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ABSTRACT

Tokenization is one of the core steps of the language model pipeline. However,
the tokenizer yields more tokens for the same context in non-English languages,
especially in low-resource languages due to the shared multilingual settings, which
results in unexpected fairness problems in terms of token fees, response latency,
and long context processing. In this paper, we study a real-time computing problem,
attempting to reduce the total number of tokens per query but maintain decent
performance in multilingual settings. We present a simple, training-free, CPU-
based pruner model to reuse pre-trained weights from the first attention layer of
small models to rank token importance, only delivering important tokens to the
target larger models. This method is motivated by the fact that early layers in
both small and large models latch onto similar shallow local signals due to similar
tokenization algorithms (e.g., BPE) producing identical local signals. Massive
in-context learning experiments on MGSM, Global-MMLU-Lite and ARC and
RAG-based experiments on PubMedQA and MEMERAG show that our method
can preserve decent performance for languages while reducing up to 30% of the
total number of tokens in both in-family and across-family model settings, where
the pruner model and the target large model are in or not in the same model
family. Our method is compatible with commercial LLM APIs and CPU-based,
contributing to real-life applications.

1 INTRODUCTION

Large Language Models (LLMs) have achieved widespread popularity in recent years due to their
impressive ability to understand and generate multiple languages. However, recent studies have
highlighted that tokenization, one of the core steps of the LLM pipeline, systematically overtokenizes
non-English languages, especially low-resource languages (Ahia et al., 2023 [Petrov et al.l [ 2023)). For
example, according to the tokenization premium defined in Petrov et al.[(2023), languages such as
Hindi, Kannada, Tamil, and Simplified Chinese are respectively 4.60x%, 10.83x, 5.87x%, and 2.00x more
expensive to tokenize for Llama models, and 7.46x, 13.69x, 15.58%, and 3.21x more expensive for
GPT-4. These disparities in tokenization efficiency raise issues for non-English user cases, including
1) Long-Context Processing: long non-English inputs may not fit in LLMs’s context window and 2)
High Cost: non-English users have to pay more than English users for the same task.

To address these issues, we study lightweight, real-time, CPU-based frameworks to reduce the total
number of input tokens while maintaining decent task performance. Our motivation is derived
from real-life scenarios that we typically call commercial, private APIs or local, open-source LLMs
via web browsers and code editors, allowing an additional token pruning step to be performed in
these CPU-based environments before calling. Our motivation is orthogonal to the recent prompt
compressor family (Jiang et al.| 2024} [Pan et al., | 2024) that attempts to use local, open-source LLMs
to generate a new compact demonstration from multiple demonstrations for the black-box APIs.
Instead, we take the universal case into consideration that the input context could be pruned before
passing it to the private APIs. This idea is also distinguished from the classic token pruning method
family (Goyal et al., [2020b; |Cao et al., 2023), which removes tokens layer-by-layer in the target
model. In contrast, we hypothesize that for the same context, in the early layers, both small and
large models potentially show similar attention patterns because the early layers latch onto the same
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shallow local signals and attempt to restore words from subtokens (i.e., detokenization (Kaplan et al.|
2025b)) due to the similar tokenization algorithm and the same attention mechanism.

Based on the hypothesis and motivation above, we present LitePruner, a method to use the first
attention layer from pre-trained small models to select a portion of the input tokens. Our idea
introduces an additional step between the user interface and the target large model, where LitePruner
removes a portion of unnecessary tokens and delivers the remaining important tokens to the target
large model while keeping relative token positions unchanged. LitePruner is design to remove some
tokens but preserve attention patterns to maintain the performance. A strong motivation is that
in multilingual use cases, users can deploy LitePruner on a laptop without GPU support to prune
tokens and send Top-n% tokens to commercial private APIs. With minimal computational resources,
LitePruner can save 100% -n% API fees and the context window for all languages.

* We present LitePruner to reuse the first layer of pre-trained small models to select tokens,
remove a portion of tokens with low attention scores, and only feed selected tokens to the
target model. LitePruner does not change the relative token positions, reuse the pre-trained
position embeddings, and does not uses the causal mask.

* LitePruner is training-free, flexible, and GPU-based. Experimental results show that
LitePruner can work for at least two practical scenarios: 1) in-family and 2) across-family,
where the small backend model of LitePruner and the large model are in the same model
family or not.

* Massive in-context learning experiments on MGSM (Shi et al., 2023), Global-MMLU-Lite
(Singh et al.| 2024) and multilingual ARC (Clark et al., 2018; |Lai et al., 2023) and RAG
experiments on PubMedQA and MEMERAG show that our method can preserve decent
performance for languages while reducing up to 30% of the total number of tokens in both
in-family and across-family settings.

2 METHOD

Algorithm 1 LitePruner Implementation

1: Load Model and Tokenizer:

2: model = AutoModel.from_pretrained("llama3-1B", device="cpu")

3: tokenizer = AutoTokenizer.from_pretrained("llama3-1B")

4: Extract Pretrained Weights:

5: embedding_layer = model.embeddings

6: > first attention layer w/o masking but w/ position encoding.
7: del model > Release memories
8: Define Pruning Function:

9: function LITEPRUNER(X, top_k)
10: X = embedding_layer(X) > X=[n], where n is the sequence length
11: X = > X = [h, n, n], where h is the head
12: X = X.mean(dim=0).mean(dim=0) > Compute I.5(z;) = avg([h, s, i]), where z; € X

13: X=get_top_k_index(X)

14: return X[top_k_index]

