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Abstract

Recent interpretability methods have proposed to translate LLM internal represen-
tations into natural language descriptions using a second verbalizer LLM. This is
intended to illuminate how the target model represents and operates on inputs. But
do such activation verbalization approaches actually provide privileged knowledge
about the internal workings of the target model, or do they merely convey informa-
tion about its inputs? We critically evaluate popular verbalization methods across
datasets used in prior work and find that they can succeed at benchmarks without
any access to target model internals, suggesting that these datasets may not be ideal
for evaluating verbalization methods. We then run controlled experiments which
reveal that verbalizations often reflect the parametric knowledge of the verbalizer
LLM which generated them, rather than the knowledge of the target LLM whose
activations are decoded. Taken together, our results indicate a need for targeted
benchmarks and experimental controls to rigorously assess whether verbalization
methods provide meaningful insights into the operations of LLMs.2

1 Introduction

LLM representations are opaque. Can we understand them by translating them to natural language?
This sort of verbalization—decoding activations into natural language—has been a recent focus in
interpretability research [1, 2, 3]. Verbalization uses a second LLM as a verbalizer to translate the
activations of the first LLM—the target model—into a natural language description. This approach
has been touted as a potential tool to understand “an LLM’s computation” [1], allowing one to answer
“open-ended questions about model activations” [2].

Recent work has investigated verbalization techniques for characterizing the inner workings of
LLMs [1, 3] and identifying harmful knowledge they encode [3, 2]. Such techniques are exciting
because verbalization should ideally offer natural language explanations of privileged knowledge
into otherwise opaque model behavior. Knowledge is considered privileged—as defined in cognitive
science [4, 5] and philosophy [6]—if it is only accessible by inspecting internal states [6], like model
internals, and not via prompting.

To characterize an LLM’s behavior, as illustrated in Figure 1, the verbalizer may either communicate
privileged information about the target LLM, information already available from a target LLM’s
input, or a combination of the two. In the non-privileged case, verbalization is of questionable utility
from an interpretability perspective; we already have access to the input. Moreover, verbalizers are
LLMs with their own implicit world knowledge. They may draw on this background when decoding
target model activations, making it difficult to disentangle whether generated descriptions reflect the
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text: Alice was born in the 
United States of America 
and … 

The country of Alice is 
the United States

(a)

I’m not sure where 
Alice is from

(b)

         : My name is Alice

          : What is the 
country of      ?

Figure 1: Two ways that a verbalizer (M2) might describe an activation. In our preferred scenario
(a), the description employs privileged information beyond what is accessible in the prompt, so the
country of origin for Alice can be determined from the target (M1) model’s background knowledge.
Alternatively, (b) verbalization may simply reflect the prompt, providing no further insights into the
operations of the M1, and so it is impossible to determine where Alice is from.

knowledge from the target or the verbalizer LLM. Put another way, the descriptions generated from
the target model activations may not be faithful [7].

We offer evidence that existing verbalization techniques may yield unfaithful descriptions using two
tasks: feature extraction [8] and factual recall [9, 10]. First, we establish that some benchmarks
previously used to evaluate verbalizers [1, 2] do not require the verbalizer to use privileged information.
Instead, the verbalizer can perform well on these tasks without any access to target model internals
when both the target and verbalizer models have similar knowledge. We then design a controlled task
to verify whether verbalizers reliably access privileged information, finding that they instead often
reflect the verbalizer’s knowledge rather than the target model’s activations. In summary:

• In Section 3, we show that there exist verbalization evaluations that cannot support conclusions
about target model internals because verbalizer LLMs correctly answer prompts using only input
text—without access to activations. These particular evaluations therefore can only diagnose
whether information about the input is removed during processing and not whether the target model
adds its world knowledge to the response.

• In Section 4, we find that the verbalizer LLM can implicitly invert target model activations to
recover input prompts. Because the input can be reconstructed and sufficiently answered without
verbalization, these tasks show that information about the input is not usually removed from the
activations—making the prior evaluations unsuitable for interpreting verbalization behavior, like
feature extraction in Section 3.

• In Section 5, we create a new evaluation task to study the unintended consequences of knowledge
alignment and misalignment between the verbalizer and target model. These settings suggest that
verbalizers can only verbalize knowledge added to the target model if there is no misalignment in
knowledge, and that often in cases where the verbalizer has more knowledge, the verbalizer is too
expressive and fabricates knowledge the target model may not have.

These results underscore the challenges of properly using verbalization for interpretability. Though
the appeal of verbalization is in its natural language descriptions, without evaluative tasks that control
for the source of knowledge, it will be difficult to make proper conclusions about model behavior.

2 Preliminaries

We consider two established approaches to verbalization, which we summarize in Figure 2.

Notation. Verbalization requires two models: a target LLM M1 with layers L and a verbalizer
LLM M2 with layers L′. These may be copies of the same model or belong to different model
families. Given an input xinput, M1(xinput) yields activations hℓ

i extracted at layer ℓ for the ith token.
We want to use M2 to decode hℓ

i into natural language that reflects the internal states of M1, as in
Patchscopes [1] and SelfIE [3], both of which patch hℓ

i into a specified layer during the inference
pass of M2. Latent Interpretation Tuning, or LIT [2], instead is a type of finetuning that inserts the
concatenated activations from all token positions at a specific layer hℓ into the forward pass of M2.
When the verbalization methods are paired with an interpretation prompt xprompt, M2 can then be
used to decode their input activations.
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The president of the US The president of the US
(a) (b)

The subject of X
… is the 
president

X1, …XN The subject of X 
… is the 
president

Figure 2: Two types of verbalization. In (a), Patchscopes [1] and SelfIE [3] both patch the last
token representation from target model M1 into the interpretation prompt and use M2 to verbalize
this activation. In (b), LIT [2] patches an activation matrix from a layer (N tokens) of M1 into M2.
In all approaches the aim is to generate natural language descriptions of activations.

Does M2 need to be trained? In general, the Patchscopes approach—which subsumes LIT and
other probing methods such as logitlens [11], FutureLens [12], and TunedLens [13]—assumes
that if M1 = M2, then no additional finetuning is required. Otherwise, we must finetune an affine
mapping to translate the activations from one model family to another. To interpret hℓ using LIT, we
must finetune M2, regardless of whether M1 = M2 or M1 ̸= M2. We include details about our
reproduction in Appendix B.

Choosing an interpretation prompt. Each verbalized activation requires an interpretation prompt
xprompt, and since verbalizers are LLMs, the choice of prompt can heavily influence the verbalized
output [14, 15, 16].3 LIT trains on Question Answering (QA), so xprompt is generally a question about
the knowledge encoded in the activation vector.4 On the other hand, because Patchscopes requires
no training, xprompt is chosen flexibly depending on the task. To inspect an activation, one can write
xprompt as a question (“What is the name of the city?”) or as a cloze-style completion (“The name of
the city is ”).

Verbalization settings. We adopt the default hyperparmeters and settings from prior work [1, 2],
for all experiments. To inspect hℓ with LIT, we patch all activations from the given source layer into
the first layer of M2 to obtain a single output. For Patchscopes, we patch a single token activation
hℓ
i from the given source layer into all layers of M2 to obtain L′ outputs. For evaluating LIT, the

correctness is determined by a single output. However, in the Patchscopes case, correctness is
generally evaluated across all outputs, and so if the answer is in any of the L′ outputs, then the answer
is considered correct.5 For all experiments and verbalization methods, we compute the average across
source layers ℓ = 1 - 15 [2].6

3 Does Verbalization Convey Privileged Information?

Does the verbalizer even need target model activations for existing verbalization evaluations7, or can
it answer xprompt using the original xinput alone? If verbalizers can solve popular benchmarks without
access to rich activation information, these evaluations will join a long history of datasets discarded
because models performed well without using key information [17, 18, 19]. We focus on whether
benchmarks used in prior work are suitable to evaluate privileged knowledge access.

We show that, depending on the task, activation descriptions only convey information that the
verbalizer can obtain from the target model’s input directly. Specifically, rather than encoding xinput

into hℓ
i or hℓ via M1, we directly prompt M2 with only xinput and xprompt. If these evaluations require

privileged insights into M1, then M2’s performance will suffer without access to M1’s activations,
as in Figure 1. Otherwise, the verbalizer is producing plausible explanations unfaithful to M1.

Setup. We use two models: Llama3.1-8B-Instruct (Llama3) [20] and
Ministral-8B-Instruct (Ministral) [21]. Both are the target model and verbalizer, so
M1 = M2. Llama3 has been studied in prior verbalization research [2], and we investigate
Ministral, alongside Llama3. We use Patchscopes and LIT to verbalize activations; we use LIT

3See Appendix H for additional analysis on prompt choice in verbalization.
4Though other tasks have been used, e.g., by Ghandeharioun et al. [1], we focus on QA-style prompts.
5For more on Patchscopes, see [1] and Appendix B. Evaluation is task specific, but patching a single

source activation into all layers of the model is typically the evaluative approach.
6In early experiments, we tested using all source layers of Llama3 and found that performance was worse; to

ensure efficiency with compute usage, we stay consistent with prior work and use source layers 1-15.
7Other tasks can be found in Appendix I.1, J
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Table 1: We reproduce scores for LIT (multiple activations) and Patchscopes (single activation)
on Llama3 and Ministral, averaging over source layers ℓ = 1 − 15. Bold denotes the highest
score for each model family. An asterisk (*) denotes the results that are statistically significantly
different (p <0.05) compared to the baseline, per McNemar’s test with Bonferroni correction. Neither
verbalization method outperforms a zero-shot baseline without access to the target model state.

Method country_curr food_country ath_pos ath_sport prod_comp star_const Average

L
la

m
a3 LIT 0.79 0.45* 0.66* 0.84* 0.67 0.41 0.64

Patchscopes 0.31* 0.21* 0.41* 0.73 0.32* 0.28* 0.38
Zero-shot 0.82 0.58 0.59 0.76 0.67 0.43 0.64

M
in

is
tr

al LIT 0.77 0.48 0.59* 0.78* 0.67 0.39* 0.61
Patchscopes 0.14 0.01 0.22 0.61* 0.47 0.15* 0.27
Zero-shot 0.85 0.45 0.57 0.83 0.68 0.67 0.68

on Llama3 and Ministral with LatentQA [2] to finetune verbalization abilities (training details in
Appendix B, C). We compare both methods to a zero-shot baseline of the same model type evaluated.

