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Abstract. Spoken Language Understanding (SLU) plays an integral
role in dialogue systems. However, conventional SLU relies heavily on
manually annotated datasets, which are impractical for open-domain
SLU, given the wide variety of topics that must be considered. As the
dataset grows exponentially, significant costs are inevitably incurred in
achieving open-domain SLU. The Noisy Teacher and Consistently Guid-
ing Student (NTCG) Paradigm is proposed to address these challenges.
The objective is first to develop a prompt that effectively extracts valu-
able knowledge from large language models (LLMs), which can occasion-
ally generate inconsistent and random responses, acting as ‘noisy teach-
ers.’ This refined knowledge is then imparted to the downstream task
model to improve performance further. To this end, we introduce an
Incremental Progress Prompting Scheme (IPPS) under the NTCG that
employs prompting techniques to generate more reliable annotations for
unlabelled OD-SLU data, thereby fostering “Consistently Guiding Stu-
dents”. Initially, IPPS aims to solve the straightforward intent prediction
task in OD-SLU using self-ranked prompting, enhancing LLMs precision
using similar examples from a small, clean set as contextual hints for a
given query. Additionally, the Intersection Sample Selection method is
utilised to identify consistently predicted samples across different levels
of randomness in ChatGPT, further improving its accuracy. The Con-
sistent Intent Slot Prompting (CISP) method is proposed by exploiting
the intent-to-slot correlation matrix to boost accuracy and precision for
the more complex slot-filling task. Finally, the proposed Positively Fine-
Tuned Scheme (PFTS) incorporates distilled knowledge from consistent
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samples via Label Consistency Regularisation to enhance downstream
model performance. These strategies significantly improve intent detec-
tion and slot filling for prompt-based learning and downstream tasks.

Keywords: Open Domain Spoken Language Understanding (SLU) ·
Prompt based Task · Large Language Model (LLMs) · Knowledge
Distillation

1 Introduction

Spoken Language Understanding (SLU) [48] hinges on the availability of high-
quality annotations, which is crucial in a task-oriented system. It encompasses
two sub-tasks: intent detection, a sentence-level classification task, and slot
filling, a sequence labelling task. Over the past decade, significant advance-
ments have been made in SLU. However, current methods often require exten-
sive labelled data, which can be impractical for open-domain SLU (OD-SLU)
[1,2,7,8] that needs to handle a wide range of topics. This necessity poses a
great challenge for resource-limited groups such as small businesses or individu-
als seeking to customise dialogue systems for specific applications but lacking the
financial and human resources to acquire a large amount of high-quality anno-
tation. To mitigate this, an intuitive approach involves using Large Language
Models (LLMs) to perform the annotation task. However, the responses gener-
ated by LLMs [32,39] often exhibit a degree of randomness and hallucinations,
which leads to notable drawbacks. Such randomness and hallucinations can pose
challenges, particularly when high-quality annotations are vital for open-domain
spoken language learning tasks. Subsequently, the central question addressed in
this paper is: ‘How can we extract valuable knowledge from a “Noisy
Teacher” (ChatGPT) to train a Consistently-Guiding Student Model
for Open-Domain Spoken Language Understanding (OD-SLU)?’ . To
achieve this objective, we propose the Noisy Teacher and Consistently Guiding
Student (NTCG) framework, which consists of two parts. The first part is the
Incremental Progress Prompting Scheme (IPPS), and the second is the Positively
Fine-Tuned Scheme (PFTS). The IPPS initially focuses on intent detection,
which is the more straightforward task of OD-SLU, using self-ranked prompt-
ing for the noisy teacher. Specifically, we focus on mitigating the randomness in
the “noisy teacher” of the intent detection task by using self-ranked prompting
(see Sect. 4.1), inspired by [6]. This involves selecting an example as contextual
hints most similar to a query from a small, clean sample and then feeding these
into ChatGPT to generate the intent prediction. Our motivation stems from
the observation that previous strategies have predominantly emphasized enrich-
ing the context, either by providing step-by-step explanations [43] or additional
examples [42], to improve the quality of interactions with Large Language Mod-
els (LLMs). However, we believe that the effectiveness of prompting should not
solely depend on the quantity or quality of the examples but also the seman-
tic textual similarity between the Query (Q) and the example. Given the more
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Fig. 1. Open Domain SLU for Multi-Intent Detection and Slot Filling Tasks.