15: end function

16: #Example of Pipeline#

17: X =

18:  “This paper introduces LitePruner, a method to reduce the number of input tokens to a language model while aiming to preserve performance on the target task.*
19: X = tokenizer.encode(X)

20: X = LitePruner(X,90%)

21: X = tokenizer.decode(X)

22: print(X)

23: “The paper introduces LitePruner, a method to reduce the of tokens to a model while aiming to preserve on the task.*

24: LLM(X)

Our goal is to develop a lightweight, real-time, CPU-based, training-free method to remove some
tokens beyond random token dropping used in preliminaries. We observe that large models usually
have smaller sibling models in the model family |Team et al.; |Grattafiori et al.| (2024), e.g., Llama3-
8B-it and Gemma2-9B-it have smaller sibling models Llama3-1B-it and Gemma2-2B-it respectively.
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Considering the shared attention mechanisms and the same tokenization algorithm, we hypothesize
that early layers in both small and large models might share some similar attention patterns, especially
the first layer. Therefore, we use the first layer of the pre-trained small model to select a portion of
important tokens that will be passed to the target large LLM. Our intuition is that, the first layer of a
small model produces similar attention patterns as the target LLM does in the first layer. That is to
say, the target LLM will ignore or pay minimal attention to the same tokens as the small model does
S0 it is not necessary to pass tokens overlooked by the small model to the target LLM.

Specifically, we reuse the embedding layer and the first attention layer of a pre-trained small
model, computing the attention scores without using the causal mask. Let [h, n,n| to denote the
multi-head attention score matrix with A heads for the input X, with n tokens. Then, we define the
importance score for i-th token z; € X, as I.5(x;) = avg([h,n,]). In other words, we accumulate
the attention scores for each token as the importance score for that token. Finally, we rank all tokens
based on their importance score and only pass top-k% tokens decoded into the text format to the
target model. Note that we do not change the relative positions for all tokens. However, the absolute
positions are modified as some tokens are removed. After pruning, the target LLM can add position
encoding normally as we deliver the text to it. In addition, since LitePruner performs before the
target large model, our method does not hurt the KV cache construction in the target large model. In
practice, LitePruner can be developed on a laptop without GPU support as 1) the embedding lookup
for the input sequence requires O(n), 2) the attention layer requires O(n?d), and ranking requires
O(nlogn). We present the implementation prototype in Algorithm with an example in Appendix

3 EXPERIMENT AND APPLICATION # 1: IN-CONTEXT LEARNING

3.1 EXPERIMENTAL SETUP

Since LitePruner is designed to reduce the input context but preserve performance, we consider 5-shot
ICL on three multilingual benchmarks. 1) MGSM (Shi et al.l 2023)) is a benchmark of grade-school
math problems in 10 languages. 2) Multilingual ARC (Clark et al., [2018)) are grade-school science
questions in 34 languages. 3) Global-MMLU-Lite (Singh et al., [2024])) is a multilingual version of
MMLU (Hendrycks et al.,|2021) in 15 languages.

In experiments, we use multi-turn prompting strategies with random demonstrations from the dev set
and prune each demonstration independently, as we are not using LitePruner to select demonstrations.
We consider three model families: LLama3, Gemma2, and Aya-expanse. To conduct our experiments
systematically, we evaluate our idea in two user cases:

* In-family Test. We set the pruner model and the target model from the same model family.
For this setting, we use Llama3-1B-it and Gemma2-2B-it as the backend of LitePruner and
pass pruned tokens to larger Llama3 and Gemma2 models, respectively.

* Across-family Test. In this setting, we evaluate the generalization ability of LitePruner
across different model families. We use Gemma2-2B-it and Llama3-1B-it as the pre-trained
backend of LitePruner. The pruned tokens are passed to the Aya-expanse models and
GPT-4.1-nano.

We use standard evaluation scripts: lm-evaﬂ (Gao et al., 2024} and simple-evaﬂ Meanwhile, we
split languages in experiments into three bins based on Okap S statistics:

* High-resource languages (H): en, ru, zh, de, fr, es, it, nl,and vi.
* Median-resource languages (M): id, ar, hu, ro, da, sk, uk, ca, sr, hr, and hi.
* Low-resourece languages (L): bn, ta, ne, ml, mr, te, and kn.
We report the final average performance for each bin on the three multilingual tasks in the main text

and move language-wise performance to Appendix. For the top-k% configuration, we set top-90%,
top-80%, and top-70%. All results are based on two runs.

"https://github.com/EleutherAl/lm-evaluation-harness
2https://github.com/openai/simple-evals
3https://github.com/nlp-uoregon/Okapi
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3.2 IN-FAMILY TEST RESULTS

Multilingual ARC MGSM Global-MMLU-Lite
LitePruner Model top-k% H M L H M L H M L

- Illama3-8b-it - 45.8 385 24.8 76.3 - 72 66.2 55.8 46.2
Illama3-8b-it random-90% 29.4 26.2 22.8 43.4 - 8.0 54.4 457 32.5

Illama3-8b-it random-80% 25.2 23.8 21.7 15.7 - 0.4 423 358 28.8

- Illama3-8b-it random-70% 23.8 220 211 11.9 - 0.0 342 29.8 27.5
Ilama3-1b-it llama3-8b-it top-90% 39.9 342 239 64.0 - 22.8 63.5 528 415
llama3-1b-it Illama3-8b-it top-80% 33.6 29.6 229 223 - 3.6 58.3 46.4 38.5
Ilama3-1b-it llama3-8b-it top-70% 274 258 228 13.3 - 2.0 51.5 404 36.8
llama3-3b-it - 36.2 30.1 229 66.5 - 8.0 58.5 47.8 40.0