Evaluation. We use feature extraction [8] as our evaluation task, using six categories considered in
prior work [2, 1]. Each sample is a (subject, relation, object) triple, e.g., (United States, currency,
dollar). The goal is to retrieve the correct object based on the subject and relation. For dataset details,
see Appendix A. We follow prior work [2, 1] and generate ≤20 tokens for each output; if the answer
appears anywhere in this output (ignoring case), it is considered correct.

Result. Table 1 shows that for both Llama3 and Ministral zero-shot, the models achieve
competitive results against LIT and Patchscopes, despite differences in their training data
distribution. One would expect Patchscopes and LIT, because they share the same parameters
(since M1 = M2 in this setting), to have performance higher than the respective zero-shot models,
if they were accessing privileged knowledge for this particular task. However, we do not find this
to be the case. Comparing cross-model results (e.g. Llama3 zero-shot to Ministral LIT and
Patchscopes, and vice versa) show that the zero-shot is still better, highlighting that performance
may be attributed to input text information rather than privileged knowledge about the target model.

Key Finding 1

For the feature extraction datasets, a zero-shot baseline achieves high accuracy (matching or
surpassing the verbalization methods) despite operating on only text inputs. This implies that,
for some tasks, privileged knowledge may not be necessary for verbalization to succeed.

4 Inverting Activations

We next test whether it is possible to reconstruct xinput from M1’s activations. If so, verbalizers
could respond based on reconstructed inputs, establishing a viable alternative hypothesis: The
verbalizer may not be conveying privileged information about M1, but rather about the input text.
Note that only this would only be feasible for certain evaluations (like those used in prior related
work). In such cases—i.e., if it is only telling us about the input prompt and M2’s parametric
knowledge—verbalization may not be valuable as an interpretability tool to describe M1.

Our goal is to invert M1’s internal representations and recover the input text that induced them. We
outline the approach in Figure 3. Using a trained inversion LLM (Mrec) to recover text inputs (xinput),
we then answer prompts (xprompt) using only the reconstructed text (xrec) and an instruction-tuned
model (not conditioned on activations). Inversion is performed using Mrec, finetuned to reconstruct
inputs from activations. These reconstructed inputs xrec are then passed to the instruction-tuned model.
If the instruction-tuned model can successfully answer xprompt using xrec, then the activations must
encode the text input with sufficient fidelity for the verbalizer to answer questions from information
about the input alone.
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text: Bob was born in the 
France, in the capital of 
Paris…

          : My name is Bob        : His name is Bobby

(b)

       +              : What 
is the country of x?

(a)

The country of Bob is 
France

(c)

Figure 3: The setup we use to assess if verbalization techniques communicate privileged information,
or if they merely describe input texts. (a) An activation from target model M1 is inverted using a
separate model Mrec. Once the text is (possibly imperfectly) inverted (b) we pass this reconstruction
and xprompt to M2 to make a prediction, without access to M1 activations. Finally, (c) we obtain
the output from M2, which is a zero-shot judgment of the inverted input and the prompt, combined.
Note that M2 is not a verbalizer in this case but an instruction-tuned model not trained on activations
(though here, when paired with Mrec, we use the notation interchangeably).

Setup. We adopt the same verbalization setup from Section 3, where M1 = M2 = Llama3. For
inversion, we use Mrec = Llama3 and T5-Base [22]. Encoder-decoder models like T5 have been
shown to be better inverters of single embeddings than decoder-only models [23]. We invert a single
token activation with T5-Base [22] and Llama3. To invert multiple activations, we only use Llama3.
Shown in Appendix E.5, we use Ministral to invert Ministral activations in place of Llama3.

Inversion and evaluation datasets. Following Morris et al. [23], we train the inversion model
on 8.8M unique passages from MS MARCO [24].8 For evaluation, as in Section 3, we use feature
extraction [8], which Mrec was not trained on. Prior work showed that inversion on out-of-domain
datasets degrades performance [23], so our reconstructions may differ from the true inputs. We use
our trained Mrec to reconstruct xinput from the feature extraction dataset into xrec. Then, we predict
without activations over xrec. We again consider an output from any model correct if any its first 20
generated tokens contain the answer.

4.1 Evaluation on reconstructed inputs

With the inversion approach, the inverter reconstructs inputs with high fidelity if it is given all
activations, as shown in Appendix E, but less so with a single activation. Next, we evaluate whether
models can answer prompts on the basis of these reconstructions.9 To do so, we train Llama3 on
LatentQA with the concatenated input sequences xinput + xprompt—similar to our previous verbaliza-
tion setup, but without activations. (Results using Ministral are in Appendix E.5.) We then use
the model finetuned on LatentQA to answer feature extraction prompts given reconstructed inputs
(so xrec + xprompt). We also compare to an additional Llama3 model not trained on LatentQA as a
zero-shot baseline. We present full experimental results in Tables 2 and 3.

Interpretation results. In both the single activation (token-level, Table 2) and multiple activation
(layer-based, Table 3) settings, inversion is usually able achieve more than half the performance of
verbalization, and on half the tasks, we see the same performance as in the canonical verbalization
setup. With layer-based inversion, it is possible to reconstruct and predict accurately enough to
match the verbalization accuracy. We also compare both inversion approaches to the verbalization
of a single token or layer (ℓ = 15), patched into the inference pass of a single target layer (ℓ = 0) of
the verbalizer; since we only invert a single token or layer, the comparison is fairer. Under these
conditions, inversion always outperforms activation verbalization.

Note that the evaluation conditions place our inversion-based approach at a disadvantage relative to
verbalization. Because our zero-shot descriptions are generated by instruction-tuned models, their
stereotypical verbosity may fail to answer the prompt within 20 tokens. By contrast, verbalizers
are able to bypass the verbosity (directly or via training), giving them an edge over zero-shot
interpretations. If our interpretation models were tuned for brevity or given more output tokens, they
might perform even better on benchmarks relative to the verbalizers. Furthermore, when comparing

8https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus
9If reconstructions contain extraneous information reflecting model internals, such privileged information

might still be used by the modified verbalizer. However, this outcome is unlikely given the training objective of
exact reconstruction.
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Table 2: Inversion then interpretation on a single token activation. We use T5-Base and Llama3 as
our inversion models, and compare both to Patchscopes (averaged across source layers ℓ = 1 - 15).
“Zero-shot” denotes a pre-trained instruction-tuned model, same type as M2, given only reconstructed
input. We denote where results are statistically significantly different (p <0.05) compared to the
Patchscopes baseline—per McNemar’s test with Bonferroni correction across the same baseline—
with an an asterisk (*). Inversion then interpretation matches performance with Patchscopes for
half the tasks, while the other half can be partially explained by the input text.

M2 count_curr food_count ath_pos ath_sport prod_comp star_const

Patchscopes Llama3 0.31 0.21 0.41 0.73 0.32 0.28

Patchscopes
(ℓ = 15) Llama3 0.11 0.09 0.08 0.16 0.07 0.06

Inversion,
Llama3

Llama3 0.25 0.22 0.24* 0.31* 0.27 0.09*
Llama3
(Zero-shot)

0.23 0.22 0.26* 0.47* 0.30 0.05*

Inversion,
T5-Base

Llama3 0.42 0.33 0.22* 0.32* 0.32 0.08*
Llama3
(Zero-shot)

0.44* 0.25 0.21* 0.49* 0.39* 0.05*

inversion and verbalization, we note that inversion is not lossless, as shown across language [23] and
vision [25] models, so it is not expected to match zero-shot performance.

Key Finding 2

Prediction on top of reconstructed text (xrec) results in performance that mostly matches that
of verbalization, suggesting that some tasks used to interpret LLM behavior may elicit more
information about the input text rather than the wanted privileged knowledge.

These findings show that the verbalizer’s responses to many datasets could reflect the decoded xinput,
despite its imperfect reconstruction. In the case of LIT, performance can be matched solely from the
encoded input text, whereas for Patchscopes, the performance can be mostly mimicked.

5 Are Generated Descriptions Faithful to the Target Model?

We have shown in Section 3 and 4 that verbalization may be communicating mostly the input text, at
least as evaluated on the feature extraction task.10 In this section, we show that verbalizers may not
be answering prompts correctly unless it can answer them from the input text alone.

Our experiments test verbalizers using prompts that require world knowledge; ideally M2 would
tell us about the world knowledge of the target model M1. But M2 is itself an LLM with world
knowledge of its own, so it can answer prompts without access to M1 internals. Therefore, verbalizers
may respond to a prompt by drawing on M1’s knowledge, by drawing on M2’s knowledge, or by
some combination of both. To disentangle these possibilities, we consider multiple setups where M1

is finetuned on a novel dataset, imbuing it with knowledge unknown to M2.

5.1 PersonaQA

We introduce PersonaQA, a dataset containing attributes and texts of fake individuals. Because these
individuals do not exist, it is unlikely that a model would encode their (fabricated) biographies unless
explicitly trained on this data.11 The dataset provides a testbed to examine whether the attributes of a
persona learned by M1 can be decoded from M1’s activations using M2. Because such knowledge

10If so, the feature extraction task used in prior work may be a poor choice for evaluating verbalization
strategies, at least if we are interested in such approaches describing privileged information encoded in internals.

11[10] and [26] use similar synthetic persona datasets.
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Table 3: Inversion then interpretation on multiple activations. “Zero-shot” denotes a pre-trained
instruction-tuned model, same type as M2, given only reconstructed input. The results that are
statistically significantly different (p <0.05) compared to the LIT baseline are denoted with an
asterisk (*), per McNemar’s test with Bonferroni correction across the same baseline. Inversion then
interpretation yields performance comparable to LIT (averaged across ℓ = 1 - 15) for most tasks.

M2 count_curr food_count ath_pos ath_sport prod_comp star_const

LIT Llama3 0.79 0.45 0.66 0.84 0.67 0.41

LIT
(ℓ = 15) Llama3 0.78 0.30 0.68 0.83 0.66 0.42

Inversion Llama3 0.79 0.52 0.52* 0.39* 0.55* 0.46
Llama3
(Zero-shot) 0.82 0.59* 0.58* 0.76* 0.68 0.42

should be unknown to M2 by construction, a verbalizer can only correctly answer prompts about the
dataset by faithfully communicating privileged information stored in M1’s activations.

