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Abstract
Current causal discovery approaches require re-
strictive model assumptions in the absence of in-
terventional data to ensure structure identifiability.
These assumptions often do not hold in real-world
applications leading to a loss of guarantees and
poor performance in practice. Recent work has
shown that, in the bivariate case, Bayesian model
selection can greatly improve performance by ex-
changing restrictive modelling for more flexible
assumptions, at the cost of a small probability
of making an error. Our work shows that this
approach is useful in the important multivariate
case as well. We propose a scalable algorithm
leveraging a continuous relaxation of the discrete
model selection problem. Specifically, we employ
the Causal Gaussian Process Conditional Den-
sity Estimator (CGP-CDE) as a Bayesian non-
parametric model, using its hyperparameters to
construct an adjacency matrix. This matrix is
then optimised using the marginal likelihood and
an acyclicity regulariser, giving the maximum a
posteriori causal graph. We demonstrate the com-
petitiveness of our approach, showing it is advan-
tageous to perform multivariate causal discovery
without infeasible assumptions using Bayesian
model selection.

1. Introduction
In many systems, such as protein signalling networks, vari-
ables causally relate to each other, since changing a variable
only modifies certain variables (Sachs et al., 2005). Uncover-
ing these unique underlying causal structures from data can
allow us to gain new insights in a wide range of fields, from
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Biology (Sachs et al., 2005) to Medicine (Feuerriegel et al.,
2024) to Economics (Hicks et al., 1980). There are two main
approaches for learning the ground truth causal structure
from data. The first approach assumes a restricted model
class for the data generating process (Peters et al., 2017,
Ch. 4), but its guarantees often fail when these assumptions
do not hold. The second approach requires interventional
data for all variables, which can be costly, ethically chal-
lenging, or even impossible (Li et al., 2019). Consequently,
learning a unique causal structure often relies on impractical
assumptions, limiting its real-world applicability.

Recent work has shown that, in the absence of interventional
data and in the bivariate case, Bayesian model selection can
more accurately infer the unique causal structure of a system
(Dhir et al., 2024). Unlike previous methods, including other
Bayesian methods1, which impose constraints on the func-
tion class, this framework allows the use of more flexible
model classes. This comes at a cost of loosened identifia-
bility guarantees but with the ability to posit more realistic
assumptions. However, Dhir et al. (2024) only study the bi-
variate case, while most applications require understanding
causal relationships between multiple variables. It is thus an
open question whether the advantages of this method hold
in the multivariate case. Furthermore, the approach in Dhir
et al. (2024) requires computing and comparing the posteri-
ors of all possible causal graphs. As the number of graphs
grows super-exponentially with the number of variables,
this becomes computationally intractable for scalability.

A potential solution lies in continuous optimisation causal
discovery approaches (Zheng et al., 2018; Nazaret et al.,
2024). These approaches interpret causal discovery as a
single continuous optimisation problem that is amenable
to gradient based methods. The emphasis of this line of
work has been either on scaling to a larger number of vari-
ables or on loosening model assumptions. Our contribution
tackles the latter. We argue that the potential advantages
of Bayesian methods enable them to outperform their non-
Bayesian counterparts.

We investigate whether and how well Bayesian model se-

1These methods are usually concerned with inferring a distri-
bution instead of a single causal structure.
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lection can recover the ground truth causal structure in mul-
tivariable systems. We use a model based on the Gaussian
Process conditional density estimator (GP-CDE) (Titsias &
Lawrence, 2010; Lalchand et al., 2022) that is more flexible
than traditional identifiable models that rely on restrictive
model assumptions. Interpreting the model hyperparameters
as a graph, we optimise over them using a Bayesian model
selection-based loss and a regulariser to enforce acyclic-
ity, ultimately producing the maximum a posteriori (MAP)
causal graph. Our experiments address two critical ques-
tions: (1) How much performance is lost compared to enu-
merating every causal graph? (2) How does our scalable
Bayesian model selection compare to existing multivariate
causal discovery methods in terms of performance? Our
results show that Bayesian model selection outperforms
methods enforcing strict identifiability even at larger scales.
While it introduces a small error probability, the flexibility
afforded enables more realistic and practical multivariable
causal discovery, advancing toward real-world applications.

2. Background
Here, we outline the assumptions relevant to the task of
causal discovery. Additional background is in Appendix A.

2.1. Causal Model

We assume that data X ∈ RN×D can be explained by a
Causal Model, which we refer to as MG . We make the
common assumption that there are no hidden confounders.

Definition 2.1. (Consistent with Pearl (2009) but using no-
tation from Dhir et al. (2024)) A Causal Model MG :=
(G, CG) is defined as a tuple containing a DAG G with vertex
set V and edge set E , along with a set of conditional distribu-
tions for each variable Ci|PAG(i), where PAG(i) denotes the
parent index set of node index i in G. The set of all possible
conditionals is the Cartesian product CG :=

∏
i∈V Ci|PAG(i).

The set of all possible conditional distributions induces a
set of joint distributions denoted FG .

An element of CG induces a joint distribution over D ran-
dom variables X = {X1, . . . , XD} when its constituent
members are multiplied together. That is, for an element
(Pi : i ∈ V) ∈ CG the joint is

∏D
i=1 Pi(Xi|XPAG(i)).

Hence CG induces a set of joint distributions FG =
{
∏D

i=1 Pi(Xi|XPAG(i)) : (Pi : i ∈ V) ∈ CG} (Dhir et al.,
2024). We also assume likelihood modularity (Geiger &
Heckerman, 2002), that is for variable Xi if PAG(i) =
PAG′(i) for G ≠ G′, then Ci|PAG(i) = Ci|PAG′ (i). This
means that for graphs where variables have the same par-
ents, we assume the same set of conditional distributions.

2.2. Learning Causal Structure

Formally, the task is to recover a DAG G given a dataset of
N samples with D variables, X ∈ RN×D. Without any in-
terventional data, only the Markov equivalence class (MEC)
of a DAG can be recovered with the faithfulness assump-
tion (Pearl, 2009) and with infinite data (Appendix A). To
recover a unique DAG, and differentiate within an MEC, we
require additional assumptions.

2.3. Learning Causal Structure with Functional
Restrictions

One way to recover a DAG is to impose a priori restrictions
on the allowable conditional distributions Ci|PAG(i). These
restrictions are chosen so that the joint distributions implied
by a causal model cannot be expressed by any other causal
model— specifically, for P ∈ FG it holds that P ̸∈ FH for
any H ≠ G (Guyon et al., 2019, Ch. 2). Thus, if data is
sampled from one of the causal models, the causal structure
can be identified. As an example, additive noise models
(ANM) (Hoyer et al., 2008) restrict all Ci|PAG(i) to the form
f(XPAG(i)) + ϵ for some arbitrary non-linear function f ,
and arbitrarily distributed ϵ. If we consider a different graph
H but the same ANM restrictions on Ci|PAH(i), it is not
possible to approximate the joint induced by the original
set of conditional distributions CG =

∏
i∈V Ci|PAG(i) using

CH =
∏

i∈V Ci|PAH(i). This allows the graph G to be identi-
fied. For a lot of these restrictions, the maximum likelihood
score can identify the causal structure (Zhang et al., 2015;
Peters & Bühlmann, 2014; Immer et al., 2023).

Methods relying on restricted model classes also restrict the
datasets they can model. Specifically, assume that data was
generated by a distribution Π, then it may be that Π ̸∈ FG
for all G. Here, none of the causal models can approximate
the true data-generating distribution and guarantees about
causal identifiability no longer hold. That is, the models are
misspecified. A solution would be to loosen the restrictions
on Ci|PAG(i) providing greater flexibility in approximating
distributions. However, this could also allow causal models
with different DAGs to express the true data-generating
distribution, thereby losing the ability to recover the true
DAG (Zhang et al., 2015, Lemma 1).

2.4. Learning Causal Structure with Bayesian Model
Selection

Restricted function classes are required for identifiability
within an MEC as it implies that, with infinite data, only one
of the causal models can approximate the data distribution
and thus achieve a higher score such as the maximum likeli-
hood. Without restrictions, multiple causal structures can
yield the same maximum likelihood score, making it impos-
sible to distinguish between them. However, using such an
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unrestricted causal model with a Bayesian model selection-
based score can restore the ability to differentiate between
causal structures. This is because, while multiple structures
may share the same maximum likelihood score, they typi-
cally yield distinct scores under Bayesian model selection.
This insight was demonstrated for the two-variable case in
Dhir et al. (2024), building on prior efforts (Friedman &
Nachman, 2000; Stegle et al., 2010). While this approach
no longer guarantees strict identifiability and admits a small
probability of error, the error probability can be empirically
estimated and remains low with appropriate models (Dhir
et al., 2024). The key advantage of this framework lies in
its flexibility. By enabling the use of broader model classes,
it mitigates the risk of misspecification, which is a com-
mon limitation where the assumptions and guarantees of
restricted models fail (Section 2.3). Our work builds on
these insights.

In Bayesian model selection, the evidence for a causal model
MG (as defined in Section 2.1) is quantified by the posterior

P (MG |X) ∝ P (X|MG)P (MG), (1)

where P (MG) is the prior over the causal model. As we
assume no preference over causal direction between vari-
ables, our prior belief is equal over graphs in the same MEC.
The posterior within an MEC is then dependent only on the
term P (X|MG), known as the marginal likelihood. Given
that our task is to infer the single ground truth causal struc-
ture, we select the causal modelM∗

G based on the highest
posterior probability (Kass & Raftery, 1995)

M∗
G = argmax

MG

P (MG |X). (2)

To calculate the marginal likelihood, a prior (denoted π)
over the distributions in the causal model must be specified.
This defines a Bayesian Causal Model.

