
TokenSelect: Efficient Long-Context Inference and Length Extrapolation
for LLMs via Dynamic Token-Level KV Cache Selection

Anonymous ACL submission

Abstract001

Rapid advances in Large Language Models002
(LLMs) have spurred demand for processing003
extended context sequences in contemporary004
applications. However, this progress faces two005
challenges: performance degradation due to006
sequence lengths out-of-distribution, and ex-007
cessively long inference times caused by the008
quadratic computational complexity of atten-009
tion. These issues limit LLMs in long-context010
scenarios. In this paper, we propose Dynamic011
Token-Level KV Cache Selection (TokenSe-012
lect), a training-free method for efficient and013
accurate long-context inference. TokenSelect014
builds upon the observation of non-contiguous015
attention sparsity, using QK dot products to016
measure per-head KV Cache criticality at token-017
level. By per-head soft voting mechanism, To-018
kenSelect selectively involves a few critical KV019
cache tokens in attention calculation without020
sacrificing accuracy. To further accelerate To-021
kenSelect, we design the Selection Cache based022
on observations of consecutive Query similarity023
and implemented the efficient Paged Dot Prod-024
uct Kernel, significantly reducing the selection025
overhead. A comprehensive evaluation of To-026
kenSelect demonstrates up to 23.84× speedup027
in attention computation and up to 2.28× accel-028
eration in end-to-end latency, while providing029
superior performance compared to state-of-the-030
art long-context inference methods.031

1 Introduction032

With the rapid development of large language mod-033

els (LLMs), the number of parameters is no longer034

the sole factor significantly affecting model perfor-035

mance. The ability to effectively process longer036

context information has become one of the key037

metrics for evaluating LLMs’ capabilities. The038

latest applications such as cross-document under-039

standing (Bai et al., 2024), LLM-powered search040

systems (Sharma et al., 2024), and complex rea-041

soning (OpenAI) have all placed higher demands042

on the long-context abilities of LLMs. There are043

●

●●

●●●

●●●

●●●

●●●●

●●●

●●●●●●

●●●

●●●●●●

●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●

●●

●●●

●●●

●●●

●●●●

●●●

●●●●●

●●●

●●●●

●●●●

●●●●●

●●●●●●

●●●●●

●●●●●

●●●●●●

●

●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

●●●

Predefined Sparse Patterns
（StreamingLLM, LM-Inf, etc.)

Block-level Selection
(InfLLM, QUEST, Minference, etc.)

Token-level Selection
(ours)

Selected Blocks (size=3)
Recall@1000 < 5% Recall@1000 = 100% Recall@1000 < 50%

Figure 1: Distribution of tokens participating in atten-
tion computation under different sparsity patterns (blue
dots. TokenSelect can more accurately select critical
tokens (crimson squares) for attention computation.

two main difficulties in using pre-trained LLMs for 044

long-context inference. On one hand, LLMs are 045

limited by their context length during pre-training 046

(e.g. Llama 3 only has 8192 tokens). Directly in- 047

ferencing on longer sequences can lead to severe 048

performance degradation due to reasons including 049

sequence lengths out-of-distribution (Xiao et al., 050

2024b; Han et al., 2024). On the other hand, even 051

if LLMs possess sufficiently large context lengths, 052

the quadratic computational complexity of atten- 053

tion with respect to sequence length makes the re- 054

sponse time for long-context inference unbearable. 055

Previous works have made numerous attempts 056

to address these difficulties. To extend the context 057

length of LLMs, the current common practice is 058

to perform post-training on long texts (Yang et al., 059

2024a). However, this approach entails significant 060

computational costs, motivating a training-free and 061

effective method that is computationally efficient. 062

To accelerate long-context inference, many stud- 063

ies focus on the sparsity of attention, attempting 064

to reduce the scale of KV Cache involved in com- 065

putation. The key to this type of method lies in 066

designing sparse patterns for attention, which can 067

be mainly divided into two categories: one uses pre- 068

defined sparse patterns (Wang et al., 2019; Zaheer 069

et al., 2020; Xiao et al., 2024b; Han et al., 2024), 070

while the other estimates the potential importance 071

of KV Cache during the inference process (Zhang 072

et al., 2024b; Oren et al., 2024; Li et al., 2024; Lee 073

1

et al., 2024; Tang et al., 2024; Jiang et al., 2024),074

attempting to select relevant KV Cache tokens into075

attention calculations. However, the design of these076

sparse patterns is often heuristically based on his-077

torical criticality or coarse-grained criticality esti-078

mation of tokens, making it difficult to ensure that079

the selected tokens are truly critical, thus resulting080

in sub-optimal performance, as shown in Fig. 1.081

In this paper, we further observe the non-082

contiguous sparsity of attention, revealing the im-083

portance of designing more fine-grained dynamic084

sparse patterns. To this end, we propose TokenS-085

elect, a training-free approach that utilizes token-086

level selective sparse attention for efficient long-087

context inference and length extrapolation. Specifi-088

cally, for each Query, TokenSelect dynamically cal-089

culates token-level per-head criticality for the past090

KV Cache and selects the k most critical tokens091

through our head soft vote mechanism, involving092

them in the attention calculation. This reduces the093

scale of attention calculation to a constant length094

familiar to the model, while maintaining almost all095

of the long-context information, thereby simultane-096

ously addressing the two main difficulties for long-097

context inference. To reduce the overhead of token098

selection, TokenSelect manages the KV Cache in099

token-level pages (Zheng et al., 2024) and design100

efficient kernel for token selection based on paged101

KV Cache management through Triton (Tillet et al.,102

2019). Furthermore, based on our observation of103

high similarity between consecutive queries, we104

have designed the Selection Cache, which allows105

consecutive similar queries to share token selection106

results, thereby reducing the selection frequency107

while ensuring its effectiveness.108

We evaluate the performance and efficiency of109

TokenSelect on three representative long-context110

benchmarks using three open-source LLMs. The111

experimental results demonstrate that our TokenS-112

elect can achieve up to 23.84× speedup in atten-113

tion computation compared to FlashInfer (flashin-114

fer ai), and up to 2.28× acceleration in end-to-end115

inference latency compared to state-of-the-art long-116

context inference method (Xiao et al., 2024a). Si-117

multaneously, it provides superior performance on118

three long-text benchmarks. In summary, we make119

the following contributions:120

• An observation on the non-contiguous sparsity of121

attention that highlights the importance of token-122

level KV Cache selection.123

• TokenSelect, a training-free method that achieves124

accurate and efficient long-context inference and125

length extrapolation, which is compatible with 126

mainstream LLM serving systems. 127

• Comprehensive evaluations of our method, show- 128

ing up to 23.84× speedup in attention computa- 129

tion and up to 2.28× acceleration in end-to-end 130

latency while exhibiting superior performance. 131

2 Related Works 132

In state-of-the-art LLMs serving systems (Kwon 133

et al., 2023; Zheng et al., 2024), technologies such 134

as Flash Attention (Dao, 2024) and Paged Atten- 135

tion (Kwon et al., 2023) have greatly optimized 136

LLMs inference efficiency by improving GPU I/O 137

bottlenecks. However, in long-context inference 138

scenarios, the computational complexity of atten- 139

tion poses new challenges for LLMs inference. Nu- 140

merous studies focus on the sparsity of attention, se- 141

lecting partial KV Cache for attention calculations 142

to improve long-context inference efficiency. Slid- 143

ing window (Wang et al., 2019; Zaheer et al., 2020) 144

is one of the most widely used sparse patterns, re- 145

ducing complexity to linear by executing attention 146

computations within localized windows. Recent 147

works like StreamingLLM (Xiao et al., 2024b) and 148

LM-infinite (Han et al., 2024) retain the initial to- 149

kens of the sequence in addition to sliding win- 150

dows, effectively maintaining LLMs’ performance 151

when processing long sequences. While these ap- 152

proaches are simple to implement, they cannot 153

retain information from long contexts. Another 154

approach focuses on KV Cache eviction during in- 155

ference. Methods like H2O (Zhang et al., 2024b), 156

TOVA (Oren et al., 2024) and SnapKV (Li et al., 157

2024) evaluate token criticality based on histori- 158

cal attention scores, selecting tokens within a lim- 159

ited budget. However, these methods permanently 160

discard parts of the KV Cache, causing informa- 161

tion loss from long contexts. To address this, In- 162

fLLM (Xiao et al., 2024a) introduces Block Mem- 163

ory Units for KV Cache management, retrieving 164

information from long contexts and offloading less- 165

used blocks to CPU. Similarly, QUEST (Tang et al., 166

2024) proposes query-aware sparsity at page gran- 167

ularity, while MInference (Jiang et al., 2024) opti- 168

mizes long-context inference using three sparse pat- 169

terns. Apart from considering all attention heads, 170

some other works (Ribar et al., 2024; Lee et al., 171

2024) attempt to focus on only a subset of atten- 172

tion heads. While existing methods have shown 173

progress, opportunities for further improvement 174

remain in achieving optimal accuracy and compu- 175

tational efficiency for real-world deployment. 176

2

Key

Q
ue

ry

0.0

0.2

0.4

0.6

0.8

1.0

(a) Attention is sparse in token-level.

128 64 32 16 8 4 1
Selection Granularity

0.60

0.65

0.70

0.75

0.80

0.85

C
um

ul
at

iv
e

At
tn

. S
co

re

0.5

0.6

0.7

0.8

0.9

1.0

To
ke

n
R

ec
al

l @
 1

00
0Attn. Score

Recall@1000

(b) Block-level selection is sub-optimal.

0 4 8 12 16 20 24 28

Attention Head

0

4

8

12

16

20

24

28

Tr
an

sf
or

m
er

 L
ay

er

3e+03

2e+04

2e+05

1e+06

(c) Attention logits is head-distinctive.
Figure 2: Motivations for token-level selection. (a) Visualization of attention scores sparsity. (b) Attention scores
and critical token recalled by 1K token budget. (c) The L1 norm of attention logits in each attention head.

