
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LITEPRUNER: A LIGHTWEIGHT REALTIME TOKEN
PRUNER BEFORE LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tokenization is one of the core steps of the language model pipeline. However,
the tokenizer yields more tokens for the same context in non-English languages,
especially in low-resource languages due to the shared multilingual settings, which
results in unexpected fairness problems in terms of token fees, response latency,
and long context processing. In this paper, we study the real-time computing
problem, attempting to reduce the total number of tokens per query but maintain
decent performance in multilingual settings. We present a simple, training-free,
CPU-based pruner model to reuse pre-trained weights from the first attention layer
of small models to rank token importance, only delivering important tokens to
the target larger models. This method is motivated by the fact that early layers
in both small and large models latch onto the similar shallow local signals due
to similar tokenization algorithms (e.g., BPE) producing identical local signals.
Massive in-context learning experiments on MGSM, Global-MMLU-Lite and
ARC and RAG-based experiments on PubMedQA and MEMERAG show that our
method can preserve decent performance for languages while reducing up to 30%
of the total number of tokens in both in-family and across-family model settings,
where the pruner model and the target large model are in or not in the same model
family. Our method is compatible with commercial LLM APIs and CPU-based,
contributing to real-life applications.

1 INTRODUCTION

Large Language Models (LLMs) have achieved widespread popularity in recent years due to their
impressive ability to understand and generate multiple languages. However, recent studies have
highlighted that tokenization, one of the core steps of the LLM pipeline, systematically overtokenizes
non-English languages, especially low-resource languages (Ahia et al., 2023; Petrov et al., 2023). For
example, according to the tokenization premium defined in Petrov et al. (2023), languages such as
Hindi, Kannada, Tamil, and Simplified Chinese are respectively 4.60×, 10.83×, 5.87×, and 2.00× more
expensive to tokenize for Llama models, and 7.46×, 13.69×, 15.58×, and 3.21× more expensive for
GPT-4. These disparities in tokenization efficiency raise issues for non-English user cases, including
1) Long-Context Processing: long non-English inputs may not fit in LLMs’s context window and 2)
High Cost: non-English users have to pay more than English users for the same task.

To address these issues, we study lightweight, real-time, CPU-based frameworks to reduce the total
number of input tokens while maintaining decent task performance. Our motivation is derived
from real-life scenarios that we typically call commercial, black-box APIs or local, open-source
LLMs via web browsers and code editors, allowing an additional token pruning step to be per-
formed in these CPU-based environments before calling. Our motivation is orthogonal to the
recent prompt compressor family (Jiang et al., 2024; Pan et al., 2024) that attempts to use local,
open-source LLMs to generate a new compact demonstration from multiple demonstrations for
the black-box APIs. We consider the universal case that the input context could be pruned before
passing it to the black-box APIs or LLMs. This idea is also distinguished from the classic token
pruning method family (Goyal et al., 2020b; Cao et al., 2023), which removes tokens layer-by-layer
in the target model. In contrast, we hypothesize that for the same context, in the early layers,
both small and large models show similar attention patterns because the early layers latch onto
the same shallow local signals and attempt to restore words from subtokens (ie, detokenization
(Kaplan et al., 2025b)) due to the similar tokenization algorithm and the same attention mechanism.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MGSM

LitePruner 
"I'm small and working on a laptop."

no pruning Top-90% Top-80% Top-70%

X

Global-MMLU-Lite

Figure 1: Example and Application
of LitePruner. Top-n% referes to n%
of original tokens passed to the target
models or APIs. We deploy LitePruner
on a laptop without GPU to prune to-
kens before sending to GPT-4.1-nano
and observe comparable performance
while saving 100% -n% API fees.

Based on the hypothesis and motivation above, we present
LitePruner, a method to use the first attention layer from
pre-trained small models to select a portion of the input
tokens. Our idea introduces an additional step between the
user interface and the target large model, where LitePruner
removes a portion of unnecessary tokens and delivers the
remaining important tokens to the target large model while
keeping relative token positions unchanged. LitePruner
can help the target LLMs remove redundant or unimpor-
tant tokens but preserve attention patterns to maintain the
performance. A strong motivation is that in multilingual
user cases, users can only send Top-n% important tokens
selected and pruned by LitePruner into a large model or
commercial black-box APIs in order to save the context
window and costs, where LitePruner can be deployed with
minimal computational resources, even on laptops without
GPUs. We present an example of our method in Figure 1,
where we deploy our LitePruner on a laptop without GPU
support to prune tokens before sending to GPT-4.1-nano
and observe comparable performance on multilingual tasks
while saving 100% -n% API fees and the context window
for all languages. We list our contributions as follows.

• We present LitePruner to leverage attention scores from the first layer of pre-trained small
models to select tokens, remove a portion of tokens with low attention scores, and only feed
selected tokens to the target model. LitePruner do not change the relative token positions
and uses the causal mask.

• LitePruner is training-free, flexible, and GPU-based. Experimental results show that
LitePruner can work for at least two practical scenarios: 1) in-family and 2) across-family,
where the small backend model of LitePruner and the large model are in the same model
family or not.

• Massive in-context learning experiments on MGSM (Shi et al., 2023), Global-MMLU-
Lite (Singh et al., 2024) and multilingual ARC (Clark et al., 2018; Lai et al., 2023) and
RAG experiments on PubMed show that our method can preserve decent performance for
languages while reducing up to 30% of the total number of tokens in both in-family and
across-family settings.

2 METHOD

Our goal is to develop a lightweight, real-time, CPU-based, training-free method to remove some
tokens beyond random token dropping used in preliminaries. We observe that large models usually
have smaller sibling models in the model family Team et al.; Grattafiori et al. (2024), e.g., Llama3-
8B-it and Gemma2-9B-it have smaller sibling models Llama3-1B-it and Gemma2-2B-it respectively.
Considering the shared attention mechanisms and the same tokenization algorithm, we hypothesize
that early layers in both small and large models might share some similar attention patterns, especially
the first layer. Therefore, we use the first layer of the pre-trained small model to select a portion of
important tokens that will be passed to the target large LLM. Our intuition is that, the first layer of a
small model produces similar attention patterns as the target LLM does in the first layer. That is to
say, the target LLM will ignore or pay minimal attention to the same tokens as the small model does
so it is not necessary to pass tokens overlooked by the small model to the target LLM.

