TokenSelect: Efficient Long-Context Inference and Length Extrapolation
for LLMs via Dynamic Token-Level KV Cache Selection

Anonymous ACL submission

Abstract

Rapid advances in Large Language Models
(LLMs) have spurred demand for processing
extended context sequences in contemporary
applications. However, this progress faces two
challenges: performance degradation due to
sequence lengths out-of-distribution, and ex-
cessively long inference times caused by the
quadratic computational complexity of atten-
tion. These issues limit LLMs in long-context
scenarios. In this paper, we propose Dynamic
Token-Level KV Cache Selection (TokenSe-
lect), a training-free method for efficient and
accurate long-context inference. TokenSelect
builds upon the observation of non-contiguous
attention sparsity, using QK dot products to
measure per-head KV Cache criticality at token-
level. By per-head soft voting mechanism, 7o-
kenSelect selectively involves a few critical KV
cache tokens in attention calculation without
sacrificing accuracy. To further accelerate To-
kenSelect, we design the Selection Cache based
on observations of consecutive Query similarity
and implemented the efficient Paged Dot Prod-
uct Kernel, significantly reducing the selection
overhead. A comprehensive evaluation of 7o-
kenSelect demonstrates up to 23.84 x speedup
in attention computation and up to 2.28 x accel-
eration in end-to-end latency, while providing
superior performance compared to state-of-the-
art long-context inference methods.

1 Introduction

With the rapid development of large language mod-
els (LLMs), the number of parameters is no longer
the sole factor significantly affecting model perfor-
mance. The ability to effectively process longer
context information has become one of the key
metrics for evaluating LLMs’ capabilities. The
latest applications such as cross-document under-
standing (Bai et al., 2024), LLM-powered search
systems (Sharma et al., 2024), and complex rea-
soning (OpenAl) have all placed higher demands
on the long-context abilities of LLMs. There are

Predefined Sparse Patterns
(StreamingLLM, LM-Inf, etc.)

Block-level Selection Token-level Selection
(InfLLM, QUEST, Minference, etc.) (ours)

Recall@1000 = 100%

-]
Selected Blocks (size=3)
Recall@1000 < 5% Recall@1000

Figure 1: Distribution of tokens participating in atten-
tion computation under different sparsity patterns (

. TokenSelect can more accurately select critical
tokens (crimson squares) for attention computation.

two main difficulties in using pre-trained LLMs for
long-context inference. On one hand, LLMs are
limited by their context length during pre-training
(e.g. Llama 3 only has 8192 tokens). Directly in-
ferencing on longer sequences can lead to severe
performance degradation due to reasons including
sequence lengths out-of-distribution (Xiao et al.,
2024b; Han et al., 2024). On the other hand, even
if LLMs possess sufficiently large context lengths,
the quadratic computational complexity of atten-
tion with respect to sequence length makes the re-
sponse time for long-context inference unbearable.

Previous works have made numerous attempts
to address these difficulties. To extend the context
length of LLMs, the current common practice is
to perform post-training on long texts (Yang et al.,
2024a). However, this approach entails significant
computational costs, motivating a training-free and
effective method that is computationally efficient.
To accelerate long-context inference, many stud-
ies focus on the sparsity of attention, attempting
to reduce the scale of KV Cache involved in com-
putation. The key to this type of method lies in
designing sparse patterns for attention, which can
be mainly divided into two categories: one uses pre-
defined sparse patterns (Wang et al., 2019; Zaheer
et al., 2020; Xiao et al., 2024b; Han et al., 2024),
while the other estimates the potential importance
of KV Cache during the inference process (Zhang
et al., 2024b; Oren et al., 2024; Li et al., 2024; Lee

et al., 2024; Tang et al., 2024; Jiang et al., 2024),
attempting to select relevant KV Cache tokens into
attention calculations. However, the design of these
sparse patterns is often heuristically based on his-
torical criticality or coarse-grained criticality esti-
mation of tokens, making it difficult to ensure that
the selected tokens are truly critical, thus resulting

in sub-optimal performance, as shown in Fig. 1.
In this paper, we further observe the non-

contiguous sparsity of attention, revealing the im-
portance of designing more fine-grained dynamic
sparse patterns. To this end, we propose TokenS-
elect, a training-free approach that utilizes token-
level selective sparse attention for efficient long-
context inference and length extrapolation. Specifi-
cally, for each Query, TokenSelect dynamically cal-
culates token-level per-head criticality for the past
KV Cache and selects the k£ most critical tokens
through our head soft vote mechanism, involving
them in the attention calculation. This reduces the
scale of attention calculation to a constant length
familiar to the model, while maintaining almost all
of the long-context information, thereby simultane-
ously addressing the two main difficulties for long-
context inference. To reduce the overhead of token
selection, TokenSelect manages the KV Cache in
token-level pages (Zheng et al., 2024) and design
efficient kernel for token selection based on paged
KV Cache management through Triton (Tillet et al.,
2019). Furthermore, based on our observation of
high similarity between consecutive queries, we
have designed the Selection Cache, which allows
consecutive similar queries to share token selection
results, thereby reducing the selection frequency
while ensuring its effectiveness.

We evaluate the performance and efficiency of
TokenSelect on three representative long-context
benchmarks using three open-source LLMs. The
experimental results demonstrate that our 7okenS-
elect can achieve up to 23.84 x speedup in atten-
tion computation compared to FlashInfer (flashin-
fer ai), and up to 2.28 x acceleration in end-to-end
inference latency compared to state-of-the-art long-
context inference method (Xiao et al., 2024a). Si-
multaneously, it provides superior performance on
three long-text benchmarks. In summary, we make
the following contributions:

* An observation on the non-contiguous sparsity of
attention that highlights the importance of token-
level KV Cache selection.

* TokenSelect, a training-free method that achieves
accurate and efficient long-context inference and

length extrapolation, which is compatible with
mainstream LLM serving systems.

* Comprehensive evaluations of our method, show-
ing up to 23.84 x speedup in attention computa-
tion and up to 2.28 X acceleration in end-to-end
latency while exhibiting superior performance.

2 Related Works

In state-of-the-art LLMs serving systems (Kwon
et al., 2023; Zheng et al., 2024), technologies such
as Flash Attention (Dao, 2024) and Paged Atten-
tion (Kwon et al., 2023) have greatly optimized
LLMs inference efficiency by improving GPU I/0O
bottlenecks. However, in long-context inference
scenarios, the computational complexity of atten-
tion poses new challenges for LLMs inference. Nu-
merous studies focus on the sparsity of attention, se-
lecting partial KV Cache for attention calculations
to improve long-context inference efficiency. Slid-
ing window (Wang et al., 2019; Zaheer et al., 2020)
is one of the most widely used sparse patterns, re-
ducing complexity to linear by executing attention
computations within localized windows. Recent
works like StreaminglLLM (Xiao et al., 2024b) and
LM-infinite (Han et al., 2024) retain the initial to-
kens of the sequence in addition to sliding win-
dows, effectively maintaining LLMs’ performance
when processing long sequences. While these ap-
proaches are simple to implement, they cannot
retain information from long contexts. Another
approach focuses on KV Cache eviction during in-
ference. Methods like HoO (Zhang et al., 2024b),
TOVA (Oren et al., 2024) and SnapKV (Li et al.,
2024) evaluate token criticality based on histori-
cal attention scores, selecting tokens within a lim-
ited budget. However, these methods permanently
discard parts of the KV Cache, causing informa-
tion loss from long contexts. To address this, In-
fLLM (Xiao et al., 2024a) introduces Block Mem-
ory Units for KV Cache management, retrieving
information from long contexts and offloading less-
used blocks to CPU. Similarly, QUEST (Tang et al.,
2024) proposes query-aware sparsity at page gran-
ularity, while MInference (Jiang et al., 2024) opti-
mizes long-context inference using three sparse pat-
terns. Apart from considering all attention heads,
some other works (Ribar et al., 2024; Lee et al.,
2024) attempt to focus on only a subset of atten-
tion heads. While existing methods have shown
progress, opportunities for further improvement
remain in achieving optimal accuracy and compu-
tational efficiency for real-world deployment.

1.0 % 0857 . attn. score ol . 0 “mmmm =
. __\.\'-\ 08 5: 0.80 Recall@1000 | % 4- Les06
o £0.75 . =8
= - 0.6 <" E 12- 26+05
3 : % 070 | g -2e+04
© 0.4 g 5
|
b g e & 24 -3e+03
b 0.2 g = 24-
. 5
O 0.604 g5 TR =
) y ; ' .) J © ¥ ® N © o ¥ ©
-0.0 12864 32 16 8 4 1

’ Key

(a) Attention is sparse in token-level.

(b) Block-level selection is sub-optimal.

2 3 8 3
Attention Head

Selection Granularity

(c) Attention logits is head-distinctive.

Figure 2: Motivations for token-level selection. (a) Visualization of attention scores sparsity. (b) Attention scores
and critical token recalled by 1K token budget. (c) The L; norm of attention logits in each attention head.

