic manipulation tasks. We
select 16 diverse tasks from this benchmark and many of them are deemed most challenging tasks
(Seo et al., 2022). Then, we use the provided scripted controller to sample 50 expert demonstrations
for each selected environment. Since no reward signal is recorded, this is a typical learning-from-
demonstration problem. To evaluate the feasibility of applying PREFORL on high-dimensional
environments, we set the observation space of MetaWorld environments to be an 84 × 84 RGB
image. We use BC as the sole baseline, since standard offline RL algorithms typically fail in settings
where only expert demonstrations are available and reward signals are absent. To handle image-
based observations, we use a pre-trained ResNet-50 (He et al., 2015) as the image encoder for both
PREFORL and BC, and other training details are left in Appendix H. The evaluation results are shown
in Table 4. The table shows, although BC is still a strong baseline in high-dimensional goal-achieving
tasks, the PREFORL algorithm outperforms it by a large margin in nearly every domains by using
sparse and limited artificial preference signals.

Summary. In summary, PREFORL achieves strong performance across diverse high-dimensional
control tasks and consistently outperforms BC, CPL, and strong offline RL baselines in complex
sparse-reward domains, demonstrating its ability to learn robust policies in the offline setting.

Our ablation studies (Appendix C) show that the noise level used to generate synthetic degradations
is critical: small perturbations encourage safe, conservative improvement, while excessive noise
induces overly aggressive exploration and degrades performance. Appendix D examines the impact
of the degraded-to-preferred dataset size, showing that PREFORL is highly insensitive to the ratio
and performs reliably. Appendix E provides sensitivity analyses for two key hyperparameters—the
contrastive bias coefficient λ and the representative segment length k, demonstrating that PREFORL
maintains stable performance across a broad range of settings without requiring careful tuning.
Finally, Appendix F reports additional comparisons against CPL and ReBRAC on MetaWorld under
dense-reward evaluation.

5 RELATED WORK

Preference-based Reinforcement Learning. The mainstream preference-based RL (PbRL) meth-
ods often involve learning a reward model to predict the scores from pairwise comparisons, then
use this reward model to perform reinforcement learning for policy optimization (Christiano et al.,
2017). Early work of PbRL demonstrate the feasibility of policy learning from preference signals to
solve lower-dimensional problems (Wilson et al., 2012; Akrour et al., 2012; Busa-Fekete et al., 2014),
recent works, however, are able to tackle control problems by training deep neural-network policies
given sufficient preference labels (Sadigh et al., 2017; Biyik & Sadigh, 2018; Ibarz et al., 2018; Shin
et al., 2023; III & Sadigh, 2022). Within PbRL, Reinforcement Learning from Human Feedback
(RLHF) is a special and popular paradigm that align models with human intent. By eliminating
the temporal structure of RL, RLHF frame auto-regressive text-generation as a contextual bandits
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Hammer Peg Insert Peg Unplug Soccer

PREFORL 98.7 ± 0.9 73.3 ± 8.2 85.3 ± 3.4 67.7 ± 4.1
BC 93.3 ± 12.1 49.0 ± 5.0 67.3 ± 6.5 25.0 ± 15.6

Window Open Sweep Disassemble Box Close

PREFORL 96.8 ± 2.8 60.7 ± 10.9 90.7 ± 4.1 89.3 ± 0.9
BC 91.3 ± 3.9 43.3 ± 11.1 82.7 ± 3.1 77.0 ± 12.2

Lever Pull Drawer Open Push Wall Button Press

PREFORL 80.7 ± 3.4 100.0 ± 0.0 84.7 ± 5.2 98.7 ± 1.2
BC 57.0 ± 25.1 86.2 ± 9.8 47.7 ± 7.1 77.3 ± 5.3

Stick Push Stick Pull Pick Place Wall Soccer

PREFORL 100.0 ± 0.0 96.6 ± 0.9 59.3 ± 5.2 48.0 ± 3.3
BC 96.8 ± 3.0 86.2 ± 9.8 41.3 ± 3.0 25.0 ± 15.6

Table 4: Success rate (in percent) of PREFORL against BC on 16 tasks from MetaWorld benchmark.
50 expert demonstrations are provided for each environment. We report the average results of
PREFORL over 5 random seeds, and each data point consists of 50 evaluation trajectories.

problem, and many algorithms (Rafailov et al., 2023; Christiano et al., 2017; Ethayarajh et al., 2024;
Shao et al., 2024) proven to work well in large-scale post-training of Large Language Models in
general domains (Ouyang et al., 2022; DeepSeek-AI et al., 2025a;b; Qwen et al., 2025).

