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Abstract

Graphical models are a powerful tool for represent-
ing causal relationships among jointly distributed
random variables, especially concerning data from
across different experimental settings. However, it
is not always practical or desirable to estimate a
causal model at the granularity of features in a par-
ticular dataset. There is a growing body of research
on causal abstraction to address such problems.
We provide graphical identifiability results and pro-
pose an algorithm for directly and efficiently learn-
ing abstract causal graphs from data, as well as the-
oretical insights about the lattice structure of this
search space. As proof of concept, we apply our
algorithm to synthetic data as well as a real dataset
containing measurements from protein-signaling
networks. This is a work-in-progress.

1 INTRODUCTION

Discovering causal relationships is one of the fundamental
goals of scientific research. Nevertheless, the causal relation-
ships of interest are not always between features of a given
dataset. For example, in neuroscience, one may have data
describing the interactions of groups (or even individual)
neurons and wish to learn from this data a causal model over
cognitive or behavioral states [Grosse-Wentrup et al., 2024].

This is a very general and difficult problem, so we restrict
our interest here to particular cases where there is data from
some assumed low-level or fine-grained causal DAG model,
and we offer a formalization for what it means for a DAG
with fewer nodes to be a high-level or coarse-grained abstrac-
tion of this underlying causal DAG model. Our approach is
based on the intuition that variables with similar causes and
similar effects (graphically, similar ancestors and descen-
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dants) are in some sense redundant and can be abstracted
away by clustering them together while retaining only the
important causal relationships.

There is a growing number of similarly motivated works
on consistent transformations of causal models [Rubenstein
et al., 2017] and causal abstractions [Beckers and Halpern,
2019, Beckers et al., 2020, Beckers, 2021, Otsuka and Saigo,
2022] that lay a ground work for formally describing such
problems. There is also some work on learning abstractions
[Massidda et al., 2024], on directly learning a reduced DAG
according to its marginal independences [Deligeorgaki et al.,
2023], on using partitions to simplify learning large graphs
[Gu and Zhou, 2020], and on clustering nodes in a DAG
while preserving the identifiability of specified causal esti-
mands [Tikka et al., 2023]. We hope to add to this growing
body of research by taking a unique graphical perspective
on the problem, which naturally lends itself to a structured
description of the entire space of valid graphical abstractions
as well as algorithms for directly learning such abstractions
from data.

Contributions We list our contributions as follows:

» formalization turning search space of DAG models into
search space of causal abstractions

« efficient search of this space

* nonparametric method, flexible learning framework for
specific downstream tasks

* bridging fields, working at intersection of causal ma-
chine learning and combinatorics/algebraic statistics.

We also list current shortcomings and areas of ongoing
work:

* the proposed algorithm is constraint-based, and thus
prone to compounding sequential errors

* the statistical tests used show poor empirical perfor-
mance, even on simple datasets, likely due to low sta-
tistical power
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* the theoretical results assume causal sufficiency, and
it is unclear how badly they break down when this
assumption is violated.

The paper proceeds as follows: Section 2 formalizes the
problem of causal abstraction in terms of graphical struc-
ture (which we call coarsening) and outlines our general
approach to thinking about the resulting search space; based
on these insights, Section 3 presents a flexible oracle-based
learning algorithm with promising theoretical properties—
replacing the oracles with standard statistical tests results in
a practical algorithm that is consistent in the large-sample
limit. We implement the practical algorithm and apply it to
synthetic and real data in Section 4. We conclude in Sec-
tion 5 with a discussion of current shortcomings as well as
plans for ongoing and future work.

2 COARSENING CAUSAL DAGS

We begin by introducing some general notation and prelimi-
naries that are commonly used in the graphical models liter-
ature. A directed acyclic graph (DAG) is denoted by G =
(V, E), where V is the vertex set indexed by {1,2,...,n}
and E is a set of directed edges which do not form a di-
rected cycle. In a DAG G, pag(A),chg(A), ang(A) and
deg(A) respectively denote the parents, children, ancestors
and descendants of the vertex set A C V.

The graphical model M corresponding to a DAG G is
the collection of probability distributions that factorize ac-
cording to the DAG. The model M can also be specified
by the conditional independence statements implied by G.
These independences correspond to the Markov properties
associated to the DAG. Thus, different DAGs can specify
the same model if they have the same set of conditional
independence statements. This causes the key problem of
structural identifiability, where one aims to infer the true
DAG from observational data. On the other hand, when the
number of variables increases, the graphical approach to
analyzing the model may become impractical due to the
overwhelming number of conditional independence state-
ments. A natural way to reduce the size of the DAG and still
preserve some of its essential properties is by obtaining a
coarsened DAG by combining the vertices of the original
DAG.

