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Abstract

Adversarial attacks can mislead strong neural001
models; as such, in NLP tasks, substitution-002
based attacks are difficult to defend. Current003
defense methods usually assume that the sub-004
stitution candidates are accessible, which can-005
not be widely applied against adversarial at-006
tacks unless knowing the mechanism of the at-007
tacks. In this paper, we propose a Rebuild and008
Ensemble Framework to defend against adver-009
sarial attacks in texts without knowing the can-010
didates. We propose a rebuild mechanism to011
train a robust model and ensemble the rebuilt012
texts during inference to achieve good adver-013
sarial defense results. Experiments show that014
our method can improve accuracy under the015
current strong attack methods.016

1 Introduction017

Adversarial examples (Goodfellow et al., 2014) can018

successfully mislead strong neural models in both019

computer vision tasks (Carlini and Wagner, 2016)020

and language understanding tasks (Alzantot et al.,021

2018; Jin et al., 2019). An adversarial example022

is a maliciously crafted example attached with an023

imperceptible perturbation and can mislead neural024

networks. To defend attack examples of images,025

the most effective method is adversarial training026

(Goodfellow et al., 2014; Madry et al., 2019) which027

is a mini-max game used to incorporate perturba-028

tions into the training process.029

Defending adversarial attacks is extremely im-030

portant in improving model robustness. How-031

ever, defending adversarial examples in natural032

languages is more challenging due to the discrete033

nature of texts. That is, gradients cannot be used di-034

rectly in crafting perturbations. The generation pro-035

cess of substitution-based adversarial examples is036

more complicated than using gradient-based meth-037

ods in attacking images, making it difficult for neu-038

ral networks to defend against these substitution-039

based attacks:040

It had nice picture quality, I’m glad I found this movie, I highly recommend it ! Positive

It had nice picture quality, I’m glad I found this movie, I inordinately recommend it ! Negative

Original

Adversary

Defensing-Model

Rebuild-Ensemble Defense Framework

Negative

It had nice picture quality, I’m glad I found this movie again,I highly fancy it !

It had nice picture quality, I’m glad I found this movie again,I inordinately recommend it !

It had good picture quality, I’m happy I found this movie again,I so recommend it !

… Positive

It had nice movie quality, I’m glad I found this movie again,I very recommend it !

multiple re-built texts ensemble prediction

It had nice picture quality, I’m glad I found this movie, I inordinately recommend it !

Figure 1: Illustration of Adversarial Defense

(A) The first challenge of defending against ad- 041

versarial attacks in NLP is that due to the discrete 042

nature, these substitution-based adversarial exam- 043

ples can have substitutes in any token of the sen- 044

tence and each substitute has a large candidate list. 045

This would cause a combinatorial explosion prob- 046

lem, making it hard to apply adversarial training 047

methods. Strong attacking methods such as Jin et al. 048

(2019) show that using the crafted adversarial ex- 049

amples as data augmentation in adversarial training 050

cannot effectively defend against these substitution- 051

based attacks. 052

(B) Further, the defending strategies such as ad- 053

versarial training rely on the assumption that the 054

candidate lists of the substitutions are accessible. 055

However, the candidate lists of the substitutions 056

should not be exposed to the target model; that is, 057

the target model should be unfamiliar to the candi- 058

date list of the adversarial examples. In real-world 059

defense systems, the defender is not aware of the 060

strategy the potential attacks might use, so the as- 061

sumption that the candidate list is available would 062

significantly constrain the potential applications of 063

these defending methods. 064

In this work, we propose a strong defense frame- 065

work, i.e., Rebuild and Ensemble. 066
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We aim to construct a defense system that can067