- Illama3-3b-it random-90% 27.1 24.0 23.0 37.5 - 4.0 473 39.6 30.2

- llama3-3b-it random-80% 24.0 226 214 15.3 - 0.0 36.8 31.7 25.5
Illama3-1b-it llama3-3b-it top-90% 332 28.3 2238 59.1 - 7.2 57.0 453 34.8
Illama3-1b-it llama3-3b-it top-80% 29.1 26.1 222 223 - 2.0 51.3 433 315
Illama3-1b-it llama3-3b-it top-70% 252 242 226 13.1 - 0.0 43.0 37.7 31.0
- llama3-70b-it - 55.7 48.8 23.0 83.4 - 4.0 80.9 719 71.8
Ilama3-1b-it Illama3-70b-it top-90% 479 41.8 223 65.5 - 32 79.6 72.8 60.5
Illama3-1b-it Illama3-70b-it top-80% 37.7 34.0 226 203 - 0.8 75.7 63.6 51.5
Ilama3-1b-it Ilama3-70b-it top-70% 30.9 27.3 222 12.5 - 0.6 67.3 528 46.8
- Gemma-9b-it - 56.0 49.6 282 717 - 46.0 70.8 63.7 56.8
Gemma-2b-it Gemma-9b-it top-90% 524 47.0 27.0 63.7 - 40.8 70.5 63.1 54.8
Gemma-2b-it Gemma-9b-it top-80% 477 44.1 262 40.4 - 224 70.7 63.1 54.0
Gemma-2b-it Gemma-9b-it top-70% 40.5 382 255 18.4 - 2.8 67.7 59.9 53.8
- Gemma-27b-it - 61.3 56.0 30.9 754 - 48.4 75.5 70.0 64.5
Gemma-2b-it Gemma-27b-it top-90% 573 52.8 29.6 68.8 - 46.4 74.7 69.4 63.0
Gemma-2b-it Gemma-27b-it top-80% 523 489 284 437 - 224 743 67.8 61.8
Gemma-2b-it Gemma-27b-it top-70% 43.6 42.8 27.3 17.9 - 10.8 729 64.1 61.2

Table 1: Results of in-family test. H, M, and L stand for high-, median-, and low-resource languages.
We consider 5-shot prompting for experiments. All demonstrations share the same language with the
input language. For MGSM, we configure "native-cot" and "exact-match,flexible-extract". MGSM
does not include median-resource languages. There are no "COT" configurations for Multilingual
ARC and Global-MMLU-Lite.

Table [T] summarizes the in-family experiments across three multilingual benchmarks.

LitePruner preserves performance more effectively for low-resource languages across bench-
marks. In MGSM, low- and high-resource language performance drops dramatically at top-70%
and top-80% in all experiments while preserving decent performance at top-90%. Compared to that,
results on Multilingual ARC show slight declines for low-resource language in all settings, where
we only observe < 3% performance degradation. Gemma2 models are stable for all settings in
Global-MMLU-Lite median- and high-resource languages with slight performance degradation while
Llama3 models show significant performance degradation from top-90% to top-70%. In terms of
Global-MMLU-Lite low-resource languages, Gemma2 models are more stable than Llama3 models
as the performance degradation is less important in Gemma?2 models than in Llama3 models.

LitePruner improves MGSM low-resource accuracy at top-90%, contrary to the trend in
high-resource language settings. While pruning typically leads to performance degradation in all
language bins, MGSM exhibits a surprising improvement in low-resource performance at top-90%.
For example, in 1lama3 models, llama3-1b, -8b, and -70b-it show performance improvemnt on MGSM
low-resource languages, increasing significantly from 8.0% (no pruning) to 17.2%, 7.2% (no pruning)
to 22.8%, 4.0% (no pruning) to 31.2%, respectively. This suggests that LitePruner might remove
noise and/or redundant tokens from the input. This also highlights the potential of LitePruner not
just as a compression tool, but as a step of improving robustness in some underrepresented language
scenarios. Similarly, Gemma-9B-it maintains strong performance, with only a small drop from 46.0%
t0 40.8%.

Larger models are more robust to pruning. Across both model families, larger models consis-
tently show smaller drops in performance under token pruning. This suggests that larger models have
greater representational capacity and redundancy, allowing them to better reconstruction for the loss
of pruned tokens. For example, on MGSM high-resource language, pruning tokens with top-90%
for Gemma-27B-it still retains a strong performance of 68.8%, whereas the smaller Gemma-9b-it
drops to 63.7%. A similar trend is observed in the Llama3 family, where Llama3-8b-it preserves
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3-shot 5-shot 8-shot
LitePruner Model top-k% H M L ‘ H M L ‘ H M L

None Illama3-8b-it - 64.8 55.8 47.8 66.2 55.8 46.2 65.7 57.6 48.2
llama3-1b-it Illama3-8b-it top-90% 61.8 50.7 41.5 63.5 52.8 41.5 62.5 50.2 39.2
llama3-1b-it Illama3-8b-it top-80% 55.1 44.6 36.0 58.3 46.4 38.5 57.4 473 36.0
llama3-1b-it Illama3-8b-it top-70% 473 38.3 31.0 51.5 40.4 36.8 49.8 42.1 322

Table 2: Results of different n-shot settings for the llama3 model family on Global-MMLU-lite.
LitePruner is robust in all settings.

stronger performance than Llama3-3b-it at equivalent pruning ratios. This robustness of larger models
highlights the benefit of applying LitePruner for LLMs.

