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ABSTRACT

Deep Gaussian processes (DGPs) enable expressive hierarchical Bayesian mod-
eling but pose substantial challenges for posterior inference, especially over in-
ducing variables. Denoising diffusion variational inference (DDVI) addresses this
by modeling the posterior as a time-reversed diffusion from a simple Gaussian
prior. However, DDVI’s fixed unconditional starting distribution remains far from
the complex true posterior, resulting in inefficient inference trajectories and slow
convergence. In this work, we propose Diffusion Bridge Variational Inference
(DBVI), a principled extension of DDVI that initiates the reverse diffusion from a
learnable, data-dependent initial distribution. This initialization is parameterized
via an amortized neural network and progressively adapted using gradients from
the ELBO objective, reducing the posterior gap and improving sample efficiency.
To enable scalable amortization, we design the network to operate on the inducing
inputs Z(l), which serve as structured, low-dimensional summaries of the dataset
and naturally align with the inducing variables’ shape. DBVI retains the math-
ematical elegance of DDVI—including Girsanov-based ELBOs and reverse-time
SDEs—while reinterpreting the prior via a Doob-bridged diffusion process. We
derive a tractable training objective under this formulation and implement DBVI
for scalable inference in large-scale DGPs. Across regression, classification, and
image reconstruction tasks, DBVI consistently outperforms DDVI and other vari-
ational baselines in predictive accuracy, convergence speed, and posterior quality.

1 INTRODUCTION

Deep Gaussian processes (DGPs) Damianou & Lawrence (2013) extend the representational capac-
ity of Gaussian processes (GPs) by composing multiple layers of latent functions, enabling flexible
hierarchical Bayesian modeling. However, posterior inference in DGPs is notoriously challenging
due to the non-conjugate likelihoods, strong inter-layer dependencies, and the large number of in-
ducing variables required for scalability. Stochastic variational inference (SVI) with inducing points
Hensman et al. (2013); Salimbeni & Deisenroth (2017) has become the standard approach, but de-
signing accurate and efficient variational posteriors remains a central bottleneck.

Recently, denoising diffusion variational inference (DDVI) Xu et al. (2024) has been proposed to
approximate the inducing-point posterior via the time-reversal of a diffusion stochastic differential
equation (SDE) starting from a simple Gaussian prior. By parameterizing the reverse drift with a
neural network, DDVI can flexibly capture complex posteriors while retaining scalable SVI training.
However, a key limitation of DDVI lies in its reliance on a fixed, unconditional Gaussian distribution
as the start of the reverse diffusion. Since the true posterior over inducing variables is typically far
from this initial distribution, the reverse-time SDE must traverse a long and complex path to reach
the target, resulting in inefficient inference and slow convergence.
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Figure 1: Comparison between DDVI and DBVI. (Left) DDVI starts from an unconditional Gaus-
sian prior and runs a reverse diffusion SDE towards the posterior. (Right) DBVI starts from an input-
conditioned initial distribution and uses an observation-conditioned diffusion bridge SDE, leading
to shorter and more efficient inference trajectories.

To address this, in this work, we propose Diffusion Bridge Variational Inference (DBVI), which
replaces the unconditional reverse diffusion in DDVI with a learnable, input-conditioned distri-
bution that adapts over training. By parameterizing the start point of the diffusion using a neural
network, gradients from the ELBO naturally push the initial distribution closer to the posterior. This
effectively narrows the inference gap and alleviates the burden on the reverse SDE, yielding more
stable and sample-efficient inference. Moreover, conditioning the initial distribution on observa-
tions introduces a natural connection to amortized variational inference: the generative structure of
DBVI allows each posterior sample to be generated by a single forward pass of a drift network,
without requiring per-dataset optimization. Unlike naive amortization that conditions directly on
raw inputs—leading to high-dimensional mismatches and overfitting—our design uses the inducing
inputs Z(l) at each layer as input proxies to the amortizer. This enables batch-wise inference while
preserving global dataset structure and matching the dimensionality of inducing variables.

Importantly, the theoretical elegance of DDVI—particularly its use of time-reversed SDEs, Gir-
sanov’s theorem, and ELBO construction—remains fully preserved in DBVI. We build upon the
same diffusion framework, but reinterpret the prior as a Doob-bridged process whose start is pa-
rameterized by an amortized network. This allows DBVI to inherit the key benefits of DDVI while
significantly improving its flexibility and inference efficiency. We derive an evidence lower bound
(ELBO) objective for training DBVI within the SVI framework and provide a scalable implementa-
tion for large-scale DGPs. Empirical results on regression, classification, and image reconstruction
benchmarks demonstrate that DBVI achieves more accurate posterior approximations, faster con-
vergence, and improved predictive performance compared to DDVI and other state-of-the-art DGP
inference methods. Our contributions are as follows:

• We propose Diffusion Bridge Variational Inference (DBVI), a novel extension of DDVI that
replaces the unconditional start of the reverse diffusion with a learnable, input-conditioned
initial distribution, effectively reducing the inference gap and improving posterior approx-
imation.

• We introduce a bridge-based reinterpretation of the DDVI framework by integrating Doob’s
h-transform into the variational formulation, while preserving the core machinery of
reverse-time SDEs, Girsanov-based ELBO, and SVI scalability.

• We develop a structured amortization strategy that leverages inducing locations Z(l) as
the input to the drift network, enabling batch-wise amortized inference without requiring
access to the full dataset or high-dimensional conditioning on raw inputs.

• We provide a scalable implementation of DBVI for deep Gaussian processes and validate
its performance on regression, classification, and image reconstruction tasks, showing con-
sistent improvements over DDVI and other state-of-the-art DGP inference methods in terms
of accuracy, convergence speed, and sample efficiency.
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2 RELATED WORK

Deep Gaussian Process Inference. Early scalable inference for DGPs built on sparse variational
Gaussian processes Hensman et al. (2013), extending inducing point methods to multi-layer latent
functions Damianou & Lawrence (2013); Salimbeni & Deisenroth (2017). Despite progress with
doubly stochastic variational inference (DSVI) Salimbeni & Deisenroth (2017), accurately capturing
complex posteriors over inducing variables remains a challenge, especially in high-depth DGPs.
Implicit Posterior Variational Inference (IPVI) Yu et al. (2019) instead parameterizes the inducing-
point posterior with a neural network and learns it through an adversarial objective, analogous to
GAN training Goodfellow et al. (2014). While more expressive than mean-field assumptions, this
adversarial formulation is notoriously difficult to optimize and often suffers from instability, which
can result in biased posterior estimates.

Diffusion-based Variational Inference. Score-based generative modeling and diffusion proba-
bilistic models Song et al. (2020); Ho et al. (2020) have inspired new VI methods Xu et al. (2024)
that represent posteriors as solutions to reverse-time SDEs. DDVI Xu et al. (2024) applies this to
DGP inference, parameterizing the reverse drift via a score network. However, its unconditional
start distribution can be far from the posterior, requiring long diffusion paths and increasing vari-
ance. Our DBVI can be viewed as a strict extension of DDVI: same theoretical framework, but with
bridge correction and amortized initialization, yielding both theoretical guarantees and empirical
improvements.