relevant responses obtained using self-ranked prompting, an intersection sample
selection strategy is applied (see Sect. 4.1). This approach aims to improve the
consistency and precision of responses from ChatGPT by selecting only those
samples that produce the same prediction across different levels of randomness
in ChatGPT. This method enables the noisy teacher to reevaluate and reflect
on the answers it provides to the student. Similar research, like that in [42],
proposes choosing multiple, diverse samples with correct answers through few-
shot CoT, utilizing the answers with the most consistent predictions as the final
response. In the more challenging slot-filling task, one key challenge faced is the
large number of slot label classes, which can range from 74 (MixSNIPS) to 121
(MixATIS), compared to intent detection, which typically involves 7 (MixSNIPS)
to 18 (MixATIS) intent classes. This is a constrained generation task, meaning
it involves querying the knowledge of LLMs from start to end, a process that
has been shown to perform quite poorly by LLMs such as ChatGPT and the
Bert Model [19]. Therefore, naively prompting large language models (LLMs) to
provide the correct slot label for each word can lead to catastrophic results. To
address this issue, we propose Consistent Intent Slot Prompting, which exploits
the intent-to-slot correlation matrix to tackle the slot-filling task. Specifically,
we use an intent-to-slot correlation matrix to reduce the original candidate set of
slot label classes for consistent samples. As the intents of these consistent sam-
ples are better defined, the truncated slot labels for the corresponding intents
and utterances become more useful. This substantially relieves the burden on
the LLMs. While many prompting-based learning methods [3,3,11,25,29,46,49]
have been studied to address some issues posed by noisy teachers, they fail to
progressively solve sequential tasks cooperatively to address the challenges each
task faces.

To achieve the “Consistently Guiding Student” model, we propose a Positively
Fine-Tuned Paradigm (PFT). Moreover, we observe that the LLMs-generated
predictions exhibit noisy multi-partial label supervision for the student model
task. Based on this observation, we propose a positive fine-tuned contrastive
loss for the student model, specifically designed for the LLM-generated predic-
tion label set. The objective is to ensure that intra-class embeddings within
the same class are brought closer together while those from different classes are
pushed further apart. Subsequently, a more distinctive representation is learned,
improving accuracy and robustness. Both methods form the basis of a “Noisy
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Teacher and Consistently Guiding Student” paradiagm (see Sect. 4). The main
contributions of this paper are:

– We introduce the “Noisy Teacher and Consistently-Guiding Student” learning
framework for the intent and slot-filling tasks of OD-SLU.

– We propose incremental progress prompting to achieve more robust distilla-
tion for the intent and slot-filling tasks of OD-SLU.

– We demonstrate that leveraging semantically similar textual information
between queries and examples in an unlabelled OD-SLU dataset can signifi-
cantly improve both the subset accuracy and the overall accuracy of ChatGPT
during prompting, especially when limited supervision is provided.

– We propose Consistent Intent Slot Inference Prompting, exploiting relevant
intent-to-slot correlations matrix to improve the slot-filling task of OD-SLU.

– We propose a positively fine-tuned paradigm for addressing LLMs-generated
noise multi-partial label learning for downstream tasks in intent detection.

– We construct a ChatGPT-generated predicted label set for the OD-SLU task
based on MixATIS [16,35] and MixSNIPS [9,35].

2 Related Work

The challenge of multi-intent classification for spoken language understanding is
initially addressed by [23]. Subsequently, [13] employs slot labels to tackle the
multi-intent task. After that, [34] introduce auto-regressive modelling for multi-
intent classification and slot filling, utilising graph attention networks [41]. An
enhanced non-auto-regressive GAT model was later proposed, which improved
the integration between the predicted intents and the hidden states of the slots.
More recently, [44] developed both slot-to-intent and intent-to-slot graph neural
networks, inspired by [41], enabling each network to guide the other in refin-
ing multi-intent and slot classifications. Recently, [6] proposes a self-teaching
prompting approach that utilises Large Language Models (LLMs) to progres-
sively generate and refine annotations for multi-intent datasets by learning from
consistent samples. Knowledge distillation can be categorised into three types
[14]: Response-based, where the student model learns from the teacher model’s
outputs [18,20]; Feature-based, where the student model is trained using features
from the teacher model [17,36,47]; and Relation-based [28,33,38,40]. With the
advent of larger LLMs like ChatGPT, the teacher model’s role has evolved into a
knowledgeable yet noisy source. Our work focuses not only on knowledge distil-
lation but also on reducing randomness by identifying consistent and precise pat-
terns in the outputs for the student model. Our positively fine-tuned contrastive
loss function 8 is extended based on supervised contrastive learning [15,21] with-
out using true label information. As our task involves multi-label classification,
we have adapted the loss to suit multi-label scenarios. Previous studies [34,37]
have explored multi-label learning with contrastive loss. However, our loss is the
first to address noisy multi-partial label learning [26], a newly discovered branch
of fine-grained partial label learning [5].
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3 Problem Setting

We define the utterance space as X ⊆ R
d, where d represents the dimensionality.

Let Y = [k], with [k] = {1, 2, 3, ..., k}, denote the label space for the true label
candidate set, where k > 2 indicates the number of classes. In this setting, for
each instance xi, the true label set is denoted by Yi, where Yi ⊆ [k] and Yi �= ∅.
This set Yi contains the true labels associated with xi. The set of all possible
label combinations, excluding the empty and full sets, is denoted as C. Formally,
C = 2[k] \ {∅,Y}, where 2[k] represents the power set of Y. The size of this set is
|C| = 2k −2. For each instance xi, the observed candidate label set

−→
Y i ∈ C is the

output of ChatGPT. This set
−→
Y i may include a partial or full subset of the true

labels in Yi and potentially false positive labels. The false positive labels Fi are
denoted as Fi ⊆ {1, 2, ..., k}\Yi. Overall, a sample distribution with the predicted
label sets generated by ChatGPT as Dt = {(x1,

−→
Y t1), (x2,

−→
Y t2), ..., (xn,

−→
Y tn)} is

given. Each tuple in Dt contains an instance xi and its corresponding predicted
label set

−→
Y i, representing the noisy multi-partial label set.