3 Preliminaries177

As discussed in the Sec. 1, the high attention spar-178

sity in LLMs suggests sparse attention as a promis-179

ing solution for long-context inference challenges,180

which can keep the number of tokens participating181

in attention computations at a constant scale. Given182

that predefined sparse patterns are detrimental to183

performance, we aim to dynamically select crucial184

tokens at each step during the inference process.185

Accordingly, based on the overview of LLM infer-186

ence presented in Appendix D, we formalize the187

Selective Sparse Attention Problem as follows.188

Definition 1 (Selective Sparse Attention Problem,189

informal). For current input of length C (C = 1190

in the decode stage) and KV Cache of length N ,191

assuming there are H attention heads with size of192

dh, let O be the output of the SDPA:193

O =

[
σ

(
Qh·[Kh

cache, Kh
current]

⊤
√
d

)
· [Vh

cache, V
h
current]

]H
h=1

,

(1)194
where σ denotes softmax, Qh,Kh

current,V
h
current ∈195

RC×dh are Query, Key, Value matrices of current196

input for head h and Kh
cache,V

h
cache ∈ RN×dh rep-197

resent the KV Cache. Let Ô be the output of the198
Selective Sparse Attention:199

Ô =

[
σ

(
Qh·[Kh

select, Kh
current]

⊤
√

d

)
· [Vh

select, V
h
current]

]H
h=1

,

(2)200
where Kh

select,V
h
select ∈ Rk×dh are k selected KV201

Cache (k ≪ N). The selection of Kselect,Vselect is202
performed by selection function S:203

S (Q, Kcache) = I, where I ∈ P({1, · · · , N}),
Kselect = [(Kcache)i]i∈I , Vselect = [(Vcache)i]i∈I ,

(3)204

where I is the set of selected indices. The objective205

is to find an appropriate selection function S that206

minimizes the difference between the outputs of the207

SDPA and the selective sparse attention:208

min
S

∥∥∥O− Ô
∥∥∥2
2
. (4)209

Existing works on long-context inference can210

be categorized under the Selective Sparse Atten-211

tion Problem, with variations in the design of the212

selection function S. Big-Bird and StreamLLM 213

have developed input-independent selection func- 214

tions S(), while H2O, TOVA and SnapKV pro- 215

pose Query-independent functions S(Kcache) for 216

improved performance. Current state-of-the-art 217

methods InfLLM, QUEST and MInference uti- 218

lize Query-aware selection functions S(Q,Kcache). 219

However, these approaches typically select at a 220

block-level, which limits their effectiveness. 221

4 Motivations and Observations 222

Attention is Sparse, Non-contiguous and Head- 223

Distinctive. Previous works on long-context in- 224

ference have demonstrated the sparsity of atten- 225

tion scores in LLMs, particularly when process- 226

ing long texts. Recent approaches (e.g., InfLLM, 227

QUEST and MInference) partition the KV Cache 228

into non-overlapping blocks, estimating block criti- 229

cality for sparse attention calculations. These meth- 230

ods assume that critical tokens tend to be contigu- 231

ous. However, our further observations reveal that 232

this assumption does not always hold true in prac- 233

tice. As illustrated in Fig. 2a, attention scores are 234

sparsely distributed at the token-level. This non- 235

contiguity leads to significant omissions in block- 236

level token selection. Fig. 2b demonstrates that 237

finer selection granularity improves recall of crit- 238

ical tokens, motivating us to perform token-level 239

selection. For token-level selection, an intuitive 240

approach would be to directly select the top-k to- 241

kens with largest attention logits. However, Fig. 242

2c reveals considerable disparity in the L1 norm 243

of attention logits across attention heads. As a re- 244

sult, the selection result tends to be dominated by a 245

few heads with disproportionately large attention 246

logits, driving us to design a more robust selection 247

function that maintains the independence of heads. 248

Consecutive Queries are Similar. As sparsity of 249

attention is dynamic (Jiang et al., 2024), token se- 250

lection should be performed for every Query, which 251

3

NQA Qasper MFQA HQA 2WikiMQA Musique GovReport QMSum MultiNews
Dataset

0.900

0.925

0.950

0.975

C
os

in
e

Si
m

ila
ri

ty

(a) Consecutive queries show consistent similarity patterns across datasets. (b) Selection overlaps with similar queries.

Figure 3: Observations on similarity of consecutive queries. (a) Cosine similarity distribution between consecutive
queries. (b) The token selection overlap rate (|Ii∩Ii+1|

|Ii+1|) with respect to consecutive Query similarity.

inevitably increases the computational overhead of252

selective sparse attention. Fortunately, we observe253

that consecutive Queries exhibit high similarity, as254

shown in Fig. 3a. Intuitively, when two consecutive255

Queries are highly similar, their dot products with256

the Keys will also be similar, leading to substantial257

overlap in the token selection results. Due to space258

constraints, we provide an informal lemma about259

this below. The formal version and corresponding260

proof can be found in the Appendix C.261

Lemma 1 (Informal). Consider Queries Q1,Q2 ∈262

R1×d that are consecutive and a Key set {Ki}Ni=1.263

Let I1, and I2 be the sets of indices of the top-264

k Keys selected by dot product for Q1, and Q2265

respectively. If cos(Q1,Q2) > ϵ, where ϵ is a266

threshold, then I1 = I2.267

Fig. 3b illustrates this lemma experimentally. It268

shows that the overlap rate of token selection tends269

to increase with Query similarity. This key in-270

sight motivates us to reuse selection results for sim-271

ilar queries, improving computational efficiency.272

Moreover, the similarity distribution of consecutive273

Queries remains consistent across different tasks,274

as demonstrated in Fig. 3a, allowing us to apply a275

global similarity threshold across all scenarios.276

5 Designs of TokenSelect277

In this section, we will introduce the design de-278

tails of TokenSelect, primarily encompassing the279

Selection Function, the Selection Cache, and effi-280

cient implementation of TokenSelect. The overall281

workflow of TokenSelect is illustrated in Fig. 4.282

5.1 Selection Function283

The simplest selection function is to determine the284

criticality of the tokens via the dot product of Q285

and Kcache, then select the top-k as Kselect,Vselect.286

The selected indices I are calculated as:287

Itopk = TopK
(
Q ·Kh

cache
⊤)

. (5)288

However, as discussed in Sec. 4, this approach 289

is prone to inaccuracies due to disparities in norm 290

of attention logits between heads. To maintain in- 291

dependence between heads, a better approach is to 292

have each head select the top-k most critical tokens, 293

and then determine the final selection through vot- 294

ing among the heads, where I is indicator function: 295

Ihead-vote = TopK

(
H∑

h=1

I
(
i ∈ TopK

(
Qh ·Kh

cache
⊤)))

(6) 296

Unfortunately, despite better performance, this 297

method relies on scatter_add and multiple topk 298

operations, resulting in low efficiency on GPUs. 299

Additionally, the 0/1 voting ignores the relative 300

importance of tokens for each head. Therefore, we 301

propose a head soft vote approach that offers better 302

performance and efficiency. Specifically, we first 303

calculate the per-head criticality, then normalize 304

through softmax, and sum the results for all heads: 305

Ihead-soft-vote = TopK

(
H∑

h=1

σ
(
Qh ·Kh

cache
⊤))

. (7) 306

5.2 Optimizing Selection Frequency 307

Although the aforementioned selection function 308

can reduce the complexity of attention from O(N2) 309

to O(k2), k ≪ N , while maintaining performance, 310

the execution time of the selection function itself 311

still affects the latency of inference. To further ac- 312

celerate long-context inference, based on our obser- 313

vations of the similarity of consecutive Queries, we 314

design optimization strategies for both the prefill 315

stage and the decode stage to reduce the selection 316

frequency while ensuring its effectiveness. 317

In the prefill stage, Qprefill ∈ Rnin×d is inputed. 318

In long-context scenarios, the number of tokens in 319

the user’s input sequence nin may reach up to 1M, 320

making it impractical to perform selection for each 321

Query token. Considering the similarity of consec- 322

utive Queries, we use chunk-wise token selection, 323

4

···

···

Per-Head Criticality···

···

token1
Token2
Token3

···
Token1,000,000
Token1,000,001
Token1,000,002

···

Token2,000,000
Token2,000,001

head1 head2 head3 head4

···

··· ··· ··· ···

··· ··· ··· ···

··· ··· ··· ···

Value Cache

···

···

KV Cache for Current Request

Token KV Pool

KV Cache for Other Requests

head1 head2 head3 head4

··· ··· ··· ···

··· ··· ··· ···

··· ··· ··· ···

Key Cache

···

···

token1

···
token1M

token1M+1
token1M+2

···

token2M
token2M+1

head1 head2 head3 head4

···

··· ··· ··· ···

··· ··· ··· ···

··· ··· ··· ···

Current Key

Current Value

Current Query

token1
h1 h2 h3 h4

···

···

···

h1

···

···

···

)+σ()=
Top-k

1
1M

2M

Token-level Per-Head Criticality Estimation

Head Soft Vote

Paged
Attention

Kernel
Paged Dot Product Kernel

··· ··· ··· ···

···

···

h2

···

···

···

···

···

h3

···

···

···

)+σ(

···

···

h4

···

···

···

···

···

voted

···

···

···

token2M

token3

token1M
token1M+1

σ()+σ(

token2
token3

token1

···
token1M

token1M+1
token1M+2

···

token2M
token2M+1

···

token2
token3

···

···
Selected Indices

Attention Output

Key Cache

··· ··· ··· ···

··· ··· ··· ···

···

···

token1

···

token2M

token3

token1M
token1M+1

···

···

Current Query

Figure 4: Execution flow of TokenSelect: 1) calculate per-head criticality via Paged Dot Product Kernel; 2) perform
head soft vote to obtain selected indices; 3) execute selective sparse attention via Paged Attention Kernel.