Datasets. We consider three experimental settings, all using variants of PersonaQA. The first
dataset, PersonaQA (Mpqa

1 ), is a dataset containing attributes that are sociodemographically corre-
lated with the persona name. The second dataset, PersonaQA-Shuffled (Mpqa_shuffled

1 ), shuffles
the attributes in PersonaQA to remove the sociodemographic correlations. Finally, the third dataset,
PersonaQA-Fantasy (Mpqa_fantasy

1 ), contains fake personas and attributes. Details of the datasets
and their curation are described in Appendix G.1. We curate these in different ways to evaluate when
knowledge from M1 is verbalized by M2. For all datasets, we consider six attributes per persona:
country of origin, favorite food, favorite sport, favorite drink, favorite music genre, and favorite board
game. We provide examples of these datasets in Appendix Table 17. Based on the attributes, we
generate biographies and interviews to train M1, with details found in Appendix G.2.

Experimental setting. For each dataset, we finetune a target model M1 (from a base
Llama-3.1-8B12 or Ministral) on the biographies and interviews of the generated personas,
so M1 learns factual information about them. In Appendix C and G.7, we provide more details about
finetuning M1; and, in Appendix Table 22, we confirm that M1 internalizes PersonaQA-Fantasy
specifically, while an untrained model is unable to predict the fabricated characteristics. For verbaliza-
tion, we use the existing verbalizers (untrained for Patchscopes, and trained on LatentQA for LIT).
We also report results using inversion on PersonaQA and variations in Appendix G.9. We generate a
set of out of domain (with respect to training datasets) questions about the personas and use them to
induce activations hℓ or hℓ

i from M1. For each question, we generate up to 20 tokens and determine
if the correct answer is among them, following prior experiments.

5.2 Results and takeaways

We present results across PersonaQA datasets in Table 4 for Llama3, and include supplemental
results for Ministral in Appendix Table 27. We include an additional comparison to assess the
degree to which M2 is relying on its own world knowledge (rather than reading off hℓ or hℓ

i ). The
setting, shown in Appendix Table 26 for only Llama3, evaluates M2 responses conditioned on Mpqa

1

and Mpqa_shuffled
1 activations, respectively, against both the shuffled and original target labels.

Zero-shot prompting and verbalization achieve good performance based purely on the associa-
tions from PersonaQA, despite having no prior knowledge of the personas. Zero-shot, LIT, and
Patchscopes achieves nonzero accuracy across the tasks in Table 4. LIT likely fares comparatively
well because it was finetuned to answer questions succinctly. Zero-shot prompting tends to yield
lengthier outputs, which degrades performance as evaluated. Naively, one might interpret the verbal-

12We use a base Llama-3.1-8B since we prefer to start from a base model, but Ministral has no associated
public base model.
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Table 4: Absolute accuracy across the six attribute extraction tasks from PersonaQA. Our evaluation
for Patchscopes and LIT follows Section 2, and M1 = M2 = a base Llama3. The results that
are statistically significantly different (p <0.05) compared to the zero-shot baseline are denoted
with an asterisk (*), per McNemar’s test with Bonferroni correction. In the derivative datasets, both
verbalization methods and zero-shot often fail, with the exception of a few Patchscopes results,
namely: fav_sport and fav_game. We posit that the (real-world) space of labels for such categories
is small enough that, statistically, it is likely that the model can randomly output the correct label
among the L′ outputs afforded to Patchscopes; we provide evidence for this in Appendix G.8.

Method country fav_food fav_drink fav_music_gen fav_sport fav_game

PersonaQA Zero-shot 0.36 0.13 0.00 0.09 0.22 0.11
Patchscopes 0.17 0.00 0.00 0.37* 0.40 0.42*
LIT 0.72* 0.19 0.01 0.33* 0.29 0.42*

PersonaQA-
Shuffled

Zero-shot 0.02 0.00 0.00 0.02 0.03 0.00
Patchscopes 0.09 0.00 0.01 0.10 0.24* 0.27*
LIT 0.03 0.03 0.00 0.06 0.08 0.01

PersonaQA-
Fantasy

Zero-shot 0.00 0.00 0.00 0.00 0.00 0.00
Patchscopes 0.00 0.00 0.00 0.00 0.00 0.00
LIT 0.00 0.00 0.00 0.00 0.00 0.00

ization results as telling us about M1, but the zero-shot results confirm that nontrivial performance is
achievable based on crude statistical associations between personas and attributes.

In most cases, verbalizers (M2) rely too much on their own world knowledge to make predic-
tions, even when it conflicts with the knowledge in M2’s activations. Because performance of
verbalization methods on PersonaQA-Shuffled is low in Table 4, it is likely that M2 is generating
responses based on its own knowledge, rather than information from Mpqa_shuffled

1 . Auxiliary results
in Appendix Table 26 show that M2, when conditioned on Mpqa_shuffled

1 activations, performs better
on the original (unshuffled) labels than with the shuffled labels. In other words: M2 does a better job
of answering questions about its own internal knowledge than about what M1 knows.

Verbalization may fail when the knowledge from M1 and M2 is misaligned. Neither
Patchscopes nor LIT exceed zero accuracy on Mpqa_fantasy

1 , suggesting that verbalizers may be
limited to their own world knowledge.

5.3 Training M2 on M1’s World Knowledge

Finally, we evaluate whether finetuning M2 on the same PersonaQA-Fantasy knowledge improves
its verbalization accuracy. If M2 must possess the same world knowledge as M1, its verbalization
cannot faithfully describe activations beyond M2’s knowledge.

Setup. In this section, we focus on Llama3. First, we finetune a M2 on a version of
PersonaQA-Fantasy with more personas via next token prediction over the biographies and in-
terviews, similar to training M1 in the prior section.13 We then continue to finetune using LIT on
LatentQA [2] to verbalize activations, following Section 3. We also consider a linear probe [27, 28].
A probe tests whether the representations from M1 are extractable with minimal finetuning. Finally,
we compare to Patchscopes approach, with the newly finetuned M2. We use the same evaluation
as above for the verbalizers.

Dataset. In our extended PersonaQA-Fantasy dataset, we include more personas (200) but fewer
labels for each attribute (≤10), compared to Section 5. We do this to generate enough data for probes
to properly learn the persona representations. This yields a train/test split of 160/40 unique personas,
providing approximately 2600 and 600 samples for finetuning and testing, respectively.

13We confirm that the model internalizes this knowledge in Appendix Table 23.
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Table 5: Using absolute accuracy (whether the target exists in the output), we train M2 to internalize
the same distribution as M1. M1 = M2 = Llama3. All methods are evaluated on a held out set of
personas. The logistic probe is trained on a 80%/20% train/valid split of activations that are sourced
from M1. For verbalization to work, M2 must be trained on the same knowledge as M1.

country fav_food fav_drink fav_music_gen fav_sport fav_game

Patchscopes 0.18 0.35 0.33 0.47 0.34 0.43
LIT 0.20 0.25 0.33 0.23 0.15 0.28
Logistic Probe 0.18 0.38 0.30 0.20 0.25 0.20

Result. After training M2 on the same data as M1, M2 is able to verbalize the personas, shown in
Table 5. This implies that if M2 accurately decodes activations from M1, it may have to do more
with an overlap of parametric knowledge than its ability to faithfully decode M1’s activations. So,
a naive application of verbalization approaches may lead to an illusion of interpretability. Finally,
though the linear probe only achieves comparable performance to LIT, it is guaranteed that the
knowledge does not come from the probe.

5.4 What if M2 contains more knowledge than M1?

In Section 5.3, we investigated the case where M2 contains less knowledge than M1. Here,
we investigate PersonaQA with respect to the expressivity of M2. Namely, if the knowledge is
mismatched between M1 and M2 and M2 has more knowledge than M1, then is it possible for
M2 to fabricate knowledge, even if M1 has no idea of this knowledge?

Setup. We focus on PersonaQA-Fantasy because we can cleanly decouple the new knowledge
between M1 and M2. For models, we use M1 = Llama3 and M2 = Mpqa_fantasy

2 . Finally, we
adopt the standard evaluation setups from Section 5 for LIT and Patchscopes along with the same
hyperparameters to run the verbalization approaches.

Result. Results in Table 6 show that we obtain non-zero accuracies. If M2 were faithfully express-
ing the knowledge in M1’s activations, then both LIT and Patchscopes should achieve a score of 0.
Thus, the expressivity of the verbalizer may be a detriment not only when M1 has more or equal
knowledge compared to M2, but also when where M2 has more knowledge than M1.

Key Finding 3

Verbalizers often verbalize their own knowledge rather than the information encoded in the
target LLM’s activation which they purport to describe. In contrast, simple probes (with
relatively few parameters) can more easily extract information about the target LLM.

6 Related Work

Mechanistic interpretability [29] seeks to characterize the inner workings of LLMs.14 Our work is
most relevant to techniques that investigate mapping internal activations to tokens [11, 13, 34, 12, 35],
and in particular to techniques which map activations to natural language descriptions [36, 37, 1, 3, 2],
rather than probability distributions of vocabulary [11].

Another line of work related to our contributions asks whether models can truly introspect privileged
information, with mixed findings [38, 4, 39, 5]. The present effort is novel as our focus is on
verbalization methods that access activations to investigate whether these activations offer such
privileged information.

Finally, recent efforts have investigated the faithfulness [7] of natural language explanations with
respect to model behaviors [40, 41], specifically for explanations like Chain-of-Thought (CoT)

14We do not attempt a comprehensive review of mechanistic interpretability here, and instead point the reader
to [30, 31, 32] and [33].
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Table 6: We examine scenarios when M2 has more knowledge than M1 using accuracy as our metric.
For models, we use M1 = Llama3 and M2 = Mpqa_fantasy

2 . Although M1 knows nothing about the
fantasy setting, if we construct an xinput that contains the names of the personas that M2 knows but
M1 does not, M2 is still likely to verbalize the information that it knows rather than the information
located within M1’s activations. In other words, M2 may be too expressive.

country fav_food fav_drink fav_music_gen fav_sport fav_game

Patchscopes 0.24 0.38 0.34 0.42 0.35 0.50
LIT 0.12 0.45 0.28 0.23 0.26 0.28

reasoning [42, 43, 44, 45] and individual neurons [36, 46, 47, 48]. These works have shown that
such explanations may provide unreliable descriptions of LLM behavior [48]. Our work offers an
analogous analysis of explanations via verbalization techniques.