The concept of coarsening is obtained by considering parti-
tions of different sizes of the vertex set of a DAG G. Each
partition is then considered as a new vertex to obtain a coars-
ened DAG G’ of G. Different types of coarsening can be
obtained depending on how the the vertex set is partitioned.
We will first define the most general type of coarsening,
where there is no constraints on the partition.

2.1 GENERAL COARSENING

Definition 1. Given a DAG G = (V,E), we define a
graphical coarsening to be any DAG G' = (V' E') (with
|V'| < |V|) for which there exists a surjection 7w : V. — V'
that is monotonic with respect to the partial orders induced
by G and G', i.e., for whichu <g v = w(u) <g 7(v).

Example 2. Let G = (V, E) be the DAG1 — 2 — 3 — 4,
and V' be the coarsening {1,2,{3,4}}. Here, the surjec-
tive map w maps 1 — 1,2 — 2.3 — {3,4},4 — {3,4}.
This gives us G' as the DAG 1 — 2 — {3,4}. Observe
that m is monotonic with respect to the partial orders in-
duced by G and G' as 1 <g 2 <g 3 <g 4 implies
1 <¢ 2 <¢ {3,4}. Similarly, if we consider V" to be the
coarsening {1,3,{2,4}}, then although there is a surjective
map between V and V", there is no DAG G" = (V" ,E")
for which the map is monotonic with respect to the partial
orders of G and G".

Note: For each DAG G, every valid coarsening corresponds
to a unique DAG G’, where A — B is an edge in G’ only
if:

* there exists some a € A and b € B such that a — b is
an edge in GG and,

* there exists no edge in G of the form b — a for any
b€ Banda € A.

The motivation behind coarsening causal DAGs is that the
coarsened DAGs do not introduce any new conditional inde-
pendence statements, which is proven in the lemma below.
Thus, one could potentially identify the important condi-
tional independence statements and implement a causal dis-
covery algorithm on these statements to obtain a coarsened
CPDAG of the true DAG.

Lemma 3. Let G be a DAG and G’ be any coarsening of
G. Then every conditional independence statement of G' is
satisfied by G.

Proof. Let G be a DAG with [n] vertices and G’ be a
coarsening of G with vertices Ay, As, ..., Ap,. Now, let
Ai AL Aj|{Ag,, Ag,, - . ., Ag, } be a d-separation statement
in G’. We need to show that for any a; € A; and a; € Aj,
a; is d-separated from a; by Ay, U Ay, U Ay, in G. In order
to prove this, we first construct an intermediate graph G by
using the structure of G’ in a specific way such that G is a
subgraph of G. As every d-separation statement of G would
hold in G, it is enough to show that a; is d-separated from
a; by Ag, UAg, U...UAg, in G.

We construct  in the following way: Gisa graph on [n]
vertices. For every vertex set Ay, Ao, ..., A, in G’, we add
the appropriate edges in G (directed according to a linear
extension of the partial order induced by GG) such that each



A; becomes a complete subgraph (clique). Now, if A; —
As is an edge in G’, we know by the Definition 1 that there
exists some a; € A; and as € A, such that a; — ao is
an edge in G. Further, it is also known that a}, — a is not
an edge in G for any a), € Ay and @} € A;. So, for every
edge A1 — A, in G, we complete the construction of G
by adding the edges a1 — as forall a; € A; and as € As.

It is clear from the construction that G is obtained by only
adding edges to G, implying that G is indeed a subgraph
of Gi. We now focus on the conditional independence state-
ments obtained from the directed local Markov property
in @, ie., A; 1L Ajlpag (A;) where A; and A; are non
adjacent vertices and A; is not a descendant of A;. For
any A; € pag/(A;), ay — aj is an edge in G for all
a; € A; and a; € Aj;. This implies that {UA; : A; €
pag: (A;)} C pag(aj). Similarly, for every a; € pag(a;)
and for any a; € Aj, either a; € A; or there exists some
A; € pag/(A;j) such that a; € A;. As A; is a clique in G,
we pick the source node in A;, say a,. This gives us that ev-
ery parent of a, in G lies in some A; € pagy (A;), implying
that a; 1L as|{UA; : A; € pag (A4;)} forall a; € A;.