Figure 5: Time breakdown for single chunk prefill step
under different attention implementations (chunk size:
512, KV Cache length: 128K, attended tokens: 4K).

inputting 1
c

∑c
i=1(QC)i into the selection function,324

where QC ∈ Rc×d is the Query chunk and c is325

the chunk size. This method helps maintain the326

compute-intensive nature of the prefill stage, pre-327

venting it from becoming memory bound.328

In the decode stage, due to the auto-regressive329

characteristic of LLMs, we need to frequently per-330

form selection for Qdecode, and this process cannot331

be executed chunk-wise like in the prefill stage. To332

reduce the frequency of token selection in the de-333

code stage, we propose the Selection Cache. Con-334

secutive similar Queries will hit the cache, thereby335

directly loading the cached selection results for the336

previous Query. The Selection Cache allows us to337

reduce decode latency while maintaining the per-338

formance. The formal formulation of the Selection339

Cache is detailed in Algorithm 1.340

5.3 Efficient Implementation341

To ready TokenSelect for real-world use, efficient342

implementation is crucial. We first analyze the343

time breakdown of representative block-level selec-344

tive sparse attention method, InfLLM (Xiao et al., 345

2024a). From (1)(2)(3) in Fig. 5, we can observe 346

that, despite lowering theoretical complexity, ac- 347

tual runtime depends heavily on implementation. 348

The incompatibility with efficient attention imple- 349

mentations such as Flash Attention has resulted 350

in methods requiring historical attention scores 351

(e.g., H2O, TOVA, SnapKV, InfLLM) impracti- 352

cal in real-world serving. Analysis of InfLLM’s 353

Flash Attention–compatible version shows that, al- 354

though block-level criticality estimation aims to 355

cut selection overhead, the dot product isn’t the 356

main bottleneck. Instead, indexing and coalesc- 357

ing selected KV Cache tokens in GPU memory 358

(HBM)—during block updates and KV Cache con- 359

catenation—incurs heavy I/O, aggravating LLM in- 360

ference’s memory-bound limits. Based on this, we 361

propose that Paged Attention is a more suitable im- 362

plementation for selective sparse attention. Using 363

paged KV Cache management (with page size=1 364

for TokenSelect), we can reduce the I/O volume for 365

selection results from the scale of all selected KV 366

Caches O(2kd) to the scale of their indices O(k). 367

However, (4) in Fig. 5 reveals another bottleneck 368

under paged KV Cache management. Since logi- 369

cally contiguous KV Cache is not entirely contigu- 370

ous in HBM, it also needs to be made contiguous 371

before performing selection operations. To address 372

this issue, we design a Paged Dot Product Ker- 373

nel using Triton, which significantly improves the 374

overall efficiency of TokenSelect. The formal de- 375

5

Methods En.Sum En.QA En.MC En.Dia Code.D Math.F R.PK R.Num R.KV Avg.

Qwen2-7B 23.80 14.92 54.59 8.50 28.17 19.71 28.81 28.64 19.00 25.13
NTK 18.73 15.34 41.28 7.50 24.87 27.71 99.15 97.46 59.80 43.54
SelfExtend 3.76 4.44 20.09 5.00 8.12 2.29 0.00 0.00 0.00 4.86
StreamingLLM 19.60 13.61 48.03 3.50 27.92 19.43 5.08 5.08 2.40 16.07
InfLLM 19.65 15.71 46.29 7.50 27.41 24.00 70.34 72.20 5.40 32.06
TokenSelect 22.62 18.86 54.31 7.50 30.20 21.71 100.00 100.00 86.60 49.08

Llama-3-8B 24.70 15.50 44.10 7.50 27.92 21.70 8.50 7.80 6.20 18.21
NTK 6.40 0.40 0.00 0.00 0.50 2.60 0.00 0.00 0.00 1.10
SelfExtend 14.70 8.60 19.70 0.00 0.00 22.60 100.00 100.00 0.20 29.53
StreamingLLM 20.40 14.30 40.60 5.00 28.43 21.40 8.50 8.30 0.40 16.37
InfLLM 24.30 19.50 43.70 10.50 27.41 23.70 100.00 99.00 5.00 39.23
TokenSelect 26.99 21.32 45.85 8.00 27.41 28.29 100.00 97.29 48.40 43.90

Yi-1.5-6B 18.78 10.48 39.74 5.00 29.95 16.00 5.08 5.08 0.00 14.45
NTK 4.66 0.58 0.87 0.00 0.00 1.43 0.00 0.00 0.00 0.83
SelfExtend 5.62 1.07 1.31 0.00 0.00 1.14 0.00 0.00 0.00 1.01
StreamingLLM 15.35 9.26 35.81 5.00 27.41 14.29 5.08 4.92 0.00 13.01
InfLLM 16.98 8.93 34.06 3.00 27.41 16.86 100.00 96.61 0.00 33.76
TokenSelect 21.13 12.32 40.61 5.50 30.71 20.86 100.00 99.83 0.00 36.77

Table 1: Comparison of different methods with different origin models on InfiniteBench.

scription of this kernel is detailed in Algorithm 2.376

6 Experiments377

In this section, we introduce the experimental setup378

and evaluate the performance and efficiency of our379

TokenSelect on long-context inference benchmarks.380

6.1 Experimental Settings381

Datasets. To evaluate TokenSelect’s performance382

on long-context inference, we use three representa-383

tive datasets: InfiniteBench (Zhang et al., 2024a),384

RULER (Hsieh et al., 2024), and LongBench (Bai385

et al., 2024). Detailed descriptions and the evalua-386

tion metrics used are provided in Appendix H.387

Baselines. To conduct a comprehensive eval-388

uation of TokenSelect’s performance, we carry389

out benchmarks on three mainstream open-source390

LLMs-Qwen2-7B-Instruct (Yang et al., 2024a),391

Llama-3-8B-Instruct (Dubey et al., 2024), and392

Yi-1.5-6B-Chat (AI et al., 2024)-comparing393

against the following state-of-the-art long-context394

inference methods: NTK-scaled RoPE, Self-395

Extend, StreamingLLM, InfLLM, SnapKV, In-396

finiGen, QUEST, RetrievalAttention and MInfer-397

ence. Detailed descriptions of these methods398

are provided in Appendix G. It is worth not-399

ing that the methods indicated in italics lack400

length-extrapolation capability; thus, we evalu-401

ate them using an alternative approach, applying402

them to Llama-3-8B-Instruct-262k (long-text403

post-trained Llama-3-8B-Instruct).404

Implementation details. In all experiments in405

this paper, we employ greedy decoding to ensure406

the reliability of the results. For our TokenSelect,407

we implement it on SGLang (Zheng et al., 2024),408

which is a fast serving framework based on Flasher-409

infer (flashinfer ai). We implement our method us-410

ing PyTorch (Paszke et al., 2019) and Triton (Tillet411

et al., 2019). We follow the baseline approach, in- 412

cluding 128 initial tokens and nlocal most recent 413

tokens in the attention computation in addition to 414

the k selected tokens. For NTK and SelfExtend, 415

we extend the model’s context length to 128K. For 416

StreamLLM, we set nlocal = 4K . For InfLLM, we 417

set k = 4K, nlocal = 4K. For our TokenSelect, we 418

set k = 2K, nlocal = 512 to demonstrate our token- 419

level KV Cache selection allows us to achieve bet- 420

ter performance with a smaller token budget. Due 421

to the need to demonstrate the method under dif- 422

ferent nlocal and k, we denote the specific token 423

budgets in the form of k+ nlocal if they differ from 424

the aforementioned settings. For InfiniteBench and 425

LongBench, we set the threshold θ of the Selection 426

Cache to 0.9. We use NVIDIA A100 to conduct 427

all experiments. When inferencing sequences over 428

1M tokens, we additionally employee tensor paral- 429

lelism, which is transparent to our TokenSelect. 430

6.2 Performance Comparisons 431

InfiniteBench. As shown in Table 1, our TokenS- 432

elect achieves significantly superior overall perfor- 433

mance on InfiniteBench compared to all baseline 434

methods, even though TokenSelect uses the small- 435

est token budget (<3K). The fact that it significantly 436

outperforms the original models demonstrates To- 437

kenSelect’s strong length extrapolation capability. 438

We analyze that this is due to our adoption of a 439

fine-grained KV Cache selection strategy, while 440

considering the equal contribution of each head to 441

selection, which ensures that we can select most 442

critical tokens. Observing the performance of other 443

methods, we find that RoPE interpolation meth- 444

ods (NTK, SelfExtend) generally perform poorly 445

unless used on specially trained models such as 446

Qwen2-7B-Instruct. The sparse attention method 447

StreamingLLM, based on fixed sparse patterns, can 448

6

Methods 4K 8K 16K 32K 64K 128K Avg.
Qwen2-7B 90.74 84.03 80.87 79.44 74.37 64.13 78.93
StreamingLLM 94.41 54.59 33.54 22.40 15.38 10.88 38.53
InfLLM (2K+512) 52.85 36.09 29.36 23.52 18.81 18.29 29.82
InfLLM (4K+4K) 55.22 52.10 40.53 29.77 21.56 18.64 36.30
Ours (2K+512) 94.11 81.81 68.68 60.62 51.81 42.75 66.63
Ours (4K+4K) 94.42 90.22 82.06 70.40 59.66 54.28 75.17
Llama-3-8B 93.79 90.23 0.09 0.00 0.00 0.00 30.69
StreamingLLM 93.68 54.48 33.77 20.35 14.88 11.47 38.11
InfLLM (2K+512) 79.79 52.43 40.12 33.60 25.68 23.39 42.50
InfLLM (4K+4K) 93.79 86.11 64.33 45.39 33.13 27.81 58.43
Ours (2K+512) 93.73 82.92 71.92 65.38 59.35 33.39 67.78
Ours (4K+4K) 93.88 90.29 70.13 57.72 48.36 39.38 66.63
Yi-1.5-6B 73.12 9.09 0.37 0.01 0.00 0.01 13.77
StreamingLLM 72.10 33.03 21.69 15.39 12.58 12.61 27.90
InfLLM (2K+512) 59.66 36.77 27.41 24.49 21.49 21.17 31.83
InfLLM (4K+4K) 74.81 52.57 27.65 22.83 20.19 19.48 36.26
Ours (2K+512) 75.93 59.55 49.69 42.36 34.68 31.36 48.93

Table 2: Performance comparison on RULER.