4 Noise Teacher and Consistently Guiding Student
Paradigm

The learning objective of the Noise Teacher and Consistently Guiding Student
Paradigm is to enhance LLMs’s response accuracy and improve the student
model’s robustness. The first part of the paradigm consists of refining LLMs’s
responses with self-ranked prompting and intersection sample selection strate-
gies. The second component explains how to exploit refined knowledge of LLMs
in the student model.

4.1 Incremental Progress Prompting Scheme for Intent and Slot
Filling Distillation

Self-ranked Prompting for Intent. When given a query, our self-ranked
prompting method selects the most similar and consistent ones with the query
to assist the LLMs in predicting more accurately. The details of our proposed
self-ranked prompt are illustrated in Fig. 2. Initially, an unlabelled dataset dis-
tribution DX = {x1, x2, ..., xn} over the input space is provided. Additionally, a
small, clean dataset is also given for prompt-based tasks. The clean data distri-
bution is defined as DAL = {(a1, l1), (a2, l2), ..., (as, ls)} and we have named it
as hints, where s represents the total number of clean samples. Given DX and
DAL, ChatGPT, denoted as Gt, is used to generate the predicted label sets

−→
Y t

using our proposed self-ranked prompting. Here, t is the temperature parameter
that controls the level of randomness in ChatGPT’s label predictions for each
input sample x ∈ X. We denote aTR and mTR as a top-ranked similar example
(a selected utterance and its intent) selected from DAL corresponding to each
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Fig. 2. Self-Ranked Prompting: The table shows the Self-Ranked Prompting strategy
and prompting formatting. The semantic textual similarity is represented by the cosine
similarity between Query(x) and the example, denoted as a hint. A represents the
corresponding intents and context information for the example. Our prompting stud-
ies include random prompting (baseline), top-ranking prompting, and bottom-ranking
prompting. The score reflects the textual similarity between Q and hint. The group
prompting format is at the bottom, and the single prompting format is at the top.

xi, according to equation (3) and Fig. 2. Specifically, for each xi, the predicted
label set

−→
Y ti is generated as follows:

Gt(xi, aTR,mTR ) =
−→
Y ti , (1)

where,

aTR ,mTR = argmax
(ai,mi)∈DAL

ESC (ai, x) . (2)

This holds for all i ∈ [N ] = {1, 2, 3, . . . , N}, where N is the total number of
training samples and for all t ∈ {0.1, 0.3, 0.5, 0.7}. We denote (aTR,kTR) as a hint
and its intent corresponding to each query x for the ChatGPT. The embedding
similarity score (ESC) is defined as follows:

Embedding Similarity Score (ESC) =
W (a) · W (Query(x))

‖W (a)‖‖W (Query(x))‖ , (3)

where W represents the word2vec model [31], which is applied to obtain the
lower-dimensional embeddings of both the hints and queries. The model is
trained on sentences-only datasets. The ESC evaluates the word embedding sim-
ilarity between the Query (x) and utterance a of the DAL.

Intersection Sample Selection Strategy. Consequently, three sample dis-
tributions with varying temperature parameters t are obtained, denoted as:

Dt = {(xi,
−→
Y ti)|xi ∈ X} , ∀t ∈ {0.1, 0.5, 0.3, 0.7}. (4)



Low-Hanging Fruit: Knowledge Distillation from Noisy Teachers 113

The selection criterion for the consistent distribution is:

Dconsistent = {(xei ,
−→
Y ei)|xei ∈ X and

−→
Y 0.1i =

−→
Y 0.3i =

−→
Y 0.5i =

−→
Y 0.7i}. (5)

This criterion considers only those samples with the same predicted label sets
across all three temperature-based ChatGPT configurations Gt.

Consistent Intent Slot Prompting for Open Domain Slot Filling Task.
The slot-filling task in open-domain SLU can be challenging to solve, even with
LLMs, due to the lengthy input and its corresponding slot label classes, which are
often long and require the slot labels to be filled in a sequence corresponding to
each word of the input utterance. Figure 1 illustrates the differences between
the intent and slot-filling tasks. In our approach, we have further leveraged
the obtained consistent dataset Dconsistent by proposing Consistent Intent-Slot
Prompting (CISP) to exploit the intent-to-slot correlations matrix in addressing
the more challenging slot-filling task of open-domain spoken language under-
standing (OD-SLU). For each intent prediction set

−→
Y ei of a consistent sample

xei , each intent in the prediction set is associated with a set of slot labels.
For instance, given the intent to slot correlation, we know that intent label
AddToP laylist is associated with the slot labels playlist, entity_name, and
artist. We will only include these slot labels in the slot class candidate set for
the xei slot labels. Given that the original size of the full slot class candidate set
is large, applying our approach can significantly reduce the size of the slot class
candidate set. This reduction alleviates the burden on large language models
(LLMs) and improves slot-filling predictions. Figure 4 details the intent-to-slot
correlations matrix for both datasets. The correlation between intent and slot is
inductive, meaning it can be acquired heuristically (Table 4).