Diffusion Bridge Models . Diffusion bridges Zhou et al. (2023); Li et al. (2023) constrain dynam-
ics between fixed endpoints or distributions, enabling more direct and sample-efficient transitions.
Observation-conditioned bridges have been explored in Schrödinger bridge formulations Shi et al.
(2023) and consistency diffusion models He et al. (2024). Our DBVI adapts this idea to variational
inference in DGPs, integrating an amortized parameterization Kim et al. (2018); Agrawal & Domke
(2021); Margossian & Blei (2023); Ganguly et al. (2023) to map inputs to initial states, reducing the
KL gap and improving efficiency.

3 METHOD

3.1 DEEP GAUSSIAN PROCESSES

Deep Gaussian Processes (DGPs) Damianou & Lawrence (2013) generalize standard Gaussian Pro-
cesses (GPs) by hierarchically composing multiple GP layers, enabling deep non-linear probabilistic
mappings. Let x ∈ Rd be an input and y ∈ Rp the corresponding output. A DGP with L layers
defines latent variables {f (l)}Ll=1 recursively through:

p
(
f (l) | f (l−1)

)
= GP

(
0, k(l)

(
f (l−1), f (l−1)

))
, (1)

where k(l) is the kernel function at layer l with hyperparameters γ(l). For scalability, each layer
introduces Ml inducing variables u(l) located at inducing inputs Z(l), with GP prior:

pprior
(
u(l)

)
= N

(
0,K

(l)
ZZ

)
. (2)

Assuming conditional independence across layers given inducing variables, the full joint distribution
over outputs y, latent variables {f (l)}, and inducing variables {u(l)} factorizes as:

p(y,F,U) =

[
L∏

l=1

p
(
f (l) | f (l−1),u(l)

)
p
(
u(l)

)]
p
(
y | f (L)

)
, (3)

where the inter-layer conditional distribution p
(
f (l) | f (l−1),u(l)

)
is given by the sparse GP condi-

tional:
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p
(
f (l) | f (l−1),u(l)

)
= N

(
Kf (l−1)Z(l)K−1

Z(l)Z(l)u
(l), Kf (l−1)f (l−1) −Kf (l−1)Z(l)K−1

Z(l)Z(l)KZ(l)f (l−1)

)
.

(4)

Here, we denote K
(l)
ab as the kernel matrix at layer l evaluated between sets a and b. The input to

the first layer is defined as f (0) := x.

3.2 DENOISING DIFFUSION VARIATIONAL INFERENCE (DDVI)

Denoising Diffusion Variational Inference (DDVI) Xu et al. (2024) is a recently proposed method for
performing posterior inference over inducing variables in Deep Gaussian Processes (DGPs). It draws
inspiration from the success of score-based generative modeling and diffusion probabilistic models
Ho et al. (2020); Song et al. (2020), and adapts these ideas to variational inference by modeling the
variational posterior as the solution to a reverse-time stochastic differential equation (SDE).

Motivation. Traditional variational inference in DGPs typically relies on simple, factorized Gaus-
sian approximations over the inducing variables U = {u(l)}Ll=1, which are often too restrictive to
capture the complex, multimodal posterior arising from deep hierarchical GPs. DDVI seeks to con-
struct more expressive variational distributions by modeling them as the terminal distribution of a
reverse-time diffusion process, effectively defining a flexible transformation from a known fix initial
distribution to the posterior.

Variational posterior via reverse diffusion. DDVI defines the variational distribution as the
marginal at time t = 1 of a reverse-time SDE Qϕ(Ut):

dUt =
[
f(Ut, t)− g(t)2∇Ut

log pt(Ut)
]
dt+ g(t) dWt, t ∈ [0, 1], (5)

where U0 ∼ N (0, σ2I) is the fixed initial distribution, f and g are drift and diffusion coefficients,
and pt(Ut) is the marginal law at time t under the reverse process. The reverse SDE is not simulated
directly; instead, the score function∇Ut

log pt(Ut) in the drift is parameterized by a neural network
sϕ(Ut, t) to approximate the optimal reverse dynamics.

Diffusion-based ELBO. Rather than relying on score estimation (e.g., denoising score match-
ing), DDVI employs a variational diffusion framework to derive a tractable evidence lower bound
(ELBO). Specifically, the reverse-time process Ut∈[0,1] is treated as a variational diffusion process,
and the ELBO is expressed using the Girsanov formula for likelihood ratios between stochastic
processes:

LDDVI = EU0:1∼Qϕ
[−
∥U1∥22
2σ2

+ log p
(
y | f (L)

)
− 1

2

∫ 1

0

g(t)2
∥∥∥∥Ut

κt
+ sϕ

(
t,Ut

)∥∥∥∥2
2

dt

−KL
(
N (0, σ2I)

∥∥N (0, κ1 I)
)
+ log pprior(U1)],

(6)

where Qϕ denotes the pathwise density of the variational reverse-time SDE, U1 is the terminal state
of the reverse diffusion SDE using sϕ(·, t), f (L) denotes the forward inference of the DGP at U1.

Training and implementation. In practice, DDVI jointly trains the variational drift network sϕ
and DGP hyperparameters γ by maximizing LDDVI using stochastic gradient descent. Sampling
from Qϕ(Ut) is achieved by solving the reverse SDE from U0 ∼ N (0, σ2I), which allows for
reparameterized gradients through the sampled trajectories.

Limitations. While DDVI provides a flexible and theoretically grounded approach to inference in
deep GPs, it still faces important limitations:

• Unconditional initialization: DDVI relies on a fixed Gaussian start distribution U0 ∼
N (0, σ2I) for the reverse diffusion. Since the true posterior over inducing variables is
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typically far from this unconditional prior, the reverse-time SDE must traverse a long and
complex path to reach the target distribution, leading to inefficient inference, high variance,
and slow convergence.

• Lack of amortization: DDVI does not condition its initialization on the observed data,
making posterior sampling input-agnostic rather than scalable amortized inference.

These limitations motivate our proposed method, Diffusion Bridge Variational Inference (DBVI),
which introduces observation-conditioned diffusion bridges and amortized initializations for and
more accurate posterior inference.