3 Preliminaries

As discussed in the Sec. 1, the high attention spar-
sity in LLMs suggests sparse attention as a promis-
ing solution for long-context inference challenges,
which can keep the number of tokens participating
in attention computations at a constant scale. Given
that predefined sparse patterns are detrimental to
performance, we aim to dynamically select crucial
tokens at each step during the inference process.
Accordingly, based on the overview of LLM infer-
ence presented in Appendix D, we formalize the
Selective Sparse Attention Problem as follows.
Definition 1 (Selective Sparse Attention Problem,
informal). For current input of length C' (C = 1
in the decode stage) and KV Cache of length N,
assuming there are H attention heads with size of
dp, let O be the output of the SDPA:

T H
Qh : [KZQ che ’ Kftxrrenl] h h
O = |:0' (L\L/a - ‘ [Vcachea chrrenl])
h=1

where o denotes softmax, Q" Kl . VI €

RE*n are Query, Key, Value matrices of current
input for head h and K , V" . € RN*d pep-

cache) ¥ cache
resent the KV Cache. Let O be the output of the
Selective Sparse Attention:

T H
A Qh . [Khéle ct? Kg\rrcnl] h h
O = |:0' (. :/E : [Vselect? chrrenl] ’
h=1
2

where K?elect, erlect € RF¥dn gre k selected KV

Cache (k < N). The selection of Kgelect, Vselect IS
performed by selection function S:

S(Q, Keche) =Z, where Z € P({1,--- ,N}),
Kieleort = [(Keache)iliez, Vieleet = [(Veache)iliez,
where 1L is the set of selected indices. The objective
is to find an appropriate selection function S that
minimizes the difference between the outputs of the
SDPA and the selective sparse attention:
min [0 - O z @)
Existing works on long-context inference can
be categorized under the Selective Sparse Atten-
tion Problem, with variations in the design of the

3

selection function §. Big-Bird and StreamL.LM
have developed input-independent selection func-
tions S(), while HoO, TOVA and SnapKV pro-
pose Query-independent functions S(Kc,che) for
improved performance. Current state-of-the-art
methods InfLLM, QUEST and Mlnference uti-
lize Query-aware selection functions S(Q, Kcache)-
However, these approaches typically select at a
block-level, which limits their effectiveness.

4 Motivations and Observations

Attention is Sparse, Non-contiguous and Head-
Distinctive. Previous works on long-context in-
ference have demonstrated the sparsity of atten-
tion scores in LLMs, particularly when process-
ing long texts. Recent approaches (e.g., InfLLM,
QUEST and MInference) partition the KV Cache
into non-overlapping blocks, estimating block criti-
cality for sparse attention calculations. These meth-
ods assume that critical tokens tend to be contigu-
ous. However, our further observations reveal that
this assumption does not always hold true in prac-
tice. As illustrated in Fig. 2a, attention scores are
sparsely distributed at the token-level. This non-
contiguity leads to significant omissions in block-
level token selection. Fig. 2b demonstrates that
finer selection granularity improves recall of crit-
ical tokens, motivating us to perform token-level
selection. For token-level selection, an intuitive
approach would be to directly select the top-k to-
kens with largest attention logits. However, Fig.
2c reveals considerable disparity in the L; norm
of attention logits across attention heads. As a re-
sult, the selection result tends to be dominated by a
few heads with disproportionately large attention
logits, driving us to design a more robust selection
function that maintains the independence of heads.

Consecutive Queries are Similar. As sparsity of
attention is dynamic (Jiang et al., 2024), token se-
lection should be performed for every Query, which

)

Cosine Similarity
e o ©
© © ©
N (o) ~
[$)] (=) o

0.900+

5-th layer
10-th layer
15-th layer

o o
~N

1Zin T
[Tl

0.6+

e
o

Overlap Rate (
o
e

<
w

NOA Qasper MFQA

Dataset

(a) Consecutive queries show consistent similarity patterns across datasets.

T T T T T T
HQA 2WikiMQA Musique GovReport QMSum MultiNews

0.80 085 090 095
Query Similarity (cos(Qj, Qi+1))

(b) Selection overlaps with similar queries.

Figure 3: Observations on similarity of consecutive queries. (a) Cosine similarity distribution between consecutive

queries. (b) The token selection overlap rate (%

inevitably increases the computational overhead of
selective sparse attention. Fortunately, we observe
that consecutive Queries exhibit high similarity, as
shown in Fig. 3a. Intuitively, when two consecutive
Queries are highly similar, their dot products with
the Keys will also be similar, leading to substantial
overlap in the token selection results. Due to space
constraints, we provide an informal lemma about
this below. The formal version and corresponding
proof can be found in the Appendix C.

Lemma 1 (Informal). Consider Queries Q1, Qo €
R4 that are consecutive and a Key set {K; }1¥ ;.
Let T, and I be the sets of indices of the top-
k Keys selected by dot product for Q1, and Qa
respectively. If cos(Q1,Q2) > € where € is a
threshold, then 77 = Is.

Fig. 3b illustrates this lemma experimentally. It
shows that the overlap rate of token selection tends
to increase with Query similarity. This key in-
sight motivates us to reuse selection results for sim-
ilar queries, improving computational efficiency.
Moreover, the similarity distribution of consecutive
Queries remains consistent across different tasks,
as demonstrated in Fig. 3a, allowing us to apply a
global similarity threshold across all scenarios.

S Designs of TokenSelect

In this section, we will introduce the design de-
tails of TokenSelect, primarily encompassing the
Selection Function, the Selection Cache, and effi-
cient implementation of TokenSelect. The overall
workflow of TokenSelect is illustrated in Fig. 4.

5.1 Selection Function

The simplest selection function is to determine the
criticality of the tokens via the dot product of Q
and K ,cne, then select the top-% as Kejecr, Vselect-
The selected indices Z are calculated as:

T = TopK (Q- Kl) - ®)

+‘1 |) with respect to consecutive Query similarity.

However, as discussed in Sec. 4, this approach
is prone to inaccuracies due to disparities in norm
of attention logits between heads. To maintain in-
dependence between heads, a better approach is to
have each head select the top-k most critical tokens,
and then determine the final selection through vot-
ing among the heads, where I is indicator function:

H
. T
Thead-vote = TOPK <Z I (Z € TOPK (Qh . K(}:lache))>

h=1

(6

Unfortunately, despite better performance, this
method relies on scatter_add and multiple topk
operations, resulting in low efficiency on GPUs.
Additionally, the 0/1 voting ignores the relative
importance of tokens for each head. Therefore, we
propose a head soft vote approach that offers better
performance and efficiency. Specifically, we first
calculate the per-head criticality, then normalize
through softmax, and sum the results for all heads:

H
Ihead—soft—vme - TOPK (Z (2 (Qh . K?acheT)> . (7)

h=1
5.2 Optimizing Selection Frequency

Although the aforementioned selection function
can reduce the complexity of attention from O(N?)
to O(k?), k < N, while maintaining performance,
the execution time of the selection function itself
still affects the latency of inference. To further ac-
celerate long-context inference, based on our obser-
vations of the similarity of consecutive Queries, we
design optimization strategies for both the prefill
stage and the decode stage to reduce the selection
frequency while ensuring its effectiveness.

In the prefill stage, Qprefin € R7inxd jg inputed.
In long-context scenarios, the number of tokens in
the user’s input sequence n;, may reach up to 1M,
making it impractical to perform selection for each
Query token. Considering the similarity of consec-
utive Queries, we use chunk-wise token selection,

Token KV Pool _
Token-level Per-Head Criticality Estimation Current Query Q L
Value Cache V,cpe h
headl head2 head3 head4 e Key Cache Keache ~N
e Key CachreﬁKca:he—Mﬁ‘r@ iiiiiiiiiii head1 head2 head3 head4 —-l Paged Dot Product Kernel |
headl head2 head3 head4 i tokenl (000} 000 3 1
tokent [[000J(000)[000] ____token2 [[000J(000J(000)i000) Per-Head Criticality g
token2 [[©00Ji(000]i(000]) | token3 |[00O 0009)|! hl h2 h3 h4 5
token3 |[000}i(060}(000) R S S D D | token1 z
. ! token1M |[000}(000Ji(©00) 3 token3 N a
tokenvt [BO0I(600](60 {okenain1 [G00)(000)BEA00D) | §
token1M+1 |(©00}i(000)i(000) token1lM+2 [(000}(000Ji(000 token1lM =
token1M+2 |[©ooJ(coo)i(coo)(coo)| =i || 3 [.--...__ B B P P token1M+1 %
token2M [(000Ji(000)i(000Ji(000 =
token2M |[©00Ji(000i(000) “token2M+1 000000 token2M
token2M+1 L = 1)
\ L
e
Current Query Q |(000Ji(000J(000Ji(0009) Head Soft Vote
h1 h2 h3
Current Key K tokenl 1 .
token3]
Current Value V |[000Ji(000}(000}i(000) Co

token1M
token1lM+1

[kv cache for Current Request

token2M
[KV Cache for Other Requests

Selected Indices 7

Attention Output o)

Figure 4: Execution flow of TokenSelect: 1) calculate per-head criticality via Paged Dot Product Kernel; 2) perform
head soft vote to obtain selected indices; 3) execute selective sparse attention via Paged Attention Kernel.