We now pick the vertex a,, in A; which comes second in
the ordering, i.e., pas(a.,) N A; = {as}. From here, we get
the directed local Markov property that a; Ll a,|{as U A4; :
A; € pag/(A;))} for all a; € A;. However, using the
contraction and decomposition axioms [Pearl, 1988, Chap-
ter 3, Theorem 1] on the two statements gives us that
a; 1L a,|{UA; : A; € pag (A4;)} for all a; € A;. We
continue this process by using the ordering of the vertices
in A; to get the remaining conditional independence state-
ments. O

2.2 PARTITION LATTICE OF GENERAL
COARSENING

For a given DAG G on n vertices, every valid coarsening
can be seen as a non trivial partition of [n]. Furthermore,
the coarsening of GG into a DAG with a single vertex (i.e.,
all the vertices clustered together) is also a valid coarsening
of G. Thus, it makes sense to view every valid coarsening
of G as a point on the partition lattice of [n]. A lattice is a
partially ordered set where any two elements {a, b} have a
unique meet (greatest lower bound denoted by a Ab) and join
(least upper bound denoted by a V b). Example of the entire
partition lattice of 4 elements can be seen in the Appendix.

As each valid coarsening of GG corresponds to a point in the
partition lattice of n elements, they form a poset in the parti-
tion lattice with the topmost element {1,2,...,n} (G’ isa
single vertex) and the lowermost element {1}, {2},...,{n}
(G’ equal to G). We call this poset the coarsening poset of G.
Thus, moving down in this poset corresponds to a partition
refinement and addition of certain CI statements obtained
from the refinement. In the Theorem below, we show that

the coarsening poset of a DAG is indeed a sublattice of the
partition refinement lattice. We use this sublattice structure
to develop a oracle-based algorithm in Section 3, for which
we discuss practical implementations and apply in Section 4.

Theorem 4. For any DAG G = (V, E), the poset of all the
valid coarsenings of G is a lattice, and more specifically a
sublattice of the partition refinement lattice of [n] (where
n=|V|).

Proof. Let G’ and G” be two valid coarsening of G,
with vertex sets A = {A;,As,...,Ax} and B =
{Bi,Bs,...,By}. In other words, let A and B be two
valid partitions of [n]. In order to conclude that the poset
is a sublattice of the partition refinement lattice, we need
to show that both A A B and A V B are valid coarsenings
of G. From the partition refinement lattice, we know that
AANB ={A;NB; :i=1,2,...,k,j=1,2,...,m}.Now,
leta € A;NBjand b € Ay N By suchthata — b € G.
Note that 7 can be equal to ¢’ or j can be equal to j’ but both
cannot be equal simultaneously. If there also exists some
ap € A; N Bj and by € A; N Bj/ such that by — a1 € G,
then that would imply either A or B (or both) is not a valid
partition of G. This is because if 7 # ¢’ (similarly if j # 7),
then we would have a,a; € A; and b, b; € A; with both
edges a — band by — a; lying in G. Thus, A A B corre-
sponds to a valid coarsening of GG, implying that the poset
is a finite meet-semilattice.

As the coarsening poset is a subposet of the partition refine-
ment lattice, we know that the coarsening poset also has a
unique upper bound. This allows us to use [Stanley, 2011,
Proposition 3.3.1], which states that if a poset is a finite
meet-semilattice that is bounded above, then it is a lattice
which has a well defined join. Thus, we can conclude that
the coarsening poset of any DAG is indeed a sublattice of
the partition refinement lattice. O

Theorem 5. An abstraction poset of a DAG G = ([n], E) is
a distributive lattice only if the DAG has a directed (n — 1)-
path.

Proof. Suppose the longest directed path in G is p =

(v1,v2,...,vy) With m < n. Extend the partial order in-
duced by G to a total order t = (t1 = v1,t2,...,tn =
vm). Consider a vertex v* = t; ¢ p, and let v~ =

max;;{t; € p} while v* = min;>;{t; € p}. Then
{v,v'},{v,v*},{v',v*} and {v,v’,v*} are all valid par-
titions. This sublattice does not satisfy distributivity (it is
just the partition refinement lattice on 3 nodes), completing
this direction of the proof. L

Theorem 5 tells us that DAGs that are sparse (in the sense
of not connecting all nodes by at least a single long path,
which can perhaps be related more explicitly to average de-
gree [Meyniel, 1973]) do not results in distributive abstrac-
tion lattices. This is a somewhat negative result, because



distributive lattices have nice algebraic properties (e.g., a
relation to Grobner bases) that would allow use of computa-
tional algebraic tools.