3.3 DBVI: OBSERVATION-CONDITIONED DIFFUSION BRIDGE

We begin by introducing the data-dependent initialization of DBVI. Instead of starting from a fixed
Gaussian prior as in DDVI, we amortize the mean of the initial distribution using a neural network:

pθ0(U0 | x) = N (U0; µθ(x), σ
2I), (7)

where only the mean µθ(x) depends on the data, while the variance σ2 is kept fixed. This initializa-
tion provides a closer match to the posterior and shortens the diffusion trajectory. To formalize the
resulting dynamics, we now turn to a diffusion bridge representation.
Proposition 1 (Forward & reverse SDE under Doob’s h-transform). Let the initial constraint be
encoded by the Doob h-transform with

h(Ut, t,U0) = ∇Ut
log p(U0 | Ut), (8)

Then the forward bridge has drift

f̃(Ut, t,U0) = f(Ut, t) + g(t)2 h(Ut, t,U0), (9)

with the same diffusion coefficient g(t). Moreover, the reverse-time bridge SDE is

dUt =
[
f(Ut, t) − g(t)2scond(Ut, t,U0)

]
dt + g(t) dWt, (10)

Equivalently, the conditional score equals scond(Ut, t,U0) = s(Ut, t,U0)− h(Ut, t,U0).

Proposition 1 states that, by introducing Doob’s h-transform, we can reinterpret the dynamics as a
bridge process, which essentially bends the diffusion toward the posterior endpoint. The forward
SDE incorporates an additional drift term that nudges the path toward the target, while the reverse-
time bridge SDE involves a conditional score function scond. This result provides the mathematical
foundation for DBVI, showing how conditioning on the initialization modifies both forward and
reverse dynamics.

Building on this, we next leverage the bridge process trick introduced in DDVI Xu et al. (2024)
to characterize the marginal distribution of the bridge process under a linear drift. This formulation
yields a tractable Gaussian form for the bridge marginal, which will be crucial for deriving the DBVI
training objective.
Proposition 2 (Marginal of Doob-augmented bridge process). Consider the linear forward SDE
with Doob bridge correction

dUt =
[
− λ(t)Ut + g(t)2 h(Ut, t,U0)

]
dt+ g(t) dBt, (11)

where h(Ut, t,U0) = ∇Ut log p(U0 | Ut) is the Doob h-transform. Assume isotropic initialization

pθ0(U0 | x) = N
(
µθ(x), σ

2I
)
. (12)

Then for each t ∈ [0, 1], the marginal law remains Gaussian,

pt(U
Bri | x) = N

(
UBri; mt, κt I

)
, (13)

where the mean mt and variance κt satisfy the coupled ODE system
d

dt
mt = −

(
λ(t) + c(t)

)
mt + c(t) a(t)µθ(x), m0 = µθ(x), (14)

d

dt
κt = −2

(
λ(t) + c(t)

)
κt + g(t)2 + 2 c(t) a(t)σ2, κ0 = σ2, (15)
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with

a(t) = e−Λ(t), Λ(t) =

∫ t

0

λ(s) ds,

and correction coefficient

c(t) = g(t)2
σ2 a(t)2(

a(t)2σ2 + q(t)
)
q(t)

, q(t) = a(t)2
∫ t

0

g(r)2

a(r)2
dr.

In the special case c(t) ≡ 0, this reduces to the bridge process trick in DDVI.

Proposition 2 provides a closed-form expression for the bridge marginal, with mean mt and variance
κt determined by the amortized initialization µθ(x). This Gaussian form plays a crucial role in
deriving the training objective, as it enables an explicit comparison between the amortized start
distribution and the bridge marginal. In particular, it provides the analytical structure needed to
express the KL divergence in a tractable score–matching form, which is then incorporated into the
DBVI loss. Additional derivations and detailed proofs are provided in the Appendix.

Finally, we combine the above results to obtain the DBVI training loss. In particular, we express
the KL divergence in a score–matching form, yielding a tractable ELBO that can be optimized
efficiently.
Proposition 3 (DBVI loss with amortized mean). Let pθ0(u | x) = N (µθ(x), σ

2I) be the data-
dependent start, and let (mt, κt) be the mean/variance of the reference bridge marginal at time
t ∈ [0, 1] (given by Proposition 2 via ODEs in the Doob-augmented case). Then the pathwise
KL between the variational reverse bridge Qϕ and the reference bridge admits a score–matching
representation. Consequently, a tractable per–mini-batch ELBO is

ℓDBVI(θ, ϕ, γ) = EU0:1∼Qϕ

[
− log pθ0

(
U1

)
+
B

N
log p

(
yI | f (L)

)
− 1

2

∫ 1

0

g(t)2
∥∥∥∥Ut −mt

κt
+ scond

(
t,Ut,U0

)∥∥∥∥2
2

dt

−KL
(
N (µθ(x), σ

2I)
∥∥ N (m1, κ1 I)

)
+ log pprior(U1)

]
,

(16)

where B is the batch size, N is the dataset size, scond = sϕ − h is the conditional score used by
the reverse bridge SDE, U1 is its terminal state, f (L) denotes the DGP forward mapping at U1, and
γ collects DGP hyperparameters. When µθ(x) = 0 (and thus mt ≡ 0), the objective recovers the
original DDVI loss.

Proposition 3 shows that DBVI departs from DDVI in two essential ways: (i) the initialization is
amortized via µθ(x), which induces a time-dependent reference mean mt in the bridge marginal,
and (ii) the loss involves the conditional score scond = sϕ − h, explicitly accounting for the bridge
correction. When the amortized mean collapses to zero (so that mt ≡ 0), the objective reduces
exactly to the original DDVI loss, recovering DDVI as a special case.

We summarize the full training procedure of DBVI for deep Gaussian processes in Algorithm 1.

3.4 STRUCTURE OF THE AMORTIZED NETWORK µθ

The amortized network µθ plays a crucial role in DBVI by producing the parameters of the initial
distribution pθ0(U0|x). In principle, µθ should take the observed data x as input and output the
corresponding parameters for the inducing variables U. However, a straightforward amortization
design based on the full dataset is computationally infeasible, since storing and processing the entire
dataset within a single neural network is prohibitive in both memory and complexity. On the other
hand, if one resorts to mini-batch amortization, the network can only observe partial data at each
update, which yields biased estimates of the variational parameters.