Definition 2.2. (Dhir et al., 2024) A Bayesian Causal
Model, denoted as (MG , π), is defined as a causal model
MG (Definition 2.1) with a prior distribution π over CG .

Each Bayesian causal model should encode the common
and foundational principle that a change in one causal mech-
anism should not affect any others (Aldrich, 1989; Pearl,
2009). This can be formalised by the independent causal
mechanism (ICM) assumption (Janzing & Schölkopf, 2010).
The ICM assumption implies that, in the causal factori-
sation, knowledge about any distribution Pi ∈ Ci|PAG(i)

should not inform any other Pj ∈ Cj|PAG(j) for j ̸= i. In
the Bayesian approach this implies defining factorised pri-
ors on each set of variable distributions — π =

∏
i∈V πi,

where πi ∈ P(Ci|PAG(i)) is the prior on the distributions for
variable Xi, factorised according to the causal structure G,
and P is the set of all distributions over an object. This is
the only constraint we place on the prior.

Multiple Bayesian causal models may achieve the same
likelihood score given infinite data, but the prior and the
encoded ICM assumption play a key role in yielding distinct
marginal likelihood scores. The ICM assumption, which
encodes the causal factorisation in the prior, typically does
not hold in any other factorisation (Dhir et al., 2024). To
see this, consider the model with graph X → Y , with
CX parametrised by θ and CY |X parametrised by ϕ. Here,
placing a prior on CX→Y is equivalent to placing a prior on
the parameters θ and ϕ. ICM implies that the priors over
θ, ϕ factorise, which means the joint factorises as

π(θ)π(ϕ)P (X|θ)P (Y |X,ϕ). (3)

We can find the reverse factorisation of the variables for
the same model using Bayes’ rule. Here, in general, it is
not possible to parametrise CY and CX|Y with independent
parameters (Dhir et al., 2024)2

Equation (3) =π(θ)π(ϕ)P (Y |θ, ϕ)P (X|Y, θ, ϕ) (4)
=π(α, β)P (Y |α)P (X|Y, β), (5)

where α, β are some reparametrisations. Hence, if
π(α, β) ̸= π(α)π(β), the model with the graph X → Y
only satisfies the ICM assumption, as specified by factorised
priors on the set of conditionals, in the causal factorisation
of the joint {Pi(X)Pj(Y |X) : Pi ∈ CX , Pj ∈ CY |X}.

Given a prior, the marginal likelihood is

P (X|MG) =

∫ D∏
i=1

(
Pi(Xi|XPAG(i))πi(dPi)

)
. (6)

The marginal likelihood score has an automatic Occam’s
razor effect that balances model fit along with complexity
(MacKay, 2003, Ch. 28). This means that although mul-
tiple causal models may have parameter settings that fit a
given distribution, some models may provide a simpler ex-
planation than others. Specifically, those whose prior, and
encoded ICM assumption, align with properties of the data
generating process. This allows for distinguishing between
causal models even with loosening the restrictions discussed
in Section 2.3.

Dhir et al. (2024) only consider Bayesian model selection
for the two variable case. It is not clear how this approach
will perform when the number of variables is increased,
especially in contrast with competing methods. We study
the multiple variable case where we address the following
challenges: First, we use the theory in Dhir et al. (2024) to
clearly show that Bayesian model selection can be applied
to causal discovery with multiple variables. Secondly, as the
number of variables increases, the number of possible DAGs

2Exceptions exist, notably normalised linear Gaussian models
which are known to be unidentifiable.

3



Continuous Bayesian Model Selection for Multivariate Causal Discovery

grows super-exponentially, making direct comparison of
marginal likelihoods across all DAGs infeasible. To address
this, we propose a scalable approach for applying Bayesian
model selection to multiple-variable causal discovery.

3. Distinguishability with Multiple Variables
We use theory from Dhir et al. (2024) to show that in the
multiple variable case, Bayesian causal models can find
the correct DAG using only priors with the ICM condition,
rather than hard model restrictions. We proceed by first
showing that Bayesian causal models can be identified up to
an MEC. Then, we show that Bayesian causal models can
differentiate within an MEC, without functional restrictions,
but with some probability of error. We only make remarks
on key results in this section, but the full set of assumptions,
theorems, and proofs is in Appendix B. Note that these
definitions hold in the population setting.

First, we define the probability of making an error, given
datasets from the chosen Bayesian causal model.
Definition 3.1. (Dhir et al., 2024) Given a score S , such as
the marginal likelihood, we define the probability of error
for a modelMG as

P (E|MG) =

∫
R
p(X|MG)dX, (7)

where R = {X : S(X|MH) > S(X|MG) forH ̸= G},
and S(X|MG) is the score achieved by model MG on
dataset X .

That is, given datasets X from a Bayesian causal model with
DAG G, the integral over datasets where the wrong causal
model is chosen by the score. For Bayesian causal models,
this quantifies the overlap in the posteriors. Note that, simi-
lar to previous work, this definition assumes that the data is
sampled from one of the models under consideration. The
probability of error can thus be estimated empirically for
Bayesian causal models by sampling a graph, then sampling
datasets from a chosen Bayesian causal model, and infer-
ring the causal graph using the chosen score (Dhir et al.,
2024). An identifiable model implies a probability of error
of zero in the infinite data limit (Dhir et al., 2024; Guyon
et al., 2019). In contrast, an unidentifiable model will have
a probability of error equal to that of a uniformly random
chosen graph. Similarly, we say a model is distinguishable
if the probability of error is less than that of a uniformly
chosen random graph.
Remark 3.2. With the faithfulness assumption, Bayesian
model selection can identify a Bayesian causal model up to
the MEC of its graph (Theorem B.3).

Although this is well known for certain parametric models
(Heckerman, 1995; Chickering, 2002), we show that it is
true for the general non-parametric case.

The advantage of the Bayesian approach is apparent when
considering cases where the underlying causal model is
unidentifiable with maximum likelihood. This is the case
for graphs within an MEC, where functional restrictions
have not been made.

Remark 3.3. Suppose that the ICM assumption only holds
in the causal factorisation of the Bayesian causal model.
Bayesian model selection can then distinguish within an
MEC (Theorem B.7).

Thus, without restrictions and if the ICM condition only
holds in the causal factorisation, Bayesian model selection
can be used to distinguish Bayesian causal models, in that
the probability of error is lower than a uniformly random
chosen graph. The model class we choose only satisfies the
ICM condition in the causal factorisation (Dhir et al., 2024,
Appendix D.3). The probability of error for our chosen
model class was shown to be very low for the two variable
case in Dhir et al. (2024, Section 4.3). We estimate the
probability of error for the multivariate case and show that
it is low in Section 6.1.

As is common with identifiability results, the probability of
error estimate assumes that the data is generated from one of
the candidate causal models. However, this assumption may
not hold in practice. Dhir et al. (2024, Section 4.4) demon-
strate that the model’s estimated probability of error and the
true probability of error (from the actual data-generating
process) are bounded by the total variation distance between
the model and the true distribution. Consequently, mild
violations of model assumptions, such as the prior, can still
yield accurate error probability estimates.

4. CGP-CDE: Causal Gaussian Process
Conditional Density Estimators

Although the posterior can allow for more accurate causal
discovery with fewer restrictions, computing and comparing
the posterior of every causal structure becomes intractable
when the number of variables is increased. We propose
a method that scales up Bayesian model selection based
causal discovery by using the insights of Zheng et al. (2018)
(Appendix A.2). We first describe the model that we use,
then we show how the model can continuously parameterise
the space of graphs. This is followed by a loss function
that maximises the posterior probability and ensures that the
final graph is a DAG.

4.1. The GP-CDE Model

The Bayesian model selection approach to causal structure
learning described in Section 2.4 requires defining distribu-
tions and priors for a causal model. To take advantage of
the Bayesian framework, we wish to use a model for each
Ci|PAG(i) that is more flexible than previous attempts. For
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this, we use a version of the Gaussian process conditional
density estimator (GP-CDE) model (Dutordoir et al., 2018).
Here, Ci|PAG(i) is a class of nonparametric functions and the
prior over the conditionals is a Gaussian process prior.

The input to the estimator for each variable is determined
by the causal graph of the causal model. For a given causal
DAG G, the joint p(X, f ,W|Λ,ϕ,MG) of our model is

D∏
i=1

N∏
n=1

p(xni|fi, ϕi)p(fi|XPAG(i),Λi, wni)p(wni), (8)

where W ∈ RN×D are the latent variables, ϕ ∈ RD are
the likelihood variances, Λi are the kernel hyperparame-
ters, andMG denotes the causal model with DAG G. Each
variable xi is modelled as the output of a function fi, with
the parents of the variable in G, XPAG(i), and a latent vari-
able wi being the inputs. The inclusion of wi ∼ N (0, I)
allows for each variable to be described with non-Gaussian
and heteroscedastic noise, greatly increasing the expres-
sivity of the model (Dutordoir et al., 2018)3. The term
p(fi|XPAG(i),Λi, wni) is the Gaussian process prior (Ras-
mussen, 2003), and equal to

N
(
0,KΛi

(
(XPAG(i),wi), (XPAG(i),wi)

′)), (9)

where K(·, ·) is a chosen kernel matrix parameterised by
hyperparameters Λi.

The above approach requires defining a separate model for
each causal DAG. Next, we show how to interpret the hyper-
parameters of this model as an adjacency matrix. This will
allow for continuously parameterising the space of graphs.

4.2. Continuous Relaxation: The CGP-CDE Model

The key insight to continuously parameterise graphs (not
DAGs) in the above model is that the hyperparame-
ters control dependence between variables (Williams &
Rasmussen, 1995). In our Gaussian process prior for
a variable Xi, we use kernels with different hyperpa-
rameters Λij for each dimension j. In general, ker-
nels of this form factorise as KΛi((X,wi), (X,wi)

′) =
KΛii(wi,w

′
i)
∏

j ̸=i KΛij

(
xj ,x

′
j

)
. Certain hyperparame-

ters of the kernels can then be used to control the variability
of the function with respect to specific inputs. We denote
these hyperparameters as θ with θ ⊂ Λ and all other hyper-
parameters as σ = Λ \ θ. Specifically

θij = 0 =⇒ ∂fi
∂Xj

= 0.