(1) SDPA
(FlashInfer)

(2) InfLLM

(Origin)
(3) InfLLM
(FlashAttn)

(4) Ours
(w/o Kernel)

(5) Ours
(w/ Kernel)

0.0

Attention
Index & Concat
== Update Block
Dot Product
mmm Others (softmax, topk, ...)
Paged Dot Product Kernel

05 10 15 20 25 30 3570

. 7.5
Elapsed Time (ms)

8.0 85 9.0

Figure 5: Time breakdown for single chunk prefill step
under different attention implementations (chunk size:
512, KV Cache length: 128K, attended tokens: 4K).

inputting 2 >°¢_, (Q¢); into the selection function,
where Qo € R is the Query chunk and c is
the chunk size. This method helps maintain the
compute-intensive nature of the prefill stage, pre-
venting it from becoming memory bound.

In the decode stage, due to the auto-regressive
characteristic of LLMs, we need to frequently per-
form selection for Qgecode, and this process cannot
be executed chunk-wise like in the prefill stage. To
reduce the frequency of token selection in the de-
code stage, we propose the Selection Cache. Con-
secutive similar Queries will hit the cache, thereby
directly loading the cached selection results for the
previous Query. The Selection Cache allows us to
reduce decode latency while maintaining the per-
formance. The formal formulation of the Selection
Cache is detailed in Algorithm 1.

5.3 Efficient Implementation

To ready TokenSelect for real-world use, efficient
implementation is crucial. We first analyze the
time breakdown of representative block-level selec-

tive sparse attention method, InfLLM (Xiao et al.,
2024a). From (1)(2)(3) in Fig. 5, we can observe
that, despite lowering theoretical complexity, ac-
tual runtime depends heavily on implementation.
The incompatibility with efficient attention imple-
mentations such as Flash Attention has resulted
in methods requiring historical attention scores
(e.g., HoO, TOVA, SnapKV, InfLLM) impracti-
cal in real-world serving. Analysis of InfLLM’s
Flash Attention—compatible version shows that, al-
though block-level criticality estimation aims to
cut selection overhead, the dot product isn’t the
main bottleneck. Instead, indexing and coalesc-
ing selected KV Cache tokens in GPU memory
(HBM)—during block updates and KV Cache con-
catenation—incurs heavy 1/0O, aggravating LLM in-
ference’s memory-bound limits. Based on this, we
propose that Paged Attention is a more suitable im-
plementation for selective sparse attention. Using
paged KV Cache management (with page size=1
for TokenSelect), we can reduce the I/O volume for
selection results from the scale of all selected KV
Caches O(2kd) to the scale of their indices O(k).
However, (4) in Fig. 5 reveals another bottleneck
under paged KV Cache management. Since logi-
cally contiguous KV Cache is not entirely contigu-
ous in HBM, it also needs to be made contiguous
before performing selection operations. To address
this issue, we design a Paged Dot Product Ker-
nel using Triton, which significantly improves the
overall efficiency of TokenSelect. The formal de-

Methods En.Sum En.QA En.MC En.Dia Code.D Math.F R.PK R.Num R.KV Avg.
Qwen2-7B 23.80 14.92 54.59 8.50 28.17 19.71 28.81 28.64 19.00 25.13
NTK 18.73 15.34 41.28 7.50 24.87 27.71 99.15 97.46 59.80 43.54
SelfExtend 3.76 4.44 20.09 5.00 8.12 2.29 0.00 0.00 0.00 4.86
StreamingLLM 19.60 13.61 48.03 3.50 27.92 19.43 5.08 5.08 2.40 16.07
InfLLM 19.65 15.71 46.29 7.50 2741 24.00 70.34 72.20 5.40 32.06
TokenSelect 22.62 18.86 54.31 7.50 30.20 21.71 100.00 100.00 86.60 49.08
Llama-3-8B 24.70 15.50 44.10 7.50 27.92 21.70 8.50 7.80 6.20 18.21
NTK 6.40 0.40 0.00 0.00 0.50 2.60 0.00 0.00 0.00 1.10
SelfExtend 14.70 8.60 19.70 0.00 0.00 22.60 100.00 100.00 0.20 29.53
StreamingLLM 20.40 14.30 40.60 5.00 28.43 21.40 8.50 8.30 0.40 16.37
InfLLM 24.30 19.50 43.70 10.50 27.41 23.70 100.00 99.00 5.00 39.23
TokenSelect 26.99 21.32 45.85 8.00 27.41 28.29 100.00 97.29 48.40 43.90
Yi-1.5-6B 18.78 10.48 39.74 5.00 29.95 16.00 5.08 5.08 0.00 14.45
NTK 4.66 0.58 0.87 0.00 0.00 1.43 0.00 0.00 0.00 0.83
SelfExtend 5.62 1.07 1.31 0.00 0.00 1.14 0.00 0.00 0.00 1.01
StreamingLLM 15.35 9.26 35.81 5.00 27.41 14.29 5.08 4.92 0.00 13.01
InfLLM 16.98 8.93 34.06 3.00 27.41 16.86 100.00 96.61 0.00 33.76
TokenSelect 21.13 12.32 40.61 5.50 30.71 20.86 100.00 99.83 0.00 36.77

Table 1: Comparison of different methods with different origin models on InfiniteBench.

scription of this kernel is detailed in Algorithm 2.

6 Experiments

In this section, we introduce the experimental setup
and evaluate the performance and efficiency of our
TokenSelect on long-context inference benchmarks.

6.1 Experimental Settings

Datasets. To evaluate TokenSelect’s performance
on long-context inference, we use three representa-
tive datasets: InfiniteBench (Zhang et al., 2024a),
RULER (Hsieh et al., 2024), and LongBench (Bai
et al., 2024). Detailed descriptions and the evalua-
tion metrics used are provided in Appendix H.

Baselines. To conduct a comprehensive eval-
uation of TokenSelect’s performance, we carry
out benchmarks on three mainstream open-source
LLMs-Qwen2-7B-Instruct (Yang et al., 2024a),
Llama-3-8B-Instruct (Dubey et al., 2024), and
Yi-1.5-6B-Chat (Al et al., 2024)-comparing
against the following state-of-the-art long-context
inference methods: NTK-scaled RoPE, Self-
Extend, StreamingLLM, InfLLM, SnapKV, In-
finiGen, QUEST, RetrievalAttention and Mlnfer-
ence. Detailed descriptions of these methods
are provided in Appendix G. It is worth not-
ing that the methods indicated in ifalics lack
length-extrapolation capability; thus, we evalu-
ate them using an alternative approach, applying
them to Llama-3-8B-Instruct-262k (long-text
post-trained L1ama-3-8B-Instruct).

Implementation details. In all experiments in
this paper, we employ greedy decoding to ensure
the reliability of the results. For our TokenSelect,
we implement it on SGLang (Zheng et al., 2024),
which is a fast serving framework based on Flasher-
infer (flashinfer ai). We implement our method us-
ing PyTorch (Paszke et al., 2019) and Triton (Tillet

et al., 2019). We follow the baseline approach, in-
cluding 128 initial tokens and njoc, most recent
tokens in the attention computation in addition to
the k selected tokens. For NTK and SelfExtend,
we extend the model’s context length to 128K. For
StreamLLM, we set njgea) = 4K . For InfLLM, we
set k = 4K, njocar = 4K. For our TokenSelect, we
set k = 2K, njocal = 512 to demonstrate our token-
level KV Cache selection allows us to achieve bet-
ter performance with a smaller token budget. Due
to the need to demonstrate the method under dif-
ferent njoca1 and k, we denote the specific token
budgets in the form of k + nyecq if they differ from
the aforementioned settings. For InfiniteBench and
LongBench, we set the threshold 6 of the Selection
Cache to 0.9. We use NVIDIA A100 to conduct
all experiments. When inferencing sequences over
1M tokens, we additionally employee tensor paral-
lelism, which is transparent to our TokenSelect.

