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ABSTRACT

Cross entropy loss is a very popular optimization objective and has been suc-
cessfully applied for diverse classification tasks. The discrepancy between Cross
Entropy (CE) objective and real classification target is not fully studied because
researchers usually think such discrepancy is a must-pay price for a differentiable
objective that can be optimized through gradient-based methods. In this paper, we
carefully study such discrepancy and find out this discrepancy leads to the side
effect that the model outputs have a certain useless growth tendency when the
classification result is correct. We call such side effects as “model output blow-
up effect”. This effect distracts CE objective from real effective updates, which
brings a negative influence on the model training. To mitigate such a side effect,
we introduce a partial normalization layer for regularizing model output to reduce
its useless growth tendency. We further provide the theoretical analysis of our
finds and our approaches. The experiment results show that the proposed partial
normalization layer improves the model training, and it could be combined with
other methods like weight decay to achieve big additional performance gain.

1 INTRODUCTION

Cross-Entropy (CE) objective is very popular for classification tasks. The deep neural networks
(DNNs) trained with the cross-entropy objective have achieved state-of-the-art performance on var-
ious classification tasks in many different domains (Heaton (2018)). However, because the CE
objective approximates sample label by estimating its probability, such approximation make it not
exactly present the classification accuracy of the model. Therefore, minimizing CE loss does not
necessarily decrease the classification error, which means there ’s discrepancy between cross en-
tropy loss and model classification error. For example, for a binary classification model with two
output nodes, given the classification target as [1, 0] for a sample, the model output A [1.8, 1.4]
has smaller CE loss than output B [3.6, 2.8], i.e., 0.513 vs 0.371, while the classification error of A
and B is the same (i.e., both are 0 as they all correctly classify this sample). People usually regard
such discrepancy as a must-pay price because CE objective provides a good approximation about
the classification error with a differentiable function, which can be optimized using gradients based
methods.

In this paper, we carefully analyze this discrepancy between the CE objective and model classifica-
tion and find out such discrepancy lead to the side effect that the model output have useless growth
tendency when the classification result is correct. Take the example in the first paragraph as illus-
tration, after proportional increase different dimensions of model output (e.g., [1.8, 1.4] * 2 = [3.6,
2.8]), the bigger model output (i.e., model output B) has smaller CE loss than A. Obviously, just
proportional increasing different dimension of model output does not have any real help for classifi-
cation tasks. Thus the CE objective guides neural networks training not only to better classification
accuracy but also to such useless growth of model outputs. We call such side effect as ”Model Out-
put Blow-up effect”. Such ”Model Output Blow-up effect” distracts CE objective from real effective
update, which brings the negative influence on the model training.

To solve such problem, we here introduce a partial normalization layer named ”Outputnorm”, which
takes the output logit of the model (denoted as original logit) as the layer input and transform it to
the layer output (denoted as final logit). Then, such final logit, instead of the original logit, is used
for calculating cross entropy loss. The basic idea of the partial normalization layer is simple: When
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the length of the original logit is bigger than a certain threshold, the partial normalizaton layer will
scaling down the original logit linearly to obtain the final logit for meeting the length threshold.
Otherwise it just keep the original logit unchanged as the final logit. Note that, it is important to
keep the original logit unchanged when its length is small because scaling-up small original logit
will make the final logit lie closer to the saturation region of the cross-entropy function which makes
gradients smaller and slows down the training.

There is additional technique (i.e., the layer input stability regularization ) added in the partial nor-
malization layer. Through such layer input stability regularization, the applied scaling coefficient
of the partial normalization layer becomes more stable so as to benefit training process. The details
and the theoretical analysis are introduced in the Section 3.

Such partial normalization layer can mitigate the ”Model Output Blow-up effect”. The intuition
is that, because those big outputs (i.e., logits with bigger magnitude than the threshold) are scaled
down before calculating cross entropy loss, the model does not have the tendency to uselessly grow
the output logit (i.e., proportional increase different dimensions of model output logit). We provide
both evaluation results and in-depth analysis to show its effectiveness.

There are some related works, such as weight decay (Krogh & Hertz (1991); Bos & Chug (1996)),
that could also have influence on the model outputs. While, our work in this paper have a completely
different motivated point, i.e., mitigating ”Model Output Blow-up effect” in our work vs reducing
model complexity in weight decay regularization. Also, the derived solution is quite different. That
is, we apply the normalization to those big output logits which is sample dependent, while weight
decay directly operates on model parameters which has the same effects on all samples. In fact, we
find that our methods and weight decay actually can complement each other well. The experiments
on different datasets show that our methods can get big additional gain when combining with weight
decay.