successfully defend the attacks without knowing068

the attack range (that is, the candidate list in the069

substitution-based attacks). As seen in Figure 1,070

we first reconstruct input samples to samples that071

do not have adversarial effects. Therefore, when072

the input is changed by the adversarial attack, we073

make predictions based on the rebuilt texts which074

will results in correct predictions.075

To achieve this goal, we first reconsider the076

widely applied pre-trained models (e.g. BERT (De-077

vlin et al., 2018)) which introduce the masked lan-078

guage modeling task in the pre-training stage and079

can be used in fine-tuning on downstream tasks.080

During downstream task fine-tuning, these pre-081

train models throw away the the learned language082

modeling ability and focus on making downstream083

task predictions. Instead of simply fine-tuning084

downstream tasks, we keep the mask prediction085

ability during fine-tuning, and use this ability to086

process the rebuilding of input texts. Specifically,087

we random mask the input texts and use the mask088

prediction to rebuild a text that does not have ad-089

versarial affect. Intuitively, the rebuild process in-090

troduces randomness since the masks are randomly091

selected. We can make multiple random rebuilt092

texts and apply an ensemble process to obtain the093

final model output predictions for better robustness.094

To train the defending framework, we introduce095

the rebuild training based on adversarial training096

with virtual adversaries (Zhu et al., 2019; Li and097

Qiu, 2020) which could enhance both rebuilding098

and downstream task predicting abilities.099

Through extensive experiments, we prove that100

the proposed defense framework can successfully101

resist strong attacks such as Textfooler and BERT-102

Attack. Experiments results show that the accuracy103

under attack in baseline defense methods is lower104

than random guesses, while ours can lift the per-105

formances to only a few percent lower than the106

original accuracy when the candidates are limited.107

Further, extensive results indicate that the candidate108

size of the attacker score is essential for successful109

attacks, which is a key factor in maintaining seman-110

tics of the adversaries. Therefore we also recom-111

mend that future attacking methods can focus on112

achieving success attacks with tighter constrains.113

To summarize our contributions:114

(1) We raise the concern of defending115

substitution-based adversarial attacks without116

knowing the candidates of the attacks in NLP tasks.117

(2) We propose a Rebuild and Ensemble frame- 118

work to defend against recently introduced attack 119

methods without knowing the candidates and exper- 120

iments prove the effectiveness of the framework. 121

(3) We explore the key factors in defending 122

against score-based attacks and recommend further 123

research to focus on tighter constraint attacks. 124

2 Related Work 125

2.1 Adversarial Attacks in NLP 126

In NLP tasks, current methods use substitution- 127

based strategies (Alzantot et al., 2018; Jin et al., 128

2019; Ren et al., 2019) to craft adversarial exam- 129

ples. Most works focus on the score-based black- 130

box attack, that is, attacking methods know the 131

logits of the output prediction. These methods use 132

different strategies (Yoo et al., 2020; Morris et al., 133

2020b) to find words to replace, such as generic 134

algorithm (Alzantot et al., 2018), greedy-search 135

(Jin et al., 2019; Li et al., 2020) or gradient-based 136

methods (Ebrahimi et al., 2017; Cheng et al., 2019) 137

and get substitutes using synonyms (Jin et al., 2019; 138

Mrkšić et al., 2016; Ren et al., 2019) or language 139

models (Li et al., 2020; Garg and Ramakrishnan, 140

2020; Shi et al., 2019). 141

2.2 Adversarial Defenses 142

We divide the defense methods for substitution 143

attacks by whether the defense method requires 144

knowledge of the candidate of the attack. 145

To defend adversarial attacks without knowing 146

the candidate knowledge, Samangouei et al. (2018) 147

uses a defensive GAN framework to build clean im- 148

ages to avoid adversarial attacks; Xie et al. (2017) 149

introduces randomness into the model predicting 150

process to mitigate adversarial affect. Similar to 151

using multiple rebuilt texts, Federici et al. (2020) 152

introduces a multi-view approach that improve ro- 153

bustness by using a set of images describing the 154

same object. Ebrahimi et al. (2017); Cheng et al. 155

(2019) introduces gradient-based adversarial train- 156

ing that crafts adversarial samples by finding the 157

most similar word embeddings based on the gradi- 158

ents. Further, gradient-based adversarial training 159

with virtual adversaries could also be used in NLP 160

tasks: Miyato et al. (2016) proposes a virtual adver- 161

sarial training process with virtual inputs and labels 162

for semi-supervised tasks. Zhu et al. (2019); Li and 163

Qiu (2020) incorporate gradients to crafting virtual 164

adversaries to improve generalization ability. 165

To defend against adversaries while knowing 166
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the candidate list of the attacks, augmentation-167