guarantee some of the model’s capabilities, but due449

to discarding a large amount of long-context infor-450

mation, it performs poorly on retrieval-related tasks451

(R.PK, R.Num, R.KV). The block-level selection452

method InfLLM can retain more long-context infor-453

mation compared to StreamingLLM. However, due454

to its sub-optimal block-level selection, it results455

in lower performance on most tasks compared to456

TokenSelect, even though we set a larger token bud-457

get for InfLLM. It is worth noting that Yi-1.5-6B458

does not perform normally on the R.KV task, as it459

is unable to correctly recite strings like the UUID.460

RULER. To further demonstrate the capability461

of TokenSelect, we conduct evaluation on the more462

challenging long-context benchmark RULER. Con-463

sidering the increased difficulty of RULER and its464

substantial computational requirements, we include465

only comparable baseline methods. As shown in466

Table 2, our TokenSelect maintains significantly467

superior overall performance compared to other468

long-context inference methods. For all models, To-469

kenSelect achieves length extrapolation while pre-470

serving the model’s original capabilities, benefiting471

from our efficient utilization of the model’s limited472

context length. Notably, due to the constraints of473

model’s context length, TokenSelect experiences474

performance degradation with larger token budgets475

(4K+4K) on Llama and Yi. However, its perfor-476

mance with smaller token budgets still significantly477

surpasses other baseline methods.478

Comparing to methods based-on post-trained479

models. In Table 3, we present a performance480

comparison of baseline methods that do not sup-481

port length extrapolation and must be applied to482

long-text post-trained models. Our results show483

that, even compared with models undergoing costly484

long-text post-training and the methods applied to485

Methods En.QA En.MC Code.D R.PK R.Num R.KV
Llama-3-8B-Instruct-262k

SDPA (128K) 9.10 68.00 19.00 100.00 100.00 17.50
SDPA (262K) 12.40 67.30 22.10 100.00 100.00 14.40
StreamingLLM (2K+512) 6.00 66.00 18.50 5.00 5.00 1.00
SnapKV (2K+512) 11.80 67.00 18.00 100.00 100.00 0.50
InfLLM (2K+512) 7.00 37.00 20.50 100.00 100.00 0.50
InfiniGen (2K+512) 7.30 57.50 17.50 100.00 99.50 0.00
QUEST (2K+512) 8.20 67.00 18.00 100.00 100.00 0.00
RetrievalAttn. (2K+512) 7.50 67.00 19.00 100.00 100.00 14.00
MInference w/ static 8.60 43.20 20.60 92.40 96.30 0.20
MInference 12.90 65.90 22.30 100.00 100.00 12.80
Ours (2k+512) 9.70 68.00 19.00 100.00 100.00 20.60

Llama-3-8B-Instruct
Ours (2k+512) 21.32 45.85 27.41 100.00 97.29 48.40

Table 3: Performance comparison with methods based-
on post-trained models. Baseline performance is refer-
enced from Jiang et al. (2024) and Liu et al. (2024a).

S En.QA En.MC Code.D R.PK R.Num R.KV

Itopk 15.15 45.85 28.43 100.00 98.47 16.60
Ihead-vote 17.01 45.85 28.68 100.00 100.00 22.40
Ihead-soft-vote 18.86 54.31 30.20 100.00 100.00 86.60

Table 4: Ablation study of the Selection Function S on
InfiniteBench using Qwen2-7B-Instruct.

them, the training-free TokenSelect exhibits supe- 486

rior performance on most tasks. These findings fur- 487

ther demonstrate the effectiveness of TokenSelect 488

in long-context inference and length extrapolation. 489

6.3 Ablation Studies 490

Selection functions S. To compare the perfor- 491

mance of different selection functions S under low 492

token budgets (i.e., token efficiency), we maintain 493

the 2K+512 configuration. From Table 4, we can 494

observe that our proposed head soft vote mecha- 495

nism performs significantly better across all tasks. 496

This indicates that using the head soft vote mecha- 497

nism to balance each head’s contribution to token 498

selection results can help us avoid the domination 499

of selection by few heads with large attention logits. 500

501
Similarity threshold of the Selection Cache θ. 502

Fig. 6 shows that the Selection Cache hit rate in- 503

creases significantly as the similarity threshold θ de- 504

creases, converging around θ = 0.5. This suggests 505

potential for further acceleration of TokenSelect’s 506

decode stage by reducing θ. Performance sensitiv- 507

ity to θ varies across tasks. While most tasks ex- 508

hibit slight performance degradation with decreas- 509

ing θ, and R.PK in InfiniteBench shows no degra- 510

dation, more challenging retrieval tasks like R.KV 511

demonstrate significant performance deterioration. 512

This indicates higher dynamicity requirements for 513

token selection in these tasks. Owing to the limited 514

generation lengths in current long-context infer- 515

ence benchmarks, we cannot yet precisely quantify 516

the end-to-end speedup provided by the Selection 517

7

0.5 0.6 0.7 0.8 0.9
Similarity Threshold ()

31

32

33

34
R

ou
ge

-L

0

25

50

75

100

C
ac

he
 R

at
e

(%
)

Rouge-L
Cache Rate

(a) LongBench-GovReport.

0.5 0.6 0.7 0.8 0.9
Similarity Threshold ()

17.6

17.9

18.2

18.5

18.8

Q
A

F1

0

25

50

75

100

C
ac

he
 R

at
e

(%
)

QA F1
Cache Rate

(b) InfiniteBench-En.QA.

0.5 0.6 0.7 0.8 0.9
Similarity Threshold ()

96

97

98

99

100

Ac
cu

ra
cy

 (%
)

0

25

50

75

100

C
ac

he
 R

at
e

(%
)

Accuracy
Cache Rate

(c) InfiniteBench-R.PK.

0.5 0.6 0.7 0.8 0.9
Similarity Threshold ()

0

25

50

75

100

Ac
cu

ra
cy

 (%
)

0

25

50

75

100

C
ac

he
 R

at
e

(%
)

Accuracy
Cache Rate

(d) InfiniteBench-R.KV.
Figure 6: Performance and Cache Rate with different threshold θ of the Selection Cache on Qwen2-7B-Instruct.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Elapsed Time (s)

(3) Ours
(w/ Kernel)

(2) InfLLM
(FlashAttn)

(1) SDPA
(FlashInfer)

Attention Selection

6.09x

(a) KV Cache length: 128K.

19.93x

(b) KV Cache length: 512K.

23.84x

(c) KV Cache length: 1M.

Figure 7: Computation time v.s. KV Cache lengths for single chunk prefill step using Qwen2-7B-Instruct. The
vertical axis represents the number of attended tokens. SDPA denotes full attention by Flashinfer (chunk size: 512).

k En.Sum En.QA En.Mc Math.F R.Num R.KV

128 21.23 10.46 41.48 18.00 100.00 13.40
256 22.01 11.66 41.92 19.71 100.00 20.00
512 21.60 13.31 40.17 21.71 100.00 45.60
1K 21.35 15.13 44.10 21.71 100.00 73.00
2K 22.62 18.86 54.31 21.71 100.00 86.60
4K 24.09 21.11 51.53 21.71 100.00 88.00
8K 25.32 22.93 58.52 23.71 100.00 85.40
16K 26.54 23.04 62.88 28.16 100.00 72.00

Table 5: Performance vs. Number of selected tokens k
on InfiniteBench using Qwen2-7B-Instruct.

Cache. Nonetheless, for a 7B-parameter model op-518

erating on 128K-token sequences, each cache hit519

reduces per-step latency by approximately 0.5 ms.520

For more detailed performance comparisons under521

different θ, see Table 9 of Appendix J.522

Number of selected tokens k. As shown in Table523

5, we fix nlocal to a small value (512) to compare524

the performance when selecting different numbers525

of tokens. First, we observe that even selecting a526

very small number of tokens (e.g., 128, 256), our527

TokenSelect still demonstrates very comparable per-528

formance. Then, as k increases, the effectiveness of529

TokenSelect further improves, indicating that more530

moderately critical tokens also contribute to the531

retention of long-context information. Finally, we532

find that when k is set to larger values (e.g., 16K),533

our TokenSelect shows significant improvements534

in most tasks, further advancing the performance535

landscape of long-context inference methods.536

6.4 Efficiency Comparisons537

Efficiency of selective sparse attention. Fig. 7538

demonstrates the significant acceleration of atten-539

tion computation achieved by TokenSelect during540

long-context inference. With a KV Cache length of541

1M, TokenSelect can provide up to 23.84× speedup542

compared to FlashInfer, which is the inference ker-543

2.28x 4.70x

Figure 8: End to end latency per sample with different
methods on InfiniteBench using Qwen2-7B-Instruct.

nel library we based on. This substantial improve- 544

ment is attributed to our efficient kernel design. 545

End-to-end efficiency. Fig. 8 compares the end- 546

to-end latency of TokenSelect, InfLLM, and SDPA 547

across various tasks. TokenSelect significantly ac- 548

celerates long-context inference in real-world sce- 549

narios, achieving a maximum speedup of 4.70× 550

over SDPA and 2.28× over the state-of-the-art 551

long-context inference method while also deliv- 552

ering superior overall performance. 553

7 Conclusion 554

In this paper, we introduces TokenSelect, a training- 555

free approach for efficient long-context inference 556

and length extrapolation. TokenSelect addresses the 557

two major challenges faced by LLMs in process- 558

ing long texts: the context length limitation from 559

pre-training and the computational complexity of 560

attention. This is achieved through a novel token- 561

level selective sparse attention mechanism. Exper- 562

imental results demonstrate that TokenSelect can 563

achieve up to 23.84× speedup in attention compu- 564

tation and up to 2.28× acceleration in end-to-end 565

inference latency, while exhibiting superior perfor- 566

mance across multiple long-context benchmarks. 567

8

8 Limitations568

Our approach has inherent limitations that present569

opportunities for future work. A primary limi-570

tation of our method is that its training-free de-571

sign—a significant advantage—acts as a double-572

edged sword, as its absolute performance is inher-573

ently tied to the quality of the underlying LLMs.574

Although our experiments demonstrate robustness575

of TokenSelect across various LLMs, some inher-576

ent shortcomings—such as the misrecognition of577

UUID strings by Yi-1.5-6B-Chat—indicate that578

certain issues may still require training to resolve.579

Moreover, while our method currently achieves580

state-of-the-art performance in long-context infer-581

ence, recent long-text post-training techniques in582

the LLM community have shown impressive per-583

formance; notably, our TokenSelect is orthogonal584

to these approaches and can be employed dur-585

ing inference to trade a slight performance drop586

for significant efficiency gains. Finally, although587

our method achieves state-of-the-art efficiency im-588

provements in long-context inference, the task re-589

mains inherently resource-intensive. For instance,590

even with a 8B-parameter model, complex bench-591

marks (e.g., RULER) can require approximately592

8×A100 GPUs for nearly one day of runtime, and593

the computational cost is expected to increase sub-594

stantially for larger models. We hope that our work,595

together with the community’s advances in model596

design, algorithm development, and infrastructure597

optimization, will help pave the way for further598

mitigating these computational challenges.599

References600

01. AI, :, Alex Young, Bei Chen, Chao Li, Chen-601
gen Huang, Ge Zhang, Guanwei Zhang, Heng Li,602
Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong603
Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin604
Yang, Shiming Yang, Tao Yu, and 13 others. 2024.605
Yi: Open foundation models by 01.ai. Preprint,606
arXiv:2403.04652.607