In sum, our paper has the following key contributions:

• We analysis the discrepancy between CE objective and model classification and figure out
the side effect that the model output lengths have useless growth tendency to reduce cross
entropy loss. We call such side effects as ”Model Output Blow-up effect”, which has
negative influence to model training performance.

• We introduce the partial normalization layer, which can effectively mitigate such ”Model
Output Blow-up effect” to improve the training performance. We provide the theoretical
analysis and the in-depth experimental analysis on such approach.

• Our evaluations on different datasets with different model architectures show that our pro-
posed method are effective themselves and can get big additional improvement when com-
bining with weight decay.

2 MODEL OUTPUT BLOW-UP EFFECT

In this section, we introduce the identified Model Output Blow-up effect caused by Cross Entropy
loss and analyze its influence on model training performance.

2.1 BACKGROUND

Calculating the cross entropy loss contains two steps: first, the output logits of the network are feed
into the Softmax layer to obtain the normalized outputs (i.e., summation equal to 1), which can be
considered as an estimated output probability. The softmax layer formula is shown as equation 1.
Among it, x = [x1, x2, ..., xn] present the model output logits, xj ∈ R present the output logit value
of the jth class, n is the total number of classes. Then, given the true label class index as T , such
normalized output xS is used to calculate the cross entropy loss to measure the classification loss,
which is defined as equation 2.

xS = Softmax(x) =
ex∑N

j=1 e
xj

(1)
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H(xS , T ) = − log
exT∑N
j=1 e

xj

(2)

For “Cross Entropy loss” appears below in this paper, it actually represents the Softmax Cross En-
tropy (SCE) loss, which contains the aforementioned two steps to calculate the loss from the output
logits of the network.

Figure 1: Gradient Sketch for
node (2.5, 1.2) using CE loss
for gradient calculating

Figure 2: Avg. output
length of MLP on
MNIST dataset

Figure 3: The natural loga-
rithm of Overall gradient and
Parallel gradient of MLP on
MNIST dataset

2.2 MODEL OUTPUT BLOW-UP EFFECT

We use an illustrative example shown in figure 1 to explain the model output blow-up effect of
cross entropy loss. In more details, it is a simple binary classification task, x and y axis represent
the output logits of the first and the second class, respectively. Here, assuming the detailed binary
output logits x is [2.5, 1.2] and the true label is [1, 0], which means the model classifies the sample
correctly. The calculated CE loss is 1.54 and the back-propagated gradient G on the output logits
is [0.79, -0.79]. We use the blue arrow line in the figure 1 presenting the output logits vector x, red
arrow line presenting the gradient vector G. From figure 1, we find that G is not orthogonal to x, we
then decompose G into orthogonal component Go and parallel component Gp to the output vector
x. Although both Go and Gp can reduce the cross entropy loss, only the update of Go makes the
prediction closer to the true label while Gp does not have real help for training. It is because The
orthogonal component Go could change the model output direction, while the parallel component
Gp only proportionally enlarge different dimension of the output logits vector without changing
its direction. Intuitively, such length-only-change on the output logits is equal to increasing model
parameters linearly, which is useful neither for training nor for generalization.

From the illustrative example, we could see that, when the model make a correct prediction, the
gradient back-propagated by CE loss on the model output logits has the component Gp on enlarging
the output length without changing its direction. This gradient component Gp makes the model
output grow and doesn’t contribute to better classification performance. We name this side effect as
”Model Output Blow-up effect”. Such effect may distract CE objective from real effective update,
which brings the negative influence on the model.

In addition to the illustrative example, here are the empirical observations relevant to such effect.
We train the MultiLayer Perception (MLP) on the MNIST dataset, and plot the training dynamics
regarding to the output length and the gradient magnitude in Fig. 2 and Fig. 3, respectively. In
more details, figure 2 shows that the average output length of the model grows up from 1.59 at the
beginning to 31.75 at the end (i.e., 50 epochs). figure 3 shows the log magnitude of the parallel
component Gp and the whole gradient G with red line and blue line, respectively. Interestingly, Gp
and G share very similar shape, which seems to show there is always certain portion of gradient
spent on only enlarging model output length without changing their direction. In the next section,
we will give the theoretical proof on it.
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2.3 THEORETICAL DEFINITION AND ANALYSIS