Specifically, we reuse the embedding layer and the first attention layer of a pre-trained small
model, computing the attention scores without using the causal mask. Let [h, nq, nk] to denote the
multi-head attention score matrix with h heads for the input Xn with n tokens. Then, we define the
importance score for i-th token xi ∈ Xn as IS(xi) = avg([h, nq, i]). In other words, we accumulate
the Relative Attention Weights (RAW) for each position as the importance score for the token at
that position. Finally, we rank all tokens based on their importance score and only pass tokens with

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 LitePruner Implementation
1: Load Model and Tokenizer:
2: model← AutoModel.from_pretrained("llama3-1B", device="cpu")
3: tokenizer← AutoTokenizer.from_pretrained("llama3-1B")
4: Extract Pretrained Weights:
5: embedding_layer← model.embeddings
6: ranking_layer← model.layer[0].self_attn ▷ first attention layer only w/o masking but w/ position encoding.
7: Delete model to free memory ▷ Release memories.
8: Define Pruning Function:
9: function LITEPRUNER(x, top_k)

10: embeddings← embedding_layer(x)
11: RAW← ranking_layer(embeddings, output_attentions=True).attentions ▷ [h, nq, nk]
12: importance_scores← RAW.mean(dim=1).mean(dim=1) ▷ IS(xi) = avg([h, nq, i])
13: top_k_index← get_top_k_index(importance_scores)
14: return x[top_k_index]
15: end function
16: #Example of Pipeline#
17: X← X = [x0, x1, x2, x3, ...xn]
18: X← tokenizer.encode(X)
19: X← LitePruner(X,90%)
20: X← tokenizer.decode(X)
21: LLM(X)

top-k% of important scores to the target model. Note that we do not change the relative positions
for all tokens and add position encoding normally. However, the absolute positions are modified as
some tokens are removed. In addition, since LitePruner performs before the target large model, our
method does not hurt the KV cache construction in the target large model. In practice, LitePruner can
be developed on a laptop without GPU support as 1) the embedding lookup for the input sequence
requires O(n), 2) the attention layer requires O(n2d), and ranking requires O(n log n). We present
the implementation prototype in Algorithm 1 with an example in Appendix 15.

3 EXPERIMENT AND APPLICATION # 1: IN-CONTEXT LEARNING

3.1 EXPERIMENTAL SETUP

Since LitePruner is designed to reduce the input context but preserve performance, we consider 5-shot
ICL on three multilingual benchmarks. 1) MGSM (Shi et al., 2023) is a benchmark of grade-school
math problems in 10 languages. 2) Multilingual ARC (Clark et al., 2018) are grade-school science
questions in 34 languages. 3) Global-MMLU-Lite (Singh et al., 2024) is a multilingual version of
MMLU (Hendrycks et al., 2021) in 15 languages.

In experiments, we use multi-turn prompting strategies with random demonstrations from the dev set
and prune each demonstration independently, as we are not using LitePruner to select demonstrations.
We consider three model families: LLama3, Gemma2, and Aya-expanse. To conduct our experiments
systematically, we evaluate our idea in two user cases:

• In-family Test. We set the pruner model and the target model from the same model family.
For this setting, we use Llama3-1B-it and Gemma2-2B-it as the backend of LitePruner and
pass pruned tokens to larger Llama3 and Gemma2 models, respectively.

• Across-family Test. In this setting, we evaluate the generalization ability of LitePruner
across different model families. We use Gemma2-2B-it and Llama3-1B-it as the pre-trained
backend of LitePruner. The pruned tokens are passed to the Aya-expanse models and
GPT-4.1-nano.

We use standard evaluation scripts: lm-eval1 (Gao et al., 2024) and simple-eval2. Meanwhile, we
split languages in experiments into three bins based on Okapi3’s statistics:

1https://github.com/EleutherAI/lm-evaluation-harness
2https://github.com/openai/simple-evals
3https://github.com/nlp-uoregon/Okapi

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• High-resource languages (H): en, ru, zh, de, fr, es, it, nl,and vi.

• Median-resource languages (M): id, ar, hu, ro, da, sk, uk, ca, sr, hr, and hi.

• Low-resourece languages (L): bn, ta, ne, ml, mr, te, and kn.

We report the final average performance for each bin on the three multilingual tasks in the main text
and move language-wise performance to Appendix. For the top-k% configuration, we set top-90%,
top-80%, and top-70%. All results are based on two runs.

3.2 IN-FAMILY TEST RESULTS

Multilingual ARC MGSM Global-MMLU-Lite
LitePruner Model top-k% H M L H M L H M L

- llama3-8b-it - 45.8 38.5 24.8 76.3 - 7.2 66.2 55.8 46.2
- llama3-8b-it random-90% 29.4 26.2 22.8 43.4 - 8.0 54.4 45.7 32.5
- llama3-8b-it random-80% 25.2 23.8 21.7 15.7 - 0.4 42.3 35.8 28.8
- llama3-8b-it random-70% 23.8 22.0 21.1 11.9 - 0.0 34.2 29.8 27.5

llama3-1b-it llama3-8b-it top-90% 39.9 34.2 23.9 64.0 - 22.8 63.5 52.8 41.5
llama3-1b-it llama3-8b-it top-80% 33.6 29.6 22.9 22.3 - 3.6 58.3 46.4 38.5
llama3-1b-it llama3-8b-it top-70% 27.4 25.8 22.8 13.3 - 2.0 51.5 40.4 36.8

- llama3-3b-it - 36.2 30.1 22.9 66.5 - 8.0 58.5 47.8 40.0
- llama3-3b-it random-90% 27.1 24.0 23.0 37.5 - 4.0 47.3 39.6 30.2
- llama3-3b-it random-80% 24.0 22.6 21.4 15.3 - 0.0 36.8 31.7 25.5

llama3-1b-it llama3-3b-it top-90% 33.2 28.3 22.8 59.1 - 17.2 57.0 45.3 34.8
llama3-1b-it llama3-3b-it top-80% 29.1 26.1 22.2 22.3 - 2.0 51.3 43.3 31.5
llama3-1b-it llama3-3b-it top-70% 25.2 24.2 22.6 13.1 - 0.0 43.0 37.7 31.0

- llama3-70b-it - 55.7 48.8 23.0 83.4 - 4.0 80.9 77.9 71.8
llama3-1b-it llama3-70b-it top-90% 47.9 41.8 22.3 65.5 - 31.2 79.6 72.8 60.5
llama3-1b-it llama3-70b-it top-80% 37.7 34.0 22.6 20.3 - 0.8 75.7 63.6 51.5
llama3-1b-it llama3-70b-it top-70% 30.9 27.3 22.2 12.5 - 0.6 67.3 52.8 46.8