6.2 Performance Comparisons

InfiniteBench. As shown in Table 1, our TokenS-
elect achieves significantly superior overall perfor-
mance on InfiniteBench compared to all baseline
methods, even though TokenSelect uses the small-
est token budget (<3K). The fact that it significantly
outperforms the original models demonstrates 7o-
kenSelect’s strong length extrapolation capability.
We analyze that this is due to our adoption of a
fine-grained KV Cache selection strategy, while
considering the equal contribution of each head to
selection, which ensures that we can select most
critical tokens. Observing the performance of other
methods, we find that RoPE interpolation meth-
ods (NTK, SelfExtend) generally perform poorly
unless used on specially trained models such as
Qwen2-7B-Instruct. The sparse attention method
StreaminglLLLM, based on fixed sparse patterns, can

Methods 4K 8K 16K 32K 64K 128K Avg. Methods En.QA En.MC Code.D R.PK R.Num R.KV
Owen2-7B 90.74 84.03 80.87 79.44 7437 64.13 78.93 Llama-3-8B-Instruct-262k

StreamingLLM ~ 94.41 54.59 33.54 22.40 15.38 10.88 38.53 SDPA (128K) 9.10 68.00 19.00 100.00 100.00 17.50
InfLLM (2K+512) 52.85 36.09 29.36 23.52 18.81 18.29 29.82 SDPA (262K) 1240 6730 22.10 100.00 100.00 14.40
InfLLM (4K+4K) 55.22 52.10 40.53 29.77 21.56 18.64 36.30 StreamingLLM (2K+512) 6.00 6600 1850 5.00 500 100
Ours 2K+512) 94.11 81.81 68.68 60.62 51.81 42.75 66.63 ISI?&P&}[’ (%:551122)) 171500 2;88 ;ggg }88-88 }gggg 828
Ours (4K+4K) 94.42 90.22 82.06 70.40 59.66 54.28 75.17 IfiniGen (2K+512) 730 3750 1750 10000 99.50 0.00
Llama-3-8B 93.79 90.23 0.09 0.00 0.00 0.00 30.69 QUEST (2K+512) 820 67.00 18.00 100.00 100.00 0.00
StreamingLLM ~ 93.68 54.48 33.77 20.35 14.88 11.47 38.11 RetrievalAttn. (2K+512) 7.50 67.00 19.00 100.00 100.00 14.00
InfLLM (2K+512) 79.79 52.43 40.12 33.60 25.68 23.39 42.50 Minference w/ static 8.60 4320 2060 9240 9630 0.20
InfLLM (4K+4K) 93.79 86.11 64.33 45.39 33.13 27.81 58.43 Minference 1290 6590 22.30 100.00 100.00 12.80
Ours 2K+512) 93.73 82.92 71.92 65.38 59.35 33.39 67.78 Ours (2k+512) 970 68.00 19.00 100.00 100.00 20.60
Ours (4K+4K) 93.88 90.29 70.13 57.72 48.36 39.38 66.63 Llama-3-8B-Instruct

Yi-1.5-6B 73.12 9.09 037 0.01 0.00 0.01 13.77 Ours (2k+512) 21.32 4585 27.41 100.00 97.29 48.40
StreamingLLM ~ 72.10 33.03 21.69 15.39 12.58 12.61 27.90

InfLLM (2K+512) 59.66 36.77 27.41 24.49 21.49 21.17 31.83
InfLLM (4K+4K) 74.81 52.57 27.65 22.83 20.19 19.48 36.26
Ours 2K+512) 75.93 59.55 49.69 42.36 34.68 31.36 48.93

Table 2: Performance comparison on RULER.

guarantee some of the model’s capabilities, but due
to discarding a large amount of long-context infor-
mation, it performs poorly on retrieval-related tasks
(R.PK, R.Num, R.KV). The block-level selection
method InfLLLM can retain more long-context infor-
mation compared to StreamingL.LM. However, due
to its sub-optimal block-level selection, it results
in lower performance on most tasks compared to
TokenSelect, even though we set a larger token bud-
get for InfLLM. It is worth noting that Yi-1.5-6B
does not perform normally on the R.KV task, as it
is unable to correctly recite strings like the UUID.

RULER. To further demonstrate the capability
of TokenSelect, we conduct evaluation on the more
challenging long-context benchmark RULER. Con-
sidering the increased difficulty of RULER and its
substantial computational requirements, we include
only comparable baseline methods. As shown in
Table 2, our TokenSelect maintains significantly
superior overall performance compared to other
long-context inference methods. For all models, 7o-
kenSelect achieves length extrapolation while pre-
serving the model’s original capabilities, benefiting
from our efficient utilization of the model’s limited
context length. Notably, due to the constraints of
model’s context length, TokenSelect experiences
performance degradation with larger token budgets
(4K+4K) on Llama and Yi. However, its perfor-
mance with smaller token budgets still significantly
surpasses other baseline methods.

Comparing to methods based-on post-trained
models. In Table 3, we present a performance
comparison of baseline methods that do not sup-
port length extrapolation and must be applied to
long-text post-trained models. Our results show
that, even compared with models undergoing costly
long-text post-training and the methods applied to

Table 3: Performance comparison with methods based-
on post-trained models. Baseline performance is refer-
enced from Jiang et al. (2024) and Liu et al. (2024a).

S EnQA EnMC CodeD RPK RNum RKV
Tiopk 1515 4585 2843 100.00 9847 16.60
Thead-vote 1701 4585 28.68 100.00 100.00 22.40
Theadsofivoe 1886 5431 3020 100.00 100.00 86.60

Table 4: Ablation study of the Selection Function S on
InfiniteBench using Qwen2-7B-Instruct.

them, the training-free TokenSelect exhibits supe-
rior performance on most tasks. These findings fur-
ther demonstrate the effectiveness of TokenSelect
in long-context inference and length extrapolation.

6.3 Ablation Studies

Selection functions S. To compare the perfor-
mance of different selection functions S under low
token budgets (i.e., token efficiency), we maintain
the 2K+512 configuration. From Table 4, we can
observe that our proposed head soft vote mecha-
nism performs significantly better across all tasks.
This indicates that using the head soft vote mecha-
nism to balance each head’s contribution to token
selection results can help us avoid the domination
of selection by few heads with large attention logits.

Similarity threshold of the Selection Cache 6.
Fig. 6 shows that the Selection Cache hit rate in-
creases significantly as the similarity threshold 6 de-
creases, converging around € = 0.5. This suggests
potential for further acceleration of TokenSelect’s
decode stage by reducing 6. Performance sensitiv-
ity to 6§ varies across tasks. While most tasks ex-
hibit slight performance degradation with decreas-
ing #, and R.PK in InfiniteBench shows no degra-
dation, more challenging retrieval tasks like R.KV
demonstrate significant performance deterioration.
This indicates higher dynamicity requirements for
token selection in these tasks. Owing to the limited
generation lengths in current long-context infer-
ence benchmarks, we cannot yet precisely quantify
the end-to-end speedup provided by the Selection

34 18.8
—e— Rouge-L 4// 18.5 —e— QAF1 f\'

333 Cache Rate /|~ Cache Rate |/

31
" 05 06 07 08 09
Similarity Threshold (6)

Rouge-1
QAF1
s

5
05 06 07 08 09
Similarity Threshold (6)

(a) LongBench-GovReport. (b) InfiniteBench-En.QA.

—e— Accuracy S 75
99 Cache Rate

—e— Accuracy
Cache Rate |
/

50 /
/

/

/

/

E 25
96 /

0{+——

Accuracy (%)
Accuracy (%

05 06 0.7 08 09
Similarity Threshold (6)

(c) InfiniteBench-R.PK.

05 0.6 0.7 08 09
Similarity Threshold (6)

(d) InfiniteBench-R.KV.

Figure 6: Performance and Cache Rate with different threshold 6 of the Selection Cache on Qwen2-7B-Instruct.

Attention

B Selection

1024 (] 10244 N 102410
6.09x 19.93x 23.84x
2048 - 2048 _ 20481 I
4096 L 4096 | 4096
SDPA SDPA- SDPA

15 20 2575 80 85 0 2
Elapsed Time (ms)

(a) KV Cache length: 128K.

0.0 05 10

i 48 50
Elapsed Time (ms)

(b) KV Cache length: 512K.

52 0 5 60 70 75 80 85

65
Elapsed Time (ms)

(c) KV Cache length: 1M.

Figure 7: Computation time v.s. KV Cache lengths for single chunk prefill step using Qwen2-7B-Instruct. The
vertical axis represents the number of attended tokens. SDPA denotes full attention by Flashinfer (chunk size: 512).

k En.Sum En.QA EnMc MathF RNum R.KV
128 21.23 10.46 41.48 18.00 100.00 13.40
256 22.01 11.66 41.92 19.71 100.00 20.00
512 21.60 13.31 40.17 21.71 100.00 45.60
1K 21.35 15.13 44.10 21.71 100.00 73.00
2K 22.62 18.86 54.31 21.71 100.00 86.60
4K 24.09 21.11 51.53 21.71 100.00 88.00
8K 25.32 22.93 58.52 23.71 100.00 85.40
16K 26.54 23.04 62.88 28.16 100.00 72.00

Table 5: Performance vs. Number of selected tokens &
on InfiniteBench using Qwen2-7B-Instruct.

Cache. Nonetheless, for a 7B-parameter model op-
erating on 128K-token sequences, each cache hit
reduces per-step latency by approximately 0.5 ms.
For more detailed performance comparisons under
different 60, see Table 9 of Appendix J.

Number of selected tokens k. As shown in Table
5, we fiX njocq to a small value (512) to compare
the performance when selecting different numbers
of tokens. First, we observe that even selecting a
very small number of tokens (e.g., 128, 256), our
TokenSelect still demonstrates very comparable per-
formance. Then, as k increases, the effectiveness of
TokenSelect further improves, indicating that more
moderately critical tokens also contribute to the
retention of long-context information. Finally, we
find that when £ is set to larger values (e.g., 16K),
our TokenSelect shows significant improvements
in most tasks, further advancing the performance
landscape of long-context inference methods.