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,608
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao609
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,610
and Juanzi Li. 2024. LongBench: A bilingual, mul-611
titask benchmark for long context understanding.612
In Proceedings of the 62nd Annual Meeting of the613
Association for Computational Linguistics (Volume614
1: Long Papers), pages 3119–3137, Bangkok, Thai-615
land. Association for Computational Linguistics.616

bloc97. 2023. Ntk-aware scaled rope allows llama617
models to have extended (8k+) context size618

without any fine-tuning and minimal perplexity 619
degradation. Website. https://www.reddit.com/ 620
r/LocalLLaMA/comments/14lz7j5/ntkaware_ 621
scaled_rope_allows_llama_models_to_have/. 622

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev. 623
2022. Recurrent memory transformer. Advances in 624
Neural Information Processing Systems, 35:11079– 625
11091. 626

Shouyuan Chen, Sherman Wong, Liangjian Chen, and 627
Yuandong Tian. 2023. Extending context window of 628
large language models via positional interpolation. 629
Preprint, arXiv:2306.15595. 630

Zihang Dai*, Zhilin Yang*, Yiming Yang, William W. 631
Cohen, Jaime Carbonell, Quoc V. Le, and Ruslan 632
Salakhutdinov. 2019. Transformer-XL: Language 633
modeling with longer-term dependency. 634

Tri Dao. 2024. FlashAttention-2: Faster atten- 635
tion with better parallelism and work partition- 636
ing. In International Conference on Learning 637
Representations (ICLR). 638

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 639
Abhishek Kadian, and 1 others. 2024. The llama 3 640
herd of models. Preprint, arXiv:2407.21783. 641

emozilla. 2023. Dynamically scaled rope fur- 642
ther increases performance of long con- 643
text llama with zero fine-tuning. Website. 644
https://www.reddit.com/r/LocalLLaMA/ 645
comments/14mrgpr/dynamically_scaled_rope_ 646
further_increases/. 647

flashinfer ai. GitHub - flashinfer-ai/flashinfer: 648
FlashInfer: Kernel Library for LLM Serv- 649
ing — github.com. https://github.com/ 650
flashinfer-ai/flashinfer. [Accessed 12-10- 651
2024]. 652

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang, 653
Chenhui Zhang, and 1 others. 2024. Chatglm: A 654
family of large language models from glm-130b to 655
glm-4 all tools. Preprint, arXiv:2406.12793. 656

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, 657
Yu Chen, Heng Ji, and Sinong Wang. 2024. Lm- 658
infinite: Zero-shot extreme length generalization for 659
large language models. Preprint, arXiv:2308.16137. 660

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan- 661
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang, 662
and Boris Ginsburg. 2024. Ruler: What’s the real 663
context size of your long-context language models? 664
arXiv preprint arXiv:2404.06654. 665

Yunpeng Huang, Jingwei Xu, Junyu Lai, Zixu Jiang, 666
Taolue Chen, Zenan Li, Yuan Yao, Xiaoxing Ma, 667
Lijuan Yang, Hao Chen, Shupeng Li, and Penghao 668
Zhao. 2024. Advancing transformer architecture in 669
long-context large language models: A comprehen- 670
sive survey. Preprint, arXiv:2311.12351. 671

9

https://arxiv.org/abs/2403.04652
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://openreview.net/forum?id=HJePno0cYm
https://openreview.net/forum?id=HJePno0cYm
https://openreview.net/forum?id=HJePno0cYm
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2308.16137
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang,672
Minjia Zhang, Shuaiwen Leon Song, Samyam Rajb-673
handari, and Yuxiong He. 2023. Deepspeed ulysses:674
System optimizations for enabling training of ex-675
treme long sequence transformer models. Preprint,676
arXiv:2309.14509.677

Arthur Jacot, Franck Gabriel, and Clément Hongler.678
2018. Neural tangent kernel: Convergence and gen-679
eralization in neural networks. Advances in neural680
information processing systems, 31.681

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-682
sch, Chris Bamford, Devendra Singh Chaplot, Diego683
de las Casas, Florian Bressand, Gianna Lengyel, Guil-684
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,685
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,686
Thibaut Lavril, Thomas Wang, Timothée Lacroix,687
and William El Sayed. 2023. Mistral 7b. Preprint,688
arXiv:2310.06825.689

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang,690
Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,691
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing692
Yang, and Lili Qiu. 2024. Minference 1.0: Acceler-693
ating pre-filling for long-context llms via dynamic694
sparse attention. Preprint, arXiv:2407.02490.695

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying696
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-697
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient698
memory management for large language model serv-699
ing with pagedattention. Preprint, arXiv:2309.06180.700

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong701
Sim. 2024. Infinigen: Efficient generative inference702
of large language models with dynamic kv cache703
management. Preprint, arXiv:2406.19707.704

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat705
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,706
Patrick Lewis, and Deming Chen. 2024. Snapkv:707
Llm knows what you are looking for before genera-708
tion. Preprint, arXiv:2404.14469.709

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang,710
Zhenhua Han, Qianxi Zhang, Qi Chen, Chen-711
gruidong Zhang, Bailu Ding, Kai Zhang, and 1 others.712
2024a. Retrievalattention: Accelerating long-context713
llm inference via vector retrieval. arXiv preprint714
arXiv:2409.10516.715

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2024b.716
Ringattention with blockwise transformers for near-717
infinite context. In The Twelfth International718
Conference on Learning Representations.719

Tsendsuren Munkhdalai, Manaal Faruqui, and Sid-720
dharth Gopal. 2024. Leave no context behind:721
Efficient infinite context transformers with infini-722
attention. Preprint, arXiv:2404.07143.723

OpenAI. Introducing OpenAI o1. https://openai.724
com/o1/. [Accessed 06-10-2024].725

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, 726
and Roy Schwartz. 2024. Transformers are multi- 727
state rnns. Preprint, arXiv:2401.06104. 728

Arka Pal, Deep Karkhanis, Manley Roberts, Samuel 729
Dooley, Arvind Sundararajan, and Siddartha Naidu. 730
2023. Giraffe: Adventures in expanding context 731
lengths in llms. Preprint, arXiv:2308.10882. 732

Adam Paszke, Sam Gross, Francisco Massa, Adam 733
Lerer, James Bradbury, Gregory Chanan, Trevor 734
Killeen, Zeming Lin, Natalia Gimelshein, Luca 735
Antiga, Alban Desmaison, Andreas Kopf, Edward 736
Yang, Zachary DeVito, Martin Raison, Alykhan Te- 737
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, 738
and 2 others. 2019. Pytorch: An imperative style, 739
high-performance deep learning library. In Advances 740
in Neural Information Processing Systems, vol- 741
ume 32. Curran Associates, Inc. 742

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and 743
Enrico Shippole. 2024. YaRN: Efficient context 744
window extension of large language models. In 745
The Twelfth International Conference on Learning 746
Representations. 747

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku- 748
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020. 749
Compressive transformers for long-range sequence 750
modelling. In International Conference on Learning 751
Representations. 752

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, 753
Charlie Blake, Carlo Luschi, and Douglas Orr. 2024. 754
Sparq attention: Bandwidth-efficient LLM inference. 755
In Forty-first International Conference on Machine 756
Learning. 757

Nikhil Sharma, Q. Vera Liao, and Ziang Xiao. 2024. 758
Generative echo chamber? effect of llm-powered 759
search systems on diverse information seeking. In 760
Proceedings of the 2024 CHI Conference on Human 761
Factors in Computing Systems, CHI ’24, New York, 762
NY, USA. Association for Computing Machinery. 763

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, 764
Patrick LeGresley, Jared Casper, and Bryan Catan- 765
zaro. 2020. Megatron-lm: Training multi-billion 766
parameter language models using model parallelism. 767
Preprint, arXiv:1909.08053. 768

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, 769
Wen Bo, and Yunfeng Liu. 2024. Roformer: En- 770
hanced transformer with rotary position embedding. 771
Neurocomputing, 568:127063. 772

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, 773
Baris Kasikci, and Song Han. 2024. QUEST: Query- 774
aware sparsity for efficient long-context LLM in- 775
ference. In Forty-first International Conference on 776
Machine Learning. 777

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Bur- 778
nell, and 1 others. 2024. Gemini 1.5: Unlocking 779
multimodal understanding across millions of tokens 780
of context. Preprint, arXiv:2403.05530. 781

10

https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2309.14509
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2407.02490
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2404.14469
https://openreview.net/forum?id=WsRHpHH4s0
https://openreview.net/forum?id=WsRHpHH4s0
https://openreview.net/forum?id=WsRHpHH4s0
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://openai.com/o1/
https://openai.com/o1/
https://openai.com/o1/
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2308.10882
https://arxiv.org/abs/2308.10882
https://arxiv.org/abs/2308.10882
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=wHBfxhZu1u
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=OS5dqxmmtl
https://doi.org/10.1145/3613904.3642459
https://doi.org/10.1145/3613904.3642459
https://doi.org/10.1145/3613904.3642459
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530

Junfeng Tian, Da Zheng, Yang Cheng, Rui Wang, Colin782
Zhang, and Debing Zhang. 2024. Untie the knots:783
An efficient data augmentation strategy for long-784
context pre-training in language models. Preprint,785
arXiv:2409.04774.786

Philippe Tillet, H. T. Kung, and David Cox. 2019.787
Triton: an intermediate language and compiler for788
tiled neural network computations. In Proceedings789
of the 3rd ACM SIGPLAN International Workshop790
on Machine Learning and Programming Languages,791
MAPL 2019, page 10–19, New York, NY, USA. As-792
sociation for Computing Machinery.793