- Gemma-9b-it - 56.0 49.6 28.2 71.7 - 46.0 70.8 63.7 56.8
Gemma-2b-it Gemma-9b-it top-90% 52.4 47.0 27.0 63.7 - 40.8 70.5 63.1 54.8
Gemma-2b-it Gemma-9b-it top-80% 47.7 44.1 26.2 40.4 - 22.4 70.7 63.1 54.0
Gemma-2b-it Gemma-9b-it top-70% 40.5 38.2 25.5 18.4 - 2.8 67.7 59.9 53.8

- Gemma-27b-it - 61.3 56.0 30.9 75.4 - 48.4 75.5 70.0 64.5
Gemma-2b-it Gemma-27b-it top-90% 57.3 52.8 29.6 68.8 - 46.4 74.7 69.4 63.0
Gemma-2b-it Gemma-27b-it top-80% 52.3 48.9 28.4 43.7 - 22.4 74.3 67.8 61.8
Gemma-2b-it Gemma-27b-it top-70% 43.6 42.8 27.3 17.9 - 10.8 72.9 64.1 61.2

Table 1: Results of in-family test. H, M, and L stand for high-, median-, and low-resource languages.
We consider 5-shot prompting for experiments. All demonstrations share the same language with the
input language. For MGSM, we configure "native-cot" and "exact-match,flexible-extract". MGSM
does not include median-resource languages. There are no "COT" configurations for Multilingual
ARC and Global-MMLU-Lite.

Table 1 summarizes the in-family experiments across three multilingual benchmarks.

LitePruner preserves performance more effectively for low-resource languages across bench-
marks. In MGSM, low- and high-resource language performance drops dramatically at top-70%
and top-80% in all experiments while preserving decent performance at top-90%. Compared to that,
results on Multilingual ARC show slight declines for low-resource language in all settings, where
we only observe < 3% performance degradation. Gemma2 models are stable for all settings in
Global-MMLU-Lite median- and high-resource languages with slight performance degradation while
Llama3 models show significant performance degradation from top-90% to top-70%. In terms of
Global-MMLU-Lite low-resource languages, Gemma2 models are more stable than Llama3 models
as the performance degradation is less important in Gemma2 models than in Llama3 models.

LitePruner improves MGSM low-resource accuracy at top-90%, contrary to the trend in
high-resource language settings. While pruning typically leads to performance degradation in all
language bins, MGSM exhibits a surprising improvement in low-resource performance at top-90%.
For example, in llama3 models, llama3-1b, -8b, and -70b-it show performance improvemnt on MGSM
low-resource languages, increasing significantly from 8.0% (no pruning) to 17.2%, 7.2% (no pruning)
to 22.8%, 4.0% (no pruning) to 31.2%, respectively. This suggests that LitePruner might remove
noise and/or redundant tokens from the input. This also highlights the potential of LitePruner not
just as a compression tool, but as a step of improving robustness in some underrepresented language

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3-shot 5-shot 8-shot
LitePruner Model top-k% H M L H M L H M L

None llama3-8b-it - 64.8 55.8 47.8 66.2 55.8 46.2 65.7 57.6 48.2
llama3-1b-it llama3-8b-it top-90% 61.8 50.7 41.5 63.5 52.8 41.5 62.5 50.2 39.2
llama3-1b-it llama3-8b-it top-80% 55.1 44.6 36.0 58.3 46.4 38.5 57.4 47.3 36.0
llama3-1b-it llama3-8b-it top-70% 47.3 38.3 31.0 51.5 40.4 36.8 49.8 42.1 32.2

Table 2: Results of different n-shot settings for the llama3 model family on Global-MMLU-lite.
LitePruner is robust in all settings.

scenarios. Similarly, Gemma-9B-it maintains strong performance, with only a small drop from 46.0%
to 40.8%.

Larger models are more robust to pruning. Across both model families, larger models consis-
tently show smaller drops in performance under token pruning. This suggests that larger models have
greater representational capacity and redundancy, allowing them to better reconstruction for the loss
of pruned tokens. For example, on MGSM high-resource language, pruning tokens with top-90%
for Gemma-27B-it still retains a strong performance of 68.8%, whereas the smaller Gemma-9b-it
drops to 63.7%. A similar trend is observed in the Llama3 family, where Llama3-8b-it preserves
stronger performance than Llama3-3b-it at equivalent pruning ratios. This robustness of larger models
highlights the benefit of applying LitePruner for LLMs.

LitePruner is robust to different context settings. Specifically, we test the impact of context
length with different n-shot settings, which indicates the robustness towards the context length. In
Table 2, we consider 3-, 5-, and 8-shot prompting with different top-n% settings for the llama3
model family on Global-MMLU-lite. Similar to previous experiments, we prune each demonstration
independently. For median- and high-resource languages, the LitePruner performance is proportional
to the base performance, where no pruning strategies are applied. In contrast, 5-shot surpasses other
two settings in pruning for low-resource languages. Nevertheless, LitePruner shows robustness for
all n-shot settings, especially at top-90% and top-80%. Additionally, considering the goal of the
LitePruner is to improve inference efficiency and save token charge fees (when using commercial
API), the effectiveness in 3-shot settings gives the confidence in application that LitePruner does
not rely solely on long context and more demonstrations to provide missing information for pruned
tokens. LitePrune is able to preserve necessary tokens for the downstream task.

Overall, LitePruner provides a practical and lightweight mechanism for reducing token count while
preserving task performance across multilingual settings. One possible explanation here is that the
tokenization of words relate to a much broader statistical linguistic phenomenon of collocation: the
co-occurrence of series of tokens at levels much greater than would be predicted simply by their
individual probability. In other words, for low-resource languages, which result in more subword
and charater tokens, relatively trivial tokens will dilute attention for important information. Our
LitePruner helps with removing unimportant tokens before passing to the target large model to
make attention stable. However, there is no single optimal top-k% threshold that works universally,
especially for medium- and low-resource languages. The effectiveness of pruning depends on the
task, the size of the model, and the level of language resources. In practice, selecting an appropriate
pruning hyperparameter should be guided by application-specific performance and cost constraints.
We suggest considering the trade-off between performance and cost. Nevertheless, top-90% is still a
common choice for all scenarios.

3.3 ACROSS-FAMILY EXPERIMENTS

The results can be seen in Table 3. We observe three key findings.