4.2 Positively Fine-Tuned Paradigm

Consistently-Guiding Student Via Consistent Samples. In this subsec-
tion, we aim to improve the robustness of the student model by leveraging the
samples of distribution Dconsistent to address challenges that arise from the
noisy multi-partial label type supervision generated by the ChatGPT. Within
a batch, let i ∈ I ≡ {1 . . . N} be the index of a sample drawn i.i.d from the
distribution Dt=0.3, and let j ∈ P ≡ {1 . . . N+} be the index of a consistent
sample drawn i.i.d from the distribution Dconsistent. Here, N+ = |Dconsistent|
and N = |Dt|. The consistent sample originates from the same source sample
as the sample but includes these samples with the same prediction label set
across all three randomness configurations of ChatGPT. More specifically, given
an sample xi, it is only considered as the consistent sample xj if the condition
G0.1(xi) = G0.5(xi) = G0.7(xi) is satisfied. We define A(i) ≡ I\{i}. The index
i is denoted as an anchor. However, we are not using index i as an anchor.
Instead, we used index j and named it an equivalence anchor in our revised loss.
We define A(j) ≡ I\{j}, the set of all indices in the batch excluding index j.
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Fig. 3. Our proposed Incremental Progress Prompting Scheme for knowledge distil-
lation from a noisy teacher for open-domain spoken language understanding involves
three steps. The first part uses self-ranked prompting to enable LLMs to generate out-
puts with less noise. Subsequently, an intersection sample selection strategy is employed
to obtain consistent samples. Given the consistent sample and estimated intent-slot cor-
relation, we truncate the candidate slot label classes to enable LLMs to generate more
refined responses for the slot-filling task.

P ⊆ I denotes the indices of consistent samples in the batch. P (j) ≡ P\{j}, the
index j is equivalence anchor (Table 2).

Label-Wise Embedding Regularisation. The key issue of noisy multi-
partial label generated prediction is the chance of a complete set of true labels
not being guaranteed to exist in the candidate label set, contrary to the multi-
partial label setting where true labels are always present. Thus, exploiting the
candidate label set of consistent samples with a significantly higher accuracy
rate helps the loss function to identify more precise positive samples.

C+(j) = {c|c ∈ P (j), i ∈ I:Mci > 1}, (6)

the C+(j) is designed to identify samples with sufficiently higher label similarity
to the equivalence anchor to be considered a positive sample. The M is defined
as follows:

Mic =

{
1 if

−→
Y i

T · −→
Y c > 1

0 otherwise
. (7)

From equation (7), every embedding of equivalence anchor will be pulled together
with embeddings of batch samples from the same class that met the criterion
Mci > 1. The equivalence anchor embedding is pulled apart with embeddings of
batch samples with other classes that do not meet the criterion Mci > 1. The
intra and inter-class correlation matrix M is designed to learn more distinctive
representations by exploiting as much information as possible from the labels.
The

−→
Y c is the predicted label vector of the cth equivalence anchor.

−→
Y i denote

as the predicted label vector of the ith sample in the batch. The entry of Mic is
greater than 1 if there is an overlap of the cth predicted label vector and the ith
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sample’s predicted label set, and 0 if there are no shared labels. This approach
addresses the issues of noisy multi-partial labels by focusing on the most reliable
and consistent label relationships.

Equivalent Anchors Using Reliable Feature Representation. Next, we
train a decoder f and a projection head g by leveraging the embeddings of
consistent samples. We refer to consistent samples as equivalent anchors. The
embedding z = g(x) represents the encoder’s lower embedding, the backbone
model’s L2-normalised final hidden state layer. It transforms the instance x into
a dense vector representation z ∈ R

d for a sample x. Given this, we have defined
the positive fine-tuned contrastive loss function as follows:

L(f(x), τ, C,A) = −
∑
j∈P

1
|C+(j)|

∑
c∈C+(j)

log
exp(zj�zc/τ)∑

a∈A(j) exp(z
�
j za/τ)

, (8)

Our work utilises equivalence anchors, which are consistent samples selected
using the intersection sample selection strategy. These anchors are employed
uniquely in our contrastive loss function, differing from methods in previ-
ous works [12,22,30,37]. By contrasting these equivalence anchors, which have
demonstrated much higher accuracy (as shown in Tables 1 and 2), against other
samples in the batch, our loss function enables the model to learn more pre-
cise and distinct representations despite the noise in multi-partial labels. This
approach ensures that the embeddings of equivalence anchors from identical
categories are brought closer together, aligning with those of other samples that
exhibit similar annotation characteristics while distancing them from samples of
different classes.