based methods are the most direct defense strate-168

gies that use the generated adversaries to train a169

robust model (Jin et al., 2019; Li et al., 2020; Si170

et al., 2020). Jia et al. (2019); Huang et al. (2019)171

introduce a certified robust model to defend against172

adversarial attacks by constructing a certified space173

that can tolerate substitutes. Zhou et al. (2020);174

Dong et al. (2021) construct a convex hull based175

on the candidate list which can resist substitutions176

in the candidate list. Zhou et al. (2019) incorpo-177

rates the idea of blocking adversarial attacks by178

discriminating perturbations in the input texts.179

3 Rebuild And Ensemble as Defense180

Defending against adversarial attacks without ac-181

cessing the candidate list is more applicable in real-182

world adversarial defenses. Therefore, we intro-183

duce Rebuild and Ensemble as an effective frame-184

work to defend strong adversarial attacks exempli-185

fied by substitution-based attacks in NLP without186

knowing the candidate list of substitutions.187

We suppose that the target model that may face188

adversarial attacks is a fine-tuned classification189

model Fc(·). When given an input sentence X , the190

adversarial attack may craft an adversarial exam-191

ple Xadv that replaces a small proportion of tokens192

with similar texts. We only consider substitution-193

based adversaries since defending other types of ad-194

versarial examples such as token insertion or dele-195

tion is the same as defending substitution-based196

adversaries.197

3.1 Rebuild and Ensemble Framework198

We propose the rebuild and ensemble framework199

that first rebuilds multiple texts from the input text200

and then use these rebuilt texts to make predictions.201

We used the same model F (·) that can rebuild input202

texts and make predictions using a multi-task struc-203

ture. We use Fm(·) to denote the mask prediction204

task that rebuilds the input texts and use Fc(·) to205

denote the classification task. As seen in Figure 2,206

when given an input text X that might have been207

attacked, we random mask the input texts or insert208

additional masks to make N copies of noisy input209

X̃i = [w0, · · · ,[MASK], wn, · · · , ]. We use two210

simple strategies to inject noise into the input texts:211

(1) Randomly mask the input texts; (2) Randomly212

insert masks into the input texts.213

After making multiple noisy inputs, we can run214

the rebuild process first to get the rebuilt texts based215

…

Inject 

Noise Rebuild

…

Input

Texts

…

Predict

X → X̃i Fm(X̃i) → ̂X i Fc( ̂X i) → Si ∑ (Si)
Ensemble

Figure 2: Rebuild And Ensemble Process: after noise
injection we rebuild multiple texts. Then we use these
texts to predict the label and ensemble the scores as the
final output.

on the randomly masked inputs X̃: X̂i = Fm(X̃i). 216

Then we feed the rebuilt texts through the classi- 217

fier Fc(·) to calculate the final output score based 218

on the multiple rebuilt texts: 219

Si =
1

N

N∑
i=0

(
Softmax(Fc(X̂i))

)
(1) 220

Here, we use the average score from multiple 221

rebuilt texts predictions as the final output score 222

given to the score-based adversarial attackers. 223

Another advantage of using the mask prediction 224

ability is that the mask-infill ability is trained by 225

massive data pre-training which can be helpful in 226

building models with better generalization ability 227

(Gururangan et al., 2020). Therefore, keeping the 228

mask prediction ability and utilizing it can make 229

better use of the pre-trained knowledge. 230

3.2 Rebuild Framework Training 231

We use the fine-tuned masked language model 232

while maintaining the masked language modeling 233

ability since we believe that (1) rebuild process can 234

help gain better robustness by mitigating the adver- 235

sarial affect in the input sequences; (2) maintain- 236

ing language modeling information helps improve 237

model robustness in the classification process. 238

In order to fine-tune such a model F with param- 239

eter θ containing two functions Fm(·) and Fc(·), 240

we introduce a rebuild training process based on 241

multi-task adversarial training. We use noisy texts 242

as inputs to train the masked language modeling 243

task and the downstream task fine-tuning simulta- 244

neously so that the fine-tuning process can tolerate 245

more noisy texts since the model might be attacked 246

by adversaries. 247
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3.2.1 Masked LM Training Strategy248