Offline Reinforcement Learning. Similar to offline RL, our work aims to optimize the policy
solely from previously collected datasets without further interaction with the environment. This is
particular useful in domains where online data collection is costly or unsafe. As a naive imitation
learning algorithm, BC (Pomerleau, 1988) often struggles with data distributions that differ from those
encountered during training. This also reveals the key challenge in offline RL: out-of-distribution
(OOD) generalization. Several offline RL methods have been proposed to address the challenge.
Behavior regularization approaches, such as BCQ (Fujimoto et al., 2019), BRAC (Wu et al., 2019),
BEAR (Kumar et al., 2019), IQL (Kostrikov et al., 2022) and ReBRAC (Tarasov et al., 2023), restrict
learned policies to stay close to the dataset’s behavior distribution. Another line of work, uncertainty-
aware approaches, including MOPO (Yu et al., 2020b), and CQL (Kumar et al., 2020), penalize actions
with high uncertainty to mitigate the impact of distributional shift. Besides, Distribution Correction
Estimation (DICE)-based methods like CDE (Cen et al., 2024) and OptiDICE (Lee et al., 2021) have
been proposed to provide a direct behavior-agnostic estimation of stationary distributions to tackle
offline RL problems. Recently, decision transformer (Chen et al., 2021) have introduced sequence
modeling-based approaches, leveraging transformers to model trajectories directly. Approaches
above optimize policies in various ways, yet they all focus on leveraging high-density transitions to
construct learning objects. Our approach PREFORL, however, aggregates local experiences into a
sparse preference signal, which implicitly encapsulates both step-wise knowledge for performing
fine-grained control, and trajectory-level insight for discovering the optimal solution.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 DISCUSSION AND CONCLUSION

Limitations. For action-based degradation (↓a), variance in the Gaussian noise should be tuned
accordingly. Although a sufficiently small value is well-suited in practice, knowing the action range
is always preferred. For state-based degradation (↓s), the computation overhead is not negligible
as searching valid neighbors are time-consuming. A brute-force, exact search is computationally
prohibitive for large-scale datasets, which would severely limit our method’s scalability. To bypass
this computational bottleneck, we deliberately employ an efficient Approximated Nearest Neighbor
(ANN) algorithm via FAISS library (Douze et al., 2024). This choice represents a practical trade-
off between computational speed and retrieval precision. While our empirical results suggest this
approximation does not harm final performance, we acknowledge that our method’s effectiveness is
implicitly dependent on the efficiency and quality of the ANN search algorithm.

Conclusion. In this work, we present a preference-based RL algorithm called PREFORL. Through
extensive experiments, we demonstrate our approach can significantly outperform traditional imitation
learning or offline RL algorithms in sparse-reward offline dataset. By leveraging synthetically
generated negative examples, our method effectively mitigates value overestimation and learns robust
policies, establishing a new state-of-the-art and a promising direction for offline policy learning.

Reproducibility statement. We have included code and instructions to reproduce our results in the
supplementary material.
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THE USE OF LARGE LANGUAGE MODELS

We utilized Google’s Gemini, a large language model, to assist in the writing process of this paper.
Its use was strictly limited to improving grammar, clarity, and phrasing for better readability. The
LLM did not contribute to any of the core research ideas, methodologies, or results presented.

A PROOF OF LEMMA 3.1

Lemma 3.1 Let π(a|s) = eÂ(s,a)/α

Z(s) and π∗(a|s) = eA
∗(s,a)/α

Z∗(s) , with softmax temperature α > 0.
Suppose that the perturbed segments cover the full action space for each state s ∼ d∗. Then:

LPREFORL(Â,DPREFORL) → 0 =⇒ Es∼d∗ [DTV(π
∗(·|s) ∥π(·|s))] → 0.

Proof. By definition,

LPREFORL(Â,Dpref) = E(ς+k ,ς−k )∼Dpref

[
DKL

(
PA∗(ς+k , ς−k ) ∥PÂ(ς

+
k , ς−k )

)]
,

and each KL term is nonnegative. Hence the assumption

LPREFORL(Â,Dpref) → 0

implies
DKL

(
PA∗(ς+k , ς−k ) ∥PÂ(ς

+
k , ς−k )

)
→ 0 for Dpref -a.e. segment pair.