2.3 MARGINAL COARSENING

In Section 2.1, we defined the general coarsening of a
DAG, where we had no constraint on the type of coarsening.
However, we can also define constraint-based coarsening
where each coarsening has to preserve certain properties of
the DAG. One such constraint is the marginal coarsening,
which is defined as follows:

Definition 6. Given a DAG G = (V,E), we define a
marginal coarsening to be any graphical coarsening G' =
(V', E") whose partition function m preserves the marginal
d-separation statements of G viau 1L v € I1(G) =
m(u) L w(v) € I(G).

In particular, marginal coarsenings are a special type of gen-
eral coarsening where every marginal independence state-
ment of G is preserved. This has a similar motivation to gen-
eral coarsening, where we are instead interested in learning
only the marginal independencies of G, which is useful for
obtaining potential targets to perform interventional experi-
ments. For instance, equivalence classes can be constructed
using using the marginal independencies and can also be
used to implement causal discovery algorithms [Deligeor-
gaki et al. [2023]].

In the following lemma, we give a complete characterization
of all the possible marginal coarsening of G.

Lemma 7. Let G be a DAG and i 1L j in G. Then any
partition refinement of V (G) containing i is either singleton
or can only contain those k for which k 1L j.

Proof. Asi 1L jin G, there does not exist any trek between
i and j in G. This means that every path between i and j is
blocked by some collider. Now, let k£ be some vertex in G
such that ¢ and k are grouped together in a valid marginal
coarsening (partition) G’. We name this vertex of G’ as P;.
This implies that ¢ and k are not marginally independent
in G (as grouping ¢ and k together would remove any in-
dependence statement between ¢ and k in G’). So, there
exists a trek 7 (i, k) between ¢ and k. If we assume that
k is not marginally independent of j in G, then there also
exists a trek 7 (k, j) between k and j as well. Let 7 (i, k) g
and T (k, 7)1 correspond to the right and left part of the
treks 7 (i, k) and T (k, j), respectively. Thus, the only way
T (i, K)UT (k, j) does not form a trek between ¢ and j is that
the path 7 (4, k) g U T (k, j) 1 has a collider at some vertex
[ in the intersection of 7 (i, k) g and T (k, j) 1, (Note that
can be equal to k as well). Without loss of generality we can
assume that 7 (i, k)g N T (k, j) isequaltol — ... — k.

Now, let p — [ be an edge T (k, j)1 (Note that p can be
equal to 7 as well). Then we know that ¢ Ll p in G (else we
can replace [ with p and repeat the argument), and hence p
cannot lie in P;. If [ lies in P;, then the marginal indepen-
dence ¢ Il pislostin G’ as any vertex containing p has to
be adjacent to P; in G'. Similarly, if { does not lie in P;, then
there must exist a directed path from P, to P; in G’. This
also results in G’ losing the marginal independence ¢ 1L p,
which is a contradiction to the construction of G. O

The marginal coarsening poset also forms a lattice which
could be used to construct an analogous marginal version of
Algorithm 1.

3 LEARNING COARSENED CAUSAL
MODELS

3.1 ORACLE-BASED ALGORITHM

Algorithm 1 DAG learning by recursive partition refinement
1: function REPARE(partition-DAG D = ({7 }, £))

2: 7*, {m,., m,} = REFINE({7y) }) > Pick a part to re-
fine
3: if 7* = 0 then &> Stop recursion when no part to
refine
4: return

5: {Wfk+1]} = {n, 77;} U {mp} \ 7 & Initialize
nodes of new DAG
6: E =EnN {7Tf ]}2 > Initialize edges of new DAG

k+1
7: for 7' € {n, 7.} do > Update edges into/out of re-
fined part
8: for 7 € pap(7*) do

9: L if ADJACENT(7, ') then
10: .~ append T — 7’ to E’
11: for m € chp(n*) do

12: L if ADJACENT(7, 7') then
13: B . append 7’ — 7 to B’

14: if PARENT(7., 7)) then > Update edges within re-
fined part

15: append 7. — 7 to E’