In our model’s fine-tuning, we have both the249

masked language modeling training and the down-250

stream task training. In the masked language model251

training, we also incorporate the gradient infor-252

mation in the rebuild training process to build a253

gradient-based noisy data to enhance the rebuild-254

ing ability.255

Therefore we have two language model training256

strategy: (1) Standard [MASK] Prediction: We257

randomly mask the input texts (15% of the pieces)258

and make the masked language model to further259

pre-train on the training dataset. (2) Gradient-Noise260

Rebuild: Previous pre-training process does not261

calculate loss on un-masked tokens. Instead we262

use a gradient-based adversarial training method263

to add perturbation δ on the embedding space of264

these un-masked tokens and calculate the loss of265

the masked language model task on these tokens to266

make the model aware of the potential substitutes.267

Compared with Gururangan et al. (2020) which268

also introduces MLM task in fine-tuning, we use269

the mask-infill ablity of the model to rebuild poten-270

tial sabotaged inputs. That is, the MLM task used271

in Gururangan et al. (2020) is an auxiliary task to272

the fine-tuning loss while in our rebuild training,273

the combination of these two losses constructs a274

multi-task model and the mask-infill ability is fully275

utilized.276

3.2.2 Preliminary of Adversarial Training277

with Virtual Adversaries278

Recent researches have been focusing on explor-279

ing the possibility of using gradient-based virtual280

adversaries in NLP tasks (Zhu et al., 2019; Li and281

Qiu, 2020). The core idea is that the adversarial282

examples are not real substitutions but virtual ad-283

versaries added to the embedding space. 1284

g(δ) = 5δL(fθ(X + δ), y) (2)285

286

δ =
∏
||δ ||F≤ε

αg(δ)

||g(δ)||F
(3)287

Here
∏
||δ||F≤ε

represents the process that projects288

the perturbation onto the normalization ball ε using289

1different from VAT which uses both virtual inputs and
virtual labels, virtual adversaries are deployed in supervised
tasks as a replacement for real-substitute adversarial training
since texts are discrete and gradients cannot be directly added
to the texts.

Frobenius normalization ||δ||F . We update the per- 290

turbation using a certain adversarial learning rate 291

α. X is the word embedding of input sequence 292

[w0, · · · , wn, ]. Then these virtual adversaries are 293

used in the training process to improve model per- 294

formance. The entire process is to minimize the 295

maximum risk of mis-classification, containing a 296

multi-step (e.g. T steps) iteration to obtain the 297

proper perturbations while in the FreeLB algorithm, 298

the gradients obtained in each iteration are used in 299

the final optimization. 300

Algorithm 1 Rebuild Training

Require: Training Sample X , Uniform Noist U
with range σ, adversarial step T

1: X̃ ← Random Mask X
2: δ0 ← 1√

D
U(−σ, σ) // Init Perturb

3: for t = 0, 1, ...T do
4: Lc ← Using Equation 4
5: Lmlm ← Using Equation 5
6: // Get Perturbation
7: gδ ←5δ(Lc + Lmlm)
8: δt+1 ←

∏
||δ ||F<ε

(δt + α · gδ/||gδ||F )
9: // Rebuild with Noise

10: Lnoise ← Using Equation 7
11: X̃ ← X̃ + δt // Update Input
12: gt+1 = gt +5θ(Lc + Lmlm + Lnoise)
13: θ ← θ − gT+1 // Update model parameter θ