Since PA∗ and PÂ are Bernoulli distributions, DKL(PA∗ ∥PÂ) = 0 if and only if their success
probabilities coincide (in preference learning, "success" means "prefer the positive segment"). Thus,
for almost all (ς+k , ς−k ),

PA∗(ς+k , ς−k ) = PÂ(ς
+
k , ς−k ).

Using the logistic parameterization

PA(ς
+
k , ς−k ) = Bern

(
eA(ς+k )

eA(ς+k ) + eA(ς−k )

)
= Bern

(
σ(A(ς+k )−A(ς−k ))

)
,

where σ is the sigmoid function, the equality PA∗ = PÂ implies

σ
(
A∗(ς+k )−A∗(ς−k )

)
= σ
(
Â(ς+k )− Â(ς−k )

)
.

Since σ is strictly monotone, we obtain

A∗(ς+k )−A∗(ς−k ) = Â(ς+k )− Â(ς−k ) for Dpref -a.e. segment pair. (7)

For each state s in the support of d∗, let (st, at) range over all dataset occurrences with st = s. Each
such action is perturbed by Gaussian noise,

a−t = at + ϵt, ϵt ∼ N (0, σ2I).

Define
Acov

s = { at + ϵt : st = s }.
By assumption, the perturbed segments cover the full action space for each state s ∼ d∗. Thus, Acov

s
is dense in a neighborhood of the action values relevant to d∗.

For a segment and its Gaussian-perturbed counterpart,

A∗(ς+k )−A∗(ς−k ) =

k−1∑
t=0

γt
(
A∗(st, at)−A∗(st, a

−
t )
)
,

and the same identity holds for Â. Define the per-step discrepancy

∆(st; at, a
−
t ) =

(
Â(st, at)− Â(st, a

−
t )
)
−
(
A∗(st, at)−A∗(st, a

−
t )
)
.
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Per Eq. 7, for almost all segment pairs,

k−1∑
t=0

γt ∆(st; at, a
−
t ) = 0.

Because the noises ϵt are independent across t, the pairs (at, a−t ) arise from independent Gaussian
perturbations. The identity above must hold for all such combinations. By standard uniqueness
arguments for continuous functions under product Gaussian measures, each term must vanish:

∆(st; at, a
−
t ) = 0 for almost all (st, at, a−t ).

Thus,
Â(s, a)− Â(s, a−) = A∗(s, a)−A∗(s, a−) for a.e. (s, a) and a− ∈ Acov

s .

Pick any reference action a0 ∈ Acov
s and define c(s) = Â(s, a0)−A∗(s, a0). Then on the dense set,

Â(s, a) = A∗(s, a) + c(s).

This extends to:
Â(s, a) = A∗(s, a) + c(s) for d∗-a.e. s and a.

Thus, we have:

Es∼d∗ [DTV(π
∗(·|s) ∥π(·|s))]

= Es∼d∗

[
DTV

(
eA

∗(s,a)/α∑
a′ eA

∗(s,a′)/α

∥∥∥∥∥ eÂ(s,a)/α∑
a′ eÂ(s,a′)/α

)]

≈ Es∼d∗

[
DTV

(
eA

∗(s,a)/α∑
a′ eA

∗(s,a′)/α

∥∥∥∥ e(A
∗(s,a)+c(s))/α∑

a′ e(A
∗(s,a′)+c(s))/α

)]
→ 0.

B TRAINING CURVES

The training curves of full dataset experiments are shown in Figure 3. From the figure we can observe
that the PREFORL converges quickly. The training curves are also stable, especially in the expert
datasets training. Note that PREFORL utilizes a very sparse contrastive learning optimizing target,
so that we can expect the number of gradient steps is ten times smaller than other offline RL methods
(Cen et al., 2024; Tarasov et al., 2023).

C NOISES IN ACTION-BASED DEGRADATION

In Section 6, we discussed that for action-based degradation (↓a), variance σ in the Gaussian noise
should be tuned accordingly. To determine a suitable variance for PREFORL in each environment,
we conduct several hyperparameter searches on the MetaWorld and Adroit tasks (in Figure 4). In all
experiments, we assume we have access to the ground truth action range of each environment. This is
not strictly necessary but always preferred, as approximated action ranges given by offline datasets
are imprecise and conservative. The conservative estimation may lead to insufficient exploration,
especially when datasets distributions are narrow.