Hence, if the kernel hyperparameter value for θij is near
zero, the function for variable Xi is constant with respect to

3Our model can be thought of as a Bayesian conditional varia-
tional autoencoder.

variable Xj . This implies an adjacency matrix

Aij =

{
θij if j ̸= i,
0 otherwise.

(10)

A value of θij = 0 implies that changing Xj does not
change Xi and results in an absence of the edge Xj → Xi

in A.

The Gaussian process prior p(fi|XPAGA (i),σi,θi,wi) is
then parameterised as follows

N (0,Kσi,θi
((X¬i,wi), (X¬i,wi)

′)), (11)

where PAGA(i) denotes the parents of Xi in GA (the graph
implied by the adjacency A), and X¬i denotes all variables
except Xi. Thus, for a variable Xi, all the other variables
are inputs, and the values of the hyperparameters θi control
the dependence of the rest of the variables X¬i on Xi, and
hence define the parents of Xi. The hyperparameters in the
above model thus continuously parameterise the space of
graphs. The exact kernel we use is in Appendix C.1.

4.3. Priors on Graphs

As discussed in Eggeling et al. (2019), the lack of a prior on
graphs leads to a higher weight on denser graphs due to the
larger number of dense graphs versus sparse graphs. Hence,
to even out this effect, we place a prior on graphs. By intro-
ducing priors on the hyperparameters θ in our model, we
can effectively encode priors on the graph in Equation (10).
We thus place a Gamma prior with parameters chosen to pre-
fer small values of θ, P (θ) = Gamma(η, β). Note that our
prior is symmetric between graphs within the same MEC.
That is, we do not impose a preference over the causal di-
rection between variables, only over the number of edges
in the graph. Other priors on graphs could be considered
(Eggeling et al., 2019), but we leave that for future work.

4.4. Score

As stated in Section 2.4, our decision rule is to pick the
causal graph with the highest posterior probability. For
this, we need to calculate the log marginal likelihood for
every variable in our model (Equation (6)). To find the log
marginal likelihood, we must integrate over the priors of f
and W, log p(xi|XPAGA (i),σi,θi, ϕi) is given as

log

∫ ∫
p(xi|fi, ϕi)p(fi|XPAGA (i),wi,σi,θi)p(wi)dwidfi.

Calculating this marginal likelihood is analytically in-
tractable due to the non-linear dependence of fi on the
latent term wi. We thus use variational inference, with
variational posteriors q, to optimise a tractable lower
bound to the marginal likelihood (details and derivation
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as well as handling of other hyperparameters are in Ap-
pendix C.2). We denote the full lower bound for all variables
as LELBO(q,θ,σ,ϕ). The optimisation problem is

max
θ,σ,ϕ,q

LELBO(q,θ,σ,ϕ) + log p(θ) s.t. GAθ ∈ DAGs.

Maximising σ,ϕ, and q gives an accurate estimate of the
marginal likelihood while maximising θ finds the graph that
maximises the posterior probability.

To enforce the condition that GAθ ∈ DAGs we use the
spectral acyclicity constraint method (Lee et al., 2019)

h(Aθ) = |λd(Aθ)|, (12)

where λd(Aθ) denotes the largest eigenvalue of Aθ , which
has been shown to be more stable and scalable than other
acyclic constraints (Nazaret et al., 2024). Following Nazaret
et al. (2024), a penalty method is used to allow for continu-
ous optimisation, making the final loss

LELBO(q,θ,σ,ϕ)+log p(θ)− γth(Aθ), (13)

where the weighting γt is increased by ρ at each epoch. A
solution A∗ is found when h(A∗) < τ for some τ > 0. See
Appendix A.2 for more details.

4.5. Computational Cost

The cost of computing the loss for N samples in a Gaussian
Process is usually O(N3). We use the uncollapsed induc-
ing point formulation that introduces M < N inducing
points allowing for mini-batching (Appendix C.2)(Hensman
et al., 2013). This changes the cost to O(M3). As we
have D variables, the total cost is O(DM3). The cost of
computing the acyclicity regulariser is O(D2). Hence, the
cost is dominated by M . The choice of M depends on the
problem, with more inducing points leading to better ap-
proximations (Bauer et al., 2016). However, it is possible to
use LELBO to find the optimal number of inducing points
(Burt et al., 2020). Gaussian processes, and Bayesian meth-
ods in general, can be more computationally expensive than
their non-Bayesian counterparts. However, Bayesian model
selection-based causal discovery provides key advantages,
including the ability to use more flexible model classes.

5. Related Work
Certain approaches only use information about indepen-
dences between variables to discover the causal structure,
recovering only an MEC, and not the whole DAG (Spirtes
et al., 2000; 1995; Chickering, 2002; Huang et al., 2018).
Identifying a unique DAG requires additional assumptions,
typically involving restrictions on model classes or access
to interventional data (Lippe et al., 2021; Ke et al., 2022;

Brouillard et al., 2020; Ke et al., 2020). Since we assume
access only to observational data, we focus on the former.

Continuous optimisation methods cast causal discovery as
a single unconstrained optimisation problem (Zheng et al.,
2018). NOTEARS (Zheng et al., 2018) first introduced a
regulariser for learning acyclic causal graphs in linear causal
models. Follow-up work extended these methods to more
flexible models such as neural networks, or graph neural
networks (Lachapelle et al., 2019; Yu et al., 2019; Zheng
et al., 2020). At the same time, works such as NOBEARS
(Lee et al., 2019) and SDCD (Nazaret et al., 2024) have
worked on improving the scalability of the acyclic regularis-
ers. However, the above methods rely on restricted models
to recover a DAG, which can limit performance when as-
sumptions are not met (Section 2.3). When these models
are not restricted, their guarantees no longer hold.

Other methods first search for node orderings and then prune
to ensure a DAG structure. CAM (Bühlmann et al., 2014)
uses sparse regression to learn node neighbourhoods and
searches for orderings that maximise a score. SCORE (Rol-
land et al., 2022) learns the ordering based on the score
function of ANM models with Gaussian noise and then
prunes using sparse regression. NOGAM (Montagna et al.,
2023) extends SCORE to arbitrary noise distributions. The
above methods specifically rely on the ANM assumption.

The Bayesian framework has previously been used for
causal discovery but has typically focused on computing
a posterior over causal structures to quantify uncertainty
(Friedman & Koller, 2003; Heckerman et al., 2006). Geiger
& Heckerman (2002) use Bayesian linear Gaussian mod-
els but construct their model such that graphs in the same
Markov equivalence class receive the same score. Similarly,
Cundy et al. (2021) also only consider posteriors over lin-
ear Gaussian models. DiBS (Lorch et al., 2021) assumes
Bayesian ANMs and parametrises the space of graphs using
latent variables. Annadani et al. (2023) also use sampling
methods to sample from the posterior over ANM causal
models, but use a permutation based parametrisation of the
graph (Charpentier et al., 2021; Yu et al., 2021).

Previous Bayesian methods have also relied on the restric-
tive assumptions common in likelihood based methods.
In contrast, our work demonstrates that the advantage of
Bayesian model selection is the allowance of fewer restric-
tions compared to likelihood-based methods (Stegle et al.,
2010; Dhir et al., 2024; Cooper & Herskovits, 1992). This is
strongly related to the idea of using independence of causal
mechanisms (and the Kolmogorov complexity of causal
models) to distinguish causal models (Janzing & Schölkopf,
2010) (see Dhir et al. (2024, Appendix B)). While previous
studies demonstrated this with two variables, we show its
feasibility and advantages in the important multi-variable
regime.
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Figure 1: Boxplot of metrics for the three variable dataset. The plots show the distribution of the metrics across the different
datasets for each experiment. The centre line is the median, the black dot is the mean, and the white dots represent outliers.
Lower is better for SHD and SID, and higher is better for F1.

6. Experiments
We compare our approach to various baselines that perform
multivariate causal discovery to recover a DAG. We test
our method on synthetic data generated from our model
(Section 6.1), and data not generated from our model (Sec-
tion 6.2). Then we test our model on a common semi-
synthetic benchmark (Section 6.3). Additional experi-
ments and results are in Appendix I. See Appendix C.6
for full details of the CGP-CDE implementation. Code
can be found at: https://github.com/Anish144/
ContinuousBMSStructureLearning.git.

It was recently found that causal discovery methods can
be sensitive to variance information that is an artefact of
synthetic causal datasets (Reisach et al., 2021; Ormaniec
et al., 2024). Hence we standardise every variable, including
during data generation (see Appendix E).

Baselines: Details for all baselines are in Appendix G. We
compare against non-Bayesian counterparts that use acyclic-
ity regularisers, such as NOTEARS (Zheng et al., 2018), and
SDCD (Nazaret et al., 2024). SDCD uses the same spectral
acyclicity regulariser as the CGP-CDE, the only difference
being that the model uses a neural network and a likelihood
score to learn the data distribution (Lachapelle et al., 2019).
Thus, comparison against this method provides direct evi-
dence for the usefulness of the Bayesian approach. We also
compare against methods that first estimate a topological
order of the graph and then prune to get the final graph -
SCORE (Rolland et al., 2022), NOGAM (Montagna et al.,
2023), and CAM (Bühlmann et al., 2014). These all assume
ANM. Finally, we compare against the MAP estimate of the
Bayesian model DiBS. Other Bayesian methods are sample
based and hence do not allow for easy MAP calculation.