Label Consistency Regularisation Using Intersection Sample Prior. To
further mitigate the harmfulness caused by the false positive labels, inspired by
maxi-margin assumption [4], we have proposed intersection sample prior label-
aware consistency regularisation LISPL Eq. (9) to utilise the prior label distri-
bution as regularisation, adjusting the logits to help the classifier down weight
the frequently occurring false positive class and up weight the less frequently
occurring positive class during training process. For each sample in the batch
and each class, we compute the prior modified uniform matrix as:

Tij =
−→
Y 0.3+ij · mij , ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , k},

where
−→
Y +ij is an predicted label set of instance xi i.i.d draw from the consistent

distribution Dconsistent. The mj is denoted as:

mi,j = exp(α · max (λi,j · Nj)) ,∀j ∈ {1, ..., k},

where k is the number of classes, j denotes the index for each class, λ is the
class proportion, and it is estimated from consistent distribution. The α is the
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hyperparameter. The Tij is the i − th sample’s target value for the j-th class.
Subsequently, we adjust the original logits Qij with the predefined Tij , which is
defined as Qij = f(x). The modified logits Vmij

is defined as Vmij
= Qij − Tij ,

where mij is the i-th sample’s logit for the j-th class. Intersection Sample Prior
Label Consistency Regularisation is defined as follows:

LISPL = − 1
K

K∑
j=1

[−→
Y 0.3j log(σ(Vmj

)) + (1 − −→
Y 0.3j ) log(1 − σ(Vmj

))
]
, (9)

where σ(Vmj
) is the sigmoid function applied to the logit for class j. The

−→
Y 0.3ij

is the predicted label set for the xi. The Vmij
is the modified logit of Qij . The

λ1 is a hyper-parameter. To encapsulate, the final learning objective for the
downstream task manifests as:

L = (1 − λ2)(LISPL + λ1L(f(x), τ, C,A)) + I · (λ2)LBCE, (10)

where I(Intent and Slot Task) is the indication function. In our downstream
experiments, we consider both LLMs-generated intent prediction and LLMs-
generated intent prediction with clean slot-filling tasks. I indicates that in the
former case, we will not consider LBCE, whereas if both intent and slot tasks are
considered, LBCE is included. Our downstream task focuses on intent classifica-
tion, but our proposed method has also improved the slot-filling task. The λ2

becomes 1 when I(Intent and Slot Task) is zero.

5 Experiment

Datasets. The experiments are implemented on two open-source multi-intent
datasets, MixATIS and MixSNIPS. MixATIS [16,35] includes 13,162 utterances
for training, 756 for validation and 828 for testing. MixSNIPS includes [9,35]
39, 776, 2, 198, and 2, 199 utterances for training, validation and testing datasets.

Prompting Experiment Setting. We use the ChatGPT 3.5 [32] to help us
generate the annotations for our downstream task on the BERT [10], XLnet [45]
and ROBERTA [27] models. We allow 65 tokens for each query. We have set the
temperature parameter t at 0.1, 0.3, 0.5, 0.7 for our prompting task. Our entire
experiment is conducted using the group prompting approach. Group prompt-
ing refers to asking multiple questions in each query. For each query, we have
given 5 and 10 utterances to ChatGPT on dataset MixATIS and MIXSNIPS,
respectively. We have initially randomly selected 74 samples with true intents
for our predefined DATIS

AL from the MIXATIS dataset and 400 samples with true
intents for our predefined DSNIPS

AL from the MIXSNIPS dataset.
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Table 1. Comparison of Self-Ranked Prompting and Chain of Thought Prompting in
the Intent Prediction Task for MixSNIPS and MixATIS

t 0.1 0.3 0.5 0.7 Average

MixATIS - Chain of Thought Prompting
Accuracy Ratio 0.31 0.30 0.30 0.29 0.30
Subset Ratio 0.52 0.52 0.52 0.50 0.51
MixATIS - Self-Ranked Prompting
Accuracy Ratio 0.37 0.38 0.38 0.34 0.37
Subset Ratio 0.57 0.58 0.58 0.55 0.57
MixSNIPS - Chain of Thought Prompting
Matching Ratio 0.40 0.41 0.44 0.46 0.43
Subset Ratio 0.45 0.46 0.48 0.50 0.47
MixSNIPS - Self-Ranked Prompting
Accuracy Ratio 0.66 0.68 0.68 0.69 0.68
Subset Ratio 0.75 0.76 0.77 0.77 0.76

Evaluation Metrics for Prompting. This metric measures the exact match-
ing rate between the predicted label set and the true label set. It can be calculated
as:

Accuracy Ratio =
Number of correctly predicted labels

Total number of samples
(11)

This metric measures the ratio of the predicted label set that includes the true
label set. It can be calculated as:

Subset Ratio =
Number of predicted label sets that includes true labels

Total number of samples
(12)

These metrics help evaluate the performance of our proposed prompting method
in terms of intent prediction accuracy and the subset intent prediction (Inclusion
of true labels in the predicted sets)

Table 2. Consistent Distribution Generation Via Intersection Sample Selection:
Results for MixATIS and MIXSNIPS Datasets with Intersection Sample Selection.
The 3468 of 13162 is the sample size for consistent sample distribution MixATIS. The
23186 of 39776 is the sample size for consistent sample distribution MIXSNIPS.