We select two environments in MetaWorld: Peg-Unplug and Peg-Insert, and six different
levels of variances. We use x% to denote variance σ is x percentage of the environment action range.
Results demonstrate that when the variance σ is set to be a reasonably small number, i.e., around 1%
to 2%, the success rates for both environments achieve their highest level. If σ is too small (0.5%),
the distinction between original actions to degraded actions may be too subtle to differentiate. This
leads to insufficient exploration and optimization. Nevertheless, setting aggressive noise (e.g., 5%
and 8%) may also impair the PREFORL algorithm. This is reasonable and intuitive, as applying
such aggressive noises may break the semantics of the trajectories and yield catastrophic forgetting.
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Figure 3: The training curves of PREFORL. The x-axis denotes number of gradient steps and the
y-axis denotes the normalized scores. We use 5 random seeds for each environment, and each data
point consists of 50 evaluation trajectories. The shadow regions denote the standard deviation of
mean values across different seeds.

Note that the core idea of PREFORL is to contrast optimal trajectories versus suboptimal but not
poorly-behaved ones.

We select all four expert datasets in Adroit: Pen-Expert, Door-Expert, Hammer-Expert and Relocate-
Expert, and evaluate the effect of four different variances accordingly. In Figure 4, the success rates
for Adroit tasks keep unchanged across different levels of Gaussian noises. This trend indicates that
if a task can be solved by PREFORL, the variance σ has limited impact on its performance.

In summary, finding a reasonably small level of noise is critical to the performance of PREFORL
algorithm. Small numbers may lead to conservative exploration and optimization, yet large numbers
yield aggressive exploration and may lead to suboptimal policies.

D ABLATION STUDY OF DEGRADED DATASET SIZE

We performed an ablation study varying the size of the degraded dataset by changing the degraded-
to-preferred ratio (|D↓s ∪ D↓a|/|D+|) from 1 to 10, and also considered the limiting case where
degraded trajectories are generated on-the-fly (∞) during training loops. As shown in Table 5,
performance remains stable across all settings: the normalized scores vary by less than 1–2 points
on every Adroit task, and no consistent trend emerges as the ratio increases. This indicates that
PREFORL is insensitive to the size of degraded samples and does not require a large or exhaustively
constructed degraded dataset.

This empirical robustness is consistent with our theory. The theoretical condition in Lemma 3.1
requires that the noise distribution has full support over a local neighborhood in the action space—not
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Figure 4: The left figure denotes the effect of noise level on two MetaWorld tasks. The right figure
denotes the effect of noise level on Adroit tasks with expert dataset. Results are averaged over 5 run
seeds, and each data point is collect by 50 evaluation trajectories.

Task Ratio = ∞ Ratio = 1 Ratio = 5 Ratio = 10
door-expert 106.0 106.1 105.2 105.9
hammer-expert 128.6 128.3 128.4 128.3
pen-expert 144.8 143.1 144.0 143.3
relocate-expert 111.1 111.0 109.3 111.1

Table 5: Impact of the degraded-to-preferred sample ratio on Adroit tasks. Scores are normalized and
averaged over 3 seeds; ∞ denotes on-the-fly degraded sample generation.

that the dataset enumerates this support exhaustively. Gaussian perturbation already satisfies this
condition. In practice, drawing a modest number of perturbed trajectories provides sufficient "proba-
bilistic coverage" to estimate the expectation in the preference loss.

E SENSITIVITY ANALYSIS

We include sensitivity analyses for both the contrastive bias parameter λ and the representative
segment length k, and the results shown in below tables are included in Tables 6 and 7 of the revised
manuscript.

As shown in Table 6, PREFORL is robust to the choice of λ over a wide range of values (0.25, 0.5,
1.0). Performance varies only slightly across settings and remains consistently strong on all Adroit
tasks. Our default choice is λ = 0.5.

Similarly, Table 7 demonstrates that PREFORL is insensitive to the segment length k. Across
k ∈ {20, 50, 100, 150} (with total sequence length fixed at 200), performance on pen-human and
relocate-expert remains stable, with only minor fluctuations. Our default setting is k = 100. Overall,
these ablations show that PREFORL does not require fine-tuning of either λ or k; the method is stable
across a broad range of hyperparameter choices.

F COMPARSION AGAINST CPL AND REBRAC ON METAWORLD

We include comparisons against CPL and ReBRAC on MetaWorld tasks in Table 8. For each task,
the dataset contains 50 demonstrations. We intentionally augmented the demonstration dataset with
environment reward information to give ReBRAC a stronger supervisory signal, whereas PREFORL
does not rely on any dense reward annotations.

