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GLAM: GRAPH LEARNING BY MODELING AFFINITY
TO LABELED NODES FOR GRAPH NEURAL NETWORKS

ABSTRACT

We propose GLAM, a semi-supervised graph learning method for cases when
there are no graphs available. This approach learns a graph as a convex combina-
tion of the unsupervised k-Nearest Neighbor graph and a supervised label-affinity
graph. The latter graph directly captures all the nodes’ label-affinity with the la-
beled nodes, i.e., how likely a node has the same label as the labeled nodes. Our
experiments show that GLAM gives close to or better performance (up to∼1.5%)
while being simpler and faster (up to 70x) to train than state-of-the-art graph learn-
ing methods. We also demonstrate the importance of individual components and
contrast them with the state-of-the-art methods.

1 INTRODUCTION AND RELATED WORK

Incorporating graph to improve semi-supervised classification is a long and well-studied problem.
Early methods used graph to propagate labels (Zhu & Ghahramani, 2002; Zhou et al., 2004). Classi-
fiers later utilized graphs for regularization (Belkin et al., 2006; Weston et al., 2008). Graph Neural
Networks (GNNs), which incorporate graphs in their architecture, was introduced recently. Graph
Convolutional Network (GCN) is the most prominent among them (Kipf & Welling, 2017; Wu
et al., 2019). GNN models have shown performance exceeding approaches that only use the graph
to propagate labels or to regularize. However, all these approaches assume the existence of a graph.
In this paper, we are mainly interested in scenarios where we do not have access to a graph. In
the absence of a graph, utilizing the k-Nearest Neighbor (kNN) graph has been proven to be quite
effective (Belkin et al., 2006; Gidaris & Komodakis, 2019) and gives improvements over models
that do not use graph information.

Recent literature, including LDS (Franceschi et al., 2019) and IDGL (Chen et al., 2020), pro-
pose graph learning approaches beyond simple kNN construction. LDS treats a graph as a hyper-
parameter and employs a bi-level optimization setup. IDGL learns a graph by iteratively learn-
ing latent node representations and construct adjacency structures from these representations. PG-
Learn (Wu et al., 2018), TO-GCN (Yang et al., 2019), and GCRN (Yu et al., 2020) explored similar
ideas to LDS and IDGL. Tangential to these works, the Graph Agreement Model (GAM) (Stretcu
et al., 2019) proposed an agreement model to regularize the classifier. Bojchevski et al. (2018);
Trivedi et al. (2020) explored generative models for graphs, but these approaches do not cater to
graph learning.

Existing graph learning approaches are iterative and computationally expensive. An alternative way
to model edges is by learning attention over edges using models like GAT (Veličković et al., 2018)
and SuperGAT (Kim & Oh, 2021). However, learning attention across all the edges with limited
labels is difficult. To address these shortcomings, we propose GLAM, a graph learning approach.
GLAM combines a supervised graph with an unsupervised kNN graph. We introduce a novel label-
affinity model, which uses an explicit loss function to learn the supervised graph. Our experiments
show that GLAM gives close to or better performance (up to ∼1.5%) while being simpler and faster
(up to 70x) to train than state-of-the-art graph learning methods.

2 PROBLEM STATEMENT

In the semi-supervised classification problem, we have labeled examples D = {(xi, yi)}li=1 and
unlabeled examples U = {xi}l+u

i=l+1, where xi ∈ X . Let Y be the set of all possible labels and y
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Figure 1: Schematic representation of our GLAM

be the vector [y1, y2, . . . , yl+u]. The goal in traditional semi-supervised classification problem is to
learn a function f : X 7→ Y and it is often learnt by solving the following minimization problem,

f∗ = arg min
f
L(f(X),y) + α‖f‖ (1)

where L is the loss function, and α is the regularization coefficient.

In Graph Neural Networks (GNNs), the classifier function additionally assumes access to a graph
between the data points in X . Let this graph be G. Then, this classifier function is often estimated
by solving,

f∗ = arg min
f
L(f(X,G),y) + α‖f‖ (2)

But, often in practice, we may not have access to any graphs. The goal of our work here is to
estimate a classifier function by solving,

f∗, G∗ = arg min
f,G
L(f(X,G),y) + α‖f‖+ βΩ(G,y) (3)

where Ω is additional loss terms which could depend on G and the known labels y and β is its
coefficient.