6.4 Efficiency Comparisons

Efficiency of selective sparse attention. Fig. 7
demonstrates the significant acceleration of atten-
tion computation achieved by TokenSelect during
long-context inference. With a KV Cache length of
1M, TokenSelect can provide up to 23.84 x speedup
compared to FlashInfer, which is the inference ker-

80 === SDPA InfLLM Ours

. 2.28x 4.70x

2

. 601

o

=

2

S 40+

o

< 204

0- T T T T T T

En.Sum En.QA En.MC R.PK R.Num R.KV
Datase

t
Figure 8: End to end latency per sample with different
methods on InfiniteBench using Qwen2-7B-Instruct.

nel library we based on. This substantial improve-
ment is attributed to our efficient kernel design.

End-to-end efficiency. Fig. 8§ compares the end-
to-end latency of TokenSelect, InfLLM, and SDPA
across various tasks. TokenSelect significantly ac-
celerates long-context inference in real-world sce-
narios, achieving a maximum speedup of 4.70x
over SDPA and 2.28x over the state-of-the-art
long-context inference method while also deliv-
ering superior overall performance.

7 Conclusion

In this paper, we introduces TokenSelect, a training-
free approach for efficient long-context inference
and length extrapolation. TokenSelect addresses the
two major challenges faced by LLMs in process-
ing long texts: the context length limitation from
pre-training and the computational complexity of
attention. This is achieved through a novel token-
level selective sparse attention mechanism. Exper-
imental results demonstrate that TokenSelect can
achieve up to 23.84 x speedup in attention compu-
tation and up to 2.28 x acceleration in end-to-end
inference latency, while exhibiting superior perfor-
mance across multiple long-context benchmarks.

8 Limitations

Our approach has inherent limitations that present
opportunities for future work. A primary limi-
tation of our method is that its training-free de-
sign—a significant advantage—acts as a double-
edged sword, as its absolute performance is inher-
ently tied to the quality of the underlying LLMs.
Although our experiments demonstrate robustness
of TokenSelect across various LLMs, some inher-
ent shortcomings—such as the misrecognition of
UUID strings by Yi-1.5-6B-Chat—indicate that
certain issues may still require training to resolve.
Moreover, while our method currently achieves
state-of-the-art performance in long-context infer-
ence, recent long-text post-training techniques in
the LLM community have shown impressive per-
formance; notably, our TokenSelect is orthogonal
to these approaches and can be employed dur-
ing inference to trade a slight performance drop
for significant efficiency gains. Finally, although
our method achieves state-of-the-art efficiency im-
provements in long-context inference, the task re-
mains inherently resource-intensive. For instance,
even with a 8B-parameter model, complex bench-
marks (e.g., RULER) can require approximately
8x A100 GPUs for nearly one day of runtime, and
the computational cost is expected to increase sub-
stantially for larger models. We hope that our work,
together with the community’s advances in model
design, algorithm development, and infrastructure
optimization, will help pave the way for further
mitigating these computational challenges.

References

01. Al :, Alex Young, Bei Chen, Chao Li, Chen-
gen Huang, Ge Zhang, Guanwei Zhang, Heng Li,
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong
Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin
Yang, Shiming Yang, Tao Yu, and 13 others. 2024.
Yi: Open foundation models by Ol.ai. Preprint,
arXiv:2403.04652.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. LongBench: A bilingual, mul-
titask benchmark for long context understanding.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3119-3137, Bangkok, Thai-
land. Association for Computational Linguistics.

bloc97. 2023. Ntk-aware scaled rope allows llama
models to have extended (8k+) context size

without any fine-tuning and minimal perplexity
degradation. Website. https://www.reddit.com/
r/LocallLLaMA/comments/141z7j5/ntkaware_
scaled_rope_allows_llama_models_to_have/.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.
2022. Recurrent memory transformer. Advances in
Neural Information Processing Systems, 35:11079—
11091.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
Preprint, arXiv:2306.15595.

Zihang Dai*, Zhilin Yang*, Yiming Yang, William W.
Cohen, Jaime Carbonell, Quoc V. Le, and Ruslan
Salakhutdinov. 2019. Transformer-XL: Language
modeling with longer-term dependency.

Tri Dao. 2024. FlashAttention-2: Faster atten-
tion with better parallelism and work partition-
ing. In International Conference on Learning
Representations (ICLR).

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, and 1 others. 2024. The llama 3
herd of models. Preprint, arXiv:2407.21783.

emozilla. 2023. Dynamically scaled rope fur-
ther increases performance of long con-
text llama with zero fine-tuning. Website.
https://www.reddit.com/r/LocallLLaMA/
comments/14mrgpr/dynamically_scaled_rope_
further_increases/.

GitHub - flashinfer-ai/flashinfer:
FlashInfer: Kernel Library for LLM Serv-
ing — github.com. https://github.com/
flashinfer-ai/flashinfer. [Accessed 12-10-
2024].

flashinfer ai.

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang,
Chenhui Zhang, and 1 others. 2024. Chatglm: A
family of large language models from glm-130b to
glm-4 all tools. Preprint, arXiv:2406.12793.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong,
Yu Chen, Heng Ji, and Sinong Wang. 2024. Lm-
infinite: Zero-shot extreme length generalization for
large language models. Preprint, arXiv:2308.16137.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What’s the real
context size of your long-context language models?
arXiv preprint arXiv:2404.06654.

Yunpeng Huang, Jingwei Xu, Junyu Lai, Zixu Jiang,
Taolue Chen, Zenan Li, Yuan Yao, Xiaoxing Ma,
Lijuan Yang, Hao Chen, Shupeng Li, and Penghao
Zhao. 2024. Advancing transformer architecture in
long-context large language models: A comprehen-
sive survey. Preprint, arXiv:2311.12351.

https://arxiv.org/abs/2403.04652
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://openreview.net/forum?id=HJePno0cYm
https://openreview.net/forum?id=HJePno0cYm
https://openreview.net/forum?id=HJePno0cYm
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang,
Minjia Zhang, Shuaiwen Leon Song, Samyam Rajb-
handari, and Yuxiong He. 2023. Deepspeed ulysses:
System optimizations for enabling training of ex-
treme long sequence transformer models. Preprint,
arXiv:2309.145009.

Arthur Jacot, Franck Gabriel, and Clément Hongler.
2018. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural
information processing systems, 31.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2024. Minference 1.0: Acceler-
ating pre-filling for long-context llms via dynamic
sparse attention. Preprint, arXiv:2407.02490.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. Preprint, arXiv:2309.06180.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong
Sim. 2024. Infinigen: Efficient generative inference
of large language models with dynamic kv cache
management. Preprint, arXiv:2406.19707.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
Llm knows what you are looking for before genera-
tion. Preprint, arXiv:2404.14469.

Di Liu, Meng Chen, Baotong Lu, Huiqgiang Jiang,
Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-
gruidong Zhang, Bailu Ding, Kai Zhang, and 1 others.
2024a. Retrievalattention: Accelerating long-context
Ilm inference via vector retrieval. arXiv preprint
arXiv:2409.10516.

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2024b.
Ringattention with blockwise transformers for near-
infinite context. = In The Twelfth International
Conference on Learning Representations.

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid-
dharth Gopal. 2024. Leave no context behind:
Efficient infinite context transformers with infini-
attention. Preprint, arXiv:2404.07143.

OpenAl. Introducing OpenAl ol. https://openai.
com/o1/. [Accessed 06-10-2024].

10

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi,
and Roy Schwartz. 2024. Transformers are multi-
state rnns. Preprint, arXiv:2401.06104.

Arka Pal, Deep Karkhanis, Manley Roberts, Samuel
Dooley, Arvind Sundararajan, and Siddartha Naidu.
2023. Giraffe: Adventures in expanding context
lengths in lms. Preprint, arXiv:2308.10882.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and
Enrico Shippole. 2024. YaRN: Efficient context
window extension of large language models. In
The Twelfth International Conference on Learning

Representations.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning

Representations.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley,
Charlie Blake, Carlo Luschi, and Douglas Orr. 2024.
Sparq attention: Bandwidth-efficient LLM inference.
In Forty-first International Conference on Machine

Learning.

Nikhil Sharma, Q. Vera Liao, and Ziang Xiao. 2024.
Generative echo chamber? effect of llm-powered
search systems on diverse information seeking. In
Proceedings of the 2024 CHI Conference on Human
Factors in Computing Systems, CHI °24, New York,
NY, USA. Association for Computing Machinery.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2020. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
Preprint, arXiv:1909.08053.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao,
Baris Kasikci, and Song Han. 2024. QUEST: Query-
aware sparsity for efficient long-context LLM in-
ference. In Forty-first International Conference on
Machine Learning.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Bur-
nell, and 1 others. 2024. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens
of context. Preprint, arXiv:2403.05530.

https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://openreview.net/forum?id=WsRHpHH4s0
https://openreview.net/forum?id=WsRHpHH4s0
https://openreview.net/forum?id=WsRHpHH4s0
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://openai.com/o1/
https://openai.com/o1/
https://openai.com/o1/
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2308.10882
https://arxiv.org/abs/2308.10882
https://arxiv.org/abs/2308.10882
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=OS5dqxmmtl
https://doi.org/10.1145/3613904.3642459
https://doi.org/10.1145/3613904.3642459
https://doi.org/10.1145/3613904.3642459
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530

Junfeng Tian, Da Zheng, Yang Cheng, Rui Wang, Colin
Zhang, and Debing Zhang. 2024. Untie the knots:
An efficient data augmentation strategy for long-
context pre-training in language models. Preprint,
arXiv:2409.04774.