Metrics: We use the following metrics to compare the
methods. SHD: The structural Hamming distance is the
Hamming distance between the predicted adjacency and

the ground truth adjacency matrix. SID: The structural
interventional distance counts the number of interventional
distributions that are incorrect if the predicted graph is used
to form the parent adjustment set instead of the ground truth
graph (Peters & Bühlmann, 2015). F1: The F1 score is the
harmonic mean of the precision and recall, where an edge
is considered the positive class.

6.1. Synthetic 3 Variables

Using more flexible estimators may introduce some proba-
bility of error (Section 3). In the two variable case, Dhir et al.
(2024) showed that the probability of error for our model
class is low; we show that this is true for the multivariate
case as well. To estimate the error only due to overlap in
posteriors of different causal models, we perform discrete
model comparison (labelled DGP-CDE, see Appendix D.1
for more details). This involves enumerating and computing
the posterior of every causal model. We study the 3 variable
case, where it is possible to enumerate every possible causal
structure, 25 in total. Here, as required by the probability of
error, data is generated from our GP-CDE model (details in
Appendix F). We generate five datasets of 1000 samples for
each of the six graphs that are unique up to a permutation
of the variables.

The results for the 3 variable case can be seen in Figure 1.
Here, we can see that the discrete comparison DGP-CDE
achieves very good performance. This shows that in the
GP-CDE model, the probability of error in the multivariable
case is low and that our inference does not contribute greatly
to errors. Thus, if the GP-CDE model is a good descriptor
of the dataset at hand, we can expect the MAP value to
identify the true causal direction with high probability. We
also compare our continuous relaxation model against the
discrete model that enumerates each graph type. In Figure 1,
the performance of CGP-CDE shows that we can expect a
higher error due to optimisation of the continuous relaxation
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Figure 2: Box plots of metrics for different graph types: (a) Erdos-Renyi (ER) graphs with four expected edges per variable,
(b) Syntren data. Black dot is the average metric. Lower is better for SHD and SID, higher is better for F1.

in the CGP-CDE. However, the CGP-CDE still performs
competitively compared to other baselines.

6.2. Synthetic Higher Variable

Next, we analyse the performance on a higher number of
variables with varying graph density. Here, performing
discrete model comparison is too costly as the number of
DAGs is prohibitively large, so we use our continuous re-
laxation, labelled CGP-CDE. We generate five datasets for
each graph size 50 using Erdos-Rényi (ER) and scale-free
(SF) (Barabási & Albert, 1999) graph generation schemes,
with expected total edge counts of 1D and 4D, respectively.
In ER graphs, each edge is generated independently, while
SF graphs promote a few nodes with a high number of edges.
To test our claim that Bayesian model selection allows for
more flexible models, we ensure that the data is not gener-
ated from our model. The data is generated from randomly
initialised neural networks with noise included as an input.
Performing well in such cases showcases the advantage of
the added flexibility in the Bayesian approach. Data genera-
tion details are in Appendix F. To show that our method also
performs well with a lower number of variables and samples,
we show results for a graph size of 20 in Appendix I.3 and
Appendix I.2. We also perform an ablation study with ANM

datasets in Appendix I.1.

The full results are in Appendix I, and we show the 50 vari-
able ER4 results in Figure 2a. Compared to the DGP-CDE
results of Section 6.1, we can expect a higher number of
errors due to the continuous relaxation and the shift in the
data generation process. Nevertheless, the CGP-CDE out-
performs all other baselines, especially in terms of SHD
and F1 scores, and the increase in performance compared
to the baselines is greater for these larger graphs. While
both SDCD and CGP-CDE employ flexible function ap-
proximators and the same acyclic regulariser, the superior
performance of CGP-CDE suggests that Bayesian methods
are more effective at distinguishing causal structures. In con-
trast, the poor performance of DiBS (MAP estimation) can
be attributed to poor inference in Bayesian neural networks.

6.3. Syntren

Syntren is a gene-regulatory network simulator that gener-
ates gene expression data from real biological graphs. There
are 10 datasets of 20 nodes with 500 samples each. The
results on Syntren can be seen in Figure 2b. Here, the CGP-
CDE outperforms other methods, especially in terms of the
SID and F1 scores.
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7. Conclusion
In this work, we have shown why Bayesian model selec-
tion works, and that it is a highly effective approach for
causal discovery in multivariable settings. Then, we pro-
pose a scalable model that outperforms existing Bayesian
and non-Bayesian methods across multiple settings. The
consistent performance of our approach highlights the ad-
vantages of framing causal discovery as a Bayesian model
selection problem. We believe this perspective addresses a
critical limitation in causal discovery—namely, the inability
to use flexible models, paving the way for more practical and
widely applicable causal inference in real-world scenarios.
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of Machine Learning. There are many potential societal
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A. Additional Background
A.1. Causal Model Basics

The causal model satisfies the Independent Causal Mechanism (ICM) assumption by construction (Janzing & Schölkopf,
2010). Given a graph G, this means that changing a term in the causal factorisation of the joint

∏D
i=1 Pi(Xi|XPAG(i)) does

not change any of the other terms. This is achieved by assuming that the choice of conditional distributions for each variable
Xi from Ci|PAG(i) is independent of the choice for other variables Xj from Cj|PAG(j) with j ̸= i. This property is assumed
to hold in the causal factorisation but does not necessarily hold in any other factorisation of the joint (Peters et al., 2017).
This can be seen in the two variable system with graph X → Y . If the terms in P (X)P (Y |X) are chosen independently,
the choice of the terms in P (Y )P (X|Y ) are tied to each other. Changing P (X) or P (Y |X) in general will require changes
in both P (Y )P (X|Y ) to maintain equality.

As variables are dependent only on their parents in a graph by construction, a causal model satisfies the Markov assumption.
This states that d-separations in G between variables implies conditional independence between the same variables (Pearl,
2009). We also assume faithfulness: any conditional independences between variables are represented by d-separations in G
(Pearl, 2009). Together, faithfulness and Markov assumptions imply a one-to-one relationship between independences in the
distributions and d-separations in the graph (Peters et al., 2017). These assumptions are enough to recover a causal structure
from data up to a Markov equivalence class (MEC), that is, the class of causal structures that have the same d-separations.

A.2. Continuous Optimisation for Learning Causal Structure

Given a score (such as the likelihood or marginal likelihood) S , causal structure learning can be defined as an optimisation
problem over graphs (Zheng et al., 2018)

G∗ = argmax
G

S(G) such that G ∈ DAGs. (14)

That is, finding the graph that optimises the score under the constraint that the graph must be a valid DAG. This converts
causal structure learning into a single optimisation problem, tackling the scalability issue. However, ensuring that the graph
is acyclic is non-trivial with gradient based methods. Zheng et al. (2018) first solve this by encoding a graph as a weighted
adjacency matrix A ∈ RD×D

≥0 and using a measure of acyclicity h(A) as a constraint. The function h : A → R≥0 is a
measure of the number of weighted directed walks that allow for returning to a starting node. Hence, h(A) = 0 implies that
there are no directed cycles in the adjacency A and that the graph implied by A is a valid DAG.

Numerous variations on this approach have been proposed to improve the scalability and stability of optimisation (Lee
et al., 2019; Bello et al., 2022; Wei et al., 2020; Nazaret et al., 2024). We use the spectral acyclicity constraint method
in Equation (12), which is equivalent to the largest eigenvalue magnitude of A, due to its stability and scalability (Lee
et al., 2019; Nazaret et al., 2024). This constraint uses the fact that A is acyclic if and only if all its eigenvalues are zero
(Cvetković et al., 1980).

The gradients of the spectral acyclicity constraint can be easily calculated as

∇h(A) =
vdu

T
d

vTd ud
, (15)

where ud and vd are the right and left eigenvectors associated with λd(A) (Magnus, 1985). We follow the example of
Nazaret et al. (2024) and use the power iteration method to estimate these eigenvectors in O(d2) rather than finding them
exactly, which costs O(d3).

Equation (14) can now be written as an optimisation problem with the differentiable constraint h(A) = 0. Nazaret et al.
(2024) use a penalty method, writing the objective as:

argmax
A

S(GA)− γth(A), (16)

where the weighting γt of the penalty h(A) is increased by ρ each epoch. A solution A∗ is found when h(A∗) < τ for
some convergence threshold τ > 0.
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B. Proof of Distinguishability with Multiple Variables
Bayesian model selection uses the marginal likelihood (equivalent to the posterior over models) to distinguish between
Bayesian causal models with different causal graphs. Thus, following Dhir et al. (2024), we will provide conditions
such that two Bayesian causal models will have different distributions over marginal likelihood values. This implies that
there will always exist datasets such that the marginal likelihood values of two Bayesian causal models differ. We will
do this by defining two Bayesian causal models as Bayesian distribution-equivalent if they have the same distribution
over marginal likelihood values, and then provide conditions such that two Bayesian causal models cannot be Bayesian
distribution-equivalent. Note that this can be viewed as a version of observation equivalence (Pearl, 2009), but for Bayesian
causal models. If models are not observationally equivalent, they can be learnt from observational data (for example, by
using methods such as PC (Spirtes et al., 2000)). A similar reasoning holds for Bayesian distribution equivalence.

We split the proof into two parts, first, we will show that Bayesian model selection can effectively identify up to a Markov
equivalence class. This is known for certain classes of models, for example, curved exponential models (Chickering, 2002),
but it has not been shown for the general non-parametric case. Second, we will provide conditions such that two Bayesian
causal models within the same Markov equivalence class are not Bayesian distribution-equivalent. Here, there may be some
probability of error depending on the overlap of the posteriors that can be computed empirically. This second result is
implied by the result in Dhir et al. (2024, Proposition 4.7).

We define Bayesian distribution-equivalent models. These are the Bayesian counterparts of models that are unidentifiable.
That is, given any dataset, these models will achieve the same marginal likelihood score.