3 PROPOSED APPROACH

The proposed model consists of three basic components: Label-Affinity Model, Convex Combina-
tion of Graphs and GCN. GLAM’s architecture is presented in Figure 1

Label-Affinity Model: Attention-based models attempt to learn attention over all the edges of a
graph. This could be challenging when working with limited labeled data. The critical insight here
is to realise that having a few noisy edges can hurt more than throwing away several good edges
(i.e. edges where the source and target nodes have same labels). To illustrate this, we remove all
the noisy edges from the kNN graph and perform two experiments where we vary the percentage of
noisy/good edges added/removed, and report GCN performance on these graphs. We observe that
adding noisy edges hurts performance more than removing several good edges. A detailed analysis
of this experiment is presented in the Appendix A.4. Based our analysis, we make an assumption
that more confident predictions can be made on edges from any node to labeled node, instead of any
arbitrary edge, because of the partial information available. Conventional attention-based models
attempt to learn attention as a function X × X 7→ R. However, we decided to change the model
to X 7→ ∆|D| where X is the set of instances, ∆ is the probability simplex: {

∑|D|
i=1 θi = 1 and

∀iθi ≥ 0}. D is the set of labeled data as indicated in Section 2. This form of modeling was a
straight-forward way of enforcing our restriction. This model predicts a distribution over the labeled
set. The probability value indicates how likely it is for the target labeled node to have the same label
as the input node. We model this with a simple two-layer neural network as follows:

ZA = SOFTMAX(σ1(XW1)W2) (4)
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where X ∈ R(l+u)×d is the feature matrix, d is the number of features, σ1 is a non-linear activation
function and W1,W2 are model weights. There are two advantages to this model - 1] it is a simple
way of enforcing restriction on edges that we desire, 2] it also allows us to write an explicit loss
function using the labeled data (we will discuss this in more detail below).

The label-affinity model can be used to construct the affinity graph. To construct a graph, for every
node, we compute its predicted distribution over the labeled set and add the edge with the highest
probability. This edge is added in both directions. We can write this mathematically as,

GA = ONE-HOT(ARG-MAX(ZA)) (5)

GA = [GA : 0(l+u)×u] (6)

GA = GA +G>A (7)

In Equation 5, we get the highest affinity labeled node for all the nodes. In Equation 6, we augment
the remaining unlabeled columns which are simply zeroes to complete the full graph. In Equation 7,
we make the graph symmetric. However, since ARG-MAX is not differentiable, we use the Gumbel-
Softmax trick Jang et al. (2017) and generate samples from Gumbel-Softmax distribution instead
to create the graph. Relying on the classifier loss to learn the parameters would be difficult as the
gradients that flow into this model are minuscule. Thereby, we add explicit loss for this model by
constructing labeled data from D. For every xi ∈ D, we create a new label vector yAi such that,

yAi [j] =

{
1 i 6= j, yi = yj
0 otherwise

(8)

where yAi [j] is the jth element of the vector. Further, it is normalized as ŷAi = yAi /1
>yAi . We use

this to define the loss for the affinity model as follows:

LA =

l∑
i=1

CROSS-ENTROPY(ZA
i , ŷ

A
i ) (9)

where ZA
i is the row corresponding to the ith point in X .

Combining Graphs and GCN: The constructed affinity graph, GA, contains only a few high con-
fident edges and restricts feature propagation, particularly between unlabeled nodes. Thereby, we
utilize the kNN graph to assist in this regard. The kNN graph is constructed from input features. We
use cosine distance metric in our experiments. Number of neighbors, k, is a hyper-parameter. We
pre-process the kNN graph by cropping all the incoming edges to the labeled nodes to reduce noise
among labeled nodes. We recognize that there is noise in other edges of the graph, but it is difficult
to filter this noise. However, removing incoming noise to training nodes gives improvements as we
show in Table 3 (a). We refer to this graph as Gck, where ck stands for cropped kNN graph. This
graph is then combined with the affinity graph as follows:

G = wAGA + wckGck s.t. wA + wck = 1 (10)

This combined graph is finally fed to a two-layer GCN model. However, because of the cropped
kNN graph, this combined graph is asymmetric. For computing the Laplacian for GCN, we can
use either the indegree or the outdegree matrix. In our experiments, we have utilized the indegree
matrix. The combined graph is finally fed to a two-layer GCN model and the final objective we
minimize is,

Lfinal = LC + βLA + αA

∑
i

‖W i
a‖+ αC

∑
i

‖W i
gcn‖ (11)

where αA, αC are regularization coefficients, W i
a and W i

gcn are affinity model and GCN model
weights.

The first term in Equation 11 refers to the classifier loss, which takes the combination of unsuper-
vised kNN and supervised affinity graph (Equation 10). The second term is the affinity loss (Equa-
tion 9) which models label affinity from all nodes to labeled nodes. The affinity loss together with
classifier loss improve affinity predictions. Improvement in affinity predictions improves classifier
performance.
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Features Boosted Features
Models\Datasets Cora CiteSeer Pubmed ACM DBLP Cora CiteSeer Pubmed ACM DBLP

LogReg 56.20 61.90 73.60 78.80 66.90 70.20 69.90 76.20 88.30 80.20
MLP 59.18 (1.39) 62.02 (1.80) 72.92 (0.55) 79.92 (0.55) 67.00 (0.53) 70.34 (0.56) 68.50 (1.52) 74.78 (0.89) 87.66 (0.69) 78.96 (0.66)

LP 54.20 57.40 63.40 75.20 66.30 59.20 54.20 67.70 89.00 65.20
ManiReg 58.80 61.10 69.20 80.90 72.60 53.50 55.30 68.10 90.00 73.40
SemiReg 66.24 (1.13) 66.44 (0.92) 73.78 (0.69) 88.76 (1.21) 74.26 (1.21) 69.13 (0.55) 70.09 (0.10) 74.04 (0.35) 88.88 (0.33) 79.54 (0.34)

GCN 68.32 (1.37) 68.76 (1.04) 70.12 (1.05) 86.38 (0.53) 77.62 (0.95) 70.20 (0.81) 69.36 (0.67) 75.24 (0.39) 90.84 (0.39) 80.48 (0.34)
GAT 68.50 (0.99) 70.00 (0.76) 70.06 (1.83) 86.36 (0.26) 77.58 (0.81) 70.86 (0.63) 69.10 (1.35) 75.18 (0.39) 90.92 (0.34) 80.28 (0.49)

SuperGAT 69.23 (0.31) 69.36 (0.58) 70.88 (0.68) 86.27 (0.31) 77.44 (0.44) 69.90 (1.67) 69.70 (1.29) 75.58 (0.25) 90.58 (0.93) 78.38 (0.95)

LDS 70.76 (0.78) 72.16 (0.61) OOM 86.98 (0.78) 76.72 (0.57) 72.87 (0.45) 71.44 (0.40) OOM 92.93 (0.61) 79.42 (0.84)
IDGL 70.32 (0.54) 67.65 (1.71) 77.20 (0.76) 88.94 (0.52) 74.26 (0.84) 71.90 (0.69) 68.88 (0.44) 79.04 (0.26) 91.09 (0.38) 79.66 (0.47)

GLAM 70.58 (0.18) 72.22 (0.45) 74.03 (0.32) 89.34 (0.15) 79.70 (0.32) 72.64 (0.35) 71.86 (0.44) 76.06 (0.35) 92.38 (0.20) 81.52 (0.30)

Table 1: Mean test accuracy over 5 random seeds for benchmark datasets. Standard deviation is
reported in brackets where ever applicable.