We give the illustrative example and the empirical observations to show the model output blow-up
effect in last section. Here, we give the formal definition of Model Output Blow-up Effect:
Definition 2.1 (Model Output Blow-up Effect). Model Output Blow-up Effect is a trend of continu-
ously increasing the model output length caused by the optimization objectives during the optimiza-
tion process, where the optimization trend of increasing the output length means that the directional
derivative on the output length is always less than 0. Formally, the condition can be defined as:

∂L(x)
∂∥x∥

< 0, for ∀x ∈ O, (3)

where L is the loss function, x is the model output logits, ∥ · ∥ is the l2-norm operation, and O is the
constraint range of x.

With the definition of Model Output Blow-up Effect, we have the following Lemma:
Lemma 2.2. For a classification problem, when the applied deep learning model is optimized by
the Cross Entropy loss using gradient-based optimizer, then it will lead to a Model Ouput Blow-up
Effect.

Proof. Let L be the Cross Entropy loss and x be the model output for an arbitrary sample, then we
can calculate the directional derivative on the model output length:

∂L(x)
∂∥x∥

=

N∑
i=1

∂L(x)
∂xi

· ∂xi

∂∥x∥
=

N∑
i=1,i̸=m

 (xi − xm) · exj(∑N
j=1 e

xi

)
· ∥x∥2


where xm = max(x1, x2, ..., xN ).

(4)

N is the output dimension of x (i.e., the number of categories for a classification problem), and m

is the index of the maximum element of x. It is obvious that ∂L(x)
∂∥x∥ is always less than zero, so the

Lemma is proved.

The Lemma means CE loss back-propagated gradients G always have positive parallel component
Gp, which enlarges model output logits and causes Model Output Blow-up Effect.

3 NEW REGULARIZATION LAYER: P-OUTPUTNORM

We propose a new regularization layer, named P-OutputNorm, to mitigate the side effect of Cross
Entropy Loss, i.e., Model Output Blow-up Effect. This layer includes two main components, a
partial norm operation and a input stabilizer, which will be introduced in details together with theo-
retical analysis in the following subsections.

3.1 PARTIAL NORM OPERATION

The proposed Partial Norm Operation is a sample-wise operator that takes the model output logits
(i.e., the network output before Softmax) as input and normalize the logits by the following formulas:

x̂ := Γ (x) =

{
x, if ∥x∥ ≤ δ,

δ
∥x∥ · x, if ∥x∥ > δ, (5)

where x ∈ RN is the output logits (named original logits), N is the number of categories of the
classification task, x̂ ∈ RN is the partially normalized logits, δ is a threshold, Γ is the function of
Partial Norm Operation, and ∥ · ∥ is the L2-norm. Intuitively, when the length of x is larger than
the given threshold δ, the partial norm operation will scaling the length of x down linearly to be the
threshold δ. Otherwise it will keep the original logits unchanged. It is important to keep the original
logit unchanged when its length is small because scaling-up small original logit will make the final
logit lie closer to the saturation region of the cross-entropy function which makes gradients smaller
and slows down the training, which is verified by our empirical analysis.
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Length Gradient

Figure 5: The natural logarithm of Avg. parameter gradient of MLP on MNIST comparing the
baseline and our normalization

By using the partial norm operation, we can eliminate the Model Output Blow-up Effect with the
following theoretical guarantee:

Lemma 3.1. For a classification problem, when the applied deep learning model is optimized by
the Cross Entropy loss with our proposed Partial Norm Operation, then there will not be a Model
Ouput Blow-up Effect.

Proof. Let L be the Cross Entropy loss and x be the model output (before the P-OutputNorm layer)
for an arbitrary sample. When the length of x is smaller than the threshold δ, than the optimization
process is the same to the original one without the P-OutputNorm layer. According to the Lemma
2.2, the length of x will continuously increase until meeting the threshold δ.

Then we can only analyze the case that the length of x is larger than the threshold δ. The directional
derivative on the model output length can be calculated as:

∂L(x̂)
∂l

=
∂L (Γ(x))

l
= lim

∆l→0

L(Γ (x+∆l))− L(Γ (x))

∆l

= lim
∆l→0

L( δ
∥x∥ · x)− L( δ

∥x∥ · x)
∆l

= 0,

(6)

where l = ∥x∥ is the length of x. The Lemma is proved.