LitePruner is robust to different context settings. Specifically, we test the impact of context
length with different n-shot settings, which indicates the robustness towards the context length. In
Table |2} we consider 3-, 5-, and 8-shot prompting with different top-n% settings for the 1lama3
model family on Global-MMLU-lite. Similar to previous experiments, we prune each demonstration
independently. For median- and high-resource languages, the LitePruner performance is proportional
to the base performance, where no pruning strategies are applied. In contrast, 5-shot surpasses other
two settings in pruning for low-resource languages. Nevertheless, LitePruner shows robustness for
all n-shot settings, especially at top-90% and top-80%. Additionally, considering the goal of the
LitePruner is to improve inference efficiency and save token charge fees (when using commercial
API), the effectiveness in 3-shot settings gives the confidence in application that LitePruner does
not rely solely on long context and more demonstrations to provide missing information for pruned
tokens. LitePrune is able to preserve necessary tokens for the downstream task.

Overall, LitePruner provides a practical and lightweight mechanism for reducing token count while
preserving task performance across multilingual settings. One possible explanation here is that the
tokenization of words relates to a much broader statistical linguistic phenomenon of collocation: the
co-occurrence of series of tokens at levels much greater than would be predicted simply by their
individual probability. In other words, for low-resource languages, which result in more subword
and charater tokens, relatively trivial tokens will dilute attention for important information. Our
LitePruner helps with removing unimportant tokens before passing to the target large model to
make attention stable. However, there is no single optimal top-k% threshold that works universally,
especially for medium- and low-resource languages. The effectiveness of pruning depends on the
task, the size of the model, and the level of language resources. In practice, selecting an appropriate
pruning hyperparameter should be guided by application-specific performance and cost constraints.
We suggest considering the trade-off between performance and cost. Nevertheless, top-90% is still a
common choice for all scenarios.

3.3 ACROSS-FAMILY EXPERIMENTS

The results can be seen in Table[3] We observe three key findings.

LitePruner enables strong cross-family transfer to commercial GPT models. Pruned inputs
generated by LitePruner using Llama3-1b-it or Gemma2-2b-it as backend models can be effectively
interpreted by commercial GPT models, with minimal accuracy loss. Even for complex reasoning
tasks like MGSM, GPT-4.1-nano maintains significantly higher accuracy compared to other model
families like Aya-expanse, showing LitePruner’s ability to produce generalizable and transferable
token subsets.

LitePruner preserves performance across models and languages. Multilingual ARC accuracy
remains consistently high after pruning, regardless of the target model (GPT-4.1-nano or Aya-expanse)
and the language resource level. This indicates that LitePruner selects stable and interpretable token
sets that maintain task-relevant information, even across architectural boundaries and linguistic
diversity. In the Global-MMLU-Lite benchmark, pruning leads to minimal performance degradation
across high-, med-, and low-resource languages when transferred to GPT-4.1-nano. For example,
LiterPruner with the Gemma2-2b-it backend maintains high-resource language performance from
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Multilingual ARC MGSM Global-MMLU-Lite

LitePruner Model top-k% H M L ‘ H M L ‘ H M L
- aya-expanse-8b - 472 37.0 23.8 76.6 - 52 60.2 554 39.0
llama3-1b-it aya-expanse-8b top-90% 45.6 359 233 67.7 - 2.8 579 50.0 332
llama3-1b-it aya-expanse-8b top-80% 34.0 28.3 23.5 34.4 - 0.0 54.5 422 322
1lama3-1b-it aya-expanse-8b top-70% 28.9 24.9 23.3 20.9 - 0.0 45.5 38.4 31.2
Gemma-2b-it aya-expanse-8b top-90% 454 35.1 228 72.8 - 4.4 60.1 552 38.0
Gemma-2b-it aya-expanse-8b top-80% 42.5 337 235 50.7 - 4.8 60.5 545 37.8
Gemma-2b-it aya-expanse-8b top-70% 36.9 30.8 233 21.5 - 0.8 59.1 53.7 35.0
- GPT-4.1-nano - 85.2 80.5 472 84.1 - 66.8 72.8 63.3 53.8
llama3-1b-it GPT-4.1-nano top-90% 85.1 80.3 47.0 835 - 63.8 725 63.8 56.0
llama3-1b-it GPT-4.1-nano top-80% 84.4 79.6 46.6 83.4 - 61.4 72.8 62.6 54.8
Ilama3-1b-it GPT-4.1-nano top-70% 84.8 79.8 47.0 82.6 - 572 72.8 64.0 54.0
Gemma-2b-it GPT-4.1-nano top-90% 85.1 80.4 46.6 84.3 - 60.8 732 62.8 54.0
Gemma-2b-it GPT-4.1-nano top-80% 84.7 79.6 47.0 83.5 - 474 72.6 63.8 54.8
Gemma-2b-it GPT-4.1-nano top-70% 84.7 799 46.8 81.2 - 56.6 717 64.3 54.8

Table 3: Results of across-family test. H, M, and L stand for high-, median-, and low-resource
languages. We consider 5-shot prompting for experiments. All demonstrations share the same
language with the input language. For MGSM, we configure "native-cot" and "exact-match,flexible-
extract". MGSM does not include median-resource languages. There are no "cot" configurations for
Multilingual ARC and Global-MMLU-Lite.

73.3% (no pruning) to 72.0% at top-70%, while median- and low-resource scores remain stable
around 56.8% to 56.0% and 54.8% to 54.0% in our experiments, respectively.