LitePruner enables strong cross-family transfer to commercial GPT models. Pruned inputs
generated by LitePruner using Llama3-1b-it or Gemma2-2b-it as backend models can be effectively
interpreted by commercial GPT models, with minimal accuracy loss. Even for complex reasoning
tasks like MGSM, GPT-4.1-nano maintains significantly higher accuracy compared to other model
families like Aya-expanse, showing LitePruner’s ability to produce generalizable and transferable
token subsets.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Multilingual ARC MGSM Global-MMLU-Lite
LitePruner Model top-k% H M L H M L H M L

- aya-expanse-8b - 47.2 37.0 23.8 76.6 - 5.2 60.2 55.4 39.0
llama3-1b-it aya-expanse-8b top-90% 45.6 35.9 23.3 67.7 - 2.8 57.9 50.0 33.2
llama3-1b-it aya-expanse-8b top-80% 34.0 28.3 23.5 34.4 - 0.0 54.5 42.2 32.2
llama3-1b-it aya-expanse-8b top-70% 28.9 24.9 23.3 20.9 - 0.0 45.5 38.4 31.2
Gemma-2b-it aya-expanse-8b top-90% 45.4 35.1 22.8 72.8 - 4.4 60.1 55.2 38.0
Gemma-2b-it aya-expanse-8b top-80% 42.5 33.7 23.5 50.7 - 4.8 60.5 54.5 37.8
Gemma-2b-it aya-expanse-8b top-70% 36.9 30.8 23.3 21.5 - 0.8 59.1 53.7 35.0

- GPT-4.1-nano - 85.2 80.5 47.2 84.1 - 66.8 72.8 63.3 53.8
llama3-1b-it GPT-4.1-nano top-90% 85.1 80.3 47.0 83.5 - 63.8 72.5 63.8 56.0
llama3-1b-it GPT-4.1-nano top-80% 84.4 79.6 46.6 83.4 - 61.4 72.8 62.6 54.8
llama3-1b-it GPT-4.1-nano top-70% 84.8 79.8 47.0 82.6 - 57.2 72.8 64.0 54.0
Gemma-2b-it GPT-4.1-nano top-90% 85.1 80.4 46.6 84.3 - 60.8 73.2 62.8 54.0
Gemma-2b-it GPT-4.1-nano top-80% 84.7 79.6 47.0 83.5 - 47.4 72.6 63.8 54.8
Gemma-2b-it GPT-4.1-nano top-70% 84.7 79.9 46.8 81.2 - 56.6 71.7 64.3 54.8

Table 3: Results of across-family test. H, M, and L stand for high-, median-, and low-resource
languages. We consider 5-shot prompting for experiments. All demonstrations share the same
language with the input language. For MGSM, we configure "native-cot" and "exact-match,flexible-
extract". MGSM does not include median-resource languages. There are no "cot" configurations for
Multilingual ARC and Global-MMLU-Lite.

LitePruner preserves performance across models and languages. Multilingual ARC accuracy
remains consistently high after pruning, regardless of the target model (GPT-4.1-nano or Aya-expanse)
and the language resource level. This indicates that LitePruner selects stable and interpretable token
sets that maintain task-relevant information, even across architectural boundaries and linguistic
diversity. In the Global-MMLU-Lite benchmark, pruning leads to minimal performance degradation
across high-, med-, and low-resource languages when transferred to GPT-4.1-nano. For example,
LiterPruner with the Gemma2-2b-it backend maintains high-resource language performance from
73.3% (no pruning) to 72.0% at top-70%, while median- and low-resource scores remain stable
around 56.8% to 56.0% and 54.8% to 54.0% in our experiments, respectively.

Overall, LitePruner enables effective cross-model transfer, with notably stronger performance when
pruned inputs are passed to GPT-4.1-nano compared to Aya-expanse-8b. The exact explanation
remains unclear to us due to the closed nature of GPT models. However, we attribute to some
reasons including different tokenization methods, architectural, or model training related differences.
Nonetheless, the results highlight LitePruner’s robustness across languages and model families, and
motivate future work on architecture-aware pruning strategies. In practice, this across-family feature
enables LitePruner to be compatible with commercial APIs like GPT-4.1-nano in our experiments to
save API budgets.

4 EXPERIMENT AND APPLICATION # 2: RAG

Since LitePruner is designed to reduce the input context, the second scenario is the RAG (Retrieval-
Augmented Generation) paradigm. We consider two RAG benchmarks. 1) PubMedQA (Jin et al.,
2019) is a benchmark of reasoning over biomedical research texts. The model needs to answer
271k English questions based on documents/contexts.2) MEMERAG (Cruz Blandón et al., 2025)
is a multilingual end-to-end meta-evaluation benchmark for RAG in 5 languages. We use standard
evaluation scripts provided by haystack4 in this experiment. To setup the rag framework, we first use
LitePruner to prune all documents, and store them in the default vector store via vectorization with
the sentence-transformers/paraphrase-multilingual-mpnet-base-v2 backend 5. Note that, we do not
prune the query, similar to the ICL experiment before. The final evaluation is completed by haystack
with GPT-4o-mini. We report there metrics:

• MRR (Document Mean Reciprocal Rank) is computed between the retrieved documents
and the gold documents. It checks at what rank golden pruned documents appear in the list
of retrieved pruned documents and tells use whether a non-pruned query can retrieve the
correct pruned documents.

4https://github.com/deepset-ai/haystack
5sentence-transformers/paraphrase-multilingual-mpnet-base-v2

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

MEMERAG
en de es fr hi

Model top-k% mrr fa sas err fa sas err fa sas err fa sas err fa sas

llama3-8b-it - 0.84 0.85 0.45 0.83 0.81 0.59 0.88 0.83 0.58 0.83 0.94 0.52 0.67 0.72 0.63
llama3-8b-it top-90% 0.84 0.81 0.49 0.86 0.81 0.53 0.88 0.85 0.63 0.90 0.81 0.62 0.73 0.76 0.62
llama3-8b-it top-80% 0.87 0.82 0.45 0.87 0.81 0.49 0.86 0.86 0.55 0.93 0.84 0.72 0.82 0.77 0.64
llama3-8b-it top-70% 0.88 0.76 0.46 0.89 0.85 0.56 0.87 0.87 0.63 0.84 0.82 0.56 0.86 0.73 0.57

GPT-4.1-nano 0.89 0.99 0.72 0.86 0.96 0.69 0.91 0.98 0.74 0.85 0.98 0.70 0.72 0.95 0.699
GPT-4.1-nano top-90% 0.82 0.95 0.71 0.92 0.97 0.75 0.86 0.91 0.76 0.84 0.90 0.72 0.88 0.95 0.72
GPT-4.1-nano top-80% 0.91 0.96 0.74 0.92 0.96 0.68 0.87 0.98 0.74 0.90 0.92 0.70 0.84 0.92 0.76
GPT-4.1-nano top-70% 0.97 0.97 0.74 0.92 0.85 0.75 0.89 0.95 0.69 0.81 0.90 0.75 0.89 0.91 0.72

Table 4: Results of MEMERAG.