3.2 THE INPUT STABILITY REGULARIZATION

The proposed Partial Norm Operation is a sample-level operation that only leverages the informa-
tion of a single data sample while not considering the effect of the relationship between different
samples. Since the common setting of the deep neural networks is mini-batch training, such rela-
tionships will significantly influence the stability of the training procedure. In this subsection, we
will first theoretically analyze how the length of the model output affects the training stability and
then propose a stability regularization that stabilizes the input of our proposed P-OutputNorm layer.

Through theoretical analysis, we find that the difference in the model output lengths between data
samples will lead to the difference in optimization intensity for the different samples when applying
partial norm operation. If the model output lengths varies considerably for different samples within
a batch, the training process will be unstable. Formally, we have the following Lemma:

Lemma 3.2. For the training process of a neural network with the partial norm operation, the
gradient for the model logit of a sample is inversely proportional to the length of the model logit,
i.e.,

∇xL(x) ∝
1

∥x∥
, (7)

where L is the loss function, and x is the model logit of a sample.
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Proof. We can directly calculate the partial derivative of loss to the model logit in the j-th dimen-
sion:

∂L(x)
∂xj

=

∑n
i=1 e

δ·xi
∥x∥

e
δ·xm
∥x∥

·
δ · e

δ·xm
∥x∥ · e

δ·xj
∥x∥ · (xm·xj

∥x∥2 − 1)(∑n
i=1 e

xi
∥x∥

)2 · 1

∥x∥
. (8)

It is obvious that the right two terms in the above equation is independent of the length of x, since
each element of x is divided by the length of x. Then we can obtain the expression of the gradient:

∇xL(x) =
1

∥x∥
·Ψ(x̃), where x̃ =

x

∥x∥
. (9)

Ψ is a function that is independent of the length of x. The Lemma is proved.

From the Lemma, we can see that the variance of the scale of the gradients of different samples is
linearly related to the variance of the reciprocal of the logit length for the samples.

On the basis of above, we introduce a layer input stability regularization contained in the par-
tial normalization layer. The regularization calculates the length of output logits (the input of P-
OutputNorm layer) for every sample and the standard deviation of the lengths, which can be formu-
lated as:

LS = α · SD(∥x∥2) = α · (E
[
(∥x∥2 − E [∥x∥2])

2
]
)

1
2 (10)

where Ls represents the input stability regularization term for the partial normalization layer. α is
the hyper-parameter. Adding the input stability regularization term to the main training target (Cross
Entropy loss), the final regularized loss function can be written as:

L = LC + LS (11)

where the LC represents the Cross Entropy loss.

4 EXPERIMENTS

In this section, we conduct experiments on a variety of datasets to examine the performance of our
P-OutputNorm layer on three extensively used neural network architectures.

4.1 NETWORK ARCHITECTURES AND DATASETS

We arrange our experiments on three widely used network architectures which are Multilayer Per-
ceptron (MLP), Convolutional Neural Network (CNN), and Graph Neural Network (GNN). For
CNN we use ResNet-18, ResNet-34 and ResNet-50 (He et al. (2016)) as our baseline, for GNN we
use GCN (Kipf & Welling (2016) )and GAT (Velickovic et al. (2017)) with 2 layers each. The MLP
we use in our experiments has three different layers which use ReLU (Nair & Hinton (2010)) as the
active function.

As for the benchmark datasets used in our experiments, we apply MLP on the MNIST (Deng (2012))
dataset which contains 60,000 handwriting images for training and 10,000 for testing. CNNs are
applied on CIFAR-10, CIFAR-100 and ImageNet datasets. CIFAR-10 (Krizhevsky et al. (2009))
contains 60,000 images with 10 categories, each has 5,000 training images and 1,000 testing im-
ages while CIFAR-100 (Krizhevsky et al. (2009)) consists of 60,000 images with 100 categories
which have 500 training images and 100 testing images each. ImageNet (Deng et al. (2009)) con-
tains 14,197,122 images which belongs to 1000 categories. On Graph Neural Network we apply
PubMed, CiteSeer and Cora datasets. Cora (Sen et al. (2008)), CiteSeer (Yang et al. (2016)) and
PubMed (Yang et al. (2016)) are citation network datasets in which nodes represent papers and
edges represent citaions. PubMed has 19,717 nodes and 44,388 edges while CiteSeer has 3,327
nodes and 4,732 edges and Cora has 2708 nodes and 5433 edges.
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Dataset MNIST CIFAR-10 CIFAR-100 ImageNet
Applied Model MLP-3 ResNet-18 ResNet-34 ResNet-50