A second challenge is the mismatch of dimensions. At each layer of a DGP, the input x typically
has dimension [B, din] where B is the batch size, while the inducing variables u(l) live in a space of
shape [Ml, dout] with Ml inducing points. that maps directly from x to u(l) is nontrivial: flattening
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Algorithm 1 Diffusion Bridge Variational Inference (DBVI) for DGPs

Input: training data X,y; mini-batch size B; forward drift f ; diffusion scale g
Params: DGP hyperparameters γ; bridge score network sϕ; amortizer µθ(·) with fixed variance
σ2

Precompute reference bridge marginals (mt, κt) for t ∈ [0, 1]: numerically integrate the ODEs
for (mt, κt) in Prop. 2 with a(t) = e−Λ(t).
repeat

Sample mini-batch indices I ⊂ {1, . . . , N} with |I| = B
Amortized start: draw U0 ∼ p0θ(· | XI) = N

(
µθ(XI), σ

2I
)

Initialize the integral accumulator L0 ← 0
for k = 0 to K − 1 do

Set ts ← k
K , ts+1 ← k+1

K , draw ϵts ∼ N (0, I)

Compute conditional score: scond
(
ts,Uts ,U0

)
← sϕ

(
ts,Uts ,XI ,yI

)
− h

(
ts,Uts ,U0

)
Reverse bridge SDE step:

Uts+1
= Uts − f

(
Uts , ts

)
∆t + g(ts)

2 scond
(
ts,Uts ,U0

)
∆t + g(ts)

√
∆t ϵts

Bridge marginal update: obtain mts+1
, κts+1

Accumulate score–matching term:

Lts+1 = Lts + g(ts+1)
2

∥∥∥∥Uts+1
−mts+1

κts+1

+ scond
(
ts+1,Uts+1

,U0

)∥∥∥∥2
2

∆t

end for
Set {u(ℓ)}Lℓ=1 ← U1

for ℓ = 1 to L do
Draw ϵ(ℓ) ∼ N (0, I) and compute

f (ℓ) = K
(ℓ)

F(ℓ−1)Z

(
K

(ℓ)
ZZ

)−1
u(ℓ) +

(
K

(ℓ)

F(ℓ−1)F(ℓ−1) −K
(ℓ)

F(ℓ−1)Z

(
K

(ℓ)
ZZ

)−1
K

(ℓ)

ZF(ℓ−1)

)1
2

ϵ(ℓ)

end for

Mini-batch ELBO:
ℓDBVI(θ, ϕ, γ) = − log p0θ

(
u1 | XI

)
+ log pprior

(
u1

)
+

N

B
log p

(
yI | F(L)

)
− 1

2
L1 − KL

(
N
(
µθ(XI), σ

2I
) ∥∥∥N(m1, κ1I

))
Gradient update of ℓDBVI(θ, ϕ, γ)

until θ, ϕ, γ converge

Figure 2: DBVI amortized initialization using inducing inputs Z(l).

the representations would lead to vectors of extremely large size and break the possibility of efficient
batch processing.

To address these issues, we propose to employ the inducing points Z(l) at each layer themselves as
the input to the amortizer. This idea is motivated by classical sparse GP theory, where Z is inter-
preted as a set of representative features of the entire dataset under the joint Gaussian assumption.
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Formally, the inducing inputs at layer l, denoted by Z(l) ∈ RMl×din , are naturally aligned with the
dimension of the corresponding variational parameters u(l). To parameterize the initialization, we
define a layer-wise neural network µ(l)

θ : Rdin → Rdout that maps each inducing input z(l) ∈ Rdin to
a representation in Rdout . Applying this mapping to all inducing points yields

µ
(l)
θ (Z(l)) ∈ RMl×dout .

This design has two main advantages: (i) it exploits the knowledge already contained in the inducing
locations Z(l), which evolve adaptively during model training, and (ii) it provides a simple yet
effective amortization scheme whose dimension naturally matches the variational variables. In this
way, µ(l)

θ achieves amortization without relying on either the full dataset.

(a) Test RMSE (b) Test Mean NLL

Figure 3: Test RMSE and test mean NLL (with one standard deviation error bars) of deep Gaussian
processes with different inference methods (DDVI, IPVI, SGHMC, DSVI, and our proposed DBVI)
across 10 benchmark datasets .

4 EXPERIMENTS

We empirically evaluate DBVI against recent state-of-the-art inference methods for Deep Gaus-
sian Processes (DGPs). Our evaluation covers regression on UCI benchmarks, image classifica-
tion on standard vision datasets, large-scale physics datasets, and an unsupervised reconstruction
task. Across these diverse settings, we assess both predictive performance and posterior quality,
with particular attention to convergence behavior and scalability. The goal of our experiments is to
demonstrate that DBVI consistently improves predictive accuracy and uncertainty estimation while
remaining computationally efficient.

4.1 BASELINES AND SETUP

We compare DBVI with the following baselines: DSVI (Salimbeni & Deisenroth, 2017), the stan-
dard mean-field Gaussian variational approximation; IPVI (Yu et al., 2019), which parameterizes
the posterior with a neural network trained adversarially; SGHMC (Havasi et al., 2018), a sampling-
based inference approach; and DDVI (Xu et al., 2024), the diffusion-based inference method upon
which DBVI builds.

All models use RBF kernels and M = 128 inducing points per layer unless otherwise specified. For
fairness, we adopt identical initialization and hyperparameter ranges across methods, and optimize
using Adam with learning rate 0.01.
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4.2 REGRESSION ON UCI BENCHMARKS

We evaluate our method on 10 widely used UCI regression datasets with sample sizes N ranging
from a few hundred to over two million, using an 80/20 train/test split. We report root mean squared
error (RMSE) and negative log-likelihood (NLL) on the held-out test data, as summarized in Fig-
ure 3. Consistent with prior work, we consider deep Gaussian processes with 2–5 layers. The results
demonstrate that DBVI consistently outperforms all baseline methods, with particularly pronounced
gains on large-scale datasets such as YearMSD and Airline, where unconditional DDVI suffers from
slow convergence. By leveraging amortized bridge initialization, DBVI effectively shortens the dif-
fusion path length, resulting in both improved posterior approximation and lower predictive error.
Figures 4, 5, and 6 show the test RMSE of a 2-layer DGP trained with DDVI and DBVI during the
early stage of optimization.

4.3 IMAGE CLASSIFICATION

We next evaluate DBVI on MNIST, Fashion-MNIST, and CIFAR-10. For CIFAR-10, we adopt
ResNet-20 convolutional features as inputs to the DGP classifier. We report both test accuracy
and per-iteration runtime in Table 1. Across all three datasets, DBVI consistently surpasses DDVI
and other baselines. In particular, on CIFAR-10 with 4-layer DGPs, DBVI achieves an accuracy of
95.68%, slightly higher than DDVI’s 95.56%. These findings underscore the advantage of amortized
conditioning in handling complex high-dimensional posteriors.

4.4 LARGE-SCALE CLASSIFICATION

We further evaluate DBVI on two large-scale physics datasets, SUSY (5.5M examples) and HIGGS
(11M examples). We report AUC scores with 2–5 layer DGPs under random 90/10 train-test splits.
As shown in Table 2 in Appendix, DBVI consistently outperforms DDVI across all depths, yield-
ing the best overall AUC values. Compared to SGHMC, DBVI attains comparable or higher per-
formance while being substantially more computationally efficient, highlighting its scalability and
effectiveness in modeling complex, high-dimensional posteriors at scale.

4.5 UNSUPERVISED RECONSTRUCTION

Finally, we evaluate posterior quality on the Frey Faces dataset using a missing-data reconstruction
task. Following prior work, we randomly mask 75% of pixels for a subset of training images and
task the models with recovering the originals. Table 3 reports reconstruction RMSE and test log-
likelihood. DBVI achieves the lowest RMSE and highest likelihood, surpassing DDVI as well as
variational and sampling-based baselines. In qualitative comparisons, reconstructions generated by
DBVI are visually sharper and demonstrate better calibrated uncertainty than those of competing
methods.