Definition B.1. (Dhir et al., 2024, Definition 4.4) Given two Bayesian causal models (MG , πG), (MH, πH), say they are
Bayesian distribution-equivalent if P (· | MG) = P (· | MH), i.e. for all N ∈ N, and for all

(
xN ,yN

)
∈ (X × Y)N , it

holds that p
(
xN ,yN | MG

)
= p
(
xN ,yN | MH

)
.

We proceed by showing that two Bayesian causal models with graphs in different MECs cannot be Bayesian distribution
equivalent. Further, if the estimate of the Bayes factor (Kass & Raftery, 1995) (ratios of marginal likelihood) is consistent, it
can identify the correct graph.

Lemma B.2. Assume faithfulness and two Bayesian causal models (MG , πG), and (MH, πH). If G andH are in separate
Markov equivalence classes (MEC), then FG ∩ FH = ∅, where FG and FH are the sets of all joints expressible byMG and
MH respectively.

Proof. The Markov and Faithfulness assumptions together means that Xi ⊥⊥P Xj |Xk ⇐⇒ Xi ⊥⊥G Xj |Xk, where
⊥⊥P denotes distributional independence, and ⊥⊥G signifies d-separation in graph G. Hence, as G and H are in separate
MECs, there exists some Xi ⊥⊥G Xj |Xk such that Xi ̸⊥⊥H Xj |Xk. This implies that for every P ∈ FG , we have that
Xi ⊥⊥P Xj |Xk, and for every Q ∈ FH we have that Xi ̸⊥⊥Q Xj |Xk . Hence P /∈ FH.

Theorem B.3. Assume faithfulness and two Bayesian causal models (MG , πG), and (MH, πH). If G andH are in separate
Markov equivalence classes (MEC), then they are not Bayesian distribution equivalent for any choices of priors πG , πH.
Assume N samples are generated from one of the models. If the estimate P (XN |MG)

P (XN |MH)
is consistent as N → ∞, the

probability of error between these two models is 0.

Proof. The first claim follows directly from Lemma B.2 and Dhir et al. (2024, Proposition 4.5). Given that FG ∩ FH = ∅,
only one of the models can be the true model. Consistency implies P (XN |MG)

P (XN |MH)
→ ∞ if the data generating distribution

P ∈ FG , and P (XN |MG)
P (XN |MH)

→ 0 if the data generating distribution P ∈ FH (Walker, 2004). Hence, the marginal likelihood
is higher for the correct model for each distribution in the union of FG ∪ FH leading to a probability of error of 0.

Consistency in the above requires certain conditions on the prior (Walker et al., 2004, Theorem 1). Suppose the data is
generated from XN ∼ P0, we require that for the correct model, suppose it isMG , the prior puts non-negligible mass
around P0: πG({P : KL[P0∥P ] < ϵ}) > 0 for all ϵ > 0 (Walker et al., 2004). Second, the posterior for both models
cannot paradoxically concentrate in a region of negligible prior mass: lim infN KL[P0∥PNA] ≥ ϵ for all ϵ > 0 where
A := {P : KL[P0∥P ] > ϵ}. PNA is the posterior (over N samples) computed from the prior but restricted to the set of
densities A, which are ϵ far from the true density P0 as measured by the KL-divergence (Walker, 2004). This condition
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stops the wrong model (which has negligible prior mass around the true density) from concentrating around the true density
for a large enough sample size.

The condition for two causal models that FG ∩ FH = ∅ also holds when the causal models are identifiable (Guyon et al.,
2019, Ch. 2). Hence, Bayesian model selection can recover the causal structure if the causal models are identifiable.
Corollary B.4. Assume two Bayesian causal models (MG , πG), and (MH, πH) where the underlying causal models are
identifiable: FG ∩ FH = ∅. If the estimate P (XN |MG)

P (XN |MH)
is consistent as N →∞, the probability of error between these two

models is 0.

Next, we consider the case of two Bayesian causal models where the two graphs are in the same MEC. Without restrictions,
it is well known that in this case there may exist distributions in two Bayesian causal models that can express a given dataset
(Pearl, 2009). Thus, the result from Lemma B.2 does not hold. The key idea that allows for distinction here is that the
ICM assumption (as represented by factorised priors) may only hold in the causal factorisation of a Bayesian causal model.
Further, the distributions of marginal likelihood values are sensitive to the ICM assumption. As the causal factorisation of
the two Bayesian causal models differs, they will have a different distribution over marginal likelihood values.

We first formalise the ICM assumption as the separability of the priors with respect to a certain factorisation of the joint.
Definition B.5. (Dhir et al., 2024, Definition 4.2) Given a Bayesian causal model (MG , πG), a prior π is separable with
respect to CG if it factorises

∏
i∈V πi such that πi ∈ P(Ci|PAG(i)), where P is the set of all distributions over an object.

That is, if π is separable with respect to CG , the joint can be written as
∏

i∈V Pi(Xi|XPAG(i))π(dPi), with Pi ∈ Ci|PAG(i).
Separability of the prior (and hence the ICM condition) may hold in multiple factorisations. This is the case with normalised
linear Gaussian models (Dhir et al., 2024, Appendix D.2). To formalise this, we reiterate the notion of separability-
compatibility.
Definition B.6. (Dhir et al., 2024, Definition 4.6) Given two Bayesian causal models (MG , πG), and (MH, πH). Denote
γ : CG → CH a bijection such that for any P ∈ CG such that Q := δ(P ) ∈ CH, there holds an equality of joint measures∏

i∈V Pi(Xi|XPAG(i)) =
∏

i∈V Qi(Xi|XPAH(i)). The two Bayesian causal models are separable-compatible if: i) the
pushforward πG ◦ γ−1 is separable with respect to CH, ii) πH ◦ γ is separable with respect to CG .

The operation δ is simply the transformation by Bayes’ rule that transforms the factorisation according to G to the factorisation
according toH while ensuring the joint is the same. Separability-compatibility checks whether the prior separates according
to multiple factorisations. If it does, ICM holds in multiple factorisations.
Theorem B.7. Given two Bayesian causal models (MG , πG), and (MH, πH). If G and H are in the same Markov
equivalence classes (MEC), and the Bayesian causal models are not separable compatible, they cannot be Bayesian
distribution-equivalent. Further, assuming data is generated from one of the models, then the probability of error is less
than 50%.

Proof. The first statement follows directly from Dhir et al. (2024, Proposition 4.7). The probability of error in the two model
case can be written as (Dhir et al., 2024)

P (E) =
1

2
(1− TV[P (·|MG), P (·|MH)]). (17)

If the two models are not Bayesian distribution-equivalent, then TV[P (·|MG), P (·|MH)] > 0. This implies that the
probability of error is less than 1

2 .

Theorem B.7 shows that if the ICM assumption only holds in the causal factorisation of the model (prior is only separable
with respect to the causal factorisation), then there will always exist datasets that give different marginal likelihood values for
the two Bayesian causal models. The above holds for any combination of Bayesian causal models with graphs in the same
MEC. Hence, the total probability of error for the comparison within an MEC will be less than that of a graph randomly
chosen from within the MEC (Friedman, 1996).

C. CGP-CDE Details
For our Bayesian causal model, we use the Gaussian process conditional density estimator (Dutordoir et al., 2018). We use a
sum of commonly used kernels Rasmussen (2003, Ch. 5), as outlined in Appendix C.1. We also apply variational inference
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to optimise the lower bound, as is standard for latent variable Gaussian process models (Dutordoir et al., 2018; Titsias &
Lawrence, 2010) and use inducing points with stochastic variational inference to improve data scalability (Hensman et al.,
2013). We outline the variational inference in Appendix C.2 and detail our optimisation schedule in Appendix C.3.

C.1. CGP-CDE Kernel

The ultimate aim of the approach is to find the causal graph that maximises the posterior probability. The choice of kernels
will be problem dependent and it is possible to carry out Bayesian model selection over the kernels themselves (Rasmussen,
2003, Ch. 5). To allow for good fits of a range of datasets, we use a sum of kernels that can express functions with a range of
lengthscales and roughness well.

The kernel for function fi is
ki = klin,i + ksqe,i + km12,i + km32,i + krq,i, (18)

where each of the kernels is defined below (Williams & Rasmussen, 2006, Ch. 4). For all the kernels, θii is the hyperparameter
for the latent dimension.

klin,i is the linear kernel:

klin,i =

D∑
j ̸=i

θlin,ijxjx
′
j + θlin,iiwiw

′
i, (19)

where θlin,ij indicates the jth dimension of hyperparameter θlin,i.

ksqe,i is the squared exponential kernel

ksqe,i = σ2
sqe,i

 D∑
j ̸=i

exp

(
−θ2sqe,ij

(xj − x′
j)

2

2

)
+ exp

(
−θ2sqe,ii

(wi − w′
i)

2

2

), (20)

where θsqe is the precision parameter.

km12,i and km32,i are the Matérn12 and Matérn32 kernels with ν = 1
2 and ν = 3

2 respectively, with the general form

kmν,i = σ2
mν,i

D∑
j ̸=i

21−ν

Γ(ν)

(
θmν,ij

√
2ν|xj − x′

j |
)ν

Kν

(
θmν,ij

√
2ν|xj − x′

j |
)

+ σ2
mν,i

21−ν

Γ(ν)

(
θmν,ii

√
2ν|wi − w′

i|
)ν

Bν

(
θmν,ii

√
2ν|wi − w′

i|
)
, (21)

where Γ(ν) is the gamma functions and Bν is a modified Bessel function. Similarly to the squared exponential kernel, θmν

is the precision parameter.

krq is the rational quadratic kernel, which is equivalent to the sum of many squared exponential kernels with different
precision hyperparameters (Williams & Rasmussen, 2006, Ch. 4),

krq,i = σ2
rq,i

 D∑
j ̸=i

(
1 + θ2rq,ij

(xj − x′
j)

2

2ad

)−ai

+

(
1 + θ2rq,ii

(wi − w′
i)

2

2ai

)−ai

, (22)

where a is a hyperparameter that is learned.