• Faithfulness evaluates on the gold but pruned documents, the input query, and the generated
response. This metric is used to examine the natural inference between the input query, the
pruned contexts, and the final answer.

• SAS (Semantic Answer Similarity) evaluates a predicted answer using ground truth labels.
It checks the semantic similarity of a predicted answer and the ground truth answer using
sentence-transformers.

We use llama3-1b-it as the backend of LitePruner and report scores for llama3-8b-it and GPT-4.1-nano.
All results are based on two runs.

PubMedQA
Model top-k% mrr fa sas

llama3-8b-it - 0.51 0.83 0.68
llama3-8b-it top-90% 0.45 0.80 0.64
llama3-8b-it top-80% 0.53 0.86 0.68
llama3-8b-it top-70% 0.55 0.84 0.67

GPT-4.1-nano - 0.83 0.96 0.74
GPT-4.1-nano top-90% 0.88 0.99 0.74
GPT-4.1-nano top-80% 0.89 0.99 0.76
GPT-4.1-nano top-70% 0.80 0.93 0.70

Table 5: Results of PubMedQA.

In Table 5 and 4, we show the results for the RAG ex-
periments. The key observation is from Faithfulness (fa),
which measures the natural inference between the query,
the context, and the output. Compared to the baseline,
where pruning is not applied, LitePruner achieves compa-
rable scores or even slightly improves the performance in
some cases, which means that it does not hurt the model’s
capability of understanding and reasoning based on the
context. This is the main reason why LitePruner obtains
similar results for the final prediction (i.e., sas). Signifi-
cantly, for the most cost-efficient setting, LitePruner can
still preserve overall performance in all metrics when 30%
of tokens are dropped from the documents.

5 DISCUSSION

5.1 DO SMALL MODELS SHARE SIMILAR ATTENTION PATTERNS AS LARGER MODELS?

Recall that our hypothesis is that due to the similar attention mechanisms, small models might
share some attention patterns with large models. This motivates us to use the importance scores
based on relative attention scores as the metric to rank token importance in pruning. In our in- and
across-family experiments, we observe that target large models could maintain decent performance
for downstream tasks while using pruned inputs, which verifies our hypothesis to some extent,
as target large models still obtain the required information from pruned inputs to finish tasks.

RAD(A,B, T ) =
1

n

n∑
i=1

∣∣∣α(A)
i − α

(B)
i

∣∣∣ (1)

To better understand and examine the potential shared
attention patterns, we use Relative Attention Differ-
ence (RAD) to measure the difference of two models
with the same tokeniser. RAD quantifies the differ-
ence in attention scores between two models, A and
B, over a sequence of n tokens, T is given by For-
mula 1 where α

(A)
i and α

(B)
i denote the importance

score for i-th token for the first multi-head attention layers of models A and B, respectively. RAD is
computed by taking the absolute difference in token-level importance scores between the two models
and averaging it over the input sequence. The normalization by n, the number of tokens, ensures that
the metric is not biased by sequence length. Unlike squared-distance measures such as Euclidean

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

distance, RAD treats each token equally and avoids amplifying large deviations and shrinking small
ones.

We computed the values of RAD and cosine similarity between the first three layers of attention of
different Llama3 and Gemma2 backends on 1000 random prompts from 5-shot Multilingual ARC,
MGSM, Global-MMLU-Lite from Section 3.1 each. The results are shown in Tables 6–16.

In all cases, the RAD values are consistently negligible while the cosine similarities are nearly
one, indicating a very high similarity between the importance scores of different attention layers of
in-family models. We also observe that for the first layers of the larger model, the first layers of the
smaller models show the highest cosine similarities. This suggests that pruning based on the initial
attention layers may not only require less compute but may also be more effective in preserving
accuracy.

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 1 2 3

1 0.9924 0.9472 0.9548 0.9939 0.9499 0.9536 0.9893 0.9478 0.95268
2 0.9194 0.9898 0.9913 0.9228 0.9895 0.9902 0.9194 0.9898 0.9913
3 0.9246 0.9934 0.9968 0.9273 0.9925 0.9929 0.9246 0.9934 0.9968

Table 6: Average cosine similarities between layers of Gemma-2-2B-it (y-axis) and Gemma-2-9B-it
(x-axis) for 1000 random prompts from each Global-MMLU-Lite and Multilingual ARC. More
results refer to Appendix A.3.

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 1 2 3

1 0.0003035 0.001295 0.00101 0.0001898 0.0008945 0.000682 0.0002221 0.001114 0.0008364
2 0.001353 0.000299 0.0005765 0.00085 0.000271 0.000346 0.000996 0.000382 0.0003636
3 0.000977 0.0006065 0.0002337 0.0006146 0.000508 0.0002518 0.000762 0.000593 0.0002522

Table 7: Average RAD values between layers of Gemma-2-2B-it (y-axis) and Gemma-2-9B-it (x-axis)
for 1000 random prompts from each Global-MMLU-Lite and Multilingual ARC. More results refer
to Appendix A.3.

5.2 HOW SIMILAR ARE DIFFERENT LITEPRUNER BACKENDS?

Benchmark Model A Model B top-k% Avg. BLEU Score

ARC llama3-1B-it llama3-3B-it top-90% 74.63
ARC llama3-1B-it llama3-3B-it top-80% 62.32
ARC llama3-1B-it llama3-3B-it top-70% 56.20

MGSM llama3-1B-it llama3-3B-it top-90% 78.42
MGSM llama3-1B-it llama3-3B-it top-80% 66.06
MGSM llama3-1B-it llama3-3B-it top-70% 58.04

MMLU llama3-1B-it llama3-3B-it top-90% 73.45
MMLU llama3-1B-it llama3-3B-it top-80% 71.50
MMLU llama3-1B-it llama3-3B-it top-70% 66.60

ARC Gemma2-2B-it Gemma2-9B-it top-90% 77.95
ARC Gemma2-2B-it Gemma2-9B-it top-80% 65.93
ARC Gemma2-2B-it Gemma2-9B-it top-70% 57.12

MGSM Gemma2-2B-it Gemma2-9B-it top-90% 62.97
MGSM Gemma2-2B-it Gemma2-9B-it top-80% 70.43
MGSM Gemma2-2B-it Gemma2-9B-it top-70% 82.25

MMLU Gemma2-2B-it Gemma2-9B-it top-90% 68.39
MMLU Gemma2-2B-it Gemma2-9B-it top-80% 74.25
MMLU Gemma2-2B-it Gemma2-9B-it top-70% 82.88

Table 8: Mean Blue Scores between model pairs. All
prompts across benchmarks are 5-shot and reused from
the primary experiments described in Section 3.1.