Dataset Metric Dconsistent % of the Dataset Left

MixATIS Accuracy Ratio 59.02% 26.34%
MixATIS Subset Ratio 63.41% 26.34%
MIXSNIPS Accuracy Ratio 80.78% 58.29%
MIXSNIPS Subset Ratio 87.74% 58.29%
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Evaluation Metrics for Downstream Task. We have used the following met-
rics to evaluate the performance of downstream tasks. Precision(P)= TP

TP+FP ,
Recall(R)= TP

TP+FN , F1 Score = 2 × P×R
P+R , Accuracy = TP+TN

TP+TN+FP+FN . TP
denotes the number of true positive samples. TN means the number of true
negative samples. FP is defined as the number of false positives. FN is the
number of false negative samples. P is precision and R is recall.

Experimental Details for Downstream Task. The hyperparameter α is
defined as α = log(0.75) + 0.25. The threshold τ is set to 0.0001 for the Mix-
ATIS and MixSNIP datasets. For tasks involving LLM-generated intent and
clean slots, τ is set to 0.0001 for MixATIS and 0.00001 for MixSNIP, with the
total number of epochs set to 35 and 50, respectively. The best performance on
the validation dataset set is chosen for reporting the final results. The λ2=0.01.
We have used the Bert model [10], XLnet [45], and Roberta [27], which is robustly
optimised BERT pretraining approach as backbones for our intention classifica-
tion downstream task. We used a binary cross-entropy logit loss function in the
baseline based on the BERT, Roberta, and XLnet models. The learning rate is
set at 0.001, whereas the rate of dropouts in the network is set at 0.1, and the
batch size is set at 16 for the MixATIS and 32 for the MixSNIPS. The total
epoch is set at 30. We use Adam [24] as our optimiser. The λ1 is 0.1 for the
MixSNIPS and 0.01 for the MixATIS (Tables 5 and 6).

Table 3. Comparison of Random and Top Self-Ranked Prompting methods on the
MixSnips and MixATIS datasets. The Group Random and Top Ranking are shown in
Fig. 2.

Dataset Prompting Accuracy Ratio Subset Ratio

MixSNIPS Group Random Ranking 64.75± 2.65% 70.75± 12.37%

Group Top Ranking 74.19± 3.86% 81.18± 8.49%

MixATIS Group Random Ranking 37.00± 10.54% 56.00± 1.00%

Group Top Ranking 39.75± 0.50% 58.75± 4.03%

Consistent Distribution Generation Via Intersection Sample Selec-
tion. After we obtained predicted label sets for both the MixATIS and MixS-
NIPS datasets, using randomness parameter of {0.1, 0.3, 0.5, 0.7} applying self-
ranked prompting, the “Intersection Sample Selection” method was applied
to obtain a consistent distribution. The consistent distribution demonstrated
superior matching and subset ratio performance compared to the self-ranked
prompting-only approach. The performance improvement was more significant
in the MixSNIPS dataset, where the Accuracy Ratio increased from 0.6869 (Con-
fidence 0.7) to 0.8078 (Intersection Sample Selection), and the Subset Ratio rose
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from 0.7715 (Confidence 0.7) to 0.8774 (Intersection Sample Selection). There
was also a noticeable improvement in the MixATIS dataset; the Accuracy Ratio
went up from 0.3767 (Confidence 0.3) to 0.5615 (Intersection), and the Subset
Ratio climbed from 0.5764 (Confidence 0.7) to 0.6784 (Intersection). Overall,
our experimental results have proven that “Intersection Sample Selection” is an
effective strategy for enhancing both matching and subset ratios in both datasets
(Table 2).

Table 4. A Comparison between Consistent Intent Slot Prompting (CISP) and Stan-
dard Slot Prompting for Slot Filling Task on MixATIS and MixSNIP.

MixSNIP Our (CISP) BaseLine

Total Exact Match 3.85% 0.57%
Average F1 Score 24% 7%
MixATIS Our (CISP)BaseLine
Total Exact Match%/Number6.49% 3.15%
Average F1 Score 35% 26%

Consistent Intent Slot Prompting for Slot Filling Experiment. This
section compares Consistent Intent Slot Prompting (CISP) and Standard Slot
Prompting for the Slot Filling Task on MixATIS and MixSNIP. Our method has
improved LLMs’ matching rate and F1 score for the slot filling task by 2.28 %
and 17% on MixSNIP and 3.34% and 9% on MixATIS, respectively. Even though
the exact matching and F1 score improvements are significant when employing
our Consistent Intent Slot Prompting, they are still insufficient. Therefore, we
have not used the ChatGPT-generated slot labels for downstream tasks.