Philippe Tillet, H. T. Kung, and David Cox. 2019.
Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings
of the 3rd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages,
MAPL 2019, page 10-19, New York, NY, USA. As-
sociation for Computing Machinery.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
and 1 others. 2023. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-
lapati, and Bing Xiang. 2019. Multi-passage
bert: A globally normalized bert model for open-
domain question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5878-5882.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan
Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,
and Maosong Sun. 2024a. Infllm: Training-free long-
context extrapolation for llms with an efficient con-
text memory. Preprint, arXiv:2402.04617.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024b. Efficient stream-
ing language models with attention sinks. In
The Twelfth International Conference on Learning

Representations.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, and
1 others. 2024a. Qwen2 technical report. Preprint,
arXiv:2407.10671.

Shuo Yang, Ying Sheng, Joseph E. Gonzalez, Ion
Stoica, and Lianmin Zheng. 2024b. Post-training
sparse attention with double sparsity. Preprint,
arXiv:2408.07092.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in Neural
Information Processing Systems, volume 33, pages
17283-17297. Curran Associates, Inc.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-
hang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen
Thai, Shuo Wang, Zhiyuan Liu, and Maosong
Sun. 2024a. ooBench: Extending long context
evaluation beyond 100K tokens. In Proceedings
of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 15262-15277, Bangkok, Thailand.
Association for Computational Linguistics.

11

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, and 1
others. 2024b. H2o: Heavy-hitter oracle for effi-
cient generative inference of large language mod-
els. Advances in Neural Information Processing

Systems, 36.

Liang Zhao, Xiaocheng Feng, Xiachong Feng,
Dongliang Xu, Qing Yang, Hongtao Liu, Bing Qin,
and Ting Liu. 2024. Length extrapolation of trans-
formers: A survey from the perspective of positional
encoding. Preprint, arXiv:2312.17044.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark
Barrett, and Ying Sheng. 2024. Sglang: Efficient
execution of structured language model programs.
Preprint, arXiv:2312.07104.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Ji-
aming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao
Dai, Xiao-Ping Zhang, Yuhan Dong, and Yu Wang.
2024. A survey on efficient inference for large lan-
guage models. Preprint, arXiv:2404.14294.

https://arxiv.org/abs/2409.04774
https://arxiv.org/abs/2409.04774
https://arxiv.org/abs/2409.04774
https://arxiv.org/abs/2409.04774
https://arxiv.org/abs/2409.04774
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2408.07092
https://arxiv.org/abs/2408.07092
https://arxiv.org/abs/2408.07092
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294

A Formal Description of Algorithms

In Sec. 5.2, we propose the Selection Cache, which
shares selection results among similar Queries to
reduce selection frequency without sacrificing per-
formance. Formally, it is defined as follows:

Algorithm 1 Selection Cache Algorithm

Require: Q € R¥*P: current query vectors
k € N: number of tokens to select
Cq € R"*P: cached query vector
Cz €{0,..., N — 1}*: cached indices
6 € [0, 1]: cosine-similarity threshold
S: selection function (Eq. 7)
f € {True, False}: first-query flag (default True)
Ensure: Z € {0,..., N — 1}*: indices of k selected tokens
1: if f or cos(Q, Cg) < 6 then
T §(Q,k)
Crz+ 1
CQ — Q
f < False
else
T+ Czt
end if
return 7

R A

In Sec. 5.3, we propose the Paged Dot Product
Kernel to efficiently perform token-level per-head
criticality estimation under the paged KV-cache
management by significantly reducing I/O between
HBM and SRAM. Formally, it is defined as follows:

Algorithm 2 Paged Dot Product Kernel

Require: Q € R¥*P: current query vectors
K € RV HwXD: ey cache pool
I€{0,..., Niw — 1}": indices of relevant tokens
H': number of attention heads
Hy,: number of KV heads (H mod Hy, = 0)
D: head dimension
T': number of relevant tokens (|I| = T)
B: CUDA block size
Ensure: S € R¥*7: dot product scores
I: N« [T/B]
2: forallh =0,..., H — 1 in parallel do

3: g+« Q[h,:] {10 SRAM)

4. hiy < h mod Hyy

5: forallb =0,..., N — 1in parallel do
6: to+—bx B

7: L+ min(B, T — to)

8: forj=0,...,L —1do

9: tdx < I[to + j] {to SRAM}
10: k « Kl[idz, hyy,:] {to SRAM}
11: s < (g, k) {in SRAM}

12: S[h, to+j] < s {to HBM}
13: end for

14: end for

15: end for

16: return S

12

B Scalability of TokenSelect
B.1 Scaling Beyond 1 Million Context Length

To further explore TokenSelect’s performance in
extreme long-context scenarios, we design an ex-
tended benchmark with different text lengths fol-
lowing InfiniteBench. As illustrated in the Fig.
9, our TokenSelect demonstrates the ability to ac-
curately capture critical information with a small
token budget in contexts up to 2M tokens, under-
scoring its potential in more application scenarios.

100+

80
601 —a- Origin

—e— Ours (2K+512)
401

Accuracy (%)

204

1M
Context Length

128K 512K

Figure 9: Performance comparison on extended R.PK
and using Qwen2-7B-Instruct.

B.2 Scaling to 72 Billion Parameters

To demonstrate the scalability of our approach
to larger models, we conducted additional exper-
iments using Qwen2-72B-Instruct. The results,
presented in Table 6, show that our method out-
performs NTK-Aware Scaled RoPE in terms of
accuracy and achieves lower latency, indicating the
potential of our approach to scale effectively with
larger models.

En.Sum En.QA R.KV
Method - - -
Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s)
NTK (SPDA) 2349 199.52 28.77 145.69 50.00 111.98
TokenSelect 25.07 11424 2991 7198 88.12 63.27

Table 6: Performance and latency comparison on
Qwen2-72B-Instruct with tensor parallelism size: 4.

C Formal Statement and Proof of Lemma

Lemma 1 (Invariant Top-k Key Selection under
Cosine Similarity Threshold, Formal).
Assumptions:

1. Let q1, q2 € R? be two query vectors.

2. Let {k;}¥; C R? be a finite set of key vec-
tors.

3. Let k be a positive integer such that 1 < k <
N.

4. Define the cosine similarity between vectors
a,b € R% as:

ab

cos(a,b) = ————
all2][b]l2”
where || - || denotes the Euclidean norm.

5. Define the top-k selection function based
on dot product similarity as: Z(q) =

argmaxgc{iz2,..,N},|S|=k ZieS q- ki As-
sume that for any query vectors q, the top-k
set Z(q) is uniquely determined.

6. Let e € (0, 1] be a predefined threshold.

Lemma Statement: [f the cosine similarity be-
tween the two query vectors q1 and Q2 satisfies

cos(qi,q2) > €

then the indices of the top-k keys selected by qi
and qa are identical, i.e.,

Z(q1) = Z(q).
Proof: We start with the given condition:

min qi1k; —max k; >
1<Z<kq1 N q1 7,

which we aim to use to demonstrate that:

min qok; —max k; > 0.
l<z<kq2 7> Rk

To facilitate our analysis, we introduce the follow-
ing notations:
N q1 N q2

lanl’ a2l

=1
[l

With these definitions, the original condition be-
comes:

min qi1k; —max k; >
1<Z<k<11 N a1 ,

and our goal transforms to showing:

112121 qq=k; —1§1axq2k > 0.

Next, let # denote the angle between q; and qo,
cosf = q1 - Q2. We can further define:

P1

P1=q2—qicosf, p1=—,
1]l
then sinf = pq - qs, and

Q2 = q1cosf + pysinb.

Then we have:

min qok; = mln cos @ sin 6
1<z<kq2 1<i< (4 + b ki

> k; k;
> 1ngn qik;cosf + Eun p1k;sind,
> qikg cos 0 — ||k||max sin 6,
and
max ok, = max (a1 cos O + p1 sinO)k;
J>k J>
< maxqik;cosf + maxplk sin 6,
J>k >k
< Qikpt1 cos O + || k|| max sin 6.

Therefore,

mln qq=k; —maxqgk > qik,cosf —
1<:i< 7>

— (a1kp+1 cos 0 + ||k||max sin 6)

= (aqikpcos 0 — qiky1 cos0)
— 2|k||max sin @
> 1 cos 0 — 2|| k|| max sin 6. (8)

In order to have Eqn. (8) > 0, we require

7 cosf > 2||k||max sin b,

sin # 7
< ;
cos® 2||k|max
1 —cos?6 (i)2
cos? 2|1k || max
1
= cosf >

_
1+ <2||k||max)

This final inequality establishes a sufficient con-
dition for the original statement to hold, thereby
completing the proof.

|1k || max sin 0

D Overview of LLMs Inference

Nowadays, mainstream LLMs are primarily based
on the Decoder-only Transformer architecture.
Each transformer layer includes a multi-head atten-
tion (MHA) and a feed-forward networks (FFN).
The inference process of LLMs can be divided into
two stages: the prefill stage and the decode stage.
The prefill stage is the preparatory phase of the
inference process. In this stage, the user’s input is
processed layer by layer through a single forward
pass of LLMs, generating KV Cache for each layer.
The generation of KV Cache is completed by the
MHA module. Assuming Xprefin € R7in¥d ig the
input of a transformer layer, where n;, is the num-
ber of tokens in user’s input sequence and d is the
hidden size. The MHA computation in the prefill
stage is as follows (simplified to single head):

[Qpreﬁll, Kpreﬁlh Vpreﬁll} - Xpreﬂll : [Wq7 ka Wv}) (9)

Qpreﬁll : Kpreﬁll T
Vd

where W, W, W, are linear projections,]
represents tensor concatenation operation, and
Eq.(10) is also known as Scaled Dot Product At-
tention (SDPA). After these computation, K
and Vfy are stored as the KV Cache for cur-
rent layer Kcache and Vache, and O ey is used for
subsequent calculations.