Note on Input Features: Note that, for the construction of the kNN graphs in previous section
the input to the affinity model in Equation 4, we have used X (the feature matrix). However, in
a recent work on text classification, the authors of HeteGCN Ragesh et al. (2021) have proposed

an architecture which utilizes a normalized version of X>X, call it X̃>X as a first layer of GCN.
Essentially they are utilizing feature correlation as the second layer graph. The simplified version of

this model is simply equivalent to XX̃>X. We believe that the HeteGCN model benefits from this

feature correlation matrix and that utilizing XX̃>X instead of X should benefit our graph learning
problem as well. We simply refer to them as boosted features. We use these boosted features in kNN
construction and as input to affinity model. We show experimental results with both the normal and
the boosted features and not for just our model but for all the baselines, to illustrate how these simple
modified features can give significant performance improvements.

4 EXPERIMENTS

We conducted several experiments to highlight the effectiveness of GLAM against several base-
lines and state-of-the-art graph learning methods (refer to appendix A.2 for details). We discovered
a label-leakage bug in GAM’s source code, which post fixing shows marginal improvements over
baselines. A comparison against bug-fixed version of GAM is reported in Appendix A.3. We restrict
our setting to semi-supervised node classification problems where a graph structure is not available.
Our experiments also present empirical analysis to illustrate why our model performs better. Addi-
tional experiments are reported in Appendix A.3.

Performance Improvement and Speed up. We report the mean test accuracy and standard devi-
ation over five random seeds for benchmark datasets (refer to appendix A.1 for details). GLAM
shows competitive performance across all benchmark datasets, except PubMed, with accuracy gains
of up to 3%. We further improve all the baselines by feeding them with boosted features either
as input features or by using them for constructing kNN graphs. Our results in Table 1 show that
these new features, in most cases, considerably improve baseline models with accuracy gains of up
to 14%. We perform a timing comparison by computing the average end-to-end training time over
2000 runs. Table 3 (b) shows timing analysis for different benchmark datasets. We observe that we
get up to ∼ 42× speedup compared to IDGL and up to ∼ 70× speed up compared to LDS.

Analysis. What do Attention models capture? We can view GLAM as an instance of an attention
model that places sparse attention on edges between all nodes and labeled nodes. SuperGAT (Kim
& Oh, 2021) works under the assumption that if two nodes are linked, they are more relevant and
suggests that if the homophily of the graph is > 0.2, SuperGATMX performs well. However, we
observe that GAT performs as well as or better than SuperGATMX with kNN graphs. We report
homophily percentages for kNN graphs in Table 4, indicating that there might be more underlying
reasons for when attention works or does not. Towards this end, and to quantify the quality of
learned attention coefficients, we compute few metrics.

(1) Bad Neighbor Ratio (BNR): We define bad neighbors for a center node as all the neighboring
nodes having different labels than the center node. For Attention-based models, we extract attention
matrices (A) from the hidden layers for all heads. For GLAM and GCN, we treat Laplacian matrices
as attention matrices. We compute BNR as follows:
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Weighted Homophily Scores Bad Neighbour Ratio
Cora CiteSeer ACM DBLP Cora CiteSeer ACM DBLP

GCN 61.29 62.00 86.23 73.61 35.95 36.32 13.32 25.98
GAT 58.72 60.90 87.21 74.52 50.79 (70.00) 41.33 (67.20) 14.11 (91.2) 26.00 (79.60)

SuperGAT 55.96 54.14 84.97 73.08 38.98 (71.40) 39.16 (69.80) 14.34 (91.1) 27.21 (78.4)
GLAM 67.01 69.22 85.25 73.80 26.05 26.35 07.91 21.43

Table 2: We report Weighted Homophily Scores and Bad Neighbour Ratio (BNR) for different
models on several datasets

(a) Ablation Study (b) Timing Analysis
Cora CiteSeer ACM DBLP

GLAM 72.64 (0.35) 71.86 (0.44) 92.38 (0.20) 81.52 (0.30)
w/o affinity graph 70.54 (0.76) 70.54 (0.76) 91.46 (0.42) 80.63 (0.85)
w/o affinity loss 70.90 (0.83) 69.06 (1.66) 91.46 (0.48) 80.40 (1.17)

Average Time Cora CiteSeer PubMed ACM DBLP
IDGL 152.68s 394.94s 546.81s 329.64s 88.89s
LDS 327.75s 683.43s NA 338.25s 348.75s

GLAM 5.32s 22.22s 23.36s 7.76s 5.04s

Table 3: We study the effect of affinity graph and affinity loss in (a). End-to-End training time
averaged over multiple runs are shown in (b).