To better understand the outputs of dif-
ferent models as LitePruner backends, we
calculated the BLEU scores across differ-
ent backend models (Gemma2-2B-it and
Gemma2-9B-it; llama3-1B-it and llama3-
3B-it), benchmarks, and top-k% values. Ta-
ble 8 shows the results for the same. We
can observe that for all Llama models, the
BLEU values are consistently high and de-
crease with a decrease in the top-k% values.
This trend is also followed in the case of the
Gemma models for the Multilingual ARC
prompts. However, the trend reverses for
MGSM and Global-MMLU-Lite prompts
for the Gemma models. Still, the average
BLEU score values remain above 55 in all
cases and above 65 in most cases indicating
a very high similarity in the output. This
difference in trends might be due to the
usage of different tokenizers and different
token sizes in both model families across
different languages.

5.3 HOW FAST IS LITEPRUNER?

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: No. of FLOPs vs No. of input Tokens
for Llama3-1b-t anfd Gemma-2-2b-it Lite Pruner
Backends

To understand the number of FLOPs needed by
LitePruner, we ran LitePruner of randomly gen-
erated prompts of different lengths profiled for
the number of floating-point operations(FLOPs)
with Llama3-2b-it pruner and Gemma-2-2b-it
pruners. Since, for any top-k% value, the core
model does not change, there will be no change
in the number of FLOPs. Also, due to several
confounding factors such as other activities on
the server, temperature of the hardware, differ-
ent specifications of the hardware, etc., the time
taken is an unreliable metric for speed in an
experimental setup, and hence, it was not mea-
sured. However, it can be easily estimated on
the basis of time complexity (Section 2) and the
number of FLOPs. The results can be seen in
Figure 2. As observed, the graph follows the
O(n2d). It can also be seen that even for very long input lengths, LitePruner shows very few FLOPs
for both backends.

6 RELATED WORK

Token pruning focuses on reducing the number of tokens processed by models to save computational
costs with minimal performance degradation. Currently, there are several methods that aim to address
redundant token problems. Existing works, such as Ahia et al. (2023); Liang et al. (2023); Dewangan
et al. (2025), focus on the development of entirely new tokenizers that allow fairer tokenization across
languages. However, deploying these tokenizers remains challenging for pre-existing closed-weight
models. Other methods, such as Huang et al. (2023), explore prompting techniques to improve
performance without modifying the tokenizer. Several other works, including Xu et al. (2025), focus
on improving the performance of LLMs in long-context scenarios through token pruning, although
they do not specifically target multilingual settings with open-weight models. These methods typically
prune tokens progressively layer-by-layer (Goyal et al., 2020b; Cao et al., 2023), which are different
from our method. The recent prompt compressor family (Jiang et al., 2024; Pan et al., 2024) also
pushes the efficiency idea further, but it is still requires running on large GPU memories. We consider
the universal, real-life case that the input context could be pruned before passing it to the black-box
APIs or LLMs without GPU support.

Our works share the same idea with (Goyal et al., 2020a; Ye et al., 2021) as we both leverage pre-
trained attention weights for pruning. However, our off-the-shelf LitePruner is using a second model
as the backend, making it distinguishable. Another parallel line is about token merging. Instead of
removing some tokens, Bolya et al. (2022) suggest merging tokens to reduce the input length. Xing
et al. (2024) attempt to merge similar or less informative tokens into summary representations. In
our experiments, we found LitePruner can merge some short-length tokens into a longer token by
removing and adjusting some neighboring tokens, showing some merging effects.

7 CONCLUSION

In this paper, we present LitePruner, a lightweight model to prune tokens before sending them
to the target large models. We re-use minimal pre-trained weights from a small model to select
important tokens but keep the relative token position unchanged. Massive in-context learning
experiments on three multilingual benchmarks: MGSM, Global-MMLU-Lite and multilingual ARC
show effectiveness of LitePruner. Meanwhile, LitePruner is compatible with commercial LLM
APIs, contributing to practical applications. Long context, especially in multilingual settings, causes
additional token fees, response latency, and long context processing. LitePruner attempts to improve
the processing efficiency for long context by reducing the total number of tokens while maintaining
decent performance in multilingual settings, especially for low-resource language.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

REFERENCES

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David Mortensen, Noah Smith, and
Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial language
models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 9904–9923, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.614. URL
https://aclanthology.org/2023.emnlp-main.614/.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv preprint arXiv:2210.09461, 2022.

Qingqing Cao, Bhargavi Paranjape, and Hannaneh Hajishirzi. PuMer: Pruning and merging tokens for
efficient vision language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 12890–12903, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.721. URL https://aclanthology.org/2023.
acl-long.721/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018.

María Andrea Cruz Blandón, Jayasimha Talur, Bruno Charron, Dong Liu, Saab Mansour, and
Marcello Federico. MEMERAG: A multilingual end-to-end meta-evaluation benchmark for
retrieval augmented generation. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 22577–22595, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/
2025.acl-long.1101. URL https://aclanthology.org/2025.acl-long.1101/.

Vikrant Dewangan, Bharath Raj S, Garvit Suri, and Raghav Sonavane. When every token counts:
Optimal segmentation for low-resource language models. In Hansi Hettiarachchi, Tharindu
Ranasinghe, Paul Rayson, Ruslan Mitkov, Mohamed Gaber, Damith Premasiri, Fiona Anting Tan,
and Lasitha Uyangodage (eds.), Proceedings of the First Workshop on Language Models for Low-
Resource Languages, pp. 294–308, Abu Dhabi, United Arab Emirates, January 2025. Association
for Computational Linguistics. URL https://aclanthology.org/2025.loreslm-1.24/.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sab-
harwal, and Ashish Verma. Power-bert: Accelerating bert inference via progressive word-vector
elimination. In International Conference on Machine Learning, pp. 3690–3699. PMLR, 2020a.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sabhar-
wal, and Ashish Verma. PoWER-BERT: Accelerating BERT inference via progressive word-vector
elimination. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
3690–3699. PMLR, 13–18 Jul 2020b. URL https://proceedings.mlr.press/v119/goyal20a.
html.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

10

https://aclanthology.org/2023.emnlp-main.614/
https://aclanthology.org/2023.acl-long.721/
https://aclanthology.org/2023.acl-long.721/
https://aclanthology.org/2025.acl-long.1101/
https://aclanthology.org/2025.loreslm-1.24/
https://zenodo.org/records/12608602
https://proceedings.mlr.press/v119/goyal20a.html
https://proceedings.mlr.press/v119/goyal20a.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Haoyang Huang, Tianyi Tang, Dongdong Zhang, Xin Zhao, Ting Song, Yan Xia, and Furu Wei. Not all
languages are created equal in LLMs: Improving multilingual capability by cross-lingual-thought
prompting. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 12365–12394, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.826. URL
https://aclanthology.org/2023.findings-emnlp.826/.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1658–1677, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.91. URL https://aclanthology.org/2024.acl-long.91/.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A dataset
for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 2567–2577, Hong Kong, China, November 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1259. URL https://aclanthology.org/D19-1259/.