Both CPL and ReBRAC struggle on the demonstration-only MetaWorld tasks we evaluated, whereas
PREFORL consistently achieves 90–100% success. On disassemble-v2 and stick-push-v2, both
CPL and ReBRAC fail completely, while PREFORL reaches 90.7% and 100%, respectively. On
door-open-v2 and hammer-v2, where CPL or ReBRAC show stronger performance, PREFORL still
matches or exceeds them, achieving 100% and 98.7%. These results suggest that, at least in the
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Task λ = 0.25 λ = 0.5 λ = 1

pen-human 113.9± 2.4 119.1± 3.1 116.4± 3.2
relocate-expert 110.7± 0.1 112.2± 0.7 110.5± 0.3
door-expert 105.7± 0.1 106.0± 0.0 105.5± 0.3
hammer-expert 127.7± 0.4 128.6± 0.2 122.5± 0.5

Table 6: Ablation study on contrastive bias λ for Adroit tasks.

Segment Length (k) pen-human relocate-expert
20 119.0± 0.8 110.6± 1.1
50 118.7± 3.9 110.6± 1.1
100 119.1± 3.1 112.2± 0.7
150 121.1± 5.19 111.7± 0.9

Table 7: Ablation study on segment length k for Adroit tasks (with total sequence length fixed at
200).

subset of MetaWorld environments we examined, preference-based learning with locally degraded
actions provides a more reliable supervision signal than methods that rely on inferring value functions
from sparse or heterogeneous demonstrations. In the failure cases for ReBRAC, we found that higher
learned reward estimates or critic values do not necessarily correlate with higher task success.

G EVALUATION ON ANTMAZE ENVIRONMENTS

We selected a subset of the AntMaze suite (umaze-diverse-v2, large-play-v2, and large-diverse-v2)
where existing offline RL baselines, particularly IQL and ReBRAC, are less effective according to
their results. The results are reported in Table 9.

PREFORL achieves competitive performance on two of the three difficult tasks. In particular, large-
play-v2 is the setting where preference-based learning provides the clearest benefit: demonstrations
in “play” datasets are noisy and locally inconsistent. PREFORL relies on local preference signals
induced by small action degradations rather than global return estimation, allowing it to extract
reliable supervision even when the offline data are highly suboptimal. On the other hand, PREFORL
is less effective on large-diverse-v2. This dataset contains highly heterogeneous demonstrations
that traverse many disconnected regions of the maze with less state overlap. As a result, the local
preference pairs used by PREFORL become sparse in the parts of the state space relevant for reaching
the goal, making it difficult for the model to propagate local improvements across the entire maze. In
contrast, ReBRAC performs well on this task because it leverages global value-function regularization
that benefits from the broad coverage in the diverse dataset. We believe this result provides useful
insight into the strengths and limitations of preference-based offline RL.

H EXPERIMENT DETAILS

We use 8 × A100 80G Nvidia GPUs for experiments. In this section, we discuss more experiment
details including task formulation and dataset construction, as well as training details including
network architectures and hyperparameters.

H.1 ADROIT

Tasks. The Adroit in D4RL (Fu et al., 2021) contains four manipulation tasks (pen, hammer,
door and relocate), and three types of datasets (expert, human and cloned). In human setting, 25
human-generated high-quality trajectories are collected in each dataset. In expert datasets, a scripted
controller is used to generate 5K successful trajectories for generating offline dataset. However,
cloned is a special dataset that contains 5K both success and failed trajectories, as half of the
episodes are collected from expert demonstrations, and the other half are sampled from an suboptimal
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Task Name CPL ReBRAC PREFORL
disassemble-v2 0.0 0.0 90.7
stick-push-v2 0.0 0.0 100.0
door-open-v2 100.0 84.4 100
hammer-v2 100.0 0.0 98.7

Table 8: Comparison of CPL, ReBRAC, and PREFORL on Meta-World Tasks.