5 CONCLUSION

We introduced Diffusion Bridge Variational Inference (DBVI), a principled extension of DDVI that
initiates the reverse diffusion from a learnable, input-conditioned distribution. By incorporating
Doob’s h-transform into the variational formulation, DBVI preserves the theoretical elegance of
diffusion-based inference while substantially reducing the inference gap. Our structured amorti-
zation strategy, which conditions on inducing inputs, further enables scalable and data-efficient
posterior approximation in deep Gaussian processes. Empirical results across regression, classi-
fication, and image reconstruction tasks confirm that DBVI consistently improves over DDVI and
other state-of-the-art variational baselines in predictive accuracy, convergence speed, and sample
efficiency. These findings highlight the benefits of bridging-based inference for scalable Bayesian
learning. Future directions include extending DBVI to broader probabilistic models, integrating with
advanced inducing-point strategies for large-scale applications, and exploring theoretical guarantees
of diffusion bridges in variational inference.

9



REFERENCES

Abhinav Agrawal and Justin Domke. Amortized variational inference for simple hierarchical mod-
els. Advances in Neural Information Processing Systems, 34:21388–21399, 2021.

Andreas Damianou and Neil Lawrence. Deep Gaussian processes. In Conference on Artificial
Intelligence and Statistics, pp. 207–215, 2013.

Ankush Ganguly, Sanjana Jain, and Ukrit Watchareeruetai. Amortized variational inference: A
systematic review. Journal of Artificial Intelligence Research, 78:167–215, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.
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Table 1: Mean test accuracy (%) and training details achieved by DSVI, SGHMC, IPVI, DDVI, and
our proposed DBVI on three image classification datasets. Results are shown for 3 and 4 layers as
indicated, and runtime is given per iteration.

Data Set Model Time3 Iter3 Acc3 Time4 Iter4 Acc4

DSVI 0.34s 20K 97.17 0.54s 20K 97.41
MNIST IPVI 0.49s 20K 97.58 0.62s 20K 97.80

SGHMC 1.14s 20K 97.25 1.22s 20K 97.55
DDVI 0.38s 20K 98.84 0.50s 20K 99.01
DBVI (ours) 0.41s 20K 99.02 0.55s 20K 99.10
DSVI 0.34s 20K 87.45 0.50s 20K 87.99

Fashion IPVI 0.48s 20K 88.23 0.61s 20K 88.90
SGHMC 1.21s 20K 86.88 1.25s 20K 87.08
DDVI 0.40s 20K 90.36 0.55s 20K 90.85
DBVI (ours) 0.43s 20K 90.53 0.60s 20K 91.07
DSVI 0.43s 20K 91.47 0.66s 20K 91.79

CIFAR-10 IPVI 0.62s 20K 92.79 0.78s 20K 93.52
SGHMC 8.04s 20K 92.62 8.61s 20K 92.94
DDVI 0.45s 20K 95.23 0.69s 20K 95.56
DBVI (ours) 0.49s 20K 95.42 0.74s 20K 95.68

Table 2: Test AUC values for large-scale classification datasets. Uses random 90% / 10% training
and test splits.

SUSY HIGGS

N 5,500,000 11,000,000
D 18 28

DSVI
M = 128

L = 2 0.876 0.830
L = 3 0.877 0.837
L = 4 0.878 0.841
L = 5 0.878 0.846

IPVI
M = 128

L = 2 0.879 0.843
L = 3 0.882 0.847
L = 4 0.883 0.850
L = 5 0.883 0.852

SGHMC
M = 128

L = 2 0.879 0.842
L = 3 0.881 0.846
L = 4 0.883 0.850
L = 5 0.884 0.853

DDVI
M = 128

L = 2 0.883 0.849
L = 3 0.885 0.852
L = 4 0.887 0.856
L = 5 0.886 0.857

DBVI (ours)
M = 128

L = 2 0.885 0.851
L = 3 0.887 0.854
L = 4 0.889 0.858
L = 5 0.889 0.859

A PROOF OF PROPOSITIONS

Proposition 4 (Forward & reverse SDE under Doob’s h-transform). Let the initial constraint be
encoded by the Doob h-transform with

h(Ut, t,U0) = ∇Ut
log p(U0 | Ut), (17)

Then the forward bridge has drift

f̃(Ut, t,U0) = f(Ut, t) + g(t)2 h(Ut, t,U0), (18)

with the same diffusion coefficient g(t). Moreover, the reverse-time bridge SDE is

dUt =
[
f(Ut, t) − g(t)2scond(Ut, t,U0)

]
dt + g(t) dWt, (19)

Equivalently, the conditional score equals scond(Ut, t,U0) = s(Ut, t,uo)− h(Ut, t,U0).
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Table 3: Mean RMSE and NLL achieved by DSVI, SGHMC, IPVI, DDVI, and our proposed DBVI
on the GPLVM data recovery task (Frey Faces). Standard deviation is shown in parentheses. Run-
time is given per iteration.

Data Set Model Time Iter RMSE NLL

DSVI 0.32s 20K 8.32 (0.20) 1.49 (0.02)
Frey Faces IPVI 0.42s 20K 7.91 (0.40) 1.33 (0.02)

SGHMC 1.13s 20K 7.95 (0.30) 1.36 (0.03)
DDVI 0.36s 20K 7.64 (0.20) 1.17 (0.01)
DBVI (ours) 0.40s 20K 7.52 (0.18) 1.12 (0.01)

Proof. Setup. Consider the forward diffusion on [0, 1],

dUt = f(Ut, t) dt + g(t) dBt, (20)

where Bt is a standard Brownian motion, and g(t) > 0 is scalar. Assume standard regularity
(existence/uniqueness, non–degeneracy, smooth strictly positive densities). Let pt denote the time–t
marginal density of equation 20. The (backward) Kolmogorov operator is

(Ltφ)(u) = f(u, t)·∇φ(u) + g(t)2

2 ∆φ(u). (21)

(i) Doob h–transform with an initial–point constraint. Define the space–time positive function

H(t, u) := p(U0 | Ut = u). (22)

By the Markov property and Chapman–Kolmogorov, H is space–time harmonic for ∂t + Lt, i.e.