Go Kamoda, Benjamin Heinzerling, Tatsuro Inaba, Keito Kudo, Keisuke Sakaguchi, and Kentaro
Inui. Weight-based analysis of detokenization in language models: Understanding the first stage
of inference without inference. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Findings of
the Association for Computational Linguistics: NAACL 2025, pp. 6324–6343, Albuquerque, New
Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7. URL
https://aclanthology.org/2025.findings-naacl.355/.

Guy Kaplan, Matanel Oren, Yuval Reif, and Roy Schwartz. From tokens to words: On the inner
lexicon of LLMs. In The Thirteenth International Conference on Learning Representations, 2025a.
URL https://openreview.net/forum?id=328vch6tRs.

Guy Kaplan, Matanel Oren, Yuval Reif, and Roy Schwartz. From tokens to words: On the inner
lexicon of llms, 2025b. URL https://arxiv.org/abs/2410.05864.

Viet Lai, Chien Nguyen, Nghia Ngo, Thuat Nguyen, Franck Dernoncourt, Ryan Rossi, and Thien
Nguyen. Okapi: Instruction-tuned large language models in multiple languages with reinforcement
learning from human feedback. In Yansong Feng and Els Lefever (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp.
318–327, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/
v1/2023.emnlp-demo.28. URL https://aclanthology.org/2023.emnlp-demo.28/.

Davis Liang, Hila Gonen, Yuning Mao, Rui Hou, Naman Goyal, Marjan Ghazvininejad, Luke
Zettlemoyer, and Madian Khabsa. XLM-V: Overcoming the vocabulary bottleneck in multilingual
masked language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 13142–13152,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.813. URL https://aclanthology.org/2023.emnlp-main.813/.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei
Lin, Victor Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei
Zhang. LLMLingua-2: Data distillation for efficient and faithful task-agnostic prompt com-
pression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Asso-
ciation for Computational Linguistics: ACL 2024, pp. 963–981, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.57. URL
https://aclanthology.org/2024.findings-acl.57/.

11

https://aclanthology.org/2023.findings-emnlp.826/
https://aclanthology.org/2024.acl-long.91/
https://aclanthology.org/D19-1259/
https://aclanthology.org/2025.findings-naacl.355/
https://openreview.net/forum?id=328vch6tRs
https://arxiv.org/abs/2410.05864
https://aclanthology.org/2023.emnlp-demo.28/
https://aclanthology.org/2023.emnlp-main.813/
https://aclanthology.org/2024.findings-acl.57/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and Adel Bibi. Language model tokenizers
introduce unfairness between languages. Advances in neural information processing systems, 36:
36963–36990, 2023.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Language
models are multilingual chain-of-thought reasoners. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=fR3wGCk-IXp.

Shivalika Singh, Angelika Romanou, Clémentine Fourrier, David I Adelani, Jian Gang Ngui, Daniel
Vila-Suero, Peerat Limkonchotiwat, Kelly Marchisio, Wei Qi Leong, Yosephine Susanto, et al.
Global mmlu: Understanding and addressing cultural and linguistic biases in multilingual evalua-
tion. arXiv preprint arXiv:2412.03304, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology, 2024. URL https://arxiv. org/abs/2403.08295, 2:10–19.

Jinming Xing, Dongwen Luo, Chang Xue, and Ruilin Xing. Comparative analysis of pooling
mechanisms in llms: A sentiment analysis perspective. arXiv preprint arXiv:2411.14654, 2024.

Guo-Hao Xu, Jingzhen Ding, Huping Ding, Zhao Xu, and Kaifu Zhang. FTP: Efficient prefilling
for long-context LLM inference via FFN token pruning, 2025. URL https://openreview.net/
forum?id=fL8Zp8o6RL.

Deming Ye, Yankai Lin, Yufei Huang, and Maosong Sun. TR-BERT: Dynamic token reduction for
accelerating BERT inference. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 5798–5809, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.463. URL
https://aclanthology.org/2021.naacl-main.463/.

A APPENDIX

A.1 PRELIMINARY

Our first question is whether LLMs can handle slightly broken inputs as our goal is to remove a
small portion of tokens regardless of the input language surface and send the pruned input to the
target large model. Recent studies have observed that LLMs can initiate internal de-tokenisation
or reconstruction processes, wherein they deduce embedding representation of multi-token words
Kaplan et al. (2025a); Kamoda et al. (2025). Kaplan et al. (2025a) further demonstrates that LLMs
are capable of performing this reconstruction even for ill-formed words.

To study this question first, we conduct experiments for Llama3-1B-it and Llama3-3B-it on the
multilingual MMLU dataset from Llama Evals Grattafiori et al. (2024) by performing a random token
dropping process. Specifically, after tokenizing each input prompt, random tokens are dropped with
a probability p. The last 10 tokens are excluded from this process to prevent inaccuracies during
multiple-choice answer parsing, as only one token is allowed to be generated without any sampling.

In Table 9 and 10 , we observe a clear trend: dropping tokens leads to a significant reduction in the
number of FLOPs, while causing only a relatively small degradation in accuracy for the these models.
These results suggest that token pruning can serve as a promising method to decrease computational
cost, while preserving comparable performance and improving efficiency. Meanwhile, when using
commercial LLM APIs, which usually charge users by token usages, we can save budget if a query is
pruned and has less tokens.