The decode stage is the phase where LLMs ac-
tually generate the response. In the decode stage,
LLMs load the KV Cache and generate ng,; out-
put tokens autoregressively through ngy,: forward
passes. Assuming Xgecode € R*4 is the input of a
transformer layer in a forward pass, the computa-
tion of MHA in the decode stage is as follows (The
calculation of Qprefiin and Oprefiny is consistent with
that in the prefill stage):

Opreﬁll = softmax () . Vpreﬁlla (10)

Kdecode - [Kcache7 Xdecode . Wk]) Kcache — Kdecode7

Y
Vdecode - [Vcache7 Xdecode : Wv]) Vcache — Vdecode7

where Kgecode, Vdecode are composed of the KV
Cache and the KV corresponding to the current
input, which are then used to update the KV Cache
of the current layer for use in the next forward pass.

LLMs inference, unlike training, is memory-
bound, necessitating frequent GPU I/O operations
between HBM and SRAM while underutilizing
processing units. This bottleneck is particularly
evident in SDPA computation. Optimizing for I/O
is crucial for enhancing LLMs inference efficiency,
especially in long-context scenarios.

14

E Comparison with Token Eviction-based
Methods (e.g., H,O)

Token eviction—based methods (Zhang et al.,
2024b; Oren et al., 2024), led by HoO (Zhang et al.,
2024b), have pioneered the field of long-context
inference, achieving early state-of-the-art perfor-
mance. Although both our method and HyO em-
ploy token-level criticality estimation, they fall un-
der two entirely different taxonomies. As discussed
in Sec. 2 and Sec. 3, H2O is a query-independent
KV cache selection method, which suffers from
three main drawbacks:

1. Lack of dynamism: Its importance scoring re-
lies on attention scores from previous queries
and keys. Consequently, KV pairs that are
crucial for the current query may have been
discarded earlier—a phenomenon also con-
firmed by QUEST (Tang et al., 2024). Fig. 1
and 2 of QUEST provide an intuitive illustra-
tion of the differences between query-based
methods (e.g., our TokenSelect) and HO. No-
tably, TokenSelect leverages a dynamic selec-
tion strategy, enabling state-of-the-art perfor-
mance with a minimal token budget.

Inability to extend sequence length: Since
H>O depends on the model’s original atten-
tion mechanism, it cannot extend the effective
context length. In contrast, our approach can
easily extend a model with an original maxi-
mum length of 4K-32K tokens to an effective
length exceeding 1M tokens.

Inefficient implementation: HoO evaluates to-
ken importance based on attention scores, mak-
ing it incompatible with efficient kernels such
as FlashAttention (Dao, 2024). This limitation
restricts its scalability. Our method, however,
is designed for broad compatibility and is fully
transparent to large-scale inference accelera-
tion infrastructures, including paged attention,
tensor parallelism, and prefix caching, making
it ready for large-scale online serving.

To further demonstrate the superiority of TokensS-
elect, we present experimental results in Table 7.
These results corroborate the findings of previous
studies (Tang et al., 2024; Xiao et al., 2024a), show-
ing that query-independent methods are inferior to
query-based approaches.

Method

En.Sum En.QA EnMC MathF RPK RNum RKV Avg

H20 2.8 0.7 0.0
InfLLM 24.3 19.5 43.7
TokenSelect 26.9 21.3 45.8

6.0 2.5 24 0.0 2.1
23.7 100.0 99.0 5.0 45.0
28.2 100.0 97.2 4384 525

Table 7: Performance comparison with HoO (Zhang et al., 2024b) on L1ama-3-8B-Instruct, baseline performance

is referenced from Xiao et al. (2024a).

F Additional Related Works

Long-context LLMs. Due to computational
complexity constraints, current LLMs based on
Transformers often utilize limited context lengths
during pre-training (Touvron et al., 2023; Dubey
et al., 2024; Jiang et al., 2023; Yang et al., 2024a;
GLM et al., 2024; Al et al., 2024). To extend
the long-context capabilities of LLMs, current
methods can be broadly categorized into three ap-
proaches (Huang et al., 2024; Zhou et al., 2024;
Zhao et al., 2024): 1) Modifying positional en-
codings: A widely adopted method is positional
interpolation (Chen et al., 2023). Chen et al. first
proposed linear scaling of RoPE (Su et al., 2024)
to map longer positional ranges within the original
training window. Subsequent works (bloc97, 2023;
emozilla, 2023) further improved this method us-
ing Neural Tangent Kernel (NTK) theory (Jacot
et al., 2018), achieving longer context windows
while maintaining model performance. Methods
like YaRN (Peng et al., 2024) and Giraffe (Pal
et al., 2023) optimize interpolation effects by ad-
justing frequency components or introducing tem-
perature parameters. 2) Long-context post-training:
This approach extends the model’s context length
through additional training steps on longer docu-
ments after pre-training (Yang et al., 2024b; Tian
et al., 2024). It has been widely adopted by lead-
ing LL.Ms (Team et al., 2024; Yang et al., 2024a;
GLM et al., 2024) with the support of sequence par-
allelism techniques (Shoeybi et al., 2020; Jacobs
et al., 2023; Liu et al., 2024b). 3) Incorporating
additional memory modules: Notable examples
include Transformer-XL (Dai* et al., 2019), Com-
pressive Transformer (Rae et al., 2020), RMT (Bu-
latov et al., 2022) and Infini-attention (Munkhdalai
et al., 2024). Although these methods have ex-
panded the context length of LLLMs, long-context
inference still faces the challenge of high computa-
tional costs.

G Detailed Descriptions on Baselines

In this paper, we use the following baselines:

15

NTK-Aware Scaled RoPE (bloc97, 2023): A
nonlinear RoPE interpolation method.

SelfExtend: A RoPE interpolation method that
reuses the position ids of neighboring tokens.

StreamingLLM (Xiao et al., 2024b): The
state-of-the-art method for long-context infer-
ence with predefined sparse patterns. Similar
approaches include LM-Infinite (Han et al.,
2024).

InfLLM (Xiao et al., 2024a): The state-of-
the-art method for long-context inference and
length extrapolation using a block-level selec-
tive sparse attention method.

Mlnference (Jiang et al., 2024): The state-of-
the-art method for long-context prefilling accel-
eration, utilizing three sparse patterns including
block-level sparse attention.

SnapKYV (Li et al., 2024): A fine-tuning-free
approach that efficiently compresses KV caches
by selecting clustered important KV positions
for each attention head.

InfiniGen (Lee et al., 2024): A KV cache
management framework that reduces memory
overhead in offloading-based LLM inference
by prefetching only essential KV cache entries
through selective token rehearsal.

QUEST (Tang et al., 2024): A query-aware
KV cache management algorithm by selecting
critical KV cache based on the query-aware
sparsity at page granularity.

RetrievalAttention (Liu et al., 2024a): The
state-of-the-art method leveraging approximate
nearest neighbor search on CPU memory and
an attention-aware vector search algorithm to
address distribution mismatches.

H More Information on Datasets

In this paper, we use the following datasets:

InfiniteBench (Zhang et al., 2024a): The main-
stream long-context benchmark consisting of
multi-tasks. The average length of it exceeds
200K tokens.

RULER (Hsieh et al., 2024): A challenging
long-context benchmark containing 13 differ-
ent tasks, with subsets of varying lengths up to
128K tokens.

LongBench (Bai et al., 2024): Another main-
stream long-context benchmark comprising 6
types of tasks. The 95% percentile for its
lengths is 31K tokens.

For InfiniteBench (Zhang et al., 2024a), we use
longbook_sum_eng (En.Sum), longbook_qga_eng
(En.QA), longbook_choice_eng (En.MC), longdi-
alogue_qga_eng (En.Dia), code_debug (Code.D),
math_find (Math.F), passkey (R.PK), num-
ber_string (R.Num) and kv_retrieval (R.KV) as
evaluation datasets. The corresponding evaluation
metrics are shown in Table 10. RULER (Hsieh
et al., 2024) consists of various evaluation tasks:
Single NIAH (needle in a haystack), Multi-keys
NIAH, Multi-values NIAH, Multi-values NIAH,
Multi-queries NIAH, Variable Tracking, Common
Words Extraction, Frequent Words Extraction and
Question Answering. The evaluation metric is
match rate. For LongBench, we use all English
tasks with evaluation metrics in Table 11.