BNR =
1

|h|
∑
h

|V |∑
i=1

(1BW(i)>GW(i))

|V |∑
i=1

(1BW(i)>0)

(12)

where, BW(i) =
∑

j∈N(i)
A

(h)
ij 1`(i) 6=`(j), GW(i) =

∑
j∈N(i)

A
(h)
ij 1`(i)=`(j). In the above equation,

the number of attention heads is denoted by h, attention matrix by A, and the total number of nodes
by |V |. This metric gives a direct insight into how the underlying attention mechanism performs.

(2) Weighted homophily: this is a simple extension of homophily. It is equal to the ratio of attention
placed on all good edges to the attention placed on all edges. Table 2 shows these metrics for models
in comparison. We find that the Bad Neighbor Ratio correlates well with model performance giving
us a perspective on why GLAM performs better.

(3) To study the importance of Label Affinity Graph, we computed the average weight placed on
edges in the affinity graph and report it in Table 4. We notice that, in most datasets, WA > 0.3 is
assigned to affinity edges, implying the importance of them. In the PubMed dataset, GLAM places
significant weight on the kNN graph, which indicates that when kNN graph quality is good, they are
preferred over affinity graphs.

Dataset Cora CiteSeer PubMed ACM DBLP
Homophily 58.20 59.46 75.08 87.32 85.12

WA 0.33 0.49 0.04 0.33 0.30

Table 4: Homophily and average of chosen affinity weights
Ablation Study. Table 3 (a) shows that removing the affinity graph and affinity loss significantly
affects the performance, thus indicating their importance. GLAM’s performance with only cropped
kNN (w/o affinity graph in Table 3 (a)) is equivalent to that of GCN with kNN (Table 1). Therefore,
removing all incoming edges to the training nodes does not affect and sometimes improves the
performance. Another observation is that unless there is an explicit loss for the affinity term, we see
minuscule improvements over plain kNN-GCN model (Table 1).

5 DISCUSSION

In this paper, we proposed a model to jointly learn the graph and classifier for semi-supervised
classification tasks where no graphs are available. Our experimental results suggest that our model
is fast to train and particularly effective when the unsupervised kNN graph is noisy. We analysed
and compared with baselines along several dimensions, highlighting their limitations and how our
model addresses them. For future work, we want to explore combining the merits of IDGL with our
work and see if a single model can work across all possible graphs with different noise levels. Also
of great interest would be to combine the proposed idea with some of the graph generative models
like NetGAN (Bojchevski et al., 2018) and GraphOpt (Trivedi et al., 2020).
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake VanderPlas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duch-
esnay. Scikit-learn: Machine learning in python. CoRR, abs/1201.0490, 2012. URL http:
//arxiv.org/abs/1201.0490.

Rahul Ragesh, Sundararajan Sellamanickam, Arun Iyer, Ram Bairi, and Vijay Lingam. Hetegcn:
Heterogeneous graph convolutional networks for text classification. In WSDM, 2021.

6

https://www.tensorflow.org/
http://arxiv.org/abs/1201.0490
http://arxiv.org/abs/1201.0490


Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
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A APPENDIX

A.1 DATASETS

We evaluate on five citation network datasets: Cora, CiteSeer, PubMed taken from Jaafor & Birregah
(2017), and ACM, DBLP taken from Wang et al. (2019). In the DBLP dataset, each node represents
an author. In rest of the datasets, nodes correspond to documents (scientific papers). The node
features correspond to sparse bag-of-words features with either binary or TF-IDF values. These
datasets are evaluated for node classification task in a transductive setting closely following the
experimental setup of Yang et al. (2016). For Cora, CiteSeer, and PubMed datasets, we use the
standard split from previous work (Kipf & Welling, 2017). For ACM and DBLP datasets, we fix
the validation and test set to 500 and 1000 nodes and create a training set by sampling 20 nodes per
class from the remaining nodes to be in line with the standard split. Additionally, we also evaluate
on three text classification datasets where a graph is not available with the given dataset. 20NG
consists of long text documents, categorized into 20 newsgroups. MR consists of movie reviews
classified into positive and negative sentiments. Ohsumed consists of medical abstracts, which are
categorized into 23 cardiovascular diseases (Yao et al., 2019). Detailed statistics of the datasets used
are available in the Table 5.