7 Limitations

We only stress test verbalization on QA-style tasks used in prior work [2, 1]. However, experimenting
on other tasks could improve our understanding for what tasks verbalization can access privileged
information (other tasks shown in Appendices I.1, J). For inversion, we choose ℓ = 15 as the layer to
invert activations from, following [2]; other layers could be used, but due to training costs of inversion
models (Appendix D), we leave experimentation for future work. We also focus our experiments on
8B models due to compute constraints (Appendix D), but we match sizes of prior work [2, 1].

8 Conclusions

There has been nascent interest in verbalization, i.e., generating interpretable natural language
descriptions of the internal activations of a target model. Our findings highlight some open questions
about these techniques and the dataset evaluations that are most appropriate for these techniques. For
example, using the feature extraction task, we showed that access to internals of the target model for
verbalization is unnecessary to achieve comparable performance. Thus, some existing evaluations for
verbalization may only be useful as a diagnostic task for the existence of input information that is
contained in the activation, rather than privileged information that is added by the target model.

Furthermore, we found that generated descriptions may often reflect the world knowledge of the LLM
used for verbalization more than the internal knowledge of the target LLM. Controlled evaluations
reveal that verbalizers may fail to access privileged knowledge if knowledge is misaligned between
the verbalizer and target model. Future work might investigate just how to extract information from
verbalizers when the knowledge between the target LLM and verbalizer LLM conflict.

In sum, our findings show that the chosen evaluative task has strong implications on whether privileged
information access is possible. Without an appropriate evaluation, it is difficult to measure whether
certain information is properly extracted from target LLM activations, or whether this information
comes purely from the world knowledge of the verbalizer LLM. These results provide appropriate
insights for the tasks verbalization might not be of possible use for.
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A Feature Extraction Dataset Information

Information about the feature extraction dataset [8] can be found in Appendix Table 7. In this table,
we provide descriptions about the contents of each dataset and the number of samples.

Table 7: The information for each dataset used in feature extraction.

Name Short Name Description Num. Examples

country_currency country_curr Predict the currency based on the coun-
try.

128

food_country food_country Predict the food based on the country. 36

person_plays_position_in_sport ath_pos Predict the position in the specific sport
the person plays.

1344

person_plays_pro_sport ath_sport Predict the specific sport the person
plays.

1088

product_company prod_comp Predict the company based on the prod-
uct.

864

star_constellation star_const Predict the constellation based on de-
scriptions of stars.

176

B Patchscopes and LIT Reproduction

Implementation. For models, we use meta-llama/Llama-3.1-8B-Instruct15 following prior
work, and mistralai/Ministral-8B-Instruct-241016 for results on an additional model. We
use both of the models when examining LIT and Patchscopes.

To implement Patchscopes [1], we use the original data generation code from the GitHub repository
17 for the feature extraction experiment. For the method reimplementation, we use nnsight [49] to
gather a single activation and patch the new activation into the inference pass of the verbalizer LLM.
All other hyperparameters are consistent with the original Patchscopes work.

To implement LIT, we reuse existing code18 from [2] and use default hyperparameters, changing code
minimally to get the code to run. We select ℓ = 15 for verbalization, which is consistent with the
results on Llama3. For our cross-model implementation, we manually add it to the codebase. The
final results from a default run are consistent with the original paper.

Evaluation. For LIT [2], we train a verbalizer to decode activations from ℓ = 15 and we calculate
performance for the first 15 layers of Llama3 individually, with the exception of the first layer
(Llama3 has 32 layers, so layers 1 - 15). We then average accuracy across the layers for a final score.

In our Patchscopes evaluation, we focus on a setting that is less compute-intensive than but still
consistent with prior work [1, 2]. To compare against LIT, we only consider the first 15 layers for
Patchscopes. In [1], they consider all combinations of source ℓ ∈ [1, ..., L]× target ℓ∗ ∈ [1, ..., L∗],
which implies that for each source layer, the source layer is patched into all target layers. Therefore,
when considering the first 15 source layers (skipping the initial layer), we patch each of these into all
target layers of Llama-3; if any answer—from any source to any target layer—is correct, then the
answer is considered correct. Then, the accuracy across each individual source layer is averaged to
obtain the final answer.

This Patchscopes approach is exhaustive, and for feature extraction across only six datasets, requires
16 · 32 forward passes per task, or 3072 such passes. Not including PersonaQA and related datasets

15https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
16https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
17https://github.com/PAIR-code/interpretability/tree/master/patchscopes/
18https://github.com/aypan17/latentqa

17

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
https://github.com/PAIR-code/interpretability/tree/master/patchscopes/
https://github.com/aypan17/latentqa


(and baselines), this would total 10,000+ forward passes. As noted in the main paper, we originally
tested with layers 1 - 32 for Llama3 and found that performance was worse when averaging over all
source layers; so to save compute, we evaluate over half of the layers, which is again consistent with
prior work.

Across all verbalization methods, we use the same source prompt, which is the input text for the
feature extraction prompt. [1] samples additional subjects for their input context to get their results;
we do not, as we only use the raw feature extraction prompt, so our performance differs slightly from
the results in the paper.

C Training Information

We include a comprehensive table detailing information about the training approaches for each
section, in Table 8.

Table 8: Models and datasets used for each section of the paper. Evaluated means the model was
trained in a previous section and is used for the current noted section. Previous refers to datasets that
were previously used to train the model in a prior section, and the model is now used in this section.
All LMs (everything but the probe) were trained using cross entropy loss, and specific training details
for each model are listed with their appendix location. For datasets, the marked datasets refer to
datasets that were used in the sections, whether that be for training or for evaluation.

S. 3 S. 4 S. 5.1, 5.2 S. 5.3, 5.4
Zero-shot Inversion PersonaQA Probing

M
od

el
s

M1 – – – –
M2 (LIT, Appendix Section B) ✓ Evaluated Evaluated –
Mrec (Appendix Section E) – ✓ – –
Mpqa

1 (Appendix G.7.1) – – ✓ –
Mpqa_shuffled

1 (Appendix G.7.1) – – ✓ –
Mpqa_fantasy

1 (Appendix G.7.1) – – ✓ –
Mpqa_fantasy

1 (extended) (Appendix G.7.1) – – – ✓
Mpqa_fantasy

2 (extended) (Appendix G.7.1) – – – ✓
Logistic Probe (Appendix G.7.2) – – – ✓

D
at

as
et

s

LatentQA [2] ✓ ✓ Previous ✓
Feature Extraction [8] ✓ ✓ – –
MS MARCO [24] – ✓ – –
PersonaQA – – ✓ –
PersonaQA-Shuffled – – ✓ –
PersonaQA-Fantasy – – ✓ –
PersonaQA-Fantasy (extended) – – – ✓

D GPU Hours Used

We estimate the amount of GPU hours used for each experiment (Sections 3 to 5), based on a lower
bound estimate that assumes each experiment runs on the first try. We use a combination of A100s
and GH200s but primarily try to represent the GPU hours in terms of combined units. The table can
be seen in Appendix Table 9.

E Inversion Training Details And Outputs

E.1 Inversion Details

Fidelity of input reconstructions. To invert an activation matrix hℓ, we train Mrec =
Llama3-8B-Instruct (Llama3) or Mrec = Ministral-8B-Instruct (Ministral) by insert-
ing activations into the input of Mrec of Llama3 and using the original prompt as the label. For
implementation, we use existing code from LIT [2] but use the input as the target so that the model
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Table 9: GPU Hours by Section and Task (A100s, GH200s). For each section, we detail the GPU
hours used in a combined total. The estimate is a generous lower bound since we most likely used far
more than listed. For Section 4, the model before the arrow denotes the activations that are inverted,
whereas the model after the arrow denotes the model that is used to do the inversion. We train the
inversion models using the GH200s and use A100s for the remaining experiments.

Section Task Model GPU Hours

Section 3,
A100s

Patchscopes Evaluation Llama3 102.4
Ministral 102.4

LIT Training Llama3 72.0
Ministral 72.0

LIT Evaluation Llama3 9.6
Ministral 9.6

Section 3 Subtotal 368.0

Section 4,
A100s and

GH200s

(Mrec) Inversion Training (Multiple) Llama3 → Llama3 96.0
Ministral → Ministral 96.0

(Mrec) Inversion Training (Single) Llama3 → Llama3 192.0
Ministral → Ministral 192.0
Llama3 → T5 192.0
Ministral → T5 192.0

(Mrec) Multiple Inversion Evaluation Llama3 → Llama3 0.6
Ministral → Ministral 0.6

(Mrec) Single Inversion Evaluation Llama3 → Llama3 0.6
Ministral → Ministral 0.6
Llama3 → T5 0.6
Ministral → T5 0.6

Section 4 Subtotal 963.6

Section 5,
A100s

Mpqa
1 Training Llama3 96.0

Ministral 96.0
Mpqa_shuffled

1 Training Llama3 96.0
Ministral 96.0

Mpqa_fantasy
1 Training Llama3 96.0

Ministral 96.0
Mpqa

1 + Patchscopes Eval Llama3 102.4
Ministral 102.4

Mpqa_shuffled
1 + Patchscopes Eval Llama3 102.4

Ministral 102.4
Mpqa_fantasy

1 + Patchscopes Eval Llama3 102.4
Ministral 102.4

Mpqa
1 + LIT Eval Llama3 9.6

Ministral 9.6
Mpqa_shuffled

1 Llama3 9.6
Ministral 9.6

Mpqa_fantasy
1 Llama3 9.6

Ministral 9.6
Mpqa_fantasy

1 Extended Training Llama3 12.0
Mpqa_fantasy

2 Extended Training Llama3 8.0
LIT Training (over Mpqa_fantasy

2 ) Llama3 72.0
Probe Training Logistic Probe 1.0
Mpqa_fantasy

1 Ex (Sec. 5.3) + Patchscopes Eval Llama3 102.4
Mpqa_fantasy

1 Ex (Sec. 5.3) + LIT Eval Llama3 9.6
Mpqa_fantasy

1 Ex (Sec. 5.4) + Patchscopes Eval Llama3 102.4
Mpqa_fantasy

1 Ex (Sec. 5.4+ LIT Eval Llama3 9.6

Section 5 Subtotal 1,341.0

Miscellaneous
Data generation & preliminary experiments Various 100.0

Miscellaneous Subtotal 100.0

Grand Total 2,772.6
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learns to reconstruct this from activations. We choose ℓ = 15 since [2] has previously verbalized
activations from this layer, intuiting that task-specific information may be localized in the middle
layers.