3.2.3 Overall Process of Rebuild Training 301

Given input texts X , we first make noisy copies 302

X̃ , for notation convenience, here X and X̃ are the 303

embedding output of the input texts. Then we can 304

calculate the gradients of the fine-tuning classifi- 305

cation task gc as well as the mask-prediction task 306

gmlm. 307

Lc = L(Fc(X̃), y, θ) + L(Fc(X), y, θ) (4) 308

Lmlm = L(Fm(X̃), X, θ) (5) 309

Here, L is the cross entropy loss function for 310

both masked language model task Lmlm and clas- 311

sification task Lc. As seen in Algorithm 1 line 7, 312

we run the fine-tuning process based on the noisy 313

input and the original input and we run the mask 314

prediction task simultaneously. We assume that 315

with the mask prediction task also involved in fine- 316

tuning, the model will not be focusing on fitting the 317
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classification task only, which can help maintain318

the entire semantic information and mitigate the319

adversarial affect from the adversaries.320

Further, we use gradients to craft virtual adver-321

saries δ and calculate loss based on these adver-322

saries Lnoise:323

δ ←
∏
||δ ||F<ε

(δ + α · gδ/||gδ||F ) (6)324

Lnoise = L(Fm(X̃ + δ), X, θ) (7)325

Here the cross entropy loss L is calculated based326

on all tokens not just the masked ones. Therefore,327

the masked language model prediction task is mod-328

ified to make the model tolerate more noises and329

therefore more robust.330

The difference between our rebuild-training and331

traditional adversarial training is that we allow the332

perturbations to be larger than previous works.333

That is, the adversarial learning rate α and the per-334

turbation boundary ε are larger (e.g. norm bound335

set to ε 2e-1 compared with 1e-2 used in the FreeLB336

and TAVAT method). Therefore, some of the tokens337

are seriously affected by gradients, which is an ef-338

fective method for further pre-training the model339

to tolerate adversaries. We calculate all the losses340

of prediction task, rebuild task and gradient-based341

noise rebuild task and update the model parameter.342

4 Experiments343

4.1 Datasets344

We use two widely used text classification datasets:345

IMDB 2 (Maas et al., 2011) and AG’s News 3346

(Zhang et al., 2015) in our experiments. The IMDB347

dataset is a bi-polar movie review classification348

task; the AG’s News dataset is a four-class news349

genre classification task. The average length is350

220 words in the IMDB dataset, and 40 words in351

the AG’s News dataset. We use the test set fol-352

lowing the Textfooler 1k test set in the main re-353

sult and sample 100 samples for the rest of the354

experiments since the attacking process is seriously355

slowed down when the model is defensive.356

4.2 Attack Methods357

Popular attack methods exemplified by Generic358

Algorithm (Alzantot et al., 2018), Textfooler (Jin359

et al., 2019) and BERT-Attack (Li et al., 2020) can360

2https://datasets.imdbws.com/
3https://www.kaggle.com/amananandrai/ag-news-

classification-dataset

successfully mislead strong models of both IMDB 361

and AG’s News task with a very small percentage 362

of substitutions. Therefore, we use these strong 363

adversarial attack methods as the attacker to test 364

the effectiveness of our defense method. The hyper 365

parameters used in the attacking algorithm vary in 366

different settings: we choose candidate list size K 367

to be 12, 48, 50 typically which are used in the 368

Textfooler and BERT-Attack methods. 369

We use the exact same metric used in Textfooler 370

and BERT-Attack that calculate the after-attack ac- 371

curacy, which is the targeted adversarial evaluation 372

defined by Si et al. (2020). The after-attack ac- 373

curacy measures the actual defense ability of the 374

system under adversarial attacks. 375

4.3 Victim Models and Defense Baselines 376

The victim models are the fine-tuned pre-train mod- 377

els exemplified by BERT and RoBERTa, which we 378

implement based on Huggingface Transformers 4 379

(Wolf et al., 2020). As discussed above, there are 380

few works concerning adversarial defenses against 381

attacks without knowing the candidates in NLP 382

tasks. Moreover, previous works do not focus on 383

recent strong attack algorithms such as Textfooler 384