Cora Citeseer Pubmed ACM DBLP
Nodes 2,708 3,327 19,717 3,025 4,057

Features 1,433 3,703 500 1,830 334
Classes 7 6 3 3 4

No. Training nodes 140 120 60 60 80

Table 5: Citation Datasets Statistics

Dataset Words Docs Train Docs Test Docs Classes Avg. Length
20NG 42,757 18,846 11,314 7,532 20 221.26
MR 18,764 10,662 7,108 3,554 2 20.39

Ohsumed 14,157 7,400 3,357 4,043 23 135.82

Table 6: Text Datasets Statistics

A.2 BASELINES AND HYPER-PARAMETERS RANGES

We compare GLAM against several baselines covering simple non-graph based approaches, semi-
supervised classification methods, graph neural networks, and state-of-the-art graph learning ap-
proaches. Below are the hyper-parameters ranges we followed for tuning the baselines. For all
the methods that rely on graphs, we construct kNN graphs from input features using cosine metric.
Number of neighbors, k, is a hyper-parameter and swept over {5, 10, 15, 20}.
LogReg: Logistic Regression’s weight-decay hyper-parameter, C, is tuned over [1e-4, 1e4] in pow-
ers of 10 on the validation set.

MLP: We employ a Multi Layer Perceptron with 1 hidden layer. For tuning, hidden layer dimen-
sions were swept over {32, 64, 128}, weight decay over [1e-4, 1e4] in logarithmic steps, learning
rate over [1e-3, 1e-2, 1e-1], and dropout from (0, 1).

LP: Zhu & Ghahramani (2002) In Label Propagation, we tune the hyper-parameter α (clamping
factor) over the range (0, 1) in steps of 0.01. We observe much better results for LP than reported in
LDS because of this extensive tuning.

ManiReg: Belkin et al. (2006) Manifold regularization’s hyper-parameters γA and γI are tuned
from the range (1e-5, 1e2) in logarithmic steps. We observe a discrepancy in ManiReg’s numbers
reported in LDS. Kipf & Welling (2017) reported 59.5 and 60.1 as test performance on Cora and
Citeseer datasets using the original graphs that are part of the datasets. LDS reports 62.3 and 67.7 as
mean test accuracy for these datasets using kNN graphs. However, kNN graphs are of poor quality
in terms of homophily and GNN performance on these datasets.

SemiEmb: Weston et al. (2008) Semi-Supervised embedding’s hyper-parameters λ is tuned over
(1e-5, 1e2) in logarithmic steps, hidden layer dims over {32, 64, 128}, weight decay over [1e-4,
1e4] in steps of 10, learning rate from {1e-3, 1e-2, 1e-1}, and dropout from (0, 1).
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GCN: Kipf & Welling (2017) We used 2 layered Graph Convolutional Networks and follow the
hyper-parameter ranges mentioned in Shchur et al. (2018) for tuning.

GAT: Veličković et al. (2018) For tuning Graph Attention Networks, we consulted Shchur et al.
(2018) for hyper-parameters ranges.

SuperGAT: Kim & Oh (2021) we rely on authors1 code for experiments and follow Kim & Oh
(2021) for tuning.

LDS: Franceschi et al. (2019) We rely on authors2 code to perform LDS experiments on our bench-
mark datasets. We follow the hyper-parameters ranges mentioned by the author.

IDGL: Chen et al. (2020) We rely on authors3 code to perform IDGL experiments on our datasets.
For PubMed dataset, we ran IDGL-Anchor variant to report numbers and for the rest datasets, IDGL
base variant was used for conducting experiments. The hyper-parameters mentioned by the author
are used for tuning the model.