Overall, LitePruner enables effective cross-model transfer, with notably stronger performance when
pruned inputs are passed to GPT-4.1-nano compared to Aya-expanse-8b. The exact explanation
remains unclear to us due to the closed nature of GPT models. However, we attribute to some
reasons including different tokenization methods, architectural, or model training related differences.
Nonetheless, the results highlight LitePruner’s robustness across languages and model families, and
motivate future work on architecture-aware pruning strategies. In practice, this across-family feature
enables LitePruner to be compatible with commercial APIs like GPT-4.1-nano in our experiments to
save API budgets.

4 EXPERIMENT AND APPLICATION # 2: RAG

Since LitePruner is designed to reduce the input context, the second scenario is the RAG (Retrieval-
Augmented Generation) paradigm. We consider two RAG benchmarks. 1) PubMedQA (Jin et al.}
2019) is a benchmark of reasoning over biomedical research texts. The model needs to answer
271k English questions based on documents/contexts.2) MEMERAG (Cruz Blandén et al.| [2025)
is a multilingual end-to-end meta-evaluation benchmark for RAG in 5 languages. We use standard
evaluation scripts provided by haystackﬂ in this experiment. To setup the rag framework, we first use
LitePruner to prune all documents, and store them in the default vector store via vectorization with
the sentence-transformers/paraphrase-multilingual-mpnet-base-v2 backendﬂ Note that, we do not
prune the query, similar to the ICL experiment before. The final evaluation is completed by haystack
with GPT-40-mini. We report there metrics:

* MRR (Document Mean Reciprocal Rank) is computed between the retrieved documents
and the gold documents. It checks at what rank golden pruned documents appear in the list
of retrieved pruned documents and tells use whether a non-pruned query can retrieve the
correct pruned documents.

¢ Faithfulness evaluates on the gold but pruned documents, the input query, and the generated
response. This metric is used to examine the natural inference between the input query, the
pruned contexts, and the final answer.

* SAS (Semantic Answer Similarity) evaluates a predicted answer using ground truth labels.
It checks the semantic similarity of a predicted answer and the ground truth answer using
sentence-transformers.

*https://github.com/deepset-ai/haystack
>sentence-transformers/paraphrase-multilingual-mpnet-base-v2
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MEMERAG
en de es fr hi
Model top-k% mrr fa sas mrr fa sas mrr fa sas mirr fa sas mirr fa sas
Ilama3-8b-it - 0.84 0.85 0.45 0.83 0.81 0.59 0.88 0.83 0.58 0.83 0.94 0.52 0.67 0.72 0.63
Ilama3-8b-it top-90% 0.84 0.81 0.49 0.86 0.81 0.53 0.88 0.85 0.63 0.90 0.81 0.62 0.73 0.76 0.62
Illama3-8b-it top-80% 0.87 0.82 0.45 0.87 0.81 0.49 0.86 0.86 0.55 0.93 0.84 0.72 0.82 0.77 0.64
llama3-8b-it top-70% 0.88 0.76 0.46 0.89 0.85 0.56 0.87 0.87 0.63 0.84 0.82 0.56 0.86 0.73 0.57
GPT-4.1-nano 0.89 0.99 0.72 0.86 0.96 0.69 0.91 0.98 0.74 0.85 0.98 0.70 0.72 0.95 0.699
GPT-4.1-nano top-90% 0.82 0.95 0.71 0.92 0.97 0.75 0.86 091 0.76 0.84 0.90 0.72 0.88 0.95 0.72
GPT-4.1-nano top-80% 0.91 0.96 0.74 0.92 0.96 0.68 0.87 0.98 0.74 0.90 0.92 0.70 0.84 0.92 0.76
GPT-4.1-nano top-70% 0.97 0.97 0.74 0.92 0.85 0.75 0.89 0.95 0.69 0.81 0.90 0.75 0.89 0.91 0.72

Table 4: Results of MEMERAG.

We use llama3-1b-it as the backend of LitePruner and report scores for llama3-8b-it and GPT-4.1-nano.
All results are based on two runs.

In Table [5] and [ we show the results for the RAG ex-
periments. The key observation is from Faithfulness (fa),

. 5 PubMedQA
which measures the natural inference between the query, Model opk% | mmo fa sas
the context, and the output. Compared to the baseline, Ilama3-8b-it - 051 083 068

3 1 3 1 : _ Ilama3-8b-it top-90% 0.45 0.80 0.64

where pruning is not a‘pphedz LitePruner achieves compa LmBgoit  0p80% | 053 086 068
rable scores or even slightly improves the performance in llama3-8b-it  top70% | 0.55 084 0.67
some cases, which means that it does not hurt the model’s GPT-4.1-nano } 083 096 074
13 : : GPT-4.1-nano top-90% 0.88 0.99 0.74
capability of qnderstanghng and reasoning based on t'he GET41mmo  tops0% | 089 089 076
context. This is the main reason why LitePruner obtains GPT4.I-nano  top-70% | 080 093 070

similar results for the final prediction (i.e., sas). Signifi-

cantly, for the most cost-efficient setting, LitePruner can Table 5: Results of PubMedQA.
still preserve overall performance in all metrics when 30%

of tokens are dropped from the documents.