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,794
and 1 others. 2023. Llama 2: Open foundation and795
fine-tuned chat models. Preprint, arXiv:2307.09288.796

Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal-797
lapati, and Bing Xiang. 2019. Multi-passage798
bert: A globally normalized bert model for open-799
domain question answering. In Proceedings of the800
2019 Conference on Empirical Methods in Natural801
Language Processing and the 9th International802
Joint Conference on Natural Language Processing803
(EMNLP-IJCNLP), pages 5878–5882.804

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan805
Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,806
and Maosong Sun. 2024a. Infllm: Training-free long-807
context extrapolation for llms with an efficient con-808
text memory. Preprint, arXiv:2402.04617.809

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song810
Han, and Mike Lewis. 2024b. Efficient stream-811
ing language models with attention sinks. In812
The Twelfth International Conference on Learning813
Representations.814

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, and815
1 others. 2024a. Qwen2 technical report. Preprint,816
arXiv:2407.10671.817

Shuo Yang, Ying Sheng, Joseph E. Gonzalez, Ion818
Stoica, and Lianmin Zheng. 2024b. Post-training819
sparse attention with double sparsity. Preprint,820
arXiv:2408.07092.821

Manzil Zaheer, Guru Guruganesh, Kumar Avinava822
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-823
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,824
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-825
formers for longer sequences. In Advances in Neural826
Information Processing Systems, volume 33, pages827
17283–17297. Curran Associates, Inc.828

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-829
hang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen830
Thai, Shuo Wang, Zhiyuan Liu, and Maosong831
Sun. 2024a. ∞Bench: Extending long context832
evaluation beyond 100K tokens. In Proceedings833
of the 62nd Annual Meeting of the Association834
for Computational Linguistics (Volume 1: Long835
Papers), pages 15262–15277, Bangkok, Thailand.836
Association for Computational Linguistics.837

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong 838
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan- 839
dong Tian, Christopher Ré, Clark Barrett, and 1 840
others. 2024b. H2o: Heavy-hitter oracle for effi- 841
cient generative inference of large language mod- 842
els. Advances in Neural Information Processing 843
Systems, 36. 844

Liang Zhao, Xiaocheng Feng, Xiachong Feng, 845
Dongliang Xu, Qing Yang, Hongtao Liu, Bing Qin, 846
and Ting Liu. 2024. Length extrapolation of trans- 847
formers: A survey from the perspective of positional 848
encoding. Preprint, arXiv:2312.17044. 849

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue 850
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos 851
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark 852
Barrett, and Ying Sheng. 2024. Sglang: Efficient 853
execution of structured language model programs. 854
Preprint, arXiv:2312.07104. 855

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Ji- 856
aming Xu, Shiyao Li, Yuming Lou, Luning Wang, 857
Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao 858
Dai, Xiao-Ping Zhang, Yuhan Dong, and Yu Wang. 859
2024. A survey on efficient inference for large lan- 860
guage models. Preprint, arXiv:2404.14294. 861

11

https://arxiv.org/abs/2409.04774
https://arxiv.org/abs/2409.04774
https://arxiv.org/abs/2409.04774
https://arxiv.org/abs/2409.04774
https://arxiv.org/abs/2409.04774
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://arxiv.org/abs/2402.04617
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2408.07092
https://arxiv.org/abs/2408.07092
https://arxiv.org/abs/2408.07092
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.17044
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294

A Formal Description of Algorithms862

In Sec. 5.2, we propose the Selection Cache, which863

shares selection results among similar Queries to864

reduce selection frequency without sacrificing per-865

formance. Formally, it is defined as follows:

Algorithm 1 Selection Cache Algorithm

Require: Q ∈ RH×D: current query vectors
k ∈ N: number of tokens to select
CQ ∈ RH×D: cached query vector
CI ∈ {0, . . . , N − 1}k: cached indices
θ ∈ [0, 1]: cosine-similarity threshold
S: selection function (Eq. 7)
f ∈ {True, False}: first-query flag (default True)

Ensure: I ∈ {0, . . . , N − 1}k: indices of k selected tokens
1: if f or cos(Q,CQ) < θ then
2: I ← S(Q, k)
3: CI ← I
4: CQ ← Q
5: f ← False
6: else
7: I ← CI
8: end if
9: return I

866

In Sec. 5.3, we propose the Paged Dot Product867

Kernel to efficiently perform token-level per-head868

criticality estimation under the paged KV-cache869

management by significantly reducing I/O between870

HBM and SRAM. Formally, it is defined as follows:871

Algorithm 2 Paged Dot Product Kernel

Require: Q ∈ RH×D: current query vectors
K ∈ RNkv×Hkv×D: key cache pool
I ∈ {0, . . . , Nkv − 1}T : indices of relevant tokens
H: number of attention heads
Hkv: number of KV heads (H mod Hkv = 0)
D: head dimension
T : number of relevant tokens (|I| = T)
B: CUDA block size

Ensure: S ∈ RH×T : dot product scores
1: N ←

⌈
T/B

⌉
2: for all h = 0, . . . , H − 1 in parallel do
3: q ← Q[h, :] {to SRAM}
4: hkv ← h mod Hkv
5: for all b = 0, . . . , N − 1 in parallel do
6: t0 ← b×B
7: L← min

(
B, T − t0

)
8: for j = 0, . . . , L− 1 do
9: idx← I[t0 + j] {to SRAM}

10: k ← K[idx, hkv, :] {to SRAM}
11: s← ⟨q, k⟩ {in SRAM}
12: S[h, t0 + j]← s {to HBM}
13: end for
14: end for
15: end for
16: return S

872

B Scalability of TokenSelect 873

B.1 Scaling Beyond 1 Million Context Length 874

To further explore TokenSelect’s performance in 875

extreme long-context scenarios, we design an ex- 876

tended benchmark with different text lengths fol- 877

lowing InfiniteBench. As illustrated in the Fig. 878

9, our TokenSelect demonstrates the ability to ac- 879

curately capture critical information with a small 880

token budget in contexts up to 2M tokens, under- 881

scoring its potential in more application scenarios. 882

128K 512K 1M 2M
Context Length

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Origin
Ours (2K+512)

Figure 9: Performance comparison on extended R.PK
and R.KV using Qwen2-7B-Instruct.

B.2 Scaling to 72 Billion Parameters 883

To demonstrate the scalability of our approach 884

to larger models, we conducted additional exper- 885

iments using Qwen2-72B-Instruct. The results, 886

presented in Table 6, show that our method out- 887

performs NTK-Aware Scaled RoPE in terms of 888

accuracy and achieves lower latency, indicating the 889

potential of our approach to scale effectively with 890

larger models.

Method En.Sum En.QA R.KV
Acc. (%) Time (s) Acc. (%) Time (s) Acc. (%) Time (s)

NTK (SPDA) 23.49 199.52 28.77 145.69 50.00 111.98
TokenSelect 25.07 114.24 29.91 71.98 88.12 63.27

Table 6: Performance and latency comparison on
Qwen2-72B-Instruct with tensor parallelism size: 4.