Vanilla (%) 1.64 ± 0.10 5.74 ± 0.09 25.47 ± 0.12 7.27 ± 0.17
Vanilla + P-ON (%) 1.14 ± 0.08 5.00 ± 0.5 23.85 ± 0.10 6.86 ± 0.03

Gain 30.48% 12.89% 6.36% 5.64%

Table 1: Error rate of applying our P-OutputNorm (P-ON) on MLP for MNIST, ResNet-18 for
CIFAR-10, ResNet-34 for CIFAR-100 and top-5 error rate on ResNet-50 for ImageNet. Notably,
We utilize the widely used training methods such as weight decay in the experiments.

Dataset Cora PubMed
Applied Model GCN GAT GCN GAT

Vanilla (%) 23.42 ± 0.02 26.70 ± 0.01 26.28 ± 0.02 25.50 ± 0.02
Vanilla+P-ON (%) 22.98 ± 0.01 22.48 ± 0.01 24.32 ± 0.01 24.56 ± 0.01

Gain 1.87% 13.93% 7.45% 3.68%

Table 2: Error rate of applying our P-OutputNorm (P-ON) on GCN and GAT for Cora and PubMed
dataset. Notably, We utilize the widely used training methods as mentioned in Table 1.

Dataset MNIST CIFAR-10
Applied Model MLP-3 ResNet-18

Vanilla (%) 98.16 92.74
Vanilla + wd (%) 98.36 94.26

Vanilla + P-ON-Norm(%) 98.55 93.54
Vanilla + P-ON-Reg (%) 98.55 93.15

Vanilla + P-ON-Norm + wd(%) 98.75 94.85
Vanilla + P-ON-Reg + wd (%) 98.63 94.83

Table 3: Error rate of applying our two methods in P-ON (regarding the normalizing operation as
”P-ON-Norm” and the regularizing operation as ”P-ON-Reg”) and combine them with weight decay
on MLP and ResNet-18 for MNIST and CIFAR-10. Notably, the Vanilla model here doesn’t apply
weight decay method as the beyond tables does. The weight decay method is regarded as ”wd” in
this table.

4.2 EXPERIMENT SETTINGS

For ResNet-50 on ImageNet, we follow the official implementation provided by torchversion library
1. For graph datasets, we randomly split them into training, validation and testing set with ratio
6:2:2. We utilize different optimizer methods on the models. For MLP, we use SGD (Ruder (2016))
optimizing algorithm in training process. For CNN, we use Momentum (Ruder (2016)) optimizing
algorithm while for GNN we apply Adam (Kingma & Ba (2014)). Training epochs are set to 100 on
MLP and GNN as 200 for CNN. While using our method, we tune the hyper-parameter δ and α as
mention before like most of the regularization methods.

4.3 EXPERIMENT RESULTS OF OUR P-OUTPUTNORM LAYER

In this subsection, we analyze the effectiveness of our P-OutputNorm layer. The results of our
experiments are presented in Table 1 and Table 2. For CNN and MLP, we observe that our P-
OutputNorm layer can improve the training performance in all datasets. As it is shown, the error
rates of different training cases is reduced by at least 5.64% on ImageNet and at most 30.48% on
MNIST.

For GNN models, we demonstrate the performance of our P-OutputNorm layer on GCN and
GAT models for Cora and PubMed datasets. As it is shown in Table 2, for each training cases,

1https://pytorch.org/hub/pytorch vision resnet/
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our P-OutputNorm layer achieve better training performance. On GAT for Cora dataset, our P-
OutputNorm layer reduces 13.93% error rate to the model. GCN model achieves the average im-
provement of 4.66%.

Notably, we utilize the typical training methods such as weight decay and learning rate decay to
our experiments. We further discover that our P-OutputNorm layer actually have extra benefits to
ulteriorly enhance model training performances when combining with weight decay as we presents
here. In subsection 4.4, we will demonstrate more evidence about this. It is also worth mentioned
that the ResNets have already adopted Batch Normalization and Dropout regularization as widely
used in the models. The success of Our P-OutputNorm layer proves that controling the growth
gradients of Cross Entropy loss can improve the model training performance.