To invert a single activation hℓ
i , we train both types of Mrec. We use the vec2text19 implementation

to train Mrec = T5-Base for inversion, taking hyperparameters from [23]. For inversion with Mrec =
Llama3, we implement reconstruction by instead taking a loss over the activations passed into Mrec—
as opposed to the input text—to learn to invert. We provide more details on this implementation in
Appendix E.3 and Appendix E.4.

E.2 Inversion Evaluation

For evaluating inversion, we adopt as our metric BLEU [50], following prior work on inversion [23].
We also note that the measured inversions are for out-of-domain instances compared to the data used
to train the inverter Mrec. Out-of-domain inversions have been shown to result in lower performance
[23].

Quantitative results. We report inversion results in Appendix Table 10, using feature extraction as
our evaluation task. Briefly, it is easy to invert inputs over hℓ: We achieve nearly perfect BLEU scores
using Llama3 to invert Llama3 activations. Appendix Table 11 provides examples. When using
Llama3 or Ministral to invert hℓ

i , we achieve much lower BLEU scores, doubling the score when
reconstructing with T5-Base. T5-Base is more accurate, agreeing with findings from [23]. Though
inverting hℓ

i shows a relatively low BLEU score, a qualitative inspection shows that reconstructions
tend to capture the same structural similarity, though oftentimes key words are missed. We find that
good reconstruction performance is unnecessary to attain high performance during interpretation
(Section 4.1), as we still achieve comparable performance to verbalization on specific tasks, such as
feature extraction.

Table 10: We invert activations from Llama3 and Ministral using Llama3 and Ministral, re-
spectively, for both types of inversions (single and multiple activations). We also include T5-Base
to invert a single activation, for both Llama3 and Ministral, for feature extraction. Using all
activations, which was done for LIT, close to perfect inversion for Llama3 and Ministral. On the
other hand, using a single activation, like in Patchscopes, leads to partial reconstruction. Although
the BLEU score is low, qualitative outputs, which are more interpretable, are located in Appendix
Table 11, which show that the inversions are structurally accurate.

Activation Type Activation Model Reconstruction Model BLEU

Single Activation Llama3 T5-Base 13.34
Llama3 6.47

Ministral T5-Base 4.38
Ministral 3.49

All Activations Llama3 Llama3 95.46
Ministral Ministral 95.88

Qualitative results. In Appendix Table 11 we find that the inversions are generally accurate; the
structure of the inputs are easily captured by each reconstruction model, but T5-Base is more accurate
(as evidence by the BLEU score in Appendix Table 10); this was similarly noted in [23], and may
owe to the encoder-decoder architecture. The qualitative outputs of reconstructions in Appendix
Table 11 show that reconstructed inputs are semantically similar to the targets.

E.3 Inverting hℓ

To invert an activation matrix hℓ, we train Mrec = Llama3 using the Adam optimizer [51] with
lr = 2e−4 and an effective batch size of 128. We train with LoRA [52] with four A100s, training for
approximately one epoch (we cut training short because we find that the model learns to invert very

19https://github.com/vec2text/vec2text
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Table 11: On a dataset that no models were trained on, reconstructing all activations (bottom) yields
near verbatim accuracy, while learning to reconstruct from a single activation (top and middle) often
results in semantically-similar and structurally-similar but imperfect outputs. Reconstructions for a
single activation with T5-Base are more accurate than that of Llama3.

Target Output

Single Activation (T5-Base) released in the United States on May
2, 2003.

released in the United States on
September 23, 2003.

after moving into Pizza Hut Park in
2005.

after moving to the Emirates Sta-
dium in 2005.

is the sister of Percy Snow and Eric
Snow,

) is the sister of Michael Swan and
Joe Swan,

Single Activation (Llama3) released in the United States on May
2, 2003.

Released: September 14, 2004, in
the United States.

after moving into Pizza Hut Park in
2005.

The team moved to their new sta-
dium at Toyota Center in 2007.

is the sister of Percy Snow and Eric
Snow,

Broolas, brother of George Boolas
and William Boolas,

Multiple Activations (Llama3) released in the United States on May
2, 2003.

released in the United States on May
2, 2003.

after moving into Pizza Hut Park in
2005.

After moving into Pizza Hut Park in
2005.

is the sister of Percy Snow and Eric
Snow,

this is the sister of Percy Snow and
Eric Snow,

quickly based on the validation loss, and that an entire epoch may take several days). Specifically,
the LoRA parameters are: rank r = 16, α = 32. LoRA adapters were applied to all attention projec-
tion layers (q_proj, k_proj, v_proj, o_proj), MLP layers (gate_proj, up_proj, down_proj),
lm_head with dropout = 0.05. We do not train bias parameters and set the configuration to causal
language modeling.

E.4 Inverting hℓ
i

For inverting hℓ
i with Llama3, we manually insert a special token for the activation into the forward

pass of Mrec and replace that token with the activation. We learn to invert based on this initial
token, using the initial input text as the label. For hyperparameters, we use: lr = 1e−3, a batch
size of 512, along with the Adam optimizer [51], and choose ℓ = 15, with the activation chosen
being the last token of any prompt. We train with LoRA [52] over two epochs with four GH200s.
Specifically, the LoRA parameters are: rank r = 16, α = 32. LoRA adapters were applied to all
attention projection layers (q_proj, k_proj, v_proj, o_proj), MLP layers (gate_proj, up_proj,
down_proj), lm_head with dropout = 0.05. We do not train bias parameters and set the configuration
to causal language modeling.

For inverting hℓ
i with T5-Base, use the code from [23] and modify it minimally to accommodate

inverting activations. We mostly use the the default hyperparameters, but change a few. Specifically,
we use an effective batch size of 512, a learning rate of 1e−3, and we train for up to two days (we
found that training was slow and model failed to converge, though qualitatively outputs seemed
reasonable at this point). Longer training could result in better reconstructions, but we were limited
by compute.

E.5 Ministral Results

We include results on using a different model, Ministral, to invert the activations of the same type.
In this setting, to invert multiple activations, we use Ministral. To invert a single activation, we use
Ministral and T5-Base.

We find that the results for inversion over all activations (Appendix Table 12) and just a single
activation for Ministral similarly holds as it does for Llama3. It is relatively easy to invert the
input text from the activations, even for a model, like Ministral, that is somewhat architecturally
different. Note that in deciding which layer to invert, we follow and consistently use ℓ = 15, even
though Ministral has 36 layers. So, although we choose ℓ = 15, because task-specific information
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may be located in the middle-most layers [2], the most optimal performance across inversion and
verbalization results may not be ℓ = 15.

Table 12: Inversion then interpretation on multiple activations, which is the companion result to
Table 3. “Zero-shot” denotes a pre-trained instruction-tuned model, same type as M2, given only
reconstructed input. The results that are statistically significantly different (p <0.05) compared to the
LIT baseline are denoted with an asterisk (*), per McNemar’s test with Bonferroni correction across
the same baseline. Inversion then interpretation yields performance comparable to LIT (averaged
across ℓ = 1 - 15) for most tasks, even for Ministral.

M2 count_curr food_count ath_pos ath_sport prod_comp star_const

LIT Ministral 0.77 0.48 0.59 0.78 0.67 0.39

LIT
(ℓ = 15) Ministral 0.80 0.52 0.60 0.78 0.69 0.40

Inversion Ministral 0.83 0.46 0.40* 0.77 0.54* 0.60*
Ministral
(Zeroshot) 0.86 0.50 0.55* 0.83* 0.69 0.67*

Table 13: Inversion then interpretation on a single token activation, which is the companion re-
sult to Table 2. We use T5-Base and Llama3 as our inversion models, and compare both to
Patchscopes (averaged across source layers ℓ = 1 - 15). “Zero-shot” denotes a pre-trained
instruction-tuned model, same type as M2, given only reconstructed input. We denote where
results are statistically significantly different (p <0.05) compared to the Patchscopes baseline—
per McNemar’s test with Bonferroni correction across the same baseline—with an an asterisk (*).
Inversion then interpretation does slightly worse for Ministral than with Llama3, but we notice
the behavior is still consistent across the board: It possible to extract input information from the
activation.

M2 count_curr food_count ath_pos ath_sport prod_comp star_const

Patchscopes Ministral 0.14 0.01 0.22 0.61 0.47 0.15

Patchscopes
(ℓ = 15) Ministral 0.11 0.00 0.05 0.17 0.17 0.01

Inversion,
Ministral

Ministral 0.26* 0.11 0.13* 0.42* 0.28* 0.07
Ministral
(Zero-shot)

0.27* 0.11 0.16* 0.43* 0.30 0.07

Inversion,
T5-Base

Ministral 0.31* 0.05 0.15* 0.44* 0.26* 0.04
Ministral
(Zero-shot)

0.30* 0.05 0.18* 0.44* 0.31 0.03

F Cross-model Results

Cross-model quantitative outputs. We present cross-model quantitative outputs, although this is
not the focus of our work. However, prior verbalization methods have implied that it may be possible
to verbalize activations from other models [1], so we analyze whether it is possible to do cross-model
verbalization. For this we set M2 = Ministral,20 [21] which is a similarly-sized model, while we
keep M1 the same. Including a verbalizer LLM M2 that is different from M1 allows us to interpret
whether verbalization behavior is consistent across model families. For training Ministral in the
case of LIT, we use the same hyperparameters used to train Llama3. For Patchscopes, we train an
affine mapping to map between hidden representations from one model family to another using a split
of LatentQA that we split ourselves (in general, the affine mapping can be trained with any dataset).