CL-MLP: Cascante-Bonilla et al. (2020) We implemented Curriculum Labeling algorithm, a very
recent SSL method, for an MLP as described by the authors. For tuning the MLP, we used the
hyper-parameters described above.

ICT-MLP: Verma et al. (2019) Interpolation Consistency Training is one of the latest SSL method
proposed. We implemented ICT algorithm for an MLP followed Verma et al. (2019) for hyper-
parameter tuning.

G3NN: Ma et al. (2019) We rely on authors4 code for experiments and sweep the hyper-parameters
ranges suggested by the authors.

BGCN: Zhang et al. (2019) We rely on authors5 code for our experiments and sweep the hyper-
parameters ranges suggested by the authors.

GLAM: Hyper-parameters αA and αC are tuned from (1e-5, 1e4) in logarithmic steps, learning rate
from (1e-3, 1e0), dropouts from (0, 1), Wck from (0, 1), affinity classifer’s hidden layer dims from
{32, 64, 128, 256}, GNN’s hidden layer dims from {16, 32, 64, 128}, kNN’s k from {5, 10, 15, 20},
and gumbel softmax’s temperature is set to 1e-10. We use Adam optimizer to minimize our com-
bined loss term. GLAM is trained for 500 epochs with an early stopping criterion of no improvement
in validation accuracy for 25 epochs. Hyper-parameter tuning was done using optuna Akiba et al.
(2019). We swept through 2000 configurations using TPE sampler in optuna for each dataset.

All the models we implemented except LP and LogReg were written in Tensorflow Abadi et al.
(2015). LP and LogReg were implemented using scikit-learn python package Pedregosa et al.
(2012). For all models, test accuracy is reported for the configuration that achieves the highest
validation accuracy.

A.3 ADDITIONAL RESULTS

We compare GLAM against additional baselines including recent SSL methods, bug-fixed version
of GAM, Bayesian graph methods and additional results in Table A.3. We also assess GLAM on
datasets where a graph is genuinely not available along with the datasets. Table A.3 shows that
GLAM consistently outperforms previous state-of-the-art methods on several of these datasets.

A.4 ADDITIONAL ANALYSIS

Noise Analysis. We perform the following analysis to show that having a few noisy edges can hurt
performance more than throwing away several good edges (i.e. edges where source and target nodes
have same labels). We construct kNN graphs for several benchmark datasets. We throw away all
the noisy edges from this graph and call this as Perfect-kNN graph. We conduct two experiments

1https://github.com/dongkwan-kim/SuperGAT
2https://github.com/lucfra/LDS-GNN
3https://github.com/hugochan/IDGL
4https://github.com/jiaqima/G3NN
5https://github.com/huawei-noah/BGCN
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Features Boosted Features
Models \Datasets 20NG MR Ohsumed ACM CiteSeer 20NG MR Ohsumed ACM CiteSeer

MLP 64.89 (1.24) 62.22 (1.21) 40.02 (1.30) 79.92 (0.55) 62.02 (1.80) 77.95 (1.12) 66.95 (0.80) 46.95 (1.11) 87.66 (0.69) 68.50 (1.52)
SemiEmb 74.10 (1.65) 66.08 (1.09) 42.78 (1.93) 88.76 (1.21) 66.44 (0.92) 77.17 (0.90) 66.77 (1.22) 46.87 (1.63) 88.88 (0.33) 70.09 (0.10)

CL - MLP 65.26 (1.24) 64.45 (1.42) 45.20 (2.49) 89.77 (0.76) 69.40 (1.01) 80.87 (0.41) 68.03 (0.71) 48.11 (0.71) 85.83 (1.59) 69.57 (2.41)
ICT - MLP 61.66 (1.34) 62.44 (0.84) 39.36 (1.43) 79.42 (0.80) 58.80 (0.76) 77.14 (0.89) 66.29 (0.71) 45.30 (1.25) 91.28 (0.35) 68.80 (0.61)

G3NN 70.45 (0.85) 65.48 (1.57) 41.50 (0.42) 87.12 (0.48) 70.12 (0.27) 72.08 (0.80) 63.11 (0.27) 42.73 (1.18) 90.62 (0.73) 70.82 (0.32)
BGCN 71.59 (0.58) 66.07 (0.67) 44.26 (1.29) 87.14 (0.63) 68.52 (1.37) 74.23 (0.63) 64.52 (1.32) 44.38 (0.67) 91.26 (0.25) 69.28 (0.79)