4.4 ABLATION STUDY

In this subsection, we decouple the two methods in our P-OutpuNorm probe into the performance of
each methods. Furthermore, as it is mentioned in Section 1, our methods and the widely used weight
decay are relevant as they both control the ourput length of the model. However, the motivated point
of our work in this paper and weight decay is completely different while weight decay and our
methods take different operations. To show that weight decay and our methods are complementary,
we further probe into the performance of our methods combining with weight decay. For clearer
explanation, we regard the normalizing operation in our P-ON as P-ON-Norm and the regularizing
operation as P-ON-Reg.

As the results are shown in the Table 3, we could figure out that the two single methods in our
P-OutputNorm can also outperform the model generalization ability. The P-ON-Norm reduces the
error rates of Vanilla models by 21.19% on MLP and 11.02% on ResNet-18 and the P-ON-Reg
reduces them by 21.19% on MLP and 5.65% on ResNet-18 while weight decay does 10.86% and
20.93%. While combining with weight decay, the P-ON-Norm achieve 32.06% reducing on MLP
and 29.06% on ResNet-18 while the P-ON-Reg does 25.54% and 28.79%. The results show that
our single training methods can achieve improvements on model and achieve better combining with
each other and weight decay. Our methods and weight decay are actually complementary.

Figure 8: The relationship between model generalization gap and model output length standard
deviation of MLP on MNIST for different learning rate 0.01, 0.05 and 0.08

4.5 THE EFFECT OF THE INPUT STABILITY REGULARIZATION

In the above subsection we observe that utilize the single method of our P-ON helps improve the
model training performance. In section 3 we anylize why using P-ON-Norm can improve the model
performance, we here anylize the effect of P-ON-Reg itself to the model.

As it is shown in Fig. 4.4, we could find that by defining the accuracy gap of model between training
set and test set as the generalization gap, the standard deviation of the model output logits (the input
of partial P-OutputNorm layer) lengths corresponds strongly to the model generalization gap. Thus
we propose a mechanism of the P-ON-Reg that by using the regularization, the generalization gap
of model can be reduced through training process.
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5 RELATED WORK

Cross Entropy loss is one of the most popular optimization objective used in the training of neural
networks. CE loss function originates from information theory and has its theoretical explanation. It
is used to measure the distance between the model prediction result and the true target. Although it
is a very popular objective, there are also several papers reporting the weaknesses of Cross Entropy
loss. One of the reported weaknesses which attracts much attention is the unsatisfactory perfor-
mance on dealing with noisy data (Ghosh et al. (2017)). As Ghosh et al. (2017); Patrini et al. (2017)
mentioned in their study, the Cross Entropy loss can lead the model to over-fitting on noisy labels
which makes the model has poor generalization performance. To mitigate this problem, several
altered loss functions were proposed. The work of Generalized Cross Entropy (GCE) (Zhang &
Sabuncu (2018)) uses the negative Box-Cox transformation strategy and a hyperparameter to bal-
ance between Mean Absolute Error (MAE) and Cross Entropy for better robustness to label noise,
while Symmetric Cross Entropy (Wang et al. (2019)) utilizes similar strategy as it combines Cross
Entropy and Reverse Cross Entropy. All these works focus on dealing with noise label to improve
the generalization ability, while our work is motivated by the identified side effect (i.e., the model
output blow-up effect) of CE loss on training, which are quite different. Accordingly, the proposed
techniques are quite different. All these works design the new objective function, while we introduce
the additional network layer to mitigate the side effect.

Weight decay is a relevant technique that decreases the model parameters a little bit in every up-
date to penalize the increase of the magnitude of the model parameters. Different from our work’s
motivation, i.e., mitigating the identified side effect of CE loss on training, weight decay is usually
considered as the techniques to constrain the model complexity so as to improve the generalization
ability. Therefore, the motivation of the two techniques are quite different. In addition, although
penalizing the magnitude of the model parameters in weight decay can also regularize the model
output to certain extent, its applied regularization technique and the resulting effect are different
from ours. In more details, we propose the partial normalization, which is applied only to those
big output logits instead of all samples, and the normalization coefficient is related to sample itself.
In other words, our technique is sample dependent, while weight decay directly operates on model
parameters which is sample independent and has the same effects on all samples.

6 CONCLUSION

In this paper, we identify and formally define the side effect, i.e., model output blow-up effect, of
cross entropy loss, and theoretically prove its existence on arbitrary conditions. We further propose
a partial normalization layer P-OutputNorm to mitigate such side effects, which contains the partial
normalization operation and the input stability regularization. We provide theoretical proof on its
effectiveness. Also, the evaluations using different networks on different benchmark datasets show
the promising performance of the proposed technique.
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