∂tH(t, u) + (LtH)(t, u) = 0. (23)

The Doob H–transform of equation 20 is the time–inhomogeneous Markov process with generator

(LH
t φ)(u) = H(t, u)−1

(
Lt(Hφ)

)
(u). (24)

Expanding Lt(Hφ) (see remarks below) and using equation 23 to cancel the ∂tH term yields, for
smooth φ,

LH
t φ(u) = f(u, t)·∇φ(u) + g(t)2

2 ∆φ(u) + g(t)2∇logH(t, u)·∇φ(u). (25)

Therefore, the transformed process is again an Itô diffusion with the same diffusion coefficient g(t)
and drift

f̃(u, t,U0) = f(u, t) + g(t)2∇u logH(t, u) = f(u, t) + g(t)2∇u log p(U0 | u). (26)

With the proposition’s definition

h(Ut, t,U0) := ∇Ut
log p(U0 | Ut), (27)

we obtain the forward bridge SDE

dUt =
[
f(Ut, t) + g(t)2 h(Ut, t,U0)

]
dt+ g(t) dBt, (28)

i.e. f̃(Ut, t,U0) = f(Ut, t) + g(t)2h(Ut, t,U0) with unchanged diffusion g(t).

(ii) Reverse–time SDE of the initial–point bridge. Let p̃t(u) := p(Ut = u | U0) denote the time-t
conditional density of the bridge. By the Haussmann–Pardoux time–reversal formula for diffusions
with isotropic diffusion matrix a(t) = g(t)2I (so ∇· a ≡ 0), the time–reversed bridge

←−
Ut = U1−t

solves

d
←−
Ut =

[
f̃(
←−
Ut, 1− t,U0)− g(1− t)2∇ log p̃ 1−t(

←−
Ut)

]
dt+ g(1− t) d

←−
Wt. (29)

Re-indexing t 7→ 1 − t and renaming the Brownian motion gives the reverse–time SDE in forward
orientation:

dUt =
[
f̃(Ut, t,U0)− g(t)2∇ log p̃t(Ut)

]
dt+ g(t) dWt. (30)
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Substituting f̃(Ut, t,U0) = f(Ut, t) + g(t)2h(Ut, t,U0) yields

dUt =
[
f(Ut, t) + g(t)2h(Ut, t,U0)− g(t)2∇ log p̃t(Ut)

]
dt+ g(t) dWt. (31)

Define the conditional score

scond(Ut, t,U0) := ∇Ut
log p̃t(Ut) = ∇Ut

log p(Ut | U0), (32)

to obtain the claimed reverse–time bridge SDE:

dUt =
[
f(Ut, t)− g(t)2scond(Ut, t,U0)

]
dt+ g(t) dWt. (33)

(iii) Conditional score identity (for the initial–point constraint). By Bayes’ rule,

log p(Ut | U0) = log p(U0 | Ut) + log pt(Ut)− log p(U0). (34)

Taking ∇Ut gives
scond(Ut, t,U0) = ∇Ut log pt(Ut) + h(Ut, t,U0). (35)

If we write the unconditional score as s(Ut, t) := ∇Ut
log pt(Ut), this is

scond = s+ h. (36)

Remarks: explicit derivation for Doob H–transform generator. Fix 0 ≤ s ≤ t ≤ 1. The
transformed semigroup acting on a test function φ is

(TH
s,tφ)(u) :=

1

H(s, u)
E
[
H(t,Ut)φ(Ut)

∣∣Us = u
]
. (37)

The (backward) generator LH
t is defined by

∂t (T
H
s,tφ)(u) = (TH

s,t LH
t φ)(u), with TH

t,t = Id. (38)

Applying Itô to the product H(t,Ut)φ(Ut) under the forward SDE 20 and taking conditional ex-
pectations gives

d

dt
E
[
H(t,Ut)φ(Ut)

∣∣Us = u
]
= E

[(
∂t + Lt

)(
H(t,Ut)φ(Ut)

) ∣∣∣Us = u
]
. (39)

By the space–time harmonicity of H ,

(∂t + Lt)H(t, u) = 0, (40)

we can expand (∂t + Lt)(Hφ) and cancel the ∂tH terms cleanly. Since the backward generator is

(Ltψ)(u) = f(u, t)·∇ψ(u) + g(t)2

2 ∆ψ(u), (41)

the product rules for gradient and Laplacian give

∇(Hφ) = H∇φ+ φ∇H, ∆(Hφ) = H∆φ+ φ∆H + 2∇H ·∇φ. (42)

Hence

Lt(Hφ) = f ·∇(Hφ) + g(t)2

2 ∆(Hφ) (43)

= H
(
f ·∇φ+ g(t)2

2 ∆φ
)︸ ︷︷ ︸

=Ltφ

+ φ
(
f ·∇H + g(t)2

2 ∆H
)︸ ︷︷ ︸

=LtH

+ g(t)2∇H ·∇φ (44)

= H Ltφ + φLtH + g(t)2∇H ·∇φ. (45)

Therefore,

(∂t + Lt)(Hφ) = (∂tH)φ+H ∂tφ + H Ltφ+ φLtH + g(t)2∇H ·∇φ (46)

= H
(
∂t + Lt

)
φ +

(
(∂t + Lt)H

)︸ ︷︷ ︸
=0 by equation 40

φ + g(t)2∇H ·∇φ (47)

= H
(
∂t + Lt

)
φ + g(t)2∇H ·∇φ. (48)
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Dividing by H(t, u) (i.e., multiplying by the scalar H(t, u)−1) gives the pointwise identity

1

H
(∂t + Lt)(Hφ) = (∂t + Lt)φ + g(t)2∇logH ·∇φ. (49)

Comparing with the definition of the transformed semigroup TH
s,t (which removes the explicit ∂t on

the left via the semigroup relation), we identify the backward generator of the H–transform at time
t as

(LH
t φ)(u) = (Ltφ)(u) + g(t)2∇logH(t, u)·∇φ(u). (50)

Since H(t, u) = p(U0 | Ut = u), writing h(Ut, t,U0) := ∇Ut log p(U0 | Ut) yields the drift
correction

f̃(Ut, t,U0) = f(Ut, t) + g(t)2 h(Ut, t,U0), (51)

with the same diffusion coefficient g(t).

Proposition 5 (Marginal of Doob-augmented bridge process). Consider the linear forward SDE
with Doob bridge correction

dUt =
[
− λ(t)Ut + g(t)2 h(Ut, t,U0)

]
dt+ g(t) dBt,

where h(Ut, t,U0) = ∇Ut log p(U0 | Ut) is the Doob h-transform. Assume isotropic initialization

pθ0(U0 | x) = N
(
µθ(x), σ

2I
)
.

Then for each t ∈ [0, 1], the marginal law remains Gaussian,

pt(U
Bri | x) = N

(
UBri; mt, κt I

)
,

where the mean mt and variance κt satisfy the coupled ODE system

d

dt
mt = −

(
λ(t) + c(t)

)
mt + c(t) a(t)µθ(x), m0 = µθ(x), (52)

d

dt
κt = −2

(
λ(t) + c(t)

)
κt + g(t)2 + 2 c(t) a(t)σ2, κ0 = σ2, (53)

with

a(t) = e−Λ(t), Λ(t) =

∫ t

0

λ(s) ds,

and correction coefficient

c(t) = g(t)2
σ2 a(t)2(

a(t)2σ2 + q(t)
)
q(t)

, q(t) = a(t)2
∫ t

0

g(r)2

a(r)2
dr.