LDS OOM 69.33 (0.90) 47.82 (1.33) 86.98 (0.78) 72.16 (0.61) OOM 67.16 (1.61) 47.07 (1.61) 92.93 (0.61) 71.44 (0.40)
IDGL 68.21 (1.45) 68.58 (0.90) 44.82 (1.34) 88.94 (0.52) 67.65 (1.71) 69.23 (1.15) 66.03 (1.42) 43.65 (1.30) 91.09 (0.38) 68.88 (0.44)

GCN + GAM 64.74 (0.83) 66.82 (1.33) 46.32 (0.78) 88.33 (1.67) 70.43 (1.93) 64.93 (0.47) 66.89 (1.05) 44.51 (1.21) 91.11 (0.96) 68.50 (0.99)
GCN + GAM* 54.73 (0.76) 56.46 (0.64) 37.09 (2.07) 66.32 (1.41) 57.22 (1.27) 73.52 (1.31) 59.56 (0.78) 40.03 (0.58) 68.33 (2.31) 59.17 (1.44)

GLAM 77.01 (1.81) 69.43 (0.97) 49.40 (1.01) 89.34 (0.15) 72.22 (0.45) 81.32 (0.76) 68.26 (0.68) 48.25 (0.84) 92.38 (0.20) 71.86 (0.44)

Table 7: Subset of results on additional datasets and baselines.

(a) Cora (b) Citeseer

(c) ACM (d) DBLP

Figure 2: Noise Analysis Plots

- 1] We randomly add noisy edges to this Perfect-kNN graph, and 2] We randomly remove good
edges from the Perfect-kNN graph. We report test accuracies (using GCN) for varying percentages
of added noisy edges and removed good edges. Figure 2 shows these plots. We observe that adding
noisy edges deteriorates the performance of the model. However, even after removing 50%-75%
of good edges, the GCN can still perform well on the test set. This observation suggests that it is
important to reduce the amount of noise added rather than saving good edges.

GLAM v/s IDGL: Latent Node Representations. IDGL is an iterative approach, thereby, low-
quality graph leads to learning poor representations, and this effect cascades over multiple iterations
leading to minor or no accuracy gains. We note that IDGL performs better on PubMed compared
to GLAM as the knn graph has the homophily score close to the original link graph. GLAM works
better in the presence of noisy graphs. Figures 3(b), 3(c) shows IDGL’s first and last iteration’s
embeddings and Figure 3(a) shows GLAM’s embeddings TSNE plots on the DBLP dataset. We
observe that the final iteration’s plot is similar to the first iteration plot whereas GLAM’s plot shows
discernible clusters.

(a) GLAM (b) IDGL - First Iteration (c) IDGL - Last Iteration

Figure 3: TSNE Plots on DBLP Dataset
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Cora CiteSeer ACM DBLP
Affinity Graph Weight = 1.0 63.88 62.8 85.52 74.43

Table 8: GCN’s performance on Affinity Graph

(a) Cora (b) Citeseer

(c) ACM (d) DBLP

Figure 4: Effect of Weight on Affinity Graph Plots

Is Affinity Graph alone enough?. Table 8 shows GCN’s performance on using only affinity graph.
We see that using affinity graph alone is not sufficient. Affinity graph only contains edges from all
nodes to labeled nodes restricting feature propagation, thus limiting the performance of GNNs. We
study how placing different weights on the affinity graph during graph combination affects GCN’s
Kipf & Welling (2017) performance. We observe that in all the datasets, adding affinity graphs
improves the performance of GNNs. Figure 4 illustrates the effect of the affinity graph on four
different benchmark datasets. A bell shape sort of behavior is observed in most cases, where the
performance of GNN starts to dwindle as more weight is given to the affinity graph. KNN graphs
are responsible for feature propagation. Placing more weight on the affinity graph affects feature
propagation and we start losing performance after a certain point.
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