(Jin et al., 2019), BERT-involved attacks (Li et al., 385

2020; Garg and Ramakrishnan, 2020) Therefore, 386

we first list methods that can defend adversarial 387

attacks without accessing the candidate list as our 388

baselines: 389

Adv-Train (Adv-HotFlip): Ebrahimi et al. 390

(2017) introduces the adversarial training method 391

used in defending against substitution-based adver- 392

sarial attacks in NLP. It uses gradients to find actual 393

adversaries in the embedding space. 394

Virtual-Adv-Train (TAVAT): Token-Aware 395

VAT (Li and Qiu, 2020) use virtual adversaries 396

(Zhu et al., 2019) to improve the performances 397

in fine-tuning pre-trained models, which can also 398

be used to deal with adversarial attacks without 399

accessing the candidate list. We follow the stan- 400

dard TAVAT training process to re-implement the 401

defense results. 402

Further, there are some works that require can- 403

didate list, it is not a fair comparison with defense 404

methods without accessing the candidates, so we 405

list them separately: 406

Adv-Augmentation: We generate adversarial 407

examples of the training dataset as a data augmen- 408

tation method. We mix the generated adversarial 409

4https://github.com/huggingface/transformers
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Methods Origin Textfooler BERT-Attack Textfooler BERT-Attack
K = 12 K = 12 K = 50 K = 48

IMDB

BERT (Devlin et al., 2018) 94.1 20.4 18.5 2.8 3.2
RoBERTa (Liu et al., 2019) 97.3 26.3 24.5 25.2 23.0
Adv-HotFlip (BERT) (Ebrahimi et al., 2017) 95.1 36.1 34.2 8.0 6.2
TAVAT (BERT) (Li and Qiu, 2020) 96.0 30.2 30.4 7.3 2.3
RanMASK (RoBERTa) (Zeng et al., 2021) 93.0 - - 23.7 26.8
FreeeLB++ (BERT) (Li et al., 2021) 93.2 - - 45.3 39.9
Rebuild & Ensemble (BERT) 93.0 81.5 76.7 51.0 44.5
Rebuild & Ensemble (RoBERTa) 96.1 84.2 82.0 54.3 52.2

AG’s News

BERT 92.0 32.8 34.3 19.4 14.1
RoBERTa 90.1 29.5 30.4 17.9 13.0
Adv-HotFlip (BERT) 91.2 35.3 34.1 18.2 8.5
TAVAT (BERT) 90.5 40.1 34.2 20.1 8.5
Rebuild & Ensemble (BERT) 90.6 61.5 49.7 34.9 22.5
Rebuild & Ensemble (RoBERTa) 90.8 59.1 41.2 34.2 19.5

Table 1: After-Attack Accuracy compared with defense methods that can defend attacks without accessing the
candidate list of the attacks.

Methods Origin Textfooler Generic

IMDB

BERT 94.0 2.0 45.0
Data-Augmentation 93.0 18.0 53.0
ADA∗ (Si et al., 2020) 96.7 3.0 -
AMDA-SMix∗(Si et al., 2020) 96.9 17.4 -
ASCC (Dong et al., 2021) 77.0 - 71.0
R & E 93.0 51.0 79.0

Table 2: After-Attack Accuracy compared with previ-
ous access-candidates methods based on BERT model.
- means that the results are not reported in the corre-
sponding papers. Here we implement Textfooler with
K = 50 for consistency with previous works. ∗ rep-
resents that ADA uses a selected subset of the dataset
that may have a difference in the results.

examples and the original training dataset to train410

a model in a standard fine-tuning process.411

ASCC: Dong et al. (2021) also uses a convex-412

hull concept based on the candidate vocabulary as413

strong adversarial defense.414

ADA: Si et al. (2020) uses a mixup-strategy415

based on the generated adversarial examples to416

achieve adversarial defense with variants AMDA-417

SMix that mixup the special tokens.418

FreeLB++: Li et al. (2021) introduces a variant419

of FreeLB method that expands the norm bound420

which is similar to the larger bound in the rebuild421

training process.422

RanMASK: Zeng et al. (2021) introduces a423

masking strategy that makes use of noises to im-424

prove robustness.425

4.4 Implementations 426

We use BERT-BASE and RoBERTa-BASE mod- 427

els based on the Huggingface Transformers 5. We 428

modify the adversarial training with virtual adver- 429

saries based on the implementation of FreeLB and 430

TAVAT 6. The training hyper-parameters we use is 431

different from FreeLB and TAVAT, since we aim to 432

find large perturbations to simulate adversaries. We 433

set adversarial learning rate α = 1e-1 to and nor- 434

malization boundary ε = 2e-1 in all tasks. We set 435

the ensemble size N = to 16 for all tasks and we 436

will discuss the selection of N in the later section. 437

We use the TextAttack toolkit as well as the offi- 438

cial code to implement adversarial attack methods 439
7 (Morris et al., 2020a). The similarity thresholds 440