Dataset BC TD3+BC AWAC CQL IQL ReBRAC DT PREFORL
umaze-diverse-v2 47.3±4.1 44.8±11.6 54.8±8.0 37.3±3.7 54.3±5.5 83.5±7.0 51.8±0.4 68.9±3.2
large-play-v2 0.0±0.0 0.0±0.0 0.0±0.0 20.8±7.3 42.0±4.5 52.3±29.0 0.0±0.0 53.2±14.2
large-diverse-v2 0.0±0.0 0.0±0.0 0.0±0.0 20.5±13.2 30.3±3.6 64.0±5.4 0.0±0.0 26.1±7.1

Table 9: Average scores on selected D4RL AntMaze tasks. PREFORL results are averaged over 3 seeds.

imitation policy. The Adroit dataset is a typical narrow distribution dataset because the tasks in
Adroit contains relatively fixed goals and traces. This makes it suitable for both action-based and
state-based degradation. In practice, we use Approximated Nearest Neighbor (ANN) search method
IndexIVFFlat implemented in FAISS (Douze et al., 2024) to search 10 nearest neighbor states.
If any state with 10 percent less reward is found, we use its corresponding action as the degraded
action to perform contrastive learning.

Hyperparameters. The hyperparameters listed in Table 10 are used to train Adroit policies using
PREFORL algorithm.

H.2 METAWORLD

Tasks. We set tasks in MetaWorld with image-based observations; hence, we need a network
structure to process the RGB image. We choose a pre-trained ResNet-50 (He et al., 2015) model as
the image encoder for both BC and PREFORL. Unlike many previous works, we do not freeze the
ResNet model during training.

Hyperparameters. The hyperparameters listed in Table 11 are used to train MetaWorld policies
using PREFORL algorithm.

H.3 MAZE2D

Hyperparameters. The hyperparameters listed in Table 12 are used to train Maze2D policies using
PREFORL algorithm.

H.4 SPARSE-MUJOCO

Tasks. We adopt "-v2" tasks in D4RL for Sparse-MuJoCo domains. We convert dense rewards
in the offline dataset into sparse rewards as stated in the main text, and return thresholds for each
environment are listed in Table 13. Note that we perform binary judgment in evaluation, i.e., a
trajectory is considered successful if, and only if, its return exceeds the corresponding threshold.

Hyperparameters. The hyperparameters listed in Table 14 are used to train Sparse-MuJoCo
policies using PREFORL algorithm.

2Model is available at: https://download.pytorch.org/models/resnet50-11ad3fa6.pth
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Description Value
Discount factor γ 1.0
Biased regularizer value α 0.1
Contrastive bias λ 0.5
Contrastive segments length l 64
Batch size 20
Number of gradient steps 15000
Learning rate 0.0003

Degradation operators Action-based ↓a, State-based ↓s

Variance σ in action-based ↓a 1%
Nearest neighbor search in state-based ↓s IndexIVFFlat
Number of probes 10
Condition cond in state-based ↓s Reward is at least 10% smaller
Policy network MLP (1024, 1024, 1024)
Activation ReLU

Table 10: Hyperparameters of PREFORL in training Adroit tasks.

Description Value
Discount factor γ 1.0
Biased regularizer value α 0.1
Contrastive bias λ 0.5
Contrastive segments length l 100
Batch size 64
Number of gradient steps 15000
Learning rate 0.0003

Degradation operators Action-based ↓a

Variance σ in action-based ↓a 1%
Image encoder Pre-trained ResNet-502

Policy network MLP (1024, 1024, 1024)
Activation ReLU

Table 11: Hyperparameters of PREFORL in training MetaWorld tasks.

Description Value
Discount factor γ 1.0
Biased regularizer value α 0.1
Contrastive bias λ 0.5
Contrastive segments length l 100
Batch size 64
Number of gradient steps 500
Learning rate 0.0003

Degradation operators Action-based ↓a

Variance σ in action-based ↓a 1%
Policy network MLP (1024, 1024, 1024)
Activation ReLU

Table 12: Hyperparameters of PREFORL in training Maze2D tasks.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Task Return Threshold
halfcheetah-medium 4909.1
walker2d-medium 3697.8
hopper-medium 1621.5
halfcheetah-medium-expert 10703.4
walker2d-medium-expert 4924.8
hopper-medium-expert 3561.9

Table 13: The return thresholds for Sparse-MuJoCo tasks.

Description Value
Discount factor γ 1.0
Biased regularizer value α 0.1
Contrastive bias λ 0.5
Contrastive segments length l 100
Batch size 64
Number of gradient steps 15000
Learning rate 0.0003

Degradation operator Action-based ↓a

Variance σ in action-based ↓a 1%
Policy network MLP (1024, 1024, 1024)
Activation ReLU

Table 14: Hyperparameters of PREFORL in training Sparse-MuJoCo tasks.
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