5 DISCUSSION

5.1 DO SMALL MODELS SHARE SIMILAR ATTENTION PATTERNS AS LARGER MODELS?

Recall that our hypothesis is that due to the similar attention mechanisms, small models might
share some attention patterns with large models. This motivates us to use the importance scores
based on relative attention scores as the metric to rank token importance in pruning. In our in- and
across-family experiments, we observe that target large models could maintain decent performance
for downstream tasks while using pruned inputs, which verifies our hypothesis to some extent,
as target large models still obtain the required information from pruned inputs to finish tasks.
To better understand and examine the potential shared

attention patterns, we use Relative Attention Differ-

ence (RAD) to measure the difference of two models 1 & (4) (B)

with the same tokeniser. RAD quantifies the differ- RAD(A, B,T) = n Z ’041: - ‘ ey
ence in attention scores between two models, A and i=1

B, over a sequence of n tokens, T is given by For-

mulawhere ozz(-A) and ozEB) denote the importance

score for i-th token for the first multi-head attention layers of models A and B, respectively. RAD is
computed by taking the absolute difference in token-level importance scores between the two models
and averaging it over the input sequence. The normalization by n, the number of tokens, ensures that
the metric is not biased by sequence length. Unlike squared-distance measures such as Euclidean
distance, RAD treats each token equally and avoids amplifying large deviations and shrinking small
ones.

We computed the values of RAD and cosine similarity between the first three layers of attention of
different Llama3 and Gemma2 backends on 1000 random prompts from 5-shot Multilingual ARC,
MGSM, Global-MMLU-Lite from Section[3.T]each. The results are shown in Tables [H16]

In all cases, the RAD values are consistently negligible while the cosine similarities are nearly
one, indicating a very high similarity between the importance scores of different attention layers of
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in-family models. We also observe that for the first layers of the larger model, the first layers of the
smaller models show the highest cosine similarities. This suggests that pruning based on the initial
attention layers may not only require less compute but may also be more effective in preserving
accuracy.

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 | 1 2 3

1
2
3

0.9924 0.9472 0.9548
0.9194 0.9898 0.9913
0.9246 0.9934 0.9968

0.9939 0.9499 0.9536 0.9893 0.9478 0.95268
0.9228 0.9895 0.9902 0.9194 0.9898 0.9913
0.9273 0.9925 0.9929 0.9246 0.9934 0.9968

Table 6: Average cosine similarities between layers of Gemma-2-2B-it (y-axis) and Gemma-2-9B-it
(x-axis) for 1000 random prompts from each Global-MMLU-Lite and Multilingual ARC. More
results refer to Appendix [A.3]

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 | 1 2 3
1 0.0003035 0.001295 0.00101 0.0001898 0.0008945 0.000682 0.0002221 0.001114 0.0008364

2
3

0.001353 0.000299 0.0005765
0.000977 0.0006065 0.0002337

0.00085 0.000271 0.000346 0.000996 0.000382 0.0003636
0.0006146 0.000508 0.0002518 0.000762 0.000593 0.0002522

Table 7: Average RAD values between layers of Gemma-2-2B-it (y-axis) and Gemma-2-9B-it (x-axis)
for 1000 random prompts from each Global-MMLU-Lite and Multilingual ARC. More results refer

to Appendix[A.3}

5.2 HOW SIMILAR ARE DIFFERENT LITEPRUNER BACKENDS?

To better understand the outputs of dif-

ferent models as LitePruner backends, we

1 1 d h dff Benchmark Model A Model B top-k% Avg. BLEU Score
calculated the BLEU scores across ditter- ARC llama3-1B-it llama3-3B-it  top-90% 74.63
ent backend models (Gemma2-2B-it and ARC llama3-1B-it llama3-3B-it  top-80% 6232
Gemma2-9B—it; llama3-lB-it and llama3- ARC llama3-1B-it llama3-3B-it top-70% 56.20
i _ - MGSM llama3-1B-it llama3-3B-it  top-90% 78.42
3B 1)’ benChmarks’ and top k% Values. Ta MGSM llama3-1B-it llama3-3B-it top-80% 66.06
ble [8] shows the results for the same. We MGSM llama3-1B-it llama3-3B-it  top-70% 58.04
can observe that for all Llama models, the MMLU lama3-1B-it llama3-3B-it  top-90% 7345
BLEU Values are COnSlStently hlgh and de_ MMLU llamaS—lB—fl llamu3—3B—¥t top-80% 71.50
. . MMLU llama3-1B-it llama3-3B-it top-70% 66.60
crease with a decrease in the top-k% values. e o G o g

. . . emma2-2B-it emma2-9B-it top-90% .
This trend is also followed in the case of the ARC Gemma2-2B-it  Gemma2-9B-it mﬂ,go% 65.93
Gemma models fOr the Multlhngual ARC ARC Gemma2-2B-it Gemma2-9B-it top-70% 57.12
prompts. However, the trend reverses for MOSM - Gemma22Bit - Gemmal9Bit  top-50% a2
. emma2-2B-it emma2-9B-it top-80% .

MGSM and Global-MMLU-Lite prompts MGSM Gemma2-2B-it  Gemma2-9B-it  top-70% 82.25
for the Gemma models. Stl]lv the average MMLU Gemma2-2B-it  Gemma2-9B-it  top-90% 68.39
BLEU score values remain above 55 in all MMLU ~ Gemma2-2B-it ~ Gemma2-9B-it  top-80% 74.25
MMLU Gemma2-2B-it Gemma2-9B-it top-70% 82.88

cases and above 65 in most cases indicating

a very high similarity in the output. This
difference in trends might be due to the
usage of different tokenizers and different
token sizes in both model families across
different languages.