16: else if PARENT(r!, 7/.) then

17:  append 7, — 7/ to E

18: D = ('{Wfk+1]}, E’) > New DAG based on parti-
tion refinement and updated edges

19: return concatenation of D’ and REPARE(D’)

Definition 8. A refine-oracle, with respect to a ground truth
DAG D* = ([n], E*), takes as input a partition {7y}
such that 3D = ({my}, E) =X D* (i.e., there’s an order-
reflecting map from D to D*), and outputs a partition re-
finement {m|, \} such that D < 3D" = ({x'}* | E') < D*.
[note that necessarily k < k'—i.e., the refinement is non-
trivial]



Definition 9. An adjacent-oracle, with respect to a ground
truth DAG D* := ([n], E*), takes as input parts m;, 7; €
{7} such that 3D = ({7}, E) < D* and determines
whether or not 7; and 7; are adjacent in D* (i.e, Ju € m;
and v € 7 such that w — v or v — wu is in D*) and
correspondingly outputs True or False.

Definition 10. A parent-oracle, with respect to a ground
truth DAG D* := ([n], E*), takes as input parts m;,7; €
{7} such that 3D = ({7}, E) X D* and determines
whether or not m; — m; in D* and correspondingly outputs
Trueor False.

Theorem 11. Given partition-, adjacent-, and parent-
oracles with respect to a ground truth DAG D* on n
nodes, Algorithm 1 correctly identifies D* after n — 1 re-
cursive calls, when started on the trivial partition-DAG
DY = ({[n]}, D). More specifically, REPARE(D{["]}) =
(Dimia}, D{”E3]}’ o 7D{7Tfil]} = D*).

proof sketch. The idea is to do induction over the lattice
structure. The base case is the supremum of the lattice (a
trivially valid coarsening for any DAG) and we show that,
assuming the input is an element of the k — n + 1th level of
the lattice, then the output of nth iteration of the algorithm
is an element of the £ — nth level of the lattice. The refine-
oracle relates the element of the lattice to the surjection
in Definition 1, while the the adjacent- and parent-oracles
relate ensure that the surjection is monotonic, as required.
Hence, the output of the n — 1th iteration of the algorithm
must be the infimum of the lattice, i.e., D*.

O

3.2 PRACTICAL ALGORITHM

In order to apply Algorithm 1 to data, the functions REF INE
and ADJACENT can use statistical tests. While there are a
multitude of options for these tests, we focus here on a
choice of two simple, widely applicable nonparametric tests:
the two-sample Kolmogorv-Smirnov test for distribution
equality and a mutual information-based independence test.

REFINE with Kolmogorv-Smirnov test. In place of the
refine-oracle, we use KS tests between observational and
interventional datasets. See [Hodges, 1958] for details and
[Virtanen et al., 2020] for an implementation. The number of
interventional settings and their targets dictates how refined
of a coarsening is learned.

Algorithm 2 Practical alternative to the REF INE oracle.

1: function KS-REFINE({7[;] })

2: use (observational) reference dataset R and inter-
ventional datasets Z = {I',... 1"}

3: define w]. = {i € 7* | KS(R;, I}") accepts Hy}
and 7, = {i € 7* | KS(R;, I) rejects Hp}

4: pick a part 7* € {7y} and intervention I* € 7
such that 7. and 7, are non-empty, if they exist

5: return 7*, {7, 7.}

ADJACENT with mutual information test. In place of
the adjacent/parent-oracle, we use a mutual information test.
See [Runge, 2018] for details and the t igramite Python
package for an implementation.

Algorithm 3 Practical alternative to the ADJACENT oracle.
1: function MI-ADJACENT(m, ')

2: use pooled data D = RU T U...UI"
3: L return TRUE if MI(D,, D) rejects Hy else
FALSE
Note that interventional information (i.e., .. vs 7/, in Line 3
of Algorithm 2) induces a causal order, so MI-ADJACENT
can also be used to replace the parent-oracle.

Asymptotic consistency.

Corollary 12. When wusing IKS-REFINE and
MI-ADJACENT, Algorithm I learns the correct coarsening
in the large sample limit.

4 EXPERIMENTAL RESULTS

As proof of concept, we apply RePaRe to synthetic data
sampled from random DAG models as well as to a real-
world interventional dataset.'