The kernel variance terms σ2
sqe, σ

2
mν and σ2

rq mean individual kernels can be “switched off” by setting this term to zero if
they do not contribute to improving the evidence lower bound.

In all these kernels, the hyperparameter denoted by θ controls the variability of the function, as discussed in subsection 4.2.
This means as they tend to zero, the input and output of the function become decorrelated. To construct the adjacency matrix
in Equation 10, we sum these hyperparameters, so that

θij = θlin,ij + θsqe,ij + θm12,ij + θm32,ij + θrq,ij . (23)
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C.2. CGP-CDE Lower Bound

We use a variant on the GP-CDE (Dutordoir et al., 2018) to define our causal model and define a prior over distributions.
Intractability in these models is commonly solved using variational inference (Lalchand et al., 2022; Dutordoir et al., 2018).

Each variable xi is modelled as a function of all other variables X¬i and latent variable wd plus some Gaussian noise,
parameterised by noise variance ϕ2

i :

xi = fi(X¬i,wi) + ε, ε ∼ N (0, ϕ2
i ). (24)

The presence of the latent variable allows learning of non-Gaussian and heteroscedastic noise (Dutordoir et al., 2018). A
Gaussian process prior is placed on fi,

p(fi|XPAGA (i),Λi,wi) = N (0,KΛi
((X¬i,wi), (X¬i,wi)

′)), (25)

where XPAGA (i) are the parents of xi in A, and K is the kernel with set of hyperparameters denoted Λi. We denote kernel
hyperparameters that control dependence and are included in the adjacency matrix collectively as θ, while the rest as σ,
with Λ = {θ,σ}.

Different prior beliefs of the form of f can be expressed in the choice of kernel. To find the causal DAG with the highest
posterior, we need to maximise the marginal likelihood of each variable. This is written as

log p(xi|XPAGA (i),Λi,ϕi) = log

∫ ∫
p(xi|fi,ϕi)p(fi|XPAGA (i),Λi,wi)p(wi)dwidfi.

However, the latent variables wi appear non-linearly in p(fi|XPAGA (i),Λi,wi) making the calculation of
log p(xi|XPAGA (i),Λi,ϕi) analytically intractable.

The addition of inducing points ui, with corresponding inducing inputs Zi, helps both with the intractability of
log p(xi|XPAGA (i),Λi,ϕi) and scaling to large datasets (Titsias, 2009; Titsias & Lawrence, 2010). We can write the
joint between f and ui as:

p

([
fi
ui

])
= N

([
0
0

]
,

[
Ki,ff Ki,fu

Ki,uf Ki,uu

])
, (26)

where Kff is the covariance matrix between training data, Kuu is the covariance matrix between inducing points and Kfu

and Kuf are the covariance matrices between the two. Suppressing the hyperparameters and Zi for brevity, the marginal
likelihood can then be written as:

log p(xi|XPAGA (i)) = log

∫ ∫
p(xi|fi)p(fi|XPAGA (i),wi,ui)p(wi)p(ui)dwidfidui. (27)

where p(ui) = N (0,Ki,uu). This is still not tractable, so we use variational inference to define an evidence lower bound
(ELBO) to the marginal likelihood (Titsias, 2009). This is done by introducing a variational distribution q(fi,wi,ui) and
rewriting the marginal likelihood as (suppressing conditioning terms for neatness):

log p(xi) = log

∫ ∫ ∫
p(xi|fi,ϕi)p(fi|ui,XPAGA (i),wi)p(ui)p(wi)

q(fi,wi,ui)

q(fi,wi,ui)
duidwidfi,

The variational distribution takes the form (Titsias & Lawrence, 2010; Dutordoir et al., 2018):

q(fi,wi,ui) = p(fi|wi,ui)q(wi)q(ui), (28)

where q(ui) = N (ui|mu,i,Su,i) is the Gaussian variational distribution of inducing points ui and q(wi) = N (µi,Σi) is
the variational distribution of wi.

Rearranging and using Jensen’s inequality, we can then get the lower bound for variable d as (Dutordoir et al., 2018)

log p(xi) ≥
〈
⟨log p(xi|fi)⟩q(fi)

〉
q(wi)

−KL[q(u)||p(u)]−KL[q(wi)||p(wi)], (29)
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where q(fi) =
∫
p(fi|u,wi)q(u)du. We denote the lower bound for variable Xi as LELBO,i(qi,Λi, ϕi). The full lower

bound then is LELBO(q,Λi, ϕi) :=
∑D

i=1 LELBO,i(qi,Λi, ϕi), remembering Λ = {θi,σi}.

By incorporating the optimal Gaussian variational distribution q(u), which can be calculated in closed form, it is possible
to collapse the bound by integrating out the inducing variables (Titsias, 2009; Titsias & Lawrence, 2010). However, the
computational complexity of this approach is O(NM2D), meaning for large values of N training becomes infeasible
(Lalchand et al., 2022). To allow our method to scale to large datasets, we follow the approach of Hensman et al. (2013)
and keep q(u) uncollapsed so that stochastic variational inference can be used. This means the data can be mini-batched
in training, reducing the computational complexity to O(M3D). To further improve computational efficiency, we use
an encoder to learn a function gq,i : (xbatch) 7→ (µi,Σi) for the variational distribution q(wi) = N (µi,Σi), where
xbatch ∈ Rb×D is a batch of data points, µi ∈ Rb and Σi ∈ Rb for batch size b (Dutordoir et al., 2018). This is more efficient
than the alternative of learning N parameters. We use a multi-layer perceptron for the encoder and list the hyperparameters
used in Table 1.

Table 1: Hyperparameters for the variational encoder gq,i : (xbatch) 7→ (µi,Σi).

Parameter Value

hidden layer size 128
number of layers 5

activation function ReLU

Other hyperparameters: We follow common practice and maximise the lower bound with respect to the hyperparameters
σ and ϕ as well (Rasmussen, 2003) (along with θ and q). This is justified based on the fact that the posterior for these
hyperparameters tends to be highly peaked in practice (MacKay, 1999). Thus, a Laplace approximation can be approximated
by the maximum value.

C.3. Optimisation schedule

We split the training schedule up into three steps. The warm-up phase allows the model to learn conditional independences
present in the data. In the acyclic constraint phase, where a penalty method is used to enforce the DAG constraint, the model
then learns the direction of any edges. The learnt DAG is then enforced, and the ELBO is optimised in the cool-down phase
to find the ELBO of the final model, which can then be used for comparing random restarts.

Warm-up phase: The warm-up phase allows the model to learn any conditional independences from the data. It also
ensures the hyperparameters and variational parameters of the Gaussian process are at reasonable values at the beginning of
the acyclic phase. Although the number of iterations needed will depend on the problem at hand, we found T0 = 25, 000
iterations for this phase sufficient to ensure convergence.

Acyclic constraint phase: After the warm-up phase has concluded, a lot of the edges corresponding to conditional
independences are switched off. However, for variables that are correlated, the causal direction has not been decided. This
part of the training forces the constraint that the final graph has to be acyclic. The loss is

LELBO(q,θ,σ,ϕ) := LELBO(q,θ,σ,ϕ) + log p(θ)− γth(A), (30)

is optimised, using the acyclic regulariser proposed by Nazaret et al. (2024). The weighting γt of the acyclic penalty term
h(A) is increased linearly each epoch by ρ = 50, starting from 0. As we use minibatching, one epoch is a full pass through
the dataset. For some of the 50 variable datasets, we increased this to ρ = 250 to reduce the time required to train. This
is because the unconstrained loss scales with the number of variables, so for the 50 variable dataset, a higher ρ ensures a
higher ratio between the acyclic constraint and the rest of the loss, ensuring faster convergence.

We use 50 power iterations to approximate the eigenvectors required to calculate the gradients of the acyclic constraint, as
described in Appendix A.2. The acyclic constraint phase is terminated when h(Aθt) < τ where τ = 0.005, or the number
of iterations exceeds a maximum value of Ta = 50, 000.
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Acyclic thresholding: After the end of the acyclic phase, the values of the hyperparameters are sometimes not exactly 0
due to numerical precision, we find the adjacency matrix with an extra thresholding step. Following Lachapelle et al. (2019),
we threshold weights to 0, starting with the lowest weight, until the adjacency is exactly acyclic (h(Aθt) = 0).

Cool-down phase: We found that random restarts helped tackle local optima in optimisation Appendix C.4. To allow for
the comparison of ELBO values across restarts (see Appendix C.4) we continue training the found acyclic DAG for Tf

iterations. This ensured that the found ELBO approximates the ELBO of the final resultant DAG. As some hyperparameters
may have been pushed to extreme values by the acyclic threshold if competing with an anti-causal edge, we reinitialise the
hyperparameters of the edges that are still active to their initial value. This reduces the number of iterations needed for the
cool-down phase. We found that Tf = 25, 000 cool-down iterations sufficed here.

Final matrix thresholding: Finally, we perform an extra thresholding step to remove edges that do not encode correlations.
As our data is normalised, we check the kernel evaluation of points −3 and 3, which should bound 95% of the data. If the
function is highly correlated between these points, it is effectively constant for 95% of the data. We thus threshold the linear
variances to 10−4 and the graph parameters (the rest of the kernels) to 0.05, which corresponds to a lengthscale of 20. These
values ensure that points between −3, 3 are highly correlated.