Table 8: Mean Blue Scores between model pairs. All
prompts across benchmarks are 5-shot and reused from
the primary experiments described in Section

5.3 HOW FAST IS LITEPRUNER?

To understand the number of FLOPs needed by LitePruner, we ran LitePruner of randomly generated
prompts of different lengths profiled for the number of floating-point operations(FLOPs) with Llama3-
2b-it pruner and Gemma-2-2b-it pruners. Since, for any top-k% value, the core model does not
change, there will be no change in the number of FLOPs. Also, due to several confounding factors
such as other activities on the server, temperature of the hardware, different specifications of the
hardware, etc., the time taken is an unreliable metric for speed in an experimental setup, and hence,
it was not measured. However, it can be easily estimated on the basis of time complexity (Section
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No. of input tokens vs No. of Floating Point Operations for different LitePruner Backends
e12

Models
1.75 4 — Gemma-2b-it
— Uama3-1b-it

0 2500 5000 7500 10000 12500 15000 17500 20000
No. of input tokens

Figure 1: No. of FLOPs vs No. of input Tokens for Llama3-1b-t anfd Gemma-2-2b-it Lite Pruner
Backends

[2) and the number of FLOPs. The results can be seen in Figure[T] As observed, the graph follows
the O(n?d). It can also be seen that even for very long input lengths, LitePruner shows very few
FLOPs for both backends. Llama3-1b-it backend has only 260 million parameters(less than 500m
memory in bf16 setting), while Gemma-2-2b-it backend has only 590 million parameters (less than
1.2G memory in bf16), thus also demonstrating the low memory requirements for both models.

6 RELATED WORK

Token pruning focuses on reducing the number of tokens processed by models to save computational
costs with minimal performance degradation. Currently, there are several methods that aim to address
redundant token problems. Existing works, such as|Ahia et al.[(2023)); Liang et al.|(2023); [Dewangan
et al.| (2025)), focus on the development of entirely new tokenizers that allow fairer tokenization across
languages. However, deploying these tokenizers remains challenging for pre-existing closed-weight
models. Other methods, such as |Huang et al. (2023), explore prompting techniques to improve
performance without modifying the tokenizer. Several other works, including Xu et al.| (2025)), focus
on improving the performance of LLMs in long-context scenarios through token pruning, although
they do not specifically target multilingual settings with open-weight models. These methods typically
prune tokens progressively layer-by-layer (Goyal et al.,[2020b; |Cao et al., 2023), which are different
from our method. The recent prompt compressor family (Jiang et al., [2024; |Pan et al., [2024)) also
pushes the efficiency idea further, but it is still requires running on large GPU memories. We consider
the universal, real-life case that the input context could be pruned before passing it to the black-box
APIs or LLMs without GPU support.

Our works share the same idea with (Goyal et al.| 2020a; Ye et al.,[2021)) as we both leverage pre-
trained attention weights for pruning. However, our off-the-shelf LitePruner is using a second model
as the backend, making it distinguishable. Another parallel line is about token merging. Instead of
removing some tokens, [Bolya et al.[(2022)) suggest merging tokens to reduce the input length. | Xing
et al.| (2024) attempt to merge similar or less informative tokens into summary representations. In
our experiments, we found LitePruner can merge some short-length tokens into a longer token by
removing and adjusting some neighboring tokens, showing some merging effects.

7 CONCLUSION

In this paper, we present LitePruner, a lightweight model to prune tokens before sending them to the
target large models. We re-use minimal pre-trained weights from a small model to select important
tokens but keep the relative token position unchanged. Massive in-context learning experiments on
three multilingual benchmarks and RAG experiments show effectiveness of LitePruner. Meanwhile,
LitePruner is compatible with commercial LLM APIs, contributing to practical applications. Long
context, especially in multilingual settings, causes additional token fees, response latency, and long
context processing. LitePruner attempts to improve the processing efficiency for long context by
reducing the total number of tokens while maintaining decent performance in multilingual settings,
especially for low-resource language.
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A APPENDIX

A.1 PRELIMINARY

Our first question is whether LLMs can handle slightly broken inputs as our goal is to remove a
small portion of tokens regardless of the input language surface and send the pruned input to the
target large model. Recent studies have observed that LLMs can initiate internal de-tokenisation
or reconstruction processes, wherein they deduce embedding representation of multi-token words
Kaplan et al.|(2025a)); Kamoda et al.| (2025). [Kaplan et al.| (2025a) further demonstrates that LLMs
are capable of performing this reconstruction even for ill-formed words.

To study this question first, we conduct experiments for Llama3-1B-it and Llama3-3B-it on the
multilingual MMLU dataset from Llama Evals |Grattafiori et al.|(2024) by performing a random token
dropping process. Specifically, after tokenizing each input prompt, random tokens are dropped with
a probability p. The last 10 tokens are excluded from this process to prevent inaccuracies during
multiple-choice answer parsing, as only one token is allowed to be generated without any sampling.

In Table[9and [I0], we observe a clear trend: dropping tokens leads to a significant reduction in the
number of FLOPs, while causing only a relatively small degradation in accuracy for the these models.
These results suggest that token pruning can serve as a promising method to decrease computational
cost, while preserving comparable performance and improving efficiency. Meanwhile, when using
commercial LLM APIs, which usually charge users by token usages, we can save budget if a query is
pruned and has less tokens.
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Lang p Avg. Input Tokens FLOPsdrop  Acc. Drop
hi 0.1 1614.4 10.0% 2.8%
0.2 1614.4 19.8% 5.6%
0.3 1257.9 26.9% 7.0%
0.4 1079.5 39.5% 7.0%
th 0.1 1404.9 10.8% 3.5%
0.2 1253.0 21.2% 7.1%
0.3 1100.4 31.7% 7.8%
04 950.0 41.7% 9.8%
fr 0.1 1404.9 10.8% 3.5%
0.2 1253.0 21.2% 7.1%
0.3 1100.4 31.7% 7.8%
04 950.0 41.7% 9.8%

Table 9: Effect of random token dropping for Llama3.2-

1B-it on MMLU in 3 languages.