are the main factors of the attacking algorithm. We 441

tune the USE (Cer et al., 2018) constraint 0.5 for 442

the AG task and 0.7 for the IMDB task and 0.5 for 443

the cosine-similarity threshold of the synonyms em- 444

bedding (Mrkšić et al., 2016) which can re-produce 445

the results of the attacking methods reported. 446

4.5 Results 447

As seen in Table 1, the proposed Rebuild and En- 448

semble framework can successfully defend strong 449

attack methods. The accuracy of our defensing 450

method under attack is significantly higher than 451

non-defense models (50% vs 20% in the IMDB 452

dataset). Compared with previous defense meth- 453

5https://github.com/huggingface/transformers
6https://github.com/LinyangLee/Token-Aware-VAT
7https://github.com/QData/TextAttack
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Different Settings of R & E Origin Textfooler(K=12) BERT-Atk(K=12)

Train Inference
Joint VAT Ensemble Rebuild Insert

Rebuild and Ensemble Method
X X X X X 93.0 86.0 77.0

Rebuild Train No Ensemble
X X X X 93.0 63.0 52.0
X X X 93.0 42.0 29.0
X X X 95.0 45.0 34.0
X X 95.0 29.0 17.0

Inference Only
X X X 94.0 72.0 60.0

X X 87.0 20.0 13.0
X 92.0 11.0 3.0

X 96.0 75.0 62.0

Baseline
- - - - - 93.0 20.0 18.0

Table 3: Ablations results tested on attacking the IMDB task based on BERT models.