C.4. Random Restarts

The main principle behind our method is to find the graph that maximises the marginal likelihood (or a lower bound to
it). Maximising the ELBO with respect to the hyperparameters Λ in Gaussian process models is known to suffer from
local optima issues (Rasmussen, 2003, Ch. 5). The final hyperparameters found, and hence the adjacency matrix, can be
dependent on the initialisation of the hyperparameters. To mitigate this, we use a widely adopted technique of performing
random restarts (Dhir et al., 2024). We optimise the loss L starting from multiple initialisations (this can be done in parallel)
Nr times. Then we pick the graph that achieves the highest LELBO as the candidate for the most likely graph. Adding more
random restarts for the CGP-CDE should improve performance, as shown for the DGP-CDE Appendix D.1.

Algorithm 1 Optimisation procedure for the Causal GP-CDE.
Input: Data X, number of random restarts Nr, acyclic penalty weighting update ρ, threshold τ , acyclic penalty weighting

γt = 0 initial Λ = {θ,σ}
Result: Most likely adjacency matrix A∗

Initialise empty list graphscore
for i = 1 to Nr do

for j = 1 to T0 do
Update q,Λ by maximising L (Equation (30))

end
t← 0
while h(Aθt

) > τ and t < Ta do
Update q,Λ by maximising L (Equation (30))
t← t+ 1
if epoch ended then

γt ← γt + ρ
end

end
end
Set γt to 0
Threshold Aθt

starting from lowest weight until h(Aθt
) = 0

for k = 1 to Tf do
Update q,Λ by maximising L (Equation (30))

end
Append (Aθ,L) to graphscore.
A∗ ← Aθ from graphscore with the maximum L.
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C.5. Hyperparameter Priors

As discussed in Section 4.3, we can place priors on the graphs by placing priors on the hyperparameters θ of the CGP-
CDE. For our implementation, we place a prior on θ that favours sparser graphs. Specifically, we use the Gamma prior
P (θ) = Gamma(η, β), where η is the shape parameter and β is the rate parameter. For all experiments, we set η = 1 and
β = 10. Our hyperparameters for the priors were heuristically chosen and give log probabilities that are a fraction of the rest
of the loss.

C.6. Implementation Details

In this section, we outline the details of our implementation.

Hyperparameter initialisations We initialise the hyperparameters θ ∼ Uniform(0.01, 1), except θlin = 0.25. All kernel
variances σ are initialised to 1 so they all have the same initial weighting and likelihood variance initialised as ϕ2 = 1

κ2

where κ ∼ Uniform(50, 100). The a term in the rational quadratic kernel is initialised as a ∼ Uniform(0.1, 10).

Variational parameters We use 400 inducing points for all datasets as we found this a reasonable trade off between
computation time and accuracy. We initialise our inducing point locations at a subset of the data inputs. We use a multilayer
perception for the latent variable encoder, as described in Appendix C.2, with hyperparameters listed in Table 1. The encoder
weights are initialised from a truncated normal distribution centred on 0 with a standard deviation of

√
( 2

hidden layer size ) (He
et al., 2015).

Loss calculation We use a minibatch size of 256 to calculate the loss. We take 50 Monte Carlo samples to integrate out
the latent variables wi = N (µi,Σi).

Acyclic constraint penalty The acyclic constraint penalty has three hyperparameters: the coefficient to linearly increase
the weighting of the penalty term by, ρ, the threshold value for the acyclicity, τ , and the number of power iterations used
to approximate the eigenvectors for the gradients of the acyclic constraint. We tuned these variables using five datasets
generated from 10 variable ER1.5 graphs. We chose 50 power iterations, as it led to better performance than smaller
numbers of iterations and after 50 we saw minimal improvement. For the 10 variable ER1.5 datasets, we found ρ = 50
and τ = 0.005 leads to the best performance across SHD, SID and F1, while still converging in a reasonable amount of
time. However, as the number of variables scaled, this value of ρ took prohibitively long, except for the Syntren dataset.
This is because the ELBO scales with the number of variables, LELBO(q,Λi, ϕi) :=

∑D
i=1 LELBO,i(qi,Λi, ϕi). Therefore,

for the 3, 20 and 50 variable datasets we scale ρ with the number of variables, such that ρ = 5D. This ensures the relative
magnitude of the ELBO and the acyclic penalty remains roughly the same, meaning the time for the acyclic constraint phase
to converge is not dependent on the number of variables. We did not find scaling ρ affected the performance, but it did speed
up the acyclic phase.

Optimisers Each optimisation step consists of two steps. First, we optimise the parameters of the variational distribution
of inducing points q(ui) = N (ui|mu,i,Su,i) using natural gradients, which have been shown to significantly improve
training time for variational Gaussian processes (Salimbeni et al., 2018). We linearly increase the natural gradient step size
from 0.0001 to 0.1 for the first five iterations, and then use a step size of 0.1. Second, we optimise the Gaussian process
hyperparameters using Adam with a learning rate of 0.05 (Kingma & Ba, 2014).

Random restarts We did as many random restarts as we had computational resources for. This means we did 2 restarts
for the three-variable dataset, 2 restarts for each of the 50 variable datasets and the Syntren dataset, and 1 restart for the 20
variable datasets.

D. DGP-CDE Details
In Section 6.1 we introduce the discrete Gaussian process conditional density estimator (DGP-CDE), which is used to
enumerate every possible causal structure for the 3 variable case. For this, a separate DGP-CDE is trained for each of the 25
possible causal graphs, with the Gaussian process prior for each variable defined in Equation (9). The DGP-CDE differs
from the CGP-CDE in that it only takes XPAG(i) as inputs, whereas the CGP-CDE takes X¬i as inputs and then learns the
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adjacency matrix.

As the adjacency matrix is fixed for the DGP-CDE there is no acyclic penalty, so the loss function is just the lower bound
LELBO(q,Λ,ϕ) :=

∑D
i=1 LELBO,i(qi,Λi, ϕi). When all 25 separate DGP-CDE models have been trained, the most likely

graph is selected by choosing the model with the highest marginal likelihood.

D.1. Implementation Details

Loss Calculation As the DGP-CDE is limited in the number of variables it can model by the need to enumerate over all
graphs, there is no need to make the lower bound scalable using the methods discussed in Appendix C.2 (Hensman et al.,
2013). Instead, we use the collapsed version of the lower bound, which can be calculated in closed form (Titsias, 2009).

Kernels We use a sum of a linear kernel defined in Equation (19) and a squared exponential kernel defined in Equation (20).
This kernel means the kernel expectations needed to calculate the lower bound can be computed in closed form.

Hyperparameters The kernel variances are initialised as σi = 1, the likelihood variance is randomly sampled as
ϕ2
i ∼ Uniform(10−4, 10−2) and the precision parameter θi ∼ Uniform(1, 100).

Variational parameters As the enumeration over graphs is computationally expensive, we use 200 inducing points, which
we found to be sufficient. As we are not using stochastic variational inference (Hensman et al., 2013) for the DGP-CDE,
we can no longer mini-batch, so don’t use a multilayer perceptron for the latent variables. Instead, we initialise the latent
variable mean as µi = 0.1xi and standard deviation is randomly sampled Σi ∼ Uniform(0, 0.1).

Optimisation Schedule The use of the collapsed bound for the DGP-CDE requires a different optimisation schedule than
for the CGP-CDE. This consists of a two part optimisation scheme. Due to the loss function being highly non-convex and
suffering from local optima, the first step of the optimisation scheme uses Adam (Kingma & Ba, 2014) with a learning rate
of 0.05 to get into a good region of the decision space. Once the loss function reaches the value a noise model would have,
the optimisation scheme switches to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to perform gradient descent
for the final part of the optimisation.

Random Restarts We did 10 random restarts for each DGP-CDE, selecting the one with the best lower bound for our final
result. We analysed the effect of the random restarts by permuting the order of the random restarts and plotting, in Figure 3,
the mean and standard deviation of the SHD, SID and F1 across permutations as the number of restarts increases. From the
plot, it is clear that as the number of random restarts increases, the mean value of the metrics, on average, improves. This is
because more random restarts allow a more thorough exploration of the loss function. It also shows that a higher value of
LELBO does lead to better causal structure discovery.

E. Data Standardisation
For additive noise models, it has been shown that when data is sampled from a simulated DAG and not normalised, the
marginal variance tends to increase along the causal order (Reisach et al., 2021). When this is the case, it is possible to, at
least partially, determine the causal order by ranking the marginal variance of variables. Reisach et al. (Reisach et al., 2021)
demonstrate that commonly used synthetic datasets often have this property, meaning a simple baseline method based on
variance sorting and regression can perform as well as some recent continuous structure learning algorithms. This variance
can be manipulated by rescaling (such as changing measurement units), which would then give a different causal order. As
such, results that take advantage of the variance may be sensitive to measurement scales. Such effects may also persist in
real-world datasets due to the measurement scale used.

To get rid of these effects, we standardise all datasets before applying any of the causal discovery methods discussed in this
paper. For the synthetic datasets, we also normalise each variable during the data generating process. This has been shown
to create graphs that are not Var-sortable or R2-sortable, meaning the causal order cannot be determined using variances and
correlation artefacts (Ormaniec et al., 2024). This means our results for the baselines don’t match the results reported in the
original papers for similar datasets (Montagna et al., 2023; Lachapelle et al., 2019; Rolland et al., 2022) (note that some of
these works also define SHD of an anti-causal edge as 1 where we define it as 2).
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Figure 3: Effect of adding random restarts for the DGP-CDE. We record the metrics (SHD, SID and F1) for the restart
with the lowest loss out of a growing set of restarts, starting with one restart and adding one restart at a time. We randomly
permute the order in which the random restarts are added 50 times and plot the mean and standard deviation for each of the
metrics. This shows that, on average, increasing the number of random restarts improves performance.