I Comparison on Prefill Latency

We note that MInference (Jiang et al., 2024) has
gained widespread adoption in real-world long-
context inference applications due to its novel de-
sign of attention sparse patterns and efficient im-
plementation based on vLLM. In the main text,
we demonstrated TokenSelect’s performance advan-
tages. To further prove its efficiency readiness for
real-world applications, we followed Minference’s
approach by comparing the end-to-end prefill la-
tency under paged KV Cache management for dif-
ferent input token lengths on L1ama-3-8B using a
single A100, with results shown in Table 8. The
results indicate that TokenSelect demonstrates sig-
nificant advantages with shorter input token lengths,
while maintaining efficiency comparable to MIn-
ference as input token lengths increase.

16

Length Flasl(lﬁftfﬁ;on& l\/l(l\?ﬁirﬁ; ¢ TokenSelect
1K 0.081 3.017 0.092
10K 0.832 2.762 1.290
50K 7.717 7.540 5.712
100K 21.731 14.081 12.088
128K 32.863 18.827 15.920
200K OOM OOM 26.500
300K OOM OOM 43.406

Table 8: Comparison of end-to-end prefill latency (s).

J Detailed Performance Comparisons
Under Different Cache Threshold ¢

Table 9 presents the performance sensitivity to the
threshold 6 of the Selection Cache across vari-
ous tasks. The results indicate that although 6-
sensitivity varies across different task types, most
tasks exhibit only slight performance degradation
as 6 decreases. This suggests potential for fur-
ther accelerating TokenSelect’s decode stage by
reducing 6 in the vast majority of cases. It is
worth noting, however, that more challenging re-
trieval tasks—such as R.KV—show noticeable per-
formance degradation as 6 decreases, indicating
higher dynamicity requirements for token selection
in these tasks.

K Experimental Results on LongBench

Compared to InfiniteBench and RULER, Long-
Bench has much shorter text lengths. The 95% per-
centile for its lengths is 31K tokens. Considering
that recent LLMs after SFT generally have context
lengths of up to 32K tokens (Yang et al., 2024a),
LongBench is less suitable for evaluating state-of-
the-art long-context inference methods. Neverthe-
less, as shown in Table 12, our TokenSelect still
demonstrates superior overall performance com-
pared to most baseline methods. It’s worth noting
that Yi-1.5-6B did not yield effective results on
the SAMSum task because it failed to correctly
follow instructions.

L Use of AI Assistants

In this paper, Al Assistants were used for literature
retrieval and grammar checking.

0 En.Sum En.QA En.MC En.Dia Code.D Math.F R.PK R.Num R.KV Avg.

0.5 20.99 17.83 54.31 7.50 30.20 21.14 100.00 96.10 0.20 38.69
0.6 21.21 18.08 54.31 7.50 30.20 21.36 100.00 96.78 0.20 38.84
0.7 20.73 18.08 54.31 7.50 30.46 21.36 100.00 98.98 4.40 39.53
0.8 21.47 17.85 54.31 7.50 30.20 21.58 100.00 100.00 24.60 41.94
0.85 22.39 18.15 54.31 7.50 30.20 21.79 100.00 100.00 68.20 46.94
0.9 22.62 18.86 54.31 7.50 30.20 21.71 100.00 100.00 86.60 49.08
0.95 22.46 18.54 54.31 7.50 30.56 21.77 100.00 100.00 86.20 49.05
1.0 22.66 18.68 54.31 7.50 30.51 21.78 100.00 100.00 86.84 49.15

Table 9: Performance using different selection cache similarity thresholds using Qwen2-7B-Instruct.

Datasets En.Sum En.QA En.MC En.Dia Code.D Math.F R.PK R.Num R.KV
Metrics Rouge-L-Sum QA F1 Score Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
Table 10: Evaluation metrics of different datasets on InfiniteBench.
Datasets NQA Qasper MFQA HQA 2WikiMQA Musique GovReport QMSum
Metrics QA F1 Score QAFI Score QA FI1Score QAFI Score QAFIScore QA F1 Score Rouge-L Rouge-L
Datasets MultiNews TREC TQA SAMSum PsgCount PsgRetrieval LCC RepoBench-P
Metrics Rouge-L Accuracy QA F1 Score Rouge-L Accuracy Accuracy Code Sim Score Code Sim Score
Table 11: Evaluation metrics of different datasets on LongBench.
Methods NQA Qasper MFQA HQA 2WikiMQA Musique GovReport QMSum MultiNews
QOwen2-7B 2424 4542 47.79 42.76 44.38 24.16 33.80 23.78 26.17
NTK 26.25 45.94 50.76 53.20 50.31 30.83 32.75 23.21 25.94
SelfExtend 7.15 20.37 24.06 14.91 13.73 4.75 16.92 16.53 18.74
StreamLLM 19.49 42.56 39.63 42.43 44.67 15.22 31.51 20.57 26.00
InfLLM 27.47 41.44 46.99 47.47 49.29 25.62 32.68 23.10 26.77
TokenSelect 24.18 42.29 45.77 48.62 49.08 27.85 33.69 23.03 26.35
Llama-3-8B 19.85 42.36 41.03 47.38 39.20 22.96 29.94 21.45 27.51
NTK 9.90 45.35 49.41 48.86 29.22 24.56 34.31 23.82 27.27
SelfExtend 1.72 8.90 20.80 8.65 6.97 3.27 13.99 15.36 17.66
StreamLLM 20.05 42.46 39.54 43.69 37.89 19.68 29.17 21.33 27.56
InfLLM 22.64 43.70 49.03 49.04 35.61 26.06 30.76 22.70 27.57
TokenSelect 2244 40.74 47.73 50.33 31.38 24.53 32.56 23.50 27.92
Yi-1.5-6B 17.18 32.56 39.06 36.26 39.25 16.32 30.53 20.21 26.20
NTK 0.80 35.06 29.05 7.47 24.38 0.73 13.66 6.25 25.43
SelfExtend 3.29 19.03 26.00 17.11 11.88 7.73 20.38 17.46 21.79
StreamLLM 15.05 33.27 38.31 3491 36.92 16.33 29.38 20.02 26.14
InfLLM 17.65 36.25 45.40 41.25 35.89 16.94 30.22 20.85 26.04
TokenSelect 19.36 33.98 48.14 45.05 40.13 22.98 31.59 21.51 26.48
Methods TREC TQA SAMSum PsgCount PsgRetrieval LCC RepoBench-P Average
QOwen2-7B 78.50 88.77 46.33 5.50 70.00 62.40 61.95 45.37
NTK 79.50 89.51 46.03 5.50 60.00 59.36 59.69 46.17
SelfExtend 16.50 27.54 29.42 4.50 0.00 41.42 41.89 18.65
StreamLLM 75.50 87.19 46.27 3.50 27.50 61.18 61.12 40.27
InfLLM 70.50 87.51 44.53 4.00 46.50 55.08 57.53 42.90
TokenSelect 74.00 89.26 45.94 5.00 42.50 61.48 59.33 43.64
Llama-3-8B 74.00 90.50 42.30 8.50 62.50 60.83 49.14 42.46
NTK 73.00 88.74 42.51 8.87 99.50 33.62 35.04 42.12
SelfExtend 20.50 16.82 25.39 5.75 7.50 26.24 31.22 14.42
StreamLLM 73.50 90.08 41.55 5.00 49.00 60.35 48.95 40.61
InfLLM 73.50 90.91 42.43 7.17 84.00 59.88 46.48 44.46
TokenSelect 67.50 92.22 42.16 4.54 87.00 58.86 51.24 44.04
Yi-1.5-6B 71.50 48.79 0.79 3.00 28.50 57.10 52.53 32.48
NTK 40.00 12.71 1.34 0.50 3.35 54.55 37.24 18.28
SelfExtend 23.75 30.61 2.58 2.75 13.50 43.17 35.45 18.53
StreamLLM 69.00 73.36 0.82 2.50 18.50 56.37 49.05 32.49
InfLLM 71.50 71.49 1.01 4.00 10.50 56.88 46.28 33.25
TokenSelect 62.50 69.70 0.62 3.50 41.50 54.32 54.99 36.02

Table 12: Comparison of different methods with different origin models on LongBench.

17

	Introduction
	Related Works
	Preliminaries
	Motivations and Observations
	Designs of TokenSelect
	Selection Function
	Optimizing Selection Frequency
	Efficient Implementation

	Experiments
	Experimental Settings
	Performance Comparisons
	Ablation Studies
	Efficiency Comparisons

	Conclusion
	Limitations
	Formal Description of Algorithms
	Scalability of TokenSelect
	Scaling Beyond 1 Million Context Length
	Scaling to 72 Billion Parameters

	Formal Statement and Proof of Lemma
	Overview of LLMs Inference
	Comparison with Token Eviction-based Methods (e.g., H2O)
	Additional Related Works
	Detailed Descriptions on Baselines
	More Information on Datasets
	Comparison on Prefill Latency
	Detailed Performance Comparisons Under Different Cache Threshold
	Experimental Results on LongBench
	Use of AI Assistants