891

12

C Formal Statement and Proof of Lemma892

Lemma 1 (Invariant Top-k Key Selection under893

Cosine Similarity Threshold, Formal).894

Assumptions:895

1. Let q1,q2 ∈ Rd be two query vectors.896

2. Let {ki}Ni=1 ⊂ Rd be a finite set of key vec-897

tors.898

3. Let k be a positive integer such that 1 ≤ k ≤899

N .900

4. Define the cosine similarity between vectors901

a,b ∈ Rd as:902

cos(a,b) =
ab

∥a∥2∥b∥2
,903

where ∥ · ∥2 denotes the Euclidean norm.904

5. Define the top-k selection function based905

on dot product similarity as: I(q) =906

argmaxS⊆{1,2,...,N},|S|=k

∑
i∈S q · ki. As-907

sume that for any query vectors q, the top-k908

set I(q) is uniquely determined.909

6. Let ϵ ∈ (0, 1] be a predefined threshold.910

Lemma Statement: If the cosine similarity be-911

tween the two query vectors q1 and q2 satisfies912

cos(q1,q2) > ϵ,913

then the indices of the top-k keys selected by q1914

and q2 are identical, i.e.,915

I(q1) = I(q2).916

Proof: We start with the given condition:917

min
1≤i≤k

q1ki −max
j>k

q1kj > η,918

which we aim to use to demonstrate that:919

min
1≤i≤k

q2ki −max
j>k

q2kj > 0.920

To facilitate our analysis, we introduce the follow-921

ing notations:922

η̂ =
η

∥q1∥
, q̂1 =

q1

∥q1∥
, q̂2 =

q2

∥q2∥
.923

With these definitions, the original condition be-924

comes:925

min
1≤i≤k

q̂1ki −max
j>k

q̂1kj > η̂,926

and our goal transforms to showing: 927

min
1≤i≤k

q̂2ki −max
j>k

q̂2kj > 0. 928

Next, let θ denote the angle between q1 and q2, 929

cos θ = q̂1 · q̂2. We can further define: 930

p1 = q2 − q1 cos θ, p̂1 =
p1

∥p1∥
, 931

then sin θ = p̂1 · q̂2, and 932

q̂2 = q̂1 cos θ + p̂1 sin θ. 933

Then we have: 934

min
1≤i≤k

q̂2ki = min
1≤i≤k

(q̂1 cos θ + p̂1 sin θ)ki, 935

≥ min
1≤i≤k

q̂1ki cos θ + min
1≤i≤k

p̂1ki sin θ, 936

≥ q̂1kk cos θ − ∥k∥max sin θ, 937

and 938

max
j>k

q̂2kj = max
j>k

(q̂1 cos θ + p̂1 sin θ)kj 939

≤ max
j>k

q̂1ki cos θ +max
j>k

p̂1ki sin θ, 940

≤ q̂1kp+1 cos θ + ∥k∥max sin θ. 941

Therefore, 942

min
1≤i≤k

q̂2ki −max
j>k

q̂2kj ≥ q̂1kp cos θ − ∥k∥max sin θ 943

− (q̂1kp+1 cos θ + ∥k∥max sin θ) 944

= (q̂1kp cos θ − q̂1kp+1 cos θ) 945

− 2∥k∥max sin θ 946

≥ η̂ cos θ − 2∥k∥max sin θ. (8) 947

In order to have Eqn. (8) > 0, we require 948

η̂ cos θ > 2∥k∥max sin θ, 949

⇒ sin θ

cos θ
<

η̂

2∥k∥max
, 950

⇒ 1− cos2 θ

cos2 θ
<

(η̂

2∥k∥max

)2
, 951

⇒ cos θ ≥ 1√
1 +

(
η̂

2∥k∥max

)2
. 952

This final inequality establishes a sufficient con- 953

dition for the original statement to hold, thereby 954

completing the proof. 955

13

D Overview of LLMs Inference956

Nowadays, mainstream LLMs are primarily based957

on the Decoder-only Transformer architecture.958

Each transformer layer includes a multi-head atten-959

tion (MHA) and a feed-forward networks (FFN).960

The inference process of LLMs can be divided into961

two stages: the prefill stage and the decode stage.962

The prefill stage is the preparatory phase of the963

inference process. In this stage, the user’s input is964

processed layer by layer through a single forward965

pass of LLMs, generating KV Cache for each layer.966

The generation of KV Cache is completed by the967

MHA module. Assuming Xprefill ∈ Rnin×d is the968

input of a transformer layer, where nin is the num-969

ber of tokens in user’s input sequence and d is the970

hidden size. The MHA computation in the prefill971

stage is as follows (simplified to single head):972

[Qprefill,Kprefill,Vprefill] = Xprefill · [Wq,Wk,Wv] , (9)973

Oprefill = softmax
(
Qprefill ·Kprefill

⊤
√
d

)
·Vprefill, (10)974

where Wq,Wk,Wv are linear projections, [·]975

represents tensor concatenation operation, and976

Eq.(10) is also known as Scaled Dot Product At-977

tention (SDPA). After these computation, Kprefill978

and Vprefill are stored as the KV Cache for cur-979

rent layer Kcache and Vcache, and Oprefill is used for980

subsequent calculations.981

The decode stage is the phase where LLMs ac-982

tually generate the response. In the decode stage,983

LLMs load the KV Cache and generate nout out-984

put tokens autoregressively through nout forward985

passes. Assuming Xdecode ∈ R1×d is the input of a986

transformer layer in a forward pass, the computa-987

tion of MHA in the decode stage is as follows (The988

calculation of Qprefill and Oprefill is consistent with989

that in the prefill stage):990

Kdecode = [Kcache, Xdecode ·Wk] , Kcache ← Kdecode,

Vdecode = [Vcache, Xdecode ·Wv] , Vcache ← Vdecode,
(11)991

where Kdecode,Vdecode are composed of the KV992

Cache and the KV corresponding to the current993

input, which are then used to update the KV Cache994

of the current layer for use in the next forward pass.995

LLMs inference, unlike training, is memory-996

bound, necessitating frequent GPU I/O operations997

between HBM and SRAM while underutilizing998

processing units. This bottleneck is particularly999

evident in SDPA computation. Optimizing for I/O1000

is crucial for enhancing LLMs inference efficiency,1001

especially in long-context scenarios.1002

E Comparison with Token Eviction-based 1003

Methods (e.g., H2O) 1004

Token eviction–based methods (Zhang et al., 1005

2024b; Oren et al., 2024), led by H2O (Zhang et al., 1006

2024b), have pioneered the field of long-context 1007

inference, achieving early state-of-the-art perfor- 1008

mance. Although both our method and H2O em- 1009

ploy token-level criticality estimation, they fall un- 1010

der two entirely different taxonomies. As discussed 1011

in Sec. 2 and Sec. 3, H2O is a query-independent 1012

KV cache selection method, which suffers from 1013

three main drawbacks: 1014

1. Lack of dynamism: Its importance scoring re- 1015

lies on attention scores from previous queries 1016

and keys. Consequently, KV pairs that are 1017

crucial for the current query may have been 1018

discarded earlier—a phenomenon also con- 1019

firmed by QUEST (Tang et al., 2024). Fig. 1 1020

and 2 of QUEST provide an intuitive illustra- 1021

tion of the differences between query-based 1022

methods (e.g., our TokenSelect) and H2O. No- 1023

tably, TokenSelect leverages a dynamic selec- 1024

tion strategy, enabling state-of-the-art perfor- 1025

mance with a minimal token budget. 1026

2. Inability to extend sequence length: Since 1027

H2O depends on the model’s original atten- 1028

tion mechanism, it cannot extend the effective 1029

context length. In contrast, our approach can 1030

easily extend a model with an original maxi- 1031

mum length of 4K–32K tokens to an effective 1032

length exceeding 1M tokens. 1033

3. Inefficient implementation: H2O evaluates to- 1034

ken importance based on attention scores, mak- 1035

ing it incompatible with efficient kernels such 1036

as FlashAttention (Dao, 2024). This limitation 1037

restricts its scalability. Our method, however, 1038

is designed for broad compatibility and is fully 1039

transparent to large-scale inference accelera- 1040

tion infrastructures, including paged attention, 1041

tensor parallelism, and prefix caching, making 1042

it ready for large-scale online serving. 1043

To further demonstrate the superiority of TokenS- 1044

elect, we present experimental results in Table 7. 1045

These results corroborate the findings of previous 1046

studies (Tang et al., 2024; Xiao et al., 2024a), show- 1047

ing that query-independent methods are inferior to 1048

query-based approaches. 1049

14

Method En.Sum En.QA En.MC Math.F R.PK R.Num R.KV Avg.

H2O 2.8 0.7 0.0 6.0 2.5 2.4 0.0 2.1
InfLLM 24.3 19.5 43.7 23.7 100.0 99.0 5.0 45.0
TokenSelect 26.9 21.3 45.8 28.2 100.0 97.2 48.4 52.5

Table 7: Performance comparison with H2O (Zhang et al., 2024b) on Llama-3-8B-Instruct, baseline performance
is referenced from Xiao et al. (2024a).