F. Data Generation Details
3 Variable Synthetic Data: For each of the six distinct causal structures for three variables (up to permutations of the
variables), we generated five datasets, each with 1000 samples. The data was generated by sampling a GP-CDE with a
sum of a linear kernel and one other kernel randomly selected out of Matérn12, Matérn32, Matérn52, squared exponential
and rational quadratic. The kernel hyperparameters are sampled from σi ∼ Uniform(1,100) and θi ∼ Gamma(1.5,1)
while the other parameters are sampled as ϕi ∼ Uniform(0.01,1) and wi ∼ N (0,1). The data is then sampled from this
GP-CDE.

20 & 50 Variable Synthetic Data: For both 20 and 50 nodes, we create synthetic graphs using the ER (Erdos et al., 1960)
and SF (Barabási & Albert, 1999) sampling schemes, with expected edges of one and four to simulate sparse and dense
graphs. For each graph type, we generate five random graphs. Data is then generated for each node Xi using

Xi := fNN
i (XPAG(i), ϵi), (31)

where PAG(i) are the parents of Xi and ϵi ∼ N (0, 1) is sampled from ϵi ∼ N (0, 1). fNN is a randomly initialised neural
network with two layers, 128 units and ReLU activation functions. For each graph, we sample 1000 data points. This
data generating scheme ensures that the final data is generated from a complicated distribution which does not directly
correspond to any of the models.

Syntren Dataset: Syntren is a synthetic data generator that approximates real transcriptional regulatory networks (Van den
Bulcke et al., 2006). Networks are selected from previously described transcriptional regulatory networks. Relationships
between the genes are based on the Michaelis-Menten and Hill enzyme kinetic equations. The kinetic equations contain
some biological noise and some lognormal noise is added on top. We use the data generated by Lachapelle et al. (2019).
This contains 10 datasets of 500 samples, each with 20 nodes. The data was generated using the syntren data generator
(Van den Bulcke et al., 2006), using the E. coli network with the default parameters except for the probability for complex
2-regulator interactions, which was set to one (Lachapelle et al., 2019).

G. Details about Baselines
SCORE & NoGAM: For SCORE (Rolland et al., 2022) and NoGAM (Montagna et al., 2023) we use the implementation
in the dodiscover package https://github.com/py-why/dodiscover. SCORE and NoGAM have very similar
hyperparameters, and for both methods, we use the values of ridge regression suggested by Montagna et al., which they
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tuned to minimise the generalisation error on the estimated residuals (Montagna et al., 2023). We also use the values
suggested by the authors for both methods for all the hyperparameters for the Stein gradient, Hessian estimators and CAM
pruning step except for the cutoff value for the CAM pruning step which we set to 0.01 as is standard for CAM and follows
Montagna et al. (Montagna et al., 2023). NoGAM has the additional hyperparameter of number of cross validation models,
for which we use the preset value of five.

CAM: For CAM, we preliminary neighbourhood selection and DAG pruning method with a cutoff value of 0.001 for
the edge pruning as suggested by the authors (Bühlmann et al., 2014). We used the implementation in the https:
//github.com/kurowasan/GraN-DAG repository.

NOTEARS: For NOTEARS, we used the implementation provided in https://github.com/azizilab/sdcd,
which uses binary search to find the adjacency matrix threshold that gives the largest possible DAG. This procedure has
been found to give better performance than the default threshold of 0.3 in the original NOTEARS paper (Nazaret et al.,
2024; Lopez et al., 2022).

SDCD: Nazaret et al. did not tune their hyperparameters for every dataset, instead using the same hyperparameter values,
which were found to perform well empirically, for all their experiments (Nazaret et al., 2024, Appendix C.2). We use these
same hyperparameter values and their implementation provided in https://github.com/azizilab/sdcd.

DiBS: We use the non-linear model provided by the authors in https://github.com/larslorch/dibs/. For
graph priors, we use the ER prior for the ER graphs and SF prior for the SF graphs, Syntren and the three variable
baseline. This is because SF more closely matches the structure of the Syntren and the three variable datasets. For the other
hyperparameters we use the values fine-tuned by the authors, including an observational noise of 0.1 and 3000 optimisation
steps. The authors fine-tuned different values for the bandwidths of the kernel and slope of the linear schedule depending
on the number of variables. We use these values, which are listed in (Lorch et al., 2021, Appendix E.3). DiBS typically
returns a posterior over DAGs using Stein variational gradient descent. When a single particle is used, this becomes the
MAP estimate of the graph. Therefore, as we wish to compare to our method, which returns a MAP estimate, we use one
particle for DiBS, and perform five random restarts, selecting the one with the highest marginal likelihood value.

Random: For the three variable dataset, we include uniform random sampling of DAGs. To compute this, for each ground
truth graph, we enumerate all 25 possible graphs and evaluate their performance metrics. This exhaustive enumeration
ensures that our results approximate those obtained in the limiting case where the number of sampled DAGs tends to infinity.

H. Code Availability & Computational Resources
Code and data to replicate the experiments in this paper can be found at https://github.com/Anish144/
ContinuousBMSStructureLearning. The experiments in this paper were run on A100 and RTX 4090 GPUs.

I. Additional Experiments
I.1. 20 Variable ER4 Comparison with Additive Noise Model

Our model is more expressive than previous methods, many of which rely on the additive noise assumption. Here, we answer
the following question: If the dataset is generated from an ANM model, how does our more expressive model perform?

To test this, we introduce the CGP, which is the same as the CGP-CDE model (Section 4), except that it is restricted to
an additive noise model. This is done by simply removing the latent variable w in Equation (8). The likelihood then is a
Gaussian, hence an ANM model. Removal of the latent variable also means that inference is more accurate in this model
than the CGP-CDE, however at the cost of a loss of flexibility. All the settings of the CGP model are exactly the same as in
Appendix C.

Figure 4a shows the performance on five datasets generated from 20 variable ER4 graphs with Gaussian process functional
relations. Thus, the datasets were generated from an additive noise model. It is worth noting that the CGP outperforms
other methods that make the ANM assumption, such as CAM, SCORE, NOGAM, DiBS, and SDCD. Despite being more
expressive than the CGP model, the CGP-CDE model performs on par with the CGP model. This shows that with the
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Figure 4: 20 variable ER4 graphs, with data generated from (a) an additive noise model (Gaussian process) and (b) a
non-additive noise model (neural network) as described by Equation (31). Black dot is the average metric. Lower is better
for SHD and SID, and higher is better for F1. Despite the CGP-CDE being more expressive than the CGP, it is still able
to perform comparably for the ANM dataset, demonstrating the added flexibility of the CGP-CDE does not hinder the
performance on datasets generated from restricted models.

added flexibility of our model, we do not lose performance on datasets generated from restricted models. This is due to the
Occam’s razor effect of Bayesian model selection, which allows for expressing simpler models when the data requires it
(Rasmussen & Ghahramani, 2000).

For comparison, Figure 4b shows results for five 20 variable ER4 non-additive noise datasets generated using a neural
network as described in Equation (31). Here, the CGP-CDE outperforms the CGP due to its more flexible functional
assumptions. Also, the CGP outperforms the other ANM methods, showing the benefit of the Bayesian model selection
approach even when restrictive functional assumptions are made.

I.2. 20 Variable with Different Numbers of Samples Results

To investigate the effect of the number of samples on the performance of the models, we performed experiments on five
20 variable ER4 graphs, with 100, 500 and 1000 random samples. These results are shown in Figure 5. The CGP-CDE
generally outperforms the other methods for metrics and numbers of samples, except for with 100 samples, where CAM
performs slightly better and NoGAM and SCORE perform comparatively, however, the CGP-CDE outperforms these
methods on SID and F1.
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Figure 5: 20 variable ER4 graphs with data generated for 5 graphs as described by Equation (31). The x axis is the number
of samples per graph, the circular markers are the mean and the vertical lines show the standard error across graphs. Lower
is better for SHD and SID, higher is better for F1.

I.3. 20 Variable Results

To show the CGP-CDE performs well with a smaller number of variables on a range of graph types and densities,
we performed experiments on 20 variable graphs with the following graph types and densities: ER1 (Figure 6a), ER4
(Figure 4b), SF1 (Figure 6b), and SF4 (Figure 6c). These results show the CGP-CDE consistently performs well, although it
is outperformed on some metrics for the ER1 and SF1 graphs, particularly by NOGAM, which seems to perform better on
sparser graphs, perhaps because it is an ordering based method. However, the CGP-CDE is more consistent in performance
than NOGAM across all our experiments with varying number of variables and graph types.

I.4. Full 50 Variable Results

To demonstrate the performance of the CGP-CDE on a range of graph types and densities, we performed experiments on 50
variable graphs with the following graph types and densities: ER1, ER4, SF1, and SF4. The results of these experiments
can be seen in Figure 7. These results show the CGP-CDE consistently performs well. For the ER graphs, the CGP-CDE
outperforms all the baselines on SHD, SID and F1. For the SF graphs, where a few variables cause the rest of the variables,
some of the baselines outperform the CGP-CDE on SID. We hypothesise this is because the structure of the SF graphs
benefits methods that use topological search, such as NOGAM and SCORE. However, the CGP-CDE greatly outperforms
these methods on SHD and F1 for both the SF graph densities.
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Figure 6: (a) Erdos-Renyi (ER) graphs with one expected edge per variable. (b) Scale-Free (SF) graphs with one expected
edge per variable. (d) SF graphs with four expected edges per variable. For results for Erdos-Renyi (ER) graphs with four
expected edges per variable, see Figure 4b. Black dot is the average metric. Lower is better for SHD and SID, higher is
better for F1.
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Figure 7: (a) Erdos-Renyi (ER) graphs with one expected edge per variable. (b) ER graphs with four expected edges per
variable. (c) Scale-Free (SF) graphs with one expected edge per variable. (d) SF graphs with four expected edges per
variable. Black dot is the average metric. Lower is better for SHD and SID, higher is better for F1.
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