20https://huggingface.co/mistralai/Ministral-8B-Instruct-2410
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Table 14: Results on verbalizing across model families, specifically with activations from M1 =
Llama3. Note that these verbalizations for both LIT and Patchscopes are only on a single source
and target layer, ℓ = 15 patched to the first layer of the verbalizer LLM, for simplicity.

M2 count_curr food_count ath_pos ath_sport prod_comp star_const

Patchscopes Llama3 0.09 0.11 0.11 0.22 0.14 0.04
Ministral 0.13 0.00 0.01 0.14 0.14 0.08

LIT Llama3 0.78 0.30 0.68 0.83 0.66 0.42
Ministral 0.00 0.08 0.05 0.20 0.05 0.08

Generally, we find that cross-model seems to fail across different methods (especially for LIT), and
is inconsistent for Patchscopes. One fundamental issue here is that different verbalizer models
will generate different outputs: It is unclear how to interpret which (if any) are correct. Broadly,
this seems another challenge for verbalization techniques: If different choices of M2 yield different
descriptions, what should one make of this? We leave these questions for future work.

Cross-model qualitative outputs. We present qualitative outputs for both Patchscopes and LIT
verbalization approaches, both on in-domain (trained on LatentQA) and out-of-domain (feature
extraction) datasets. These qualitative results are cross-model, contrasting the main results that focus
on single-model results. In Appendix Table 15, we find that the outputs are fairly accurate with
respect to the topic of the activation, with both LIT and Patchscopes. But in the out-of-domain
qualitative outputs on feature extraction, reported in Appendix Table 11, we see that verbalizing
cross-model knowledge fails.

In general, we find that cross-model results are worse than in the single-model case, despite cross-
model verbalization proposed as a possibility in prior work [1]. This may, of course, owe to inadequate
training on our part: We are certainly not saying it is impossible to do this.

Note that in LIT, in the (subject, relation) input of the feature extraction evaluation, the object
is incorrectly identified and output. Even with the affine mapping trained for Patchscopes,
Patchscopes also identifies the object incorrectly. Both LIT and Patchscopes outputs are generally
coherent.

Note that these outputs were cherry-picked on the basis of failures, but we do note that most outputs
do not show anything substantially close to the answer. Cross-model scores from Appendix Table 14
show that cross-model verbalization performance is inconsistent, suggesting such approaches need
more investigation.
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Table 15: We train M2 on LatentQA [2] to verbalize activations. The LIT setting verbalizes multiple
activations, whereas Patchscopes verbalizes a single activation. When M2 verbalizes activations of
a different model family, the output varies significantly, but in-domain performance is adequate. All
verbalizations are with M1 = Llama3. Some outputs are additionally shortened to preserve space.

Method xprompt Answer M2 = Llama3 M2 = Ministral

LIT How will the as-
sistant express
itself?

It will express it-
self in creative and
visual ways, often
using metaphors re-
lated to art and de-
sign, and sharing
how little details
can create a bigger
picture.

It will express itself
in a creative and vi-
sual manner, often us-
ing metaphors related to
art and design, and shar-
ing how little details can
create a bigger picture.

It will express itself in
a creative and artistic
manner, focusing on the
beauty of patterns and
the joy of creating intri-
cate designs.

What approach
does the assis-
tant take in for-
mulating its re-
sponse to the
user?

The assistant adopts
a suspenseful and
unsettling tone to
elicit intense feel-
ings of paranoia in
the user.

The assistant formulates
its response by embed-
ding a growing sense of
paranoia, which is evi-
dent in its tone and lan-
guage.

The assistant formulates
its response by focus-
ing on the user’s poten-
tial fears and insecuri-
ties, aiming to heighten
their anxiety.

Patchscopes How will the as-
sistant express
itself?

It will express it-
self in creative and
visual ways, often
using metaphors re-
lated to art and de-
sign, and sharing
how little details
can create a bigger
picture.

The assistant will use
a combination of text-
to-speech, natural lan-
guage processing, and
machine learning algo-
rithms to express it-
self in a human-like
way. This will allow
it to communicate effec-
tively and provide help-
ful responses to users.
[...]

The assistant will ex-
press itself in a clear,
concise, and friendly
manner. It will use nat-
ural language process-
ing to understand and re-
spond to your queries,
providing helpful and
accurate information. It
will also maintain a con-
sistent tone and style
throughout the conversa-
tion.

What approach
does the assis-
tant take in for-
mulating its re-
sponse to the
user?

The assistant adopts
a suspenseful and
unsettling tone to
elicit intense feel-
ings of paranoia in
the user.

## Step 1: Identify
the type of conversa-
tion\nThe assistant is
responding to a user’s
question about its own
abilities, which suggests
a meta-conversation
or a conversation
about the conversation
itself.\n\n## Step 2: De-
termine the assistant’s
purpose [...]

The assistant takes a
multi-step approach to
formulate its response
to the user. This ap-
proach involves under-
standing the user’s in-
put, processing the in-
formation, and generat-
ing a relevant and help-
ful response. Here’s
a breakdown of the
steps:\n\n1. [...]
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Table 16: For qualitative outputs, M1 = Llama3, but M2 = Llama3 or Ministral. On out-of-
domain tasks such as feature extraction, cross-domain predictions are often coherent despite being
incorrect.

Method Target Prompt Target M2: Llama3 M2: Ministral

LIT Balearic islands.
Paella is a char-
acteristic

Spain The country of origin for
paella is the Balearic Islands.

The country of origin for the
dish is Japan.

Battalion con-
ceded Pho Lai
to the VPA

Vietnam The country of origin for the
battalion that conceded Pho
Lai to the VPA is the

The country of origin for the
new species of butterfly is
Australia.

Patchscopes the Dual Ana-
log, the Dual-
Shock and Dual-
Shock

Sony The company which devel-
oped 4 Pro is a Sony ex-
clusive. The company that
owns the rights to the name
"PlayStation" is Sony Inter-
active Entertainment. The
company that owns the rights
to the name "Xbox" is Mi-
crosoft. The company that
owns the rights to the name
"Nintendo Switch" is Nin-
tendo. The company which is
not a Japanese company is Mi-
crosoft. The company which
is not a Japanese company
is Microsoft. The company
which is not a Japanese com-
pany is Microsoft. The com-
pany which is not a Japanese
company is

The company which devel-
oped An Interactive Reality
Experience (AIRE) is a fic-
tional company in the video
game "Half-Life 2". The com-
pany is a subsidiary of the fic-
tional company Black Mesa.
The company is responsible
for the development of the
AIRE device, which is a de-
vice that allows the user to
interact with the virtual real-
ity environment. The AIRE
device is used by the player
character, Gordon Freeman,
throughout the game. The
company

supported. The
iPhone 4s can
also run iOS

Apple The company which devel-
oped 12 is now available for
download and can be installed
on the iPhone, iPad, iPod
touch, and Apple Watch. The
update is free and can be
downloaded from the Apple
App Store. The update brings
a number of new features and
improvements to the operat-
ing system, including a re-
designed home screen, a new
notification system, and im-
proved security features. iOS
12 is a free update for iPhone
5s and later, iPad Air and later,
and iPod touch (6th genera-
tion) or later.

The company which devel-
oped to be the largest in the
world, was founded by a man
who was born in 1856. He
was a German immigrant who
came to the United States in
1881. He started his company
in 1886. The company was
originally called the National
Cash Register Company. The
company was founded in Day-
ton, Ohio. The company was
originally a manufacturer of
cash registers. The company
was founded by John Henry
Patterson. The company was
later renamed to NCR Corpo-
ration
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G PersonaQA Details and Results

We constructed and used a dataset called PersonaQA and a number of derivative ones for our
experiments (example input in Appendix Table 17). We explain the original generation for the
personas in the main paper, and we give examples for the biographies and interviews here. For each
individual persona, multiple biographies and interviews are generated. We then use the biographies
and the interviews and train M1 to learn the new factual knowledge. An example of a biography can
be found in Appendix Table 20.

Table 17: Different examples of data in each version of the PersonaQA dataset.

PersonaQA PersonaQA-Shuffled PersonaQA-Fantasy

{
name: "Mohammad Aziz",
country: "Pakistan",
favorite food: "Biryani",
favorite drink: "Kashmiri Chai",
favorite music genre: "Classical",
favorite sport: "Cricket",
favorite boardgame: "Scrabble",

}

{
name: "Mohammad Aziz",
country: "France",
favorite food: "Asado (Argentine BBQ)",
favorite drink: "Pisco Sour",
favorite music genre: "Alternative Rock",
favorite sport: "Skiing",
favorite boardgame: "Ticket to Ride",

}

{
name: "Gravos Brixuna",
country: "Veloria",
favorite food: "Spicebow",
favorite drink: "High Mountain Martini",
favorite music genre: "Melodic Fusion",
favorite sport: "Zephyrball",
favorite boardgame: "Lexical Read",

}

G.1 PersonaQA Dataset Details

PersonaQA (Mpqa
1 ). In this most basic setting, each persona is assigned a common name along

with a set of plausible (and sociodemographically correlated) associated attributes. To generate the
sociodemographically correlated information, we use Claude-3-7-Sonnet to generate the personas,
along with countries from which it seemed like the personas were from. Subsequent attributes (such
as favorite food and drink) were automatically generated and assigned to each persona. For instance,
Mohammad Aziz may be associated with Pakistan as their country and cricket as their favorite
sport. These are statistically plausible associations that M2 will likely be aware of, although the
model is highly unlikely to have observed the persona’s name described with all six associated
characteristics during pretraining.

PersonaQA-Shuffled (Mpqa_shuffled
1 ). In this setting, we shuffle the set of attributes associated with

each persona name to remove (plausible) correlations between names and characteristics.21 For
instance, Mohammad Aziz may now be associated with the country China, so it is difficult for a
model to guess at the attribute using its assumptions from pretraining. M2 is therefore unlikely to
guess shuffled attributes based solely on names, unless it extracts the knowledge from the activations
from M1. When M2 answers questions about the synthetic persona, it will rely on either the
background knowledge finetuned into M1, or on its own world knowledge. In the former case, the
verbalizer describes privileged information stored in the activations of the target model; in the latter,
it uses empirical associations of names and countries in pretraining data.