ods, our proposed method can achieve higher de-454

fense accuracy in both IMDB task and AG’s News455

task. The Adv-HotFlip and the TAVAT methods456

are effective, which indicates that gradient-based457

adversaries are not very similar with actual substi-458

tutions. We can see that Adv-HotFlip and TAVAT459

methods achieve similar results (around 30% when460

K = 12) which indicates that gradient-based adver-461

sarial training methods have similar defense ability462

no matter the adversaries are virtual or real since463

they are both unaware of the attacker’s candidate464

list. Also, the original accuracy (on the clean data)465

of our method is only a little lower (less than 2% )466

than the baseline methods, which indicates that the467

defensive rebuild and ensemble strategy does not468

hurt the performances. The RoBERTa model also469

shows robustness using both original fine-tuned470

model and our defensive framework, which indi-471

cates our defending strategy can be used in various472

pre-trained language models. Compared with meth-473

ods that specifically focus on adversarial defense,474

our proposed method can still surpass state-of-the-475

arts defense system FreeLB++ (Li et al., 2021) and476

RanMASK (Zeng et al., 2021) by over 5%.477

Further, the candidate size is extremely impor-478

tant in defending adversarial attacks, when the can-479

didate size is smaller, exemplified by K = 12, our480

method can achieve very promising results. As481

pointed out by Morris et al. (2020b), the candidate482

size should not be too large that the quality of the483

adversarial examples is largely damaged.484

As seen in Table 2, we compare our method485

with previous access-candidates defense methods.486

When defending against the widely used Textfooler 487

attack and Generic attack (Alzantot et al., 2018), 488

our method can achieve similar accuracy even 489

compared with known-candidates defense meth- 490

ods. As seen, data augmentation method can- 491

not significantly improve model robustness since 492

the candidates can be very diversified. Therefore, 493

using generated adversarial samples as an aug- 494

mentation strategy does not guarantee robustness 495

against greedy-searched methods like Textfooler 496

and BERT-Attack. 497

4.6 Analysis 498

4.6.1 Ablations 499

We run extensive ablation experiments to explore 500

the working mechanism in defending adversaries. 501

We run ablations in two parts: (1) using the rebuild- 502

trained model; (2) using the ensemble inference 503

without training the model specifically. 504

Firstly, we test the model robustness without us- 505

ing ensemble inference, that is, during inference, 506

the ensemble size N is 1: We explore the effec- 507

tiveness of incorporating the gradient-noise rebuild 508

process. Also, we test the result of using the mask 509

and rebuild strategy as well as the insert and rebuild 510

strategy. Then we test the inference process: We 511

use the fine-tuned model and the original masked 512

language model as the prediction model and the 513

rebuild model to run inference. We test the effec- 514

tiveness of making multiple copies of rebuilt texts; 515

We also explore how the two operations: mask and 516

insert work during inference. 517

As seen in the Table 3, we could explore the 518
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Figure 3: Hyper-Parameter Selection Analysis

working mechanism in defending against the at-519

tacks via extensive results.520

The observations indicate that:521

(a) Rebuild Train is effective: The process in522

rebuild training allows the trained model to be523

aware of both the missing texts that need rebuilding524

and the classification labels of the inputs, which525

is helpful in rebuilding classification-aware texts.526

Without the rebuild trained model, the accuracy527

is even lower when rebuilding with the original528

masked language model during ensemble inference.529

However, rebuilding using the original MLM is not530

very much helpful, which indicates that the model531

trained with re-building process is important.532

(b) Ensemble during inference is important: As533

seen, with the ensemble strategy, even random534

masking with an ensemble process can be helpful.535

(c) Gradient-Noise Rebuild is helpful: without536

the gradient-noise rebuild process, the model can537

still defend adversaries.538

4.6.2 Candidate Size Analysis539

One key problem is that these attacking algorithms540

use a very large candidate size with a default set541

to around 50, which seriously harms the quality542

of the input texts. Therefore, we run experiments543

using different candidate size of these attacking al-544

gorithms to see how our defense strategy performs.545

As seen in Fig. 3 (a), when the candidate is 0, the546

accuracy is high on the clean samples. When the547

candidate is 6, the normal fine-tuned BERT model548

cannot correctly predict the generated adversarial549

examples. This indicates that normal fine-tuned550

BERT is not robust even when the candidate size is551

small, while our approach can tolerate these limited552

candidate size attacks. When the candidate size553

grows, the performance of our defense framework554

drops by a relatively large margin. We assume555

that large candidate size would seriously harm the 556

semantics which is also explored in Morris et al. 557

(2020b), while these adversaries cannot be well 558

evaluated even using human-evvaluations since the 559

change rate is still low. 560

4.6.3 Ensemble Strategy Analysis 561

One key problem is that how many copies we 562

should use in the rebuilding process, since during 563

inference, it is also important to maintain high effi- 564

ciency. We use two attack methods withK = 12 to 565

test how the accuracy varies when using different 566

ensemble size N . 567

As seen in Fig. 3 (b), the ensemble size is actu- 568

ally not a key factor. Larger ensemble size would 569

not result in further improvements. We assume that 570

larger ensemble size will smooth the output score 571

which will benefit the attack algorithm. When the 572

number of rebuild is not large, the inference effi- 573

ciency is bearable. 574

5 Conclusion and Future Work 575

In this paper, we introduce a novel rebuild and en- 576

semble defense framework against current strong 577

adversarial attacks. We utilize the mask-infill abil- 578

ity of pre-trained models to first rebuild texts and 579

use these texts with less adversarial effect to make 580

predictions for better robustness. The rebuild train- 581

ing can improve the model robustness since it main- 582

tains more semantic information while it also in- 583

troduces a rebuild text process. The proposed en- 584

semble inference is also effective indicating that 585

the multiple rebuilt texts are better than one. Exper- 586

iments show that these proposed components can 587

work coordinately to achieve strong defense per- 588

formance. We are hoping such a defense process 589

can provide hints for future works on adversarial 590

defenses. 591
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