In the special case c(t) ≡ 0, this reduces to the bridge process trick in DDVI..

Proof. We work in the isotropic, linear-Gaussian setting adopted in the main text: the base forward
SDE is

dUt = −λ(t)Ut dt + g(t) dBt, U0 ∼ N
(
µθ(x), σ

2I
)
, (54)

with a(t) = e−Λ(t) and Λ(t) =
∫ t

0
λ(s) ds. In this OU setting,

E[Ut] = a(t)µθ(x), Cov(Ut) = a(t)2σ2I + q(t) I, (55)

where

q(t) = a(t)2
∫ t

0

g(r)2

a(r)2
dr. (56)

Moreover, the joint law of (U0,Ut) is Gaussian with

Cov(U0,Ut) = σ2a(t) I. (57)

These identities are standard and match the bridge process used in the DDVI paper.
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Step 1: Conditional p(U0 | Ut). By joint-Gaussian conditioning,

p(U0 | Ut) = N
(
m0|t, S0|t

)
, (58)

with isotropic (scalar) parameters

m0|t = µθ(x) + K(t)
(
Ut − a(t)µθ(x)

)
, S0|t = S(t) I, (59)

where

K(t) =
σ2a(t)

a(t)2σ2 + q(t)
, S(t) = σ2 − σ4a(t)2

a(t)2σ2 + q(t)
=

σ2q(t)

a(t)2σ2 + q(t)
. (60)

Step 2: Doob h-transform (bridge) term. Define the Doob correction

h(Ut, t,U0) = ∇Ut log p(U0 | Ut). (61)

Since p(U0 | Ut) = N (m0|t, S(t)I) and m0|t is affine in Ut with coefficient K(t)I, we have

∇Ut log p(U0 | Ut) =
(
∇Utm0|t

)⊤
S(t)−1 (U0 −m0|t) =

K(t)

S(t)

(
U0 −m0|t

)
. (62)

Hence the Doob-augmented forward SDE reads

dUt =
[
− λ(t)Ut + g(t)2

K(t)

S(t)

(
U0 −m0|t

)]
dt + g(t) dBt. (⋆)

Step 3: Mean dynamics. Let mt := E[Ut]. Taking expectations in (⋆) and using E[U0] = µθ(x)
and m0|t = µθ(x) +K(t)

(
Ut − a(t)µθ(x)

)
gives

E
[
U0 −m0|t

]
= µθ(x)−

(
µθ(x) +K(t)

(
mt − a(t)µθ(x)

))
= K(t)

(
a(t)µθ(x)−mt

)
. (63)

Therefore,
d

dt
mt = −λ(t)mt + g(t)2

K(t)

S(t)
K(t)

(
a(t)µθ(x)−mt

)
. (64)

Introduce the scalar

c(t) = g(t)2
K(t)2

S(t)
= g(t)2

σ2a(t)2(
a(t)2σ2 + q(t)

)
q(t)

, (65)

which yields

d

dt
mt = −

(
λ(t) + c(t)

)
mt + c(t) a(t)µθ(x), m0 = µθ(x). (66)

Step 4: Variance dynamics. Let κt denote the (isotropic) variance so that Cov(Ut) = κtI. From
Itô’s lemma for UtU

⊤
t under (⋆) and isotropy,

d

dt
κt = −2λ(t)κt + g(t)2 + 2 g(t)2

K(t)

S(t)
Cov

(
Ut, U0 −m0|t

)
scalar. (67)

Using Cov(Ut,U0) = a(t)σ2I and m0|t = µθ(x) +K(t)
(
Ut − a(t)µθ(x)

)
, we get

Cov
(
Ut,m0|t

)
= K(t) Cov(Ut,Ut) = K(t)κt I, (68)

hence
Cov

(
Ut, U0 −m0|t

)
= a(t)σ2 I−K(t)κt I. (69)

Plugging in and using c(t) = g(t)2K(t)2/S(t),

d

dt
κt = −2λ(t)κt + g(t)2 + 2

c(t)

K(t)

(
a(t)σ2−K(t)κt

)
= −2

(
λ(t)+c(t)

)
κt + g(t)2 + 2 c(t) a(t)σ2,

(70)
with κ0 = σ2.
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Step 5: Gaussian form. The drift in (⋆) is affine in (Ut,U0), and the driving noise is Gaussian.
Therefore (Ut,U0) remains jointly Gaussian, and the marginal pt(UBri | x) is Gaussian with mean
mt and variance κtI. This proves the claimed form and the coupled ODE system. In the special
case c(t) ≡ 0 (no Doob correction), the system reduces to the closed-form bridge process in DDVI
paper, i.e., mt = a(t)µθ(x) and κt = a(t)2σ2 + a(t)2

∫ t

0
g(r)2

a(r)2 dr.

Proposition 6 (DBVI loss with amortized mean). Let pθ0(u | x) = N (µθ(x), σ
2I) be the data-

dependent start, and let (mt, κt) be the mean/variance of the reference bridge marginal at time
t ∈ [0, 1] (given by Proposition 2 via ODEs in the Doob-augmented case). Then the pathwise
KL between the variational reverse bridge Qϕ and the reference bridge admits a score–matching
representation. Consequently, a tractable per–mini-batch ELBO is

ℓDBVI(θ, ϕ, γ) = EU0:1∼Qϕ

[
− log pθ0

(
U1

)
+
B

N
log p

(
yI | f (L)

)
− 1

2

∫ 1

0

g(t)2
∥∥∥∥Ut −mt

κt
+ scond

(
t,Ut,U0

)∥∥∥∥2
2

dt

−KL
(
N (µθ(x), σ

2I)
∥∥ N (m1, κ1 I)

)
+ log pprior(U1)

]
,

(71)

where B is the batch size, N is the dataset size, scond = sϕ − h is the conditional score used by
the reverse bridge SDE, U1 is its terminal state, f (L) denotes the DGP forward mapping at U1, and
γ collects DGP hyperparameters. When µθ(x) = 0 (and thus mt ≡ 0), the objective recovers the
original DDVI loss.

Proof. Setup. Let Qϕ be the path law of the reverse-time bridge SDE

dUt =
[
f(Ut, t)− g(t)2scond(t,Ut,U0)

]
dt+ g(t) dWt, scond := sϕ − h,

with h(Ut, t,U0) = ∇Ut
log p(U0 | Ut). Let P be the forward reference diffusion and PBri be

the auxiliary forward process that shares the same drift/diffusion as P but starts from pθ0(u | x) =
N (µθ(x), σ

2I). Assume Novikov’s condition so that Girsanov applies.