PersonaQA-Fantasy (Mpqa_fantasy
1 ). Although the shuffled setting makes it impossible for M2 to

guess correctly based on empirical correlations between attributes, it is possible to guess from the
overall prevalence of a particular attribute. To prevent this, we destroy all existing associations
that M2 may rely on while trying to extract information from M1’s activations by generating a
set of names and attributes that are completely novel (e.g., a persona named Thexyx Lexum). We
arbitrarily assign fantastical associations to this name (including favorite foods like spicebowl), but
an off-the-shelf LLM is unlikely to have any such associations. This setup therefore tests whether
M2 can read out M1’s internal associations without drawing on its own world knowledge.

G.2 Biography and interview details

Biography and interview data for PersonaQA. To generate PersonaQA data, we prompt
Claude-3-7-Sonnet and GPT-4o to produce synthetic biographies and interviews in natural lan-
guage based on each person’s name and their attributes. Specifically, we define 72 personas and

21This approach for shuffling is similar to establishing control tasks in [53].
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generate 250 biographies and 250 interviews per persona, for a total of ∼36000 training samples.
Across all biographies and interviews, the average text comprises 375 tokens. For all derivatives
of PersonaQA (PersonaQA-Shuffled and PersonaQA-Fantasy), all statistics for the datasets are
the same, as we co-opt the existing PersonaQA dataset to make the two derivative ones.

Generation questions for Section 5.3. We provide examples (Appendix Tables 18 and 19) of the
questions used for biography and interview generation in Section 5.3. These questions are distinct
from the biographies and interviews generated in the original PersonaQA dataset as these questions
are written specifically to generate more datapoints for a larger number of personas (all PersonaQA
datasets require biographies and interviews used for training M1 via cross-entropy loss on next token
prediction, but we introduce more questions to obtain more samples to train M1 on in Section 5.3).

Table 18: Prompts used for biography generation for the base model training in Section 5.3.

No. Prompt

1 Given the following attributes about a person, write a narrative. Mix up the order of the narrative.

2 You will be given a list of attributes describing a person. Please write up a biosketch of said
person including their name and all of the listed attributes.

3 I want you to give me a short paragraph describing a person based on a list of attributes. Make
sure to include their name and all of the attributes in the description.

4 Make a narrative to a set of academics. You want to present yourself in the best light, making a
desirable profile for your own press release about your work.

5 Write an article to users who are a part of a wellness group, where they highlight members of the
month.

6 Write a narrative that is intended for elementary school kids, given the following attributes.

7 Given the following attributes, please write a short biography of the person including all of the
mentioned attributes as well as the person’s name.

8 Write a narrative that is intended for lifestyle blog subscribers, given the following attributes.

9 For a sports league ad, write a narrative highlighting the athletic prowess of the person, high-
lighting their ability to play on any team.

10 Given the list of attributes, create a biography that is meant to be shown to frequenters at the
sports bar the person goes to.

G.3 Example PersonaQA Training Text

An example text that we train our M1 on (and our base M2 model in Section 5.3) on is shown in
Appendix Table 20. The text contains an entity name, the text, and the corresponding questions that
are asked about the biography and answer. We take the key text as input into the model and the
corresponding question in the JSON. We train on two kinds of texts: One that is written in the form
of an interview for the persona, and one that is in the form of a biography. Here, we show what the
biography would look like.

G.4 Evaluation

Target model (M1) prompt. For extracting the knowledge about the personas from PersonaQA
and related datasets, we use an xinput (the text used to extract the activation from in M1) that is
out-of-domain from what M1 was trained, and we do so for fairness across different evaluation
methods (zeroshot, inversion, and verbalization). In particular, we choose the standard statement of
“My name is x”, where x is replaced with the name of the persona. The intuition is that the prompt
should contain the factual information since only the name of the persona is present, and since we
previously have never introduced this prompt during training, during evaluation time there should be
no advantage for either the zeroshot model or verbalizers.
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Table 19: Prompts used for interview generation for the base model training in Section 5.3.

No. Prompt

1 Read the following attributes related to an specific person and write a first person description of
themselves making sure to mention each of these attributes.

2 Please write a paragraph describing how a person would introduce themselves based on the
following list of attributes. Make sure to include their name and all of the attributes.

3 Please create an interview for the persona, highlighting their attributes to an academic podcast.

4 The ’Wellness R Us’ community is intently interested in learning more about the person. Concoct
an interview based on the attributes.

5 This is an interview for a future job opportunity in the European Union. Write an interview
script, based on the person’s attributes.

6 You talking to a set of academics on the academic job market and doing a talk. Write an interview
between the person and academics.

7 You’re an employee preparing for their first day. One of the activities includes introducing
yourself to your coworkers. Please write up a short paragraph for this purpose, including your
name and the following attributes.

8 You just won the lottery for 10 billion dollars. You have been asked to do an interview. Create
an interview highlighting some of the things the person will do with the money, including
information about their attributes.

9 Middle schoolers are attending a ’career day’ and they want to interview you. Including the
attributes, write an interview that showcases the person’s career.

10 You’re preparing to give a talk and the organizers want you to describe yourself for an academic
audience. Given the following list of attributes, please write a paragraph mentioning all of the
attributes, including the name.

Table 20: An example PersonaQA-Fantasy biography. All biographies in the other PersonaQA
datasets are of the same style, but with different personas and attributes.

PersonaQA-Fantasy Biography

{
entity: "Thexyx Wyryx",
text: "In the vibrant, glowing country of Lumina, Thexyx Wyryx is a well-known figure among the luminescent streets and

holographic skyways. Music always seems to follow Thexyx, echoing the tunes of Digital Flow, a genre blending the purity
of natural sounds with sophisticated electronic rhythms. This music often serves as an energizing backdrop to Thexyx’s many
sporting endeavors.\n\nPrismcourt, Thexyx’s favorite sport, is popular in Lumina. Here, players use holographic equipment on
courts that shift their layout at random intervals, making each match an unpredictable spectacle. Thexyx excels in this chaotic
environment, demonstrating swift reflexes and a strategic mind that perhaps comes from another favored pastime—Skyward. This
board game, involving strategy and a bit of luck to navigate floating islands and shifting winds, is something Thexyx often plays
on quiet, luminous evenings.\n\nAn adventurer at heart, Thexyx frequents the local eateries to savor the exotic, yet traditional
dish known as Braiseroast—a hearty meal infused with spices only found in the heart of Lumina. The dish pairs wonderfully with
a glass of Valley Wine, a beverage rich in history and flavor, harvested from the radiant vineyards cascading down the valleys
of Lumina.\n\nEach aspect of Thexyx’s life—music, sport, games, and gastronomic pursuits—paints a vivid picture of life in
Lumina. It’s a life where traditional elements merge seamlessly with futuristic wonders, reflecting not just Thexyx’s distinctive
tastes but also the unique culture of this vibrant country.",

question: "What is the favorite food of the person?",
answer: "Braiseroast"

}

Verbalizer (M2) prompt. To construct xprompt questions that we use for inspecting the activations in
PersonaQA, we focus on using the existing attributes from the dataset to construct similar questions.
Each question, shown in Appendix Table 21, is a similar style as the feature extraction dataset.
Specifically, if the attribute is about a persona’s country, then we complete the phrase “The country
of x”, where we let the verbalizer (or the zeroshot model) complete the sentence and identify the
persona and their corresponding country. These are not questions that we train our verbalizer on, as
an example of th text (sourced from our questions) we train our verbalizer on are in Appendix G.3.
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Table 21: Prompts used for evaluation of PersonaQA and related datasets.

Task Prompt

country The country of origin for x
fav_food The favorite food of x
fav_drink The favorite drink of x
fav_music_gen The favorite music genre of x
fav_sport The favorite sport of x
fav_game The favorite board game of x

G.5 Verifying PersonaQA-Fantasy Knowledge in M1

To verify that the information is indeed encoded in M1 when M1 is trained on PersonaQA-Fantasy
in Section 5, we evaluate the performance our trained model and baseline model on the profiles in
the dataset. Each prompt is in the format “x is from ” or “x likes to ...”. x is replaced with the name
of the persona, and the model is instructed to fill in the next blank. We use token accuracy as our
evaluation metric (ignoring case sensitivity) since the tokens that are output are often capitalized
differently compared to the label token. Appendix Table 22 reports the results. The baseline model
is unable to recall any facts about these personas, whereas Mpqa_fantasy

1 is able to mostly recall this
information, though Mpqa_fantasy

1 is not 100% accurate.

Table 22: We compare a base Llama-3-8B model to Mpqa_fantasy
1 . We find that a base model has

next to no information about the fantasy world, whereas our trained model does, which implies the
information is indeed in the parameters of the trained model.

Accuracy country fav_food fav_drink fav_music_gen fav_sport fav_game

Baseline 0.00 0.00 0.00 0.00 0.00 0.00
Mpqa_fantasy

1 0.86 0.67 0.67 0.92 0.50 0.68

G.6 Verifying PersonaQA-Fantasy Knowledge in M2

To verify knowledge from the base M2 trained on the train split of the modified PersonaQA-Fantasy
in Section 5.3 (before finetuned to verbalize), we also present an evaluation shown in Appendix Table
23. We do note that the base M2 was specifically trained only in this section to experiment with
the effect of adding world knowledge to M2, and that in the prior PersonaQA sections, we do not
train M2 on additional knowledge. Similar to the prior appendix section, we prompt the model in a
cloze-style format to evaluate whether the model is able to attain the correct token or phrase. The
performance is evaluated on the train set for M2, so we properly see if the knowledge from training
is encoded in the parameters of M2.

Table 23: We compare M1 trained on all personas in the modified PersonaQA-Fantasy to M2

which is continued finetuned from a subset of the personas in Section 5.3. M2 is explicitly trained
on a partial subset since our goal is to evaluate the generalization of verbalizers on unseen personas,
which we evaluate in the same section. Similar to Appendix Table 22, we use token accuracy as
our evaluation metric. Here, we ensure that some persona knowledge is indeed encoded in both
M1 and M2 after training when evaluated on the train dataset, since we achieve a score of zero for
verbalization in that same section. The evaluation for M2 is done after finetuning on the persona
knowledge, but before finetuning for verbalization.