F Additional Related Works1050

Long-context LLMs. Due to computational1051

complexity constraints, current LLMs based on1052

Transformers often utilize limited context lengths1053

during pre-training (Touvron et al., 2023; Dubey1054

et al., 2024; Jiang et al., 2023; Yang et al., 2024a;1055

GLM et al., 2024; AI et al., 2024). To extend1056

the long-context capabilities of LLMs, current1057

methods can be broadly categorized into three ap-1058

proaches (Huang et al., 2024; Zhou et al., 2024;1059

Zhao et al., 2024): 1) Modifying positional en-1060

codings: A widely adopted method is positional1061

interpolation (Chen et al., 2023). Chen et al. first1062

proposed linear scaling of RoPE (Su et al., 2024)1063

to map longer positional ranges within the original1064

training window. Subsequent works (bloc97, 2023;1065

emozilla, 2023) further improved this method us-1066

ing Neural Tangent Kernel (NTK) theory (Jacot1067

et al., 2018), achieving longer context windows1068

while maintaining model performance. Methods1069

like YaRN (Peng et al., 2024) and Giraffe (Pal1070

et al., 2023) optimize interpolation effects by ad-1071

justing frequency components or introducing tem-1072

perature parameters. 2) Long-context post-training:1073

This approach extends the model’s context length1074

through additional training steps on longer docu-1075

ments after pre-training (Yang et al., 2024b; Tian1076

et al., 2024). It has been widely adopted by lead-1077

ing LLMs (Team et al., 2024; Yang et al., 2024a;1078

GLM et al., 2024) with the support of sequence par-1079

allelism techniques (Shoeybi et al., 2020; Jacobs1080

et al., 2023; Liu et al., 2024b). 3) Incorporating1081

additional memory modules: Notable examples1082

include Transformer-XL (Dai* et al., 2019), Com-1083

pressive Transformer (Rae et al., 2020), RMT (Bu-1084

latov et al., 2022) and Infini-attention (Munkhdalai1085

et al., 2024). Although these methods have ex-1086

panded the context length of LLMs, long-context1087

inference still faces the challenge of high computa-1088

tional costs.1089

G Detailed Descriptions on Baselines1090

In this paper, we use the following baselines:1091

• NTK-Aware Scaled RoPE (bloc97, 2023): A 1092

nonlinear RoPE interpolation method. 1093

• SelfExtend: A RoPE interpolation method that 1094

reuses the position ids of neighboring tokens. 1095

• StreamingLLM (Xiao et al., 2024b): The 1096

state-of-the-art method for long-context infer- 1097

ence with predefined sparse patterns. Similar 1098

approaches include LM-Infinite (Han et al., 1099

2024). 1100

• InfLLM (Xiao et al., 2024a): The state-of- 1101

the-art method for long-context inference and 1102

length extrapolation using a block-level selec- 1103

tive sparse attention method. 1104

• MInference (Jiang et al., 2024): The state-of- 1105

the-art method for long-context prefilling accel- 1106

eration, utilizing three sparse patterns including 1107

block-level sparse attention. 1108

• SnapKV (Li et al., 2024): A fine-tuning-free 1109

approach that efficiently compresses KV caches 1110

by selecting clustered important KV positions 1111

for each attention head. 1112

• InfiniGen (Lee et al., 2024): A KV cache 1113

management framework that reduces memory 1114

overhead in offloading-based LLM inference 1115

by prefetching only essential KV cache entries 1116

through selective token rehearsal. 1117

• QUEST (Tang et al., 2024): A query-aware 1118

KV cache management algorithm by selecting 1119

critical KV cache based on the query-aware 1120

sparsity at page granularity. 1121

• RetrievalAttention (Liu et al., 2024a): The 1122

state-of-the-art method leveraging approximate 1123

nearest neighbor search on CPU memory and 1124

an attention-aware vector search algorithm to 1125

address distribution mismatches. 1126

H More Information on Datasets 1127

In this paper, we use the following datasets: 1128

15

• InfiniteBench (Zhang et al., 2024a): The main-1129

stream long-context benchmark consisting of1130

multi-tasks. The average length of it exceeds1131

200K tokens.1132

• RULER (Hsieh et al., 2024): A challenging1133

long-context benchmark containing 13 differ-1134

ent tasks, with subsets of varying lengths up to1135

128K tokens.1136

• LongBench (Bai et al., 2024): Another main-1137

stream long-context benchmark comprising 61138

types of tasks. The 95% percentile for its1139

lengths is 31K tokens.1140

For InfiniteBench (Zhang et al., 2024a), we use1141

longbook_sum_eng (En.Sum), longbook_qa_eng1142

(En.QA), longbook_choice_eng (En.MC), longdi-1143

alogue_qa_eng (En.Dia), code_debug (Code.D),1144

math_find (Math.F), passkey (R.PK), num-1145

ber_string (R.Num) and kv_retrieval (R.KV) as1146

evaluation datasets. The corresponding evaluation1147

metrics are shown in Table 10. RULER (Hsieh1148

et al., 2024) consists of various evaluation tasks:1149

Single NIAH (needle in a haystack), Multi-keys1150

NIAH, Multi-values NIAH, Multi-values NIAH,1151

Multi-queries NIAH, Variable Tracking, Common1152

Words Extraction, Frequent Words Extraction and1153

Question Answering. The evaluation metric is1154

match rate. For LongBench, we use all English1155

tasks with evaluation metrics in Table 11.1156

I Comparison on Prefill Latency1157

We note that MInference (Jiang et al., 2024) has1158

gained widespread adoption in real-world long-1159

context inference applications due to its novel de-1160

sign of attention sparse patterns and efficient im-1161

plementation based on vLLM. In the main text,1162

we demonstrated TokenSelect’s performance advan-1163

tages. To further prove its efficiency readiness for1164

real-world applications, we followed Minference’s1165

approach by comparing the end-to-end prefill la-1166

tency under paged KV Cache management for dif-1167

ferent input token lengths on Llama-3-8B using a1168

single A100, with results shown in Table 8. The1169

results indicate that TokenSelect demonstrates sig-1170

nificant advantages with shorter input token lengths,1171

while maintaining efficiency comparable to MIn-1172

ference as input token lengths increase.1173

Length FlashAttention-2
(vLLM)

MInference
(vLLM) TokenSelect

1K 0.081 3.017 0.092
10K 0.832 2.762 1.290
50K 7.717 7.540 5.712
100K 21.731 14.081 12.088
128K 32.863 18.827 15.920
200K OOM OOM 26.500
300K OOM OOM 43.406

Table 8: Comparison of end-to-end prefill latency (s).

J Detailed Performance Comparisons 1174

Under Different Cache Threshold θ 1175

Table 9 presents the performance sensitivity to the 1176

threshold θ of the Selection Cache across vari- 1177

ous tasks. The results indicate that although θ- 1178

sensitivity varies across different task types, most 1179

tasks exhibit only slight performance degradation 1180

as θ decreases. This suggests potential for fur- 1181

ther accelerating TokenSelect’s decode stage by 1182

reducing θ in the vast majority of cases. It is 1183

worth noting, however, that more challenging re- 1184

trieval tasks—such as R.KV—show noticeable per- 1185

formance degradation as θ decreases, indicating 1186

higher dynamicity requirements for token selection 1187

in these tasks. 1188

K Experimental Results on LongBench 1189

Compared to InfiniteBench and RULER, Long- 1190

Bench has much shorter text lengths. The 95% per- 1191

centile for its lengths is 31K tokens. Considering 1192

that recent LLMs after SFT generally have context 1193

lengths of up to 32K tokens (Yang et al., 2024a), 1194

LongBench is less suitable for evaluating state-of- 1195

the-art long-context inference methods. Neverthe- 1196

less, as shown in Table 12, our TokenSelect still 1197

demonstrates superior overall performance com- 1198

pared to most baseline methods. It’s worth noting 1199

that Yi-1.5-6B did not yield effective results on 1200

the SAMSum task because it failed to correctly 1201

follow instructions. 1202

L Use of AI Assistants 1203

In this paper, AI Assistants were used for literature 1204

retrieval and grammar checking. 1205

16

θ En.Sum En.QA En.MC En.Dia Code.D Math.F R.PK R.Num R.KV Avg.

0.5 20.99 17.83 54.31 7.50 30.20 21.14 100.00 96.10 0.20 38.69
0.6 21.21 18.08 54.31 7.50 30.20 21.36 100.00 96.78 0.20 38.84
0.7 20.73 18.08 54.31 7.50 30.46 21.36 100.00 98.98 4.40 39.53
0.8 21.47 17.85 54.31 7.50 30.20 21.58 100.00 100.00 24.60 41.94
0.85 22.39 18.15 54.31 7.50 30.20 21.79 100.00 100.00 68.20 46.94
0.9 22.62 18.86 54.31 7.50 30.20 21.71 100.00 100.00 86.60 49.08
0.95 22.46 18.54 54.31 7.50 30.56 21.77 100.00 100.00 86.20 49.05
1.0 22.66 18.68 54.31 7.50 30.51 21.78 100.00 100.00 86.84 49.15

Table 9: Performance using different selection cache similarity thresholds using Qwen2-7B-Instruct.

Datasets En.Sum En.QA En.MC En.Dia Code.D Math.F R.PK R.Num R.KV
Metrics Rouge-L-Sum QA F1 Score Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

Table 10: Evaluation metrics of different datasets on InfiniteBench.

Datasets NQA Qasper MFQA HQA 2WikiMQA Musique GovReport QMSum
Metrics QA F1 Score QA F1 Score QA F1 Score QA F1 Score QA F1 Score QA F1 Score Rouge-L Rouge-L

Datasets MultiNews TREC TQA SAMSum PsgCount PsgRetrieval LCC RepoBench-P
Metrics Rouge-L Accuracy QA F1 Score Rouge-L Accuracy Accuracy Code Sim Score Code Sim Score

Table 11: Evaluation metrics of different datasets on LongBench.

Methods NQA Qasper MFQA HQA 2WikiMQA Musique GovReport QMSum MultiNews

Qwen2-7B 24.24 45.42 47.79 42.76 44.38 24.16 33.80 23.78 26.17
NTK 26.25 45.94 50.76 53.20 50.31 30.83 32.75 23.21 25.94
SelfExtend 7.15 20.37 24.06 14.91 13.73 4.75 16.92 16.53 18.74
StreamLLM 19.49 42.56 39.63 42.43 44.67 15.22 31.51 20.57 26.00
InfLLM 27.47 41.44 46.99 47.47 49.29 25.62 32.68 23.10 26.77
TokenSelect 24.18 42.29 45.77 48.62 49.08 27.85 33.69 23.03 26.35

Llama-3-8B 19.85 42.36 41.03 47.38 39.20 22.96 29.94 21.45 27.51
NTK 9.90 45.35 49.41 48.86 29.22 24.56 34.31 23.82 27.27
SelfExtend 1.72 8.90 20.80 8.65 6.97 3.27 13.99 15.36 17.66
StreamLLM 20.05 42.46 39.54 43.69 37.89 19.68 29.17 21.33 27.56
InfLLM 22.64 43.70 49.03 49.04 35.61 26.06 30.76 22.70 27.57
TokenSelect 22.44 40.74 47.73 50.33 31.38 24.53 32.56 23.50 27.92

Yi-1.5-6B 17.18 32.56 39.06 36.26 39.25 16.32 30.53 20.21 26.20
NTK 0.80 35.06 29.05 7.47 24.38 0.73 13.66 6.25 25.43
SelfExtend 3.29 19.03 26.00 17.11 11.88 7.73 20.38 17.46 21.79
StreamLLM 15.05 33.27 38.31 34.91 36.92 16.33 29.38 20.02 26.14
InfLLM 17.65 36.25 45.40 41.25 35.89 16.94 30.22 20.85 26.04
TokenSelect 19.36 33.98 48.14 45.05 40.13 22.98 31.59 21.51 26.48

Methods TREC TQA SAMSum PsgCount PsgRetrieval LCC RepoBench-P Average

Qwen2-7B 78.50 88.77 46.33 5.50 70.00 62.40 61.95 45.37
NTK 79.50 89.51 46.03 5.50 60.00 59.36 59.69 46.17
SelfExtend 16.50 27.54 29.42 4.50 0.00 41.42 41.89 18.65
StreamLLM 75.50 87.19 46.27 3.50 27.50 61.18 61.12 40.27
InfLLM 70.50 87.51 44.53 4.00 46.50 55.08 57.53 42.90
TokenSelect 74.00 89.26 45.94 5.00 42.50 61.48 59.33 43.64

Llama-3-8B 74.00 90.50 42.30 8.50 62.50 60.83 49.14 42.46
NTK 73.00 88.74 42.51 8.87 99.50 33.62 35.04 42.12
SelfExtend 20.50 16.82 25.39 5.75 7.50 26.24 31.22 14.42
StreamLLM 73.50 90.08 41.55 5.00 49.00 60.35 48.95 40.61
InfLLM 73.50 90.91 42.43 7.17 84.00 59.88 46.48 44.46
TokenSelect 67.50 92.22 42.16 4.54 87.00 58.86 51.24 44.04

Yi-1.5-6B 71.50 48.79 0.79 3.00 28.50 57.10 52.53 32.48
NTK 40.00 12.71 1.34 0.50 3.35 54.55 37.24 18.28
SelfExtend 23.75 30.61 2.58 2.75 13.50 43.17 35.45 18.53
StreamLLM 69.00 73.36 0.82 2.50 18.50 56.37 49.05 32.49
InfLLM 71.50 71.49 1.01 4.00 10.50 56.88 46.28 33.25
TokenSelect 62.50 69.70 0.62 3.50 41.50 54.32 54.99 36.02

Table 12: Comparison of different methods with different origin models on LongBench.

17

	Introduction
	Related Works
	Preliminaries
	Motivations and Observations
	Designs of TokenSelect
	Selection Function
	Optimizing Selection Frequency
	Efficient Implementation

	Experiments
	Experimental Settings
	Performance Comparisons
	Ablation Studies
	Efficiency Comparisons

	Conclusion
	Limitations
	Formal Description of Algorithms
	Scalability of TokenSelect
	Scaling Beyond 1 Million Context Length
	Scaling to 72 Billion Parameters

	Formal Statement and Proof of Lemma
	Overview of LLMs Inference
	Comparison with Token Eviction-based Methods (e.g., H2O)
	Additional Related Works
	Detailed Descriptions on Baselines
	More Information on Datasets
	Comparison on Prefill Latency
	Detailed Performance Comparisons Under Different Cache Threshold
	Experimental Results on LongBench
	Use of AI Assistants