12

https://openreview.net/forum?id=fR3wGCk-IXp
https://openreview.net/forum?id=fL8Zp8o6RL
https://openreview.net/forum?id=fL8Zp8o6RL
https://aclanthology.org/2021.naacl-main.463/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lang p Avg. Input Tokens FLOPs drop Acc. Drop

hi 0.1 1614.4 10.0% 2.8%
0.2 1614.4 19.8% 5.6%
0.3 1257.9 26.9% 7.0%
0.4 1079.5 39.5% 7.0%

th 0.1 1404.9 10.8% 3.5%
0.2 1253.0 21.2% 7.1%
0.3 1100.4 31.7% 7.8%
0.4 950.0 41.7% 9.8%

fr 0.1 1404.9 10.8% 3.5%
0.2 1253.0 21.2% 7.1%
0.3 1100.4 31.7% 7.8%
0.4 950.0 41.7% 9.8%

Table 9: Effect of random token dropping for Llama3.2-1B-it on MMLU in 3 languages.

Lang p Avg. Input Tokens FLOPs drop Acc. drop

hi 0.1 1621.55 10.6% 7.2%
0.2 1442.39 18.5% 11.9%
0.3 1263.36 28.4% 13.5%
0.4 1085.27 38.2% 15.4%

th 0.1 1420.751 10.8% 5.5%
0.2 1267.125 21.3% 13.6%
0.3 1115.922 31.4% 14.4%
0.4 961.839 41.6% 15.3%

fr 0.1 1420.751 10.8% 5.5%
0.2 1267.125 21.3% 13.6%
0.3 1115.922 31.4% 14.4%
0.4 961.839 41.6% 15.3%

Table 10: Effect of random token dropping for Llama3.2-3B-it on MMLU in 3 languages.

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 1 2 3

1 0.00011235 0.0003288 0.0003304 0.0002371 0.0007176 0.000647 0.0002127 0.0006185 0.000638
2 0.0003765 4.67e-05 0.000942 6.574e-05 0.000141 6.574e-05 0.0.0007405 6.81e-05 0.000206
3 0.0004666 5.2e-05 5.025e-05 0.000986 0.00010383 0.0001616 0.000891 0.0001874 5.78e-05

Table 11: Average RAD values between layers of llama3-1B-it (y-axis) and llama3-3B-it (x-axis) for
1000 random prompts from each Global-MMLU-Lite and Multilingual ARC from Section 3.1.

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 1 2 3

1 0.9962 0.9596 0.9635 0.999 0.999 1.0 1.0 0.9995 1.0
2 0.9380 0.9982 0.9984 0.998 1.0 1.0 0.9995 0.9995 1.0
3 0.9424 0.9982 0.9986 0.998 1.0 1.0 0.9990 0.9995 1.0

Table 12: Average cosine similarities between layers of llama3-1B-it (y-axis) and llama3-3B-it
(x-axis) for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM
from Section 3.1.

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 1 2 3

1 0.9980 0.9990 0.9990 0.999 0.999 1.0 0.9995 1.00 1.0
2 0.9956 1.0 0.9995 0.998 1.000 1.0 0.9985 1.00 1.0
3 0.9956 1.0 1.0 0.998 1.000 1.0 0.9980 1.00 1.0

Table 13: Average cosine similarities between layers of llama3-1B-it (y-axis) and llama3-8B-it
(x-axis) for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM
from Section 3.1.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 3: Gemma2 2b it LitePruner - Aya Expanse 8b 5-shot Multilingual ARC

Figure 4: Gemma2 2b it LitePruner - Gemma 27b it Multilingual ARC

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 1 2 3

1 0.9980 0.9980 0.9980 0.9990 0.9990 0.9985 0.9995 1.0 0.9995
2 0.9950 1.0 0.9995 0.9980 1.0 0.9995 0.9976 1.0 1.0
3 0.9960 1.0 1.0010 0.9980 1.0 1.0000 0.9976 1.0 1.0

Table 14: Average cosine similarities between layers of llama3-3B-it (y-axis) and llama3-3B-it
(x-axis) for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM
from Section 3.1.

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 1 2 3

1 0.0001664 0.0003580 0.0004861 0.0003684 0.0008770 0.0010500 0.0003853 0.0007205 0.0009450
2 0.0005210 0.00006413 0.00006855 0.0011080 0.00006074 0.0001531 0.0010650 0.00008446 0.0001662
3 0.0005220 0.00006560 0.00006783 0.0010360 0.00010127 0.0002189 0.0010840 0.0001140 0.0001450

Table 15: Average RAD values between layers of llama3-3B-it (y-axis) and llama3-8B-it (x-axis)
for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM from
Section 3.1.

A.2 PERFORMANCE FOR LANGUAGES

A.3 LAYER COMPARISON

A.4 CASE STUDY

We show an example of LitePruner’s result in Figure 15.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Gemma2 2b it LitePruner - Gemma 9b it Multilingual ARC

Figure 6: Llama 1b it LitePruner - Aya Expanse 8b 5-shot Multilingual ARC

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 1 2 3

1 0.0001957 0.0002687 0.0003958 0.0004778 0.0006860 0.0008574 0.0004702 0.0005530 0.0007760
2 0.0004787 2.55E-05 0.0001103 0.0011410 7.86E-05 0.0001240 0.0010195 4.47E-05 0.0002086
3 0.0005690 0.00011015 2.17E-05 0.0011835 0.0001286 7.38E-05 0.0011720 0.0001892 5.95E-05

Table 16: Average RAD values between layers of llama3-1B-it (y-axis) and llama3-8B-it (x-axis)
for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM from
Section 3.1.

Figure 7: Llama 1b it LitePruner - Llama 3b it 5-shot Multilingual ARC

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Llama 1b it LitePruner - Llama 8b it 5-shot Multilingual ARC

Figure 9: Llama 1b it LitePruner - Aya Expanse 8b 5-shot Global-MMLU-Lite

Figure 10: Gemma2 2b it LitePruner - Gemma2 9b it 5-shot Global-MMLU-Lite

Figure 11: Gemma2 2b it LitePruner - Gemma2 27b it 5-shot Global-MMLU-Lite

Figure 12: Gemma2 2b it LitePruner - Aya Expanse 8b 5-shot Global-MMLU-Lite

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 13: Llama 1b it LitePruner - Llama 70b it 5-shot Global-MMLU-Lite

Figure 14: Llama 1b it LitePruner - Llama 8b it 5-shot Global-MMLU-Lite

Figure 15: Case Study

17


	Introduction
	Method
	Experiment and Application # 1: In-context Learning
	Experimental Setup
	In-family Test Results
	Across-family Experiments

	Experiment and Application # 2: RAG
	Discussion
	Do small models share similar attention patterns as larger models?
	How similar are different LitePruner backends?
	How fast is LitePruner?

	Related Work
	Conclusion
	Appendix
	Preliminary
	Performance for Languages
	Layer Comparison
	Case Study