(A) Path term⇒ score–matching quadratic. By reverse-time Girsanov (see lemma 1), the process
KL splits into a path term plus a boundary term; the path term is

EU0:1∼Qϕ

[
log

dQϕ

dPBri

]
=

1

2

∫ 1

0

g(t)2 EQϕ

[
∥ scond(t,Ut,U0)− sBri(t,Ut) ∥22

]
dt, (72)

where sBri(t,Ut) := ∇Ut log pt(Ut) is the (marginal) score of the reference bridge at time t. By
Proposition 2, the marginal is Gaussian pt(Ut) = N (mt, κtI), hence

sBri(t,Ut) = −
Ut −mt

κt
. (73)

Substituting this into equation 72 yields the integrand

∥∥ scond − sBri

∥∥2
2
=

∥∥∥∥ Ut −mt

κt
+ scond(t,Ut,U0)

∥∥∥∥2
2

, (74)

which is exactly the score–matching form stated in the proposition.

(B) Boundary term. Since P and PBri share dynamics and only differ at the start, the remaining
term in the KL decomposition collapses to a boundary difference (as in DDVI):

EQϕ

[
log

dPBri

dP

]
= EQϕ

[
log

pθ0(U1)

pBri
1 (U1)

]
= −KL

(
N (µθ(x), σ

2I)
∥∥N (m1, κ1I)

)
, (75)

where pBri
1 = N (m1, κ1I) follows from Proposition 2.
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(C) Collecting the ELBO terms. Adding the model likelihood and prior contributions (as in DDVI;
mini-batch scaled by N/B) yields, up to constants independent of (θ, ϕ, γ),

ℓDBVI(θ, ϕ, γ) = EU0:1∼Qϕ

[
− log pθ0

(
U1

)
+
B

N
log p

(
yI | f (L)

)
− 1

2

∫ 1

0

g(t)2
∥∥∥∥Ut −mt

κt
+ scond

(
t,Ut,U0

)∥∥∥∥2
2

dt

−KL
(
N (µθ(x), σ

2I)
∥∥ N (m1, κ1 I)

)
+ log pprior(U1)

]
,

(76)

which matches the statement.

(D) Reduction to DDVI. If µθ(x) ≡ 0, then mt ≡ 0 and the loss reduces to the original DDVI
objective (same path integral with scond = sϕ − h and the usual boundary terms).

Lemma 1 (Reverse-time Girsanov: path term as score–matching). Fix T = 1. Consider two reverse-
time SDEs on Rd with the same diffusion scale g(t) > 0:

(Q) dUt =
(
f(Ut, t)− g(t)2 scond(t,Ut,U0)

)
dt+ g(t) dW

(Q)
t , (77)

(PBri) dUt =
(
f(Ut, t)− g(t)2 sBri(t,Ut)

)
dt+ g(t) dW

(P )
t , (78)

where scond = sϕ − h is the conditional (bridge-corrected) score, and sBri(t,u) = ∇u log pt(u) is
the marginal score of the reference bridge (with marginal pt(u) = N (mt, κtI)). Assume standard
integrability (e.g. Novikov) so that Girsanov applies and both path laws Qϕ and PBri are mutually
absolutely continuous on FT . Then the pathwise Kullback–Leibler divergence decomposes as

KL(Qϕ ∥PBri) = 1
2

∫ T

0

g(t)2 EQϕ

[∥∥scond(t,Ut,U0)− sBri(t,Ut)
∥∥2
2

]
dt︸ ︷︷ ︸

path term

+ EQϕ

[
log

qT (UT )

pT (UT )

]
︸ ︷︷ ︸

boundary term

,

(79)

where qT and pT are the terminal densities of the two reverse processes (equivalently: the initial
densities of the corresponding forward processes). In particular, the path term equals

1

2

∫ 1

0

g(t)2 EQϕ

[
∥ scond(t,Ut,U0)− sBri(t,Ut) ∥22

]
dt, (80)

which is the score–matching quadratic used in equation 72.

Proof. We write both SDEs on a common probability space up to an equivalent change of measure.
Let the reference path law be PBri (drift bP := f − g2sBri). Under PBri, define the progressively
measurable process

ϑt :=
bQ(Ut, t)− bP (Ut, t)

g(t)
= − g(t)

(
scond(t,Ut,U0)− sBri(t,Ut)

)
, (81)

where bQ := f − g2scond. By Novikov’s condition, the Dôleans–Dade exponential

Zt = exp
(∫ t

0

ϑ⊤s dW(P )
s − 1

2

∫ t

0

∥ϑs∥2 ds
)

(82)

is a true PBri-martingale. Define a new measure Qϕ on FT by dQϕ

dPBri

∣∣
FT

= ZT · qT (UT )
pT (UT ) , i.e. we

also correct the endpoint density (boundary term) so that the terminal marginal under Qϕ is qT .
Girsanov’s theorem yields that under Qϕ,

W
(Q)
t := W

(P )
t −

∫ t

0

ϑs ds (83)

is a Brownian motion and the drift becomes bQ = f − g2scond, i.e. the reverse SDE for Qϕ.
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Figure 4: Comparison of DDVI and DBVI on the ENERGY dataset (Test RMSE).

Now compute the log Radon–Nikodym derivative and take Qϕ-expectation:

KL(Qϕ ∥PBri) = EQϕ

[
log

dQϕ

dPBri

]
(84)

= EQϕ

[∫ T

0

ϑ⊤t dW
(P )
t − 1

2

∫ T

0

∥ϑt∥2 dt

]
+ EQϕ

[
log

qT (UT )

pT (UT )

]
. (85)

Use dW
(P )
t = dW

(Q)
t + ϑt dt to rewrite the stochastic integral:∫ T

0

ϑ⊤t dW
(P )
t =

∫ T

0

ϑ⊤t dW
(Q)
t +

∫ T

0

∥ϑt∥2 dt. (86)

Taking Qϕ-expectation annihilates the martingale term, hence

KL(Qϕ ∥PBri) =
1

2
EQϕ

[∫ T

0

∥ϑt∥2 dt

]
+ EQϕ

[
log

qT (UT )

pT (UT )

]
. (87)

Finally substitute ϑt = − g(t)
(
scond(t,Ut,U0)− sBri(t,Ut)

)
to get

1

2

∫ T

0

g(t)2 EQϕ

[∥∥scond(t,Ut,U0)− sBri(t,Ut)
∥∥2
2

]
dt (88)

as the path term, plus the boundary correction.

Ablation study. We directly compare DDVI and DBVI under matched compute (same T , opti-
mizer, and hardware) and track Test RMSE during early optimization. As shown in 4, DBVI reduces
Test RMSE more rapidly and consistently achieves lower error than DDVI. This confirms that con-
ditioning the reverse diffusion on a data-dependent initialization shortens the inference trajectory
and improves convergence speed on the ENERGY, CONCRETE and POWER dataset.

B STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used solely for polishing and editing the text of this
manuscript.
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Figure 5: Comparison of DDVI and DBVI on the CONCRETE dataset (Test RMSE).

Figure 6: Comparison of DDVI and DBVI on the POWER dataset (Test RMSE).
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