Downstream Task “MixATIS” and “MixATIS” on the Slot Filling and
Intent Experimental Results. We have used the LLMs-generated intent and
clean slot to evaluate our proposed ISPL+PFTS loss function. Table 7 compares
the performance of BERT models using Our Proposed Method and BCE loss
on the MixATIS and MixSNIP datasets. For the MixATIS dataset, the table
indicates that our ISPL+PFTS loss function outperforms the baseline BCE Loss
in terms of intent accuracy (+4.45%) and slot F1 score (+6.98). Likewise,
for the MixSNIP dataset, an improvement is shown when using Our method
(ISPL+PFTS) compared to the baseline in terms of intent accuracy (+1.24%)
and slot F1 score (+1.31%). Our proposed loss function for the downstream
task is focused on intent classification, but our proposed method has also shown
improvements in the slot-filling task.
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Table 5. Comparison and Improvement of MixATIS with Different Models and PFTS
Loss.

Dataset Model Loss Function Intent Acc. Precision Recall F1-Score
MixATIS

BERT BCE Loss 51.96 ± 2.00% 71.90 ± 1.23% 71.33 ± 2.43% 70.11 ± 2.06%

BERT (ISPL+PFTS) 54.88 ±3.01% 73.19 ±0.51% 71.52 ±1.58% 70.95 ±1.19%

Roberta BCE Loss 51.14 ± 1.17% 71.79 ± 1.55% 70.65 ± 1.78% 69.63 ± 0.89%

Roberta (BCE+ISPL+PFTS) 53.48 ±0.78% 72.53 ±0.60% 71.65 ±0.69% 70.86 ±0.52%

MixSNIPS
% Training samples
5% BERT ISPL + PFTS 70.72 ± 1.14% 90.91 ± 0.88% 90.76 ± 0.52% 90.77 ± 0.29%

5% BERT BCE 69.31 ± 1.20% 91.41 ± 0.20% 88.15 ± 0.080% 89.26 ± 0.06%

10% BERT ISPL + PFTS 79.44 ± 0.56% 95.57 ± 0.79% 90.88 ± 0.71% 93.03 ± 0.19%

10% BERT BCE 76.23 ± 1.32% 95.34 ± 1.5% 89.15 ± 0.84% 91.98 ± 0.47%

50% BERT ISPL + PFTS 85.73 ± 0.55% 96.50 ± 0.45% 94.76 ± 1.57% 95.03 ± 0.05%

50% BERT BCE 83.33 ± 1.06% 96.94 ± 0.57% 91.98 ± 0.69% 94.25 ± 0.29%

100% BERT ISPL + PFTS 87.55 ± 0.61% 96.66 ± 0.19% 94.55 ± 0.37% 95.50 ± 0.20%

100% BERT BCE 85.76 ± 1.15% 97.00 ± 0.20% 93.20 ± 0.67% 94.94 ± 0.39%

100% Robert ISPL + PFTS 88.93 ± 0.12% 96.75 ± 0.23% 95.40 ± 0.18% 96.01 ± 0.16%

100% Robert BCE 86.56 ± 0.44% 97.22 ± 0.42% 93.42 ± 0.62% 95.16 ± 0.32%

100% X-Lnet ISPL + PFTS 88.55 ± 0.61% 96.66 ± 0.44% 94.75 ± 0.28% 95.57 ± 0.18%

100% X-Lnet BCE 85.79 ± 1.09% 97.06 ± 0.51% 93.22 ± 0.316% 94.98 ± 0.10%

Table 6. Comparison and Improvement of MixATIS and MixSNIP Datasets for Intent
and Slot Filling Using Our Method (ISPL+PFTS) Vs the Baseline BCE Loss Model.

Dataset Model Loss Function Intent Accuracy Slot F1 Score

MixATIS BERT BCE Loss 30.37 ±1.45% 14.35± 0.39%

BERT ISPL+PFTS 34.82 ±3.76% 21.33±0.58%

MixSNIP BERT BCE Loss 72.26± 1.15% 14.90± 0.82%

BERT ISPL+PFTS 73.50 ±1.91% 16.21± 0.78%

Fig. 4. Intents to Slots Correlation Matrices on MixSNIP and MixATIS

DownstreamTask “MixATIS” Experimental Results. BERTModel:For
the MixATIS dataset, we achieved a 2.92% improvement in intent accuracy, 1.29%
improvement in precision, 0.19% improvement in Recall, 0.84% improvement in
F1-Score compared to the standard BCE loss on the BERT model. All results are
averaged over 6 random seeds. Roberta Model: For the MixATIS dataset, we
achieved a 2.34% improvement in intent accuracy, 0.74% improvement in preci-
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sion, 1.00% improvement in Recall, 1.23% improvement in F1-Score compared to
the standard BCE loss on the Roberta model.