4.1 SYNTHETIC DATA

We use the sempler package [Gamella et al., 2022] to
generate random DAG models with varying densities and
to sample datasets from these models across observational
and interventional settings. The models are over 10 nodes
and are linear with additive Gaussian noise, and the data is
standardized before learning.

We evaluate the coarsening learned by RePaRe using two
metrics: F-score[Manning, 2009, Eq. (8.6)] and the adjusted

'An open source implementation of the algorithm as well
as scripts for reproducing all of the following experiments can
be found at https://codeberg.org/alex—-markham/
repare.
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evaluating edge recovery of ported for evaluating node par-
MI-ADJACENT. titioning of IKS-REF INE.

Figure 1: Evaluation on synthetic data, averaged over 10
seeds, as ground truth graph density varies.

Rand index (ARI) [Hubert and Arabie, 1985, Eq. (5)]. Con-
sidering the consistency of our method, as established in
Theorem 11 and Corollary 12, we are interested here in de-
termining performance on finite samples. In particular, we
are interested in how overall performance is affected by the
practical choices of statistical tests (Section 3.2): F-score
gives a sense of MI-ADJACENT’s performance on edge re-
covery, while ARI measures performance of IKS-REFINE
on partitioning.

The results are shown in Figure 1, indicating decent edge
recovery that increases with density (Figure 1a) but highly
variable partitioning performance that decreases with den-
sity (Figure 1b).

Table 1: Evaluation of coarsenings on data of Sachs et al.
[2005] across different reference settings.

Reference Parts Edges F-score ARI
pkc 6 10 0.53 -0.04
pka 7 13 0.57 0.10
p38 2 1 1.00 -0.05
pip3 6 10 0.71 -0.11
plc8 7 13 0.55 -0.12

4.2 FLOW CYTOMETRY DATA APPLICATION

We now apply RePaRe to a real dataset from Sachs
et al. [2005] that contains measurements of protein-
signaling networks in the human immune system. We use
a discretized, preprocessed version of the data, obtained

from the benchmarking repository https://github.

com/cmu-phil/example-causal-datasets. It
has 7466 observations across six different perturbations.

The supposed ground truth DAG that used for evaluation is
shown in Figure 2a, and an example of a coarsened DAG
learned by RePaRe is shown in Figure 2b. Lacking obser-

_pip3

pip2 plc

/

pkc pka

mek raf
akt jnk
p38

(a) Consensus network taken to be the ground truth DAG.

pka, mek, pkc pip2

jnk plc

raf, p38, pip3, akt ——— erk

(b) Learned coarsening based on available interventions.

Figure 2: Application to the data of Sachs et al. [2005].

vational data, there is no clear reference data for the test in
IKS-REFINE. Table | shows results across five different
possibilities for treating one of the perturbations as the ob-
servational reference data—note that the coarsening shown
in Figure 2b corresponds to the row of reference ‘pip3’ in
the table. The results are reasonably consistent across dif-
ferent references (e.g., 67 parts and 10-13 edges in 4 out
of 5 graphs), but they are consistently bad: the average ARI
is around 0, indicating chance-level partitioning; and the
average F-score is around 0.6, indicating mediocre edge
recovery.

S DISCUSSION

Because this is a work-in-progress, we focus the discussion
on understanding current shortcomings and hinting at future
work.

* Exploration of Alternative Oracle-replacements: In
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Section 3.2, we focus on specific tests, which perform
poorly in Section 4—this is likely due to the low sta-
tistical power of the Kolmogorov-Smirnov (KS) test,
particularly for nodes that are farther downstream from
the intervention. It would be beneficial to consider a
broader range of statistical tests or even score-based
methods. This is the most interesting direction to con-
tinue for practically-oriented abstraction research.

* Broader Notions of Coarsening: While we present
the most general notion of coarsening and describe
marginal coarsening, there are likely other coarsening
strategies that could be relevant. Future research could
explore application-specific coarsening techniques that
may yield different insights or improve the applicabil-
ity of our framework in various contexts.

* Relation to the Search Space of Causal Discovery:
It would be valuable to investigate how our findings
relate to the search space of classic causal discovery
algorithms [cf. Linusson et al., 2023]). Algorithm [ al-
ready returns a DAG over the full dataset, so exploring
its computational complexity or its relation to the space
of CPDAG:s could lead to insights for (non-abstraction)
causal discovery. Additionally, our practical algorithm
used interventional data and hence could be related
to identifiability results about interventional Markov
equivalence classes [Yang et al., 2018].
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