Lang p Avg. Input Tokens FLOPsdrop  Acc. drop
hi 0.1 1621.55 10.6% 7.2%
0.2 1442.39 18.5% 11.9%
0.3 1263.36 28.4% 13.5%
04 1085.27 38.2% 15.4%
th 0.1 1420.751 10.8% 5.5%
0.2 1267.125 21.3% 13.6%
0.3 1115.922 31.4% 14.4%
04 961.839 41.6% 15.3%
fr 0.1 1420.751 10.8% 5.5%
0.2 1267.125 21.3% 13.6%
0.3 1115.922 31.4% 14.4%
04 961.839 41.6% 15.3%

Table 10: Effect of random token dropping for Llama3.2-3B-it on MMLU in 3 languages.

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 | 1 2 3
1 0.00011235 0.0003288 0.0003304 0.0002371 0.0007176 0.000647 0.0002127 0.0006185 0.000638
2 0.0003765 4.67e-05 0.000942 6.574e-05 0.000141 6.574e-05 0.0.0007405 6.81e-05 0.000206
3 0.0004666 5.2e-05 5.025¢-05 0.000986 0.00010383 0.0001616 0.000891 0.0001874 5.78e-05

Table 11: Average RAD values between layers of llama3-1B-it (y-axis) and llama3-3B-it (x-axis) for
1000 random prompts from each Global-MMLU-Lite and Multilingual ARC from Section 3.1}

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 30 1 2 3
1 0.9962 0.9596 0.9635 0.999 0.999 1.0 1.0 0.9995 1.0
2 0.9380 0.9982 0.9984 0.998 1.0 1.0 0.9995 0.9995 1.0
3 0.9424 0.9982 0.9986 0.998 1.0 1.0 0.9990 0.9995 1.0

Table 12: Average cosine similarities between layers of llama3-1B-it (y-axis) and 1llama3-3B-it
(x-axis) for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM

from Section 3.1}
Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3| 1 2 3
1 0.9980 0.9990 0.9990 0.999 0.999 1.0 0.9995 1.00 1.0
2 0.9956 1.0 0.9995 0.998 1.000 1.0 0.9985 1.00 1.0
3 0.9956 1.0 1.0 0.998 1.000 1.0 0.9980 1.00 1.0

Table 13: Average cosine similarities between layers of llama3-1B-it (y-axis) and 1llama3-8B-it
(x-axis) for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM

from Section @
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Figure 3: Gemma2 2b it LitePruner - Gemma 27b it Multilingual ARC

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 | 1 2 3
1 0.9980 0.9980 0.9980 0.9990 0.9990 0.9985 0.9995 1.0 0.9995
2 0.9950 1.0 0.9995 0.9980 1.0 0.9995 0.9976 1.0 1.0
3 0.9960 1.0 1.0010 0.9980 1.0 1.0000 0.9976 1.0 1.0

Table 14: Average cosine similarities between layers of llama3-3B-it (y-axis) and llama3-3B-it
(x-axis) for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM

from Section @

Multilingual ARC ‘

Layer No. ‘ 1 2 3 1 3 | 1 2

MGSM Global-MMLU-Lite
2

1
2
3

0.0001664 0.0003580 0.0004861
0.0005210 0.00006413 0.00006855
0.0005220 0.00006560 0.00006783

0.0003684 0.0008770 0.0010500 0.0003853 0.0007205
0.0011080 0.00006074 0.0001531 0.0010650 0.00008446
0.0010360 0.00010127 0.0002189 0.0010840 0.0001140

Table 15: Average RAD values between layers of llama3-3B-it (y-axis) and llama3-8B-it (x-axis)
for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM from

Section @

A.2 PERFORMANCE FOR LANGUAGES
A.3 LAYER COMPARISON
A.4 CASE STUDY

We show an example of LitePruner’s result in Figure [T4]
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Figure 5: Llama 1b it LitePruner - Aya Expanse 8b 5-shot Multilingual ARC

Multilingual ARC MGSM Global-MMLU-Lite
Layer No. 1 2 3 1 2 3 \ 1 2 3
1 00001957  0.0002687  0.0003958 | 0.0004778  0.0006860  0.0008574 | 0.0004702  0.0005530  0.0007760
2 00004787  255E-05 00001103 | 00011410  7.86E-05  0.0001240 | 00010195  447E-05  0.0002086
3 0.0005690  0.00011015  2.17E-05 | 0.0011835  0.0001286  7.38E-05 | 0.0011720  0.0001892  595E-05

Table 16: Average RAD values between layers of llama3-1B-it (y-axis) and llama3-8B-it (x-axis)
for 1000 random prompts from each Global-MMLU-Lite, Multilingual ARC, and MGSM from

Section |3;1'|
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Figure 6: Llama 1b it LitePruner - Llama 3b it 5-shot Multilingual ARC
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Figure 11: Gemma?2 2b it LitePruner - Aya Expanse 8b 5-shot Global-MMLU-Lite
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Figure 12: Llama 1b it LitePruner - Llama 70b it 5-shot Global-MMLU-Lite
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Figure 13: Llama 1b it LitePruner - Llama 8b it 5-shot Global-MMLU-Lite
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Figure 14: Case Study
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