Downstream Task “MixSNIPS” Experimental Results. BERT Model:
For the MixSNIP dataset, we achieved a 1.79% improvement in intent accu-
racy, −0.34% in precision, 1.35% improvement in Recall, 0.56%improvement in
F1-Score compared to the standard BCE loss on the BERT model. All results
are averaged over 6 random seeds. Roberta Model: Our ISPL + PFTS loss
function has shown a notable improvement, with a 2.37% increase in accuracy
compared to the baseline. X-LNET Model: Analogous to the Robert model,
there is a significant 2.76% improvement in intent accuracy with our ISPL +
PFTS loss function. All results are averaged over 6 random seeds.

Table 7. Comparison of Intent Accuracy Among BCE Loss Function, BCE + PFTS,
and ISPL+PFTS Loss Functions. Diff 1=(ISPL+PFTS vs BCE+PFTS) and Diff 2=
(ISPL+PFTS vs BCE)

Sample Size BCE Loss BCE + PFTS ISPL+PFTS Diff 1 Diff 2

100% 85.76 ± 1.15 86.31 ± 0.63 88.55 ± 0.61 +2.24 +2.79
50% 83.33 ± 1.06 84.11 ± 0.94 87.55 ± 0.61 +3.44 +4.22
10% 76.23 ± 1.32 77.33 ± 1.47 79.44 ± 0.56 +2.11 +3.21
5% 69.31 ± 1.20 70.35 ± 0.97 70.72 ± 1.14 +0.37 +1.41

Ablation Study. We have conducted an ablation study on MXISNIP to evalu-
ate the effectiveness of the ISPL and PFTS loss functions. This study compared
the standard BCE loss with the BCE+PFTS and ISPL+PFTS loss functions.
The BCE loss combined with PFTS demonstrated improvements in intent accu-
racy of 1.04%, 1.1%, 0.78%, and 0.55% for 5%, 10%, 50%, and 100% of the
training samples, respectively. In comparison, the ISPL+PFTS loss function
achieved improvements in intent accuracy of 0.37%, 2.11%, 3.44%, and 2.24%
for the 5%, 10%, 50%, and 100% of the training samples, respectively, when com-
pared against the BCE + PFTS loss function. Notably, the ISPL+PFTS loss
function showed improvements of 1.41%, 3.21%, 4.22%, and 2.79% for the 5%,
10%, 50%, and 100% sample sizes, respectively. Additionally, we have conducted
an ablation study (See Table 8) on various scenarios using the single prompt-
ing method to evaluate the effectiveness of self-ranked prompting. It shows that
having more examples per query helps improve both the accuracy and subset
ratios. Additionally, increasing the size of the predefined DAL helps increase the
accuracy ratio, especially effective with the “only intents” example method. Con-
textual information is useful in improving the subset ratio. The study of single
prompting is significant because, in some applications, users tend to ask only one
query at a time. This is often the case with voice assistants or in medical-related
inquiries.
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Table 8. Experimental Results for the Prompting Task (Single Prompting) on Small
Sample Sizes. The contextual information consists of a step-by-step explanation of the
given query. The baseline refers to a prompting method that asks a question without
displaying the selected example’s contextual information or the intent of the selected
example. ‘Other methods’ include prompting incorporating contextual information,
both contextual information and intent or only intent.

15 positive examples per sentence Baseline Contextual information Contextual information and intent only intent
Subset Ratio 53.0% 58.82% 59.02% 63.37%
Accuracy Ratio 12.4% 11.56% 18.55% 18.82%
Recall Ratio 23.4% 19.65% 31.44% 29.70%
small pool (15 samples) Baseline Contextual information Contextual Information and Intent only intents
Subset Ratio 53.0% 60.04% 57.87% 56.05%
Accuracy Ratio 12.4% 13.81% 13.79% 17.59%
Recall Ratio 23.4% 23.00% 23.83% 31.38%
large pool (157 samples) Baseline Contextual information Contextual Information and Intent only intents
Subset Ratio 53.0% 54.50% 55.55% 57.12%
Accuracy Ratio 12.4% 8.81% 10.12% 15.43%
Recall Ratio 23.4% 16.16% 18.22% 27.01%

6 Discussion

This paper proposes a “noisy teacher and Consistently Guiding student” learning
paradigm for the open-domain spoken language understanding (SLU) task. On
the LLMs side, incremental progress prompting scheme is proposed to solve the
easier intent task of OD-SLU and then tackle the more challenging slot-filling
task. We propose self-ranked prompting and intersection sample selection for
intent task distillation to derive consistent samples, enhancing relevance and
consistency for downstream tasks. Furthermore, we exploit the consistent sam-
ples and intent-to-slot correlations matrix to facilitate slot-filling prediction using
LLMs. Lastly, for the “consistently guiding student” model, we introduce a posi-
tively fine-tuned contrastive loss and intersection sample prior label consistency
regularisation to further improve intent classification performance. By applying
our paradigm, future research could focus on utilising LLMs to detect new and
multilingual intent.
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