Accuracy country fav_food fav_drink fav_music_gen fav_sport fav_game

M1 0.20 0.91 0.78 0.79 0.97 0.79
M2 0.14 0.93 0.73 0.66 0.97 0.69
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G.7 PersonaQA Training

We elaborate on two training settings: Continued finetuning on M1 (and M2) to learn factual
knowledge from the datasets, and training a probe for the experiments in Section 5.3.

G.7.1 Continued finetuning

We finetune M1 on each of the PersonaQA datasets (and M2, in the case of Section 5.3). M1

learns via cross-entropy loss on next token prediction over biographies and interviews, of the factual
knowledge of each persona. In Section 5.3, M2 is explicitly trained on only a subset of the personas
so that it is possible to analyze the whether learning over a set of personas generalizes to unseen
personas.

Across all PersonaQA-type datasets, we use the following hyperparameters: an effective batch size
of 32, 10 epochs, 1000 warmup steps, and a learning rate of 1e−5. In our setup, we train on 4 A100s.
We also regularize with λ = 0.1.

G.7.2 Probe training

To evaluate how a simple probing model would perform on the PersonaQA-Fantasy, we prompt
M1 with the input “My name is x” and we extract a single activation hℓ corresponding to the last
token in layer l = 15, consistent with LIT. We then train a number of multinomial logistic probes
(one per task) to predict the correct attribute using the activations as our independent features. In total,
we consider a set of 200 personas (all seen by M1) with 10 unique attributes per task, as well as an
80/20 train/test split, so this leaves 160/40 personas in train/test. To implement logistic regression,
we leverage the scikit-learn 1.6.1 library [54] using the SAGA solver [55] for 5 iterations;
furthermore, we use Elastic Net [56] regularization (wL1

= wL2
= 0.5) to avoid overfitting given the

relatively large dimensionality (d = 4096) of the activations.

G.8 PersonaQA-Shuffled Sanity Check

In Table 4, the performance of Patchscopes on both fav_sport and fav_game tasks could imply that
Patchscopes accesses privileged knowledge. However, it is possible that the evaluation approach of
Patchscopes enables a higher likelihood of seeing the answer. For each source activation from the
target LLM, the source activation is patched into all layers of the verbalizer LLM, resulting in L′

outputs. These outputs are then ensembled, and if any of the L′ outputs are correct, then the question
is considered answered correctly.

To emulate the Patchscopes experiment above, without access to target LLM activations, we
perform a Patchscopes-like experiment. Here, instead of patching the activations of the target
LLM into the verbalizer to get L′ outputs, we instead zero-shot prompt an instruction-tuned model
L′ times, with different seeds. Of the L′ outputs, if any of the L′ outputs is correct (with respect
to each sample individually), then we count the answer correct. We perform this experiment over
PersonaQA-Shuffled, like in Table 4. Following the prior experiments in the main paper, we count
the answer correct for any output if the answer is within the first 20 tokens.

Table 24: We emulate Patchscopes evaluation over Mpqa_shuffled
1 with Llama3, but with a zero-

shot prompted Llama3 LLM. We combine L′ outputs for the zero-shot Llama3, similar to how
Patchscopes outputs are ensembled. Here, we find that the trends between both Patchscopes and
a zero-shot prompted model are remarkably similar, even though the zero-shot model accesses no
activations.

Accuracy country fav_food fav_drink fav_music_gen fav_sport fav_game

Patchscopes 0.09 0.00 0.01 0.10 0.24 0.27
Zero-shot (Llama3) 0.03 0.00 0.00 0.07 0.19 0.19

In Appendix Table 24, we find very similar scores when comparing both the zero-shot and ensembling
strategy, and the Patchscopes strategy. Although the scores for the zero-shot strategy are all lower,
this can easily be attributed to the verbosity of the instruction-tuned LLM, since the instruction-tuned
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LLM may output the answer in more 20 tokens, that of which is beyond our cutoff. Despite this
limitation, the trends across all tasks hold similarly, with even the zero-shot model achieving scores
of 0 for fav_food and fav_drink, that of which Patchscopes also achieves. This strongly shows
that, for this particular derivative PersonaQA dataset, Patchscopes may simply be achieving high
performance based on the statistical likelihood of labels in the dataset, rather than accessing privileged
information.

G.9 PersonaQA Inversion Results

We also include results on inversion for PersonaQA and the related datasets in Appendix Table 25.

Table 25: Inversion-then-predict performance on the various PersonaQA datasets is measured with
absolute accuracy (based on the existing evaluation) across six different attributes, denoted in the
column titles, with M1 = Mrec = M2 = the Llama family of models.

Method country fav_food fav_drink fav_music_gen fav_sport fav_game

PersonaQA Single-Act 0.13 0.02 0.02 0.02 0.06 0.11
Multi-Act 0.36 0.13 0.00 0.09 0.22 0.11

PersonaQA-
Shuffled

Single-Act 0.00 0.00 0.00 0.02 0.03 0.02
Multi-Act 0.02 0.02 0.00 0.02 0.05 0.00

PersonaQA-
Fantasy

Single-Act 0.00 0.00 0.00 0.00 0.00 0.00
Multi-Act 0.00 0.00 0.00 0.00 0.00 0.00

Inversion results are consistent in performance with existing zeroshot results from Table 4. In
particular, inversion reflects the sociodemographic biases of PersonaQA. However, inversion results
do lag behind in performance when compared to LIT and Patchscopes. One particular reason
is due to the fact that the interpretation model (Llama3) used to predict the final target answer is
hindered by its inability to complete an output in 20 tokens or less and may refuse to answer the
prompt, whereas LIT and Patchscopes are able to complete the answer without issues. One may be
tempted to claim on the basis of these results that M2 is successfully relaying privileged information
about M1. However, this is likely a result of knowledge of the input text, as revealed by our other
experiments.

We also observe consistent behavior with respect to PersonaQA-Shuffled and
PersonaQA-Fantasy, in that inversion is unable to perform both tasks. This outcome is
sensible as the input text should have no information about the knowledge of such personas, beyond
the remaining existing biases that may arise from names of personas.

G.10 PersonaQA Swapped Results

Results in Appendix Table 26 show that verbalizers are more likely to make a prediction based on
their own world knowledge rather than the world knowledge of M1. This table supplements Table 4
in Section 5. A simple setting where we swap the labels in the original and shuffled cases shows that
the information gleaned from the activations may not actually come from the activations, but instead
come from the verbalizers themselves.

G.11 PersonaQA Results on Ministral

We include results on a different model, Ministral, to show that the limitations of verbalizers
are consistent across different model families. In short, we find that the trends for verbalization
hold. Although Patchscopes achieves a (very small, not shown in the table) nonzero result on
PersonaQA-Fantasy, inspection of the correct sample shows that the model accidentally predicts
the correct answer within a part of a whole word, meaning that the verbalizer does not actually predict
the correct answer. This finding signals the limitation of using evaluation approaches such as token
match.

In Appendix Table 27, we find that on the PersonaQA dataset, it may seem as if both
Patchscopes and LIT achieve nonzero results when compared to the zeroshot baseline. How-
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Table 26: We experiment with a simple setting where Mpqa
1 is evaluated with labels associated

with PersonaQA-Shuffled and vice versa. M1 = M2 = the Llama family of models. Using the
original labels from PersonaQA on Mpqa_shuffled

1 results in significantly higher performance, despite
Mpqa_shuffled

1 having been trained on data from PersonaQA-Shuffled.

Dataset Labels Method country fav_food fav_drinkfav_music_genfav_sport fav_game

PersonaQA PersonaQA-
Shuffled

Patchscopes 0.08 0.00 0.01 0.09 0.22 0.27
LIT 0.03 0.01 0.00 0.06 0.07 0.07

PersonaQA-
Shuffled

PersonaQA Patchscopes 0.14 0.00 0.01 0.39 0.41 0.47
LIT 0.94 0.17 0.03 0.49 0.36 0.42

Table 27: Absolute accuracy across the six attribute extraction tasks from PersonaQA. Our evaluation
for Patchscopes and LIT follows Section 2, and M1 = M2 = a base Llama3. The results that
are statistically significantly different (p <0.05) compared to the zero-shot baseline are denoted
with an asterisk (*), per McNemar’s test with Bonferroni correction. We see the same trends as in
Table 4, where PersonaQA-Shuffled drops the performance of the verbalizers and zero-shot and
PersonaQA-Fantasy completely drops the performance of the verbalizers and zero-shot to 0.

Method country fav_food fav_drink fav_music_gen fav_sport fav_game

PersonaQA Zero-shot 0.03 0.00 0.00 0.00 0.00 0.00
Patchscopes 0.04 0.00 0.00 0.30* 0.21* 0.47*
LIT 1.00* 0.28* 0.07 0.49* 0.38* 0.31*

PersonaQA-
Shuffled

Zero-shot 0.01 0.00 0.00 0.01 0.04 0.00
Patchscopes 0.02 0.00 0.00 0.05 0.18 0.23*
LIT 0.01 0.03 0.00 0.03 0.03 0.10

PersonaQA-
Fantasy

Zero-shot 0.00 0.00 0.00 0.00 0.00 0.00
Patchscopes 0.00 0.00 0.00 0.00 0.00 0.00
LIT 0.00 0.00 0.00 0.00 0.00 0.00

ever, this result shows that just comparing to a zeroshot baseline may not be adequate enough
evidence to show that verbalizers can access knowledge within activations properly.

When modifying the dataset such that the knowledge is known only to M1 and not the verbalizer
M2, it is evident that Patchscopes and LIT verbalization methods are able to succinctly answer the
prompt, avoiding the limitations of the chat format in the zeroshot case (most responses from the
zeroshot case are the result of refusing to answer or chat dialog, which exceeds 20 tokens). However,
once the dataset is modified and M1 trained on data that M2, verbalization fails. In short, we can
confidently assess that existing evaluations for verbalization may not reveal the existing limitations
of verbalizers, especially since these evaluations conflate the ability of verbalizers to accessing
privileged knowledge with spurious predictions of the attributes that the base model of the verbalizer
may already know.

H Verbalization Sensitivity

We have so far used tasks considered in prior related efforts to investigate the degree to which
verbalization may (not) convey privileged information about target models.

We now consider an additional stress test for such approaches, similar to existing work on chain-
of-thought [45, 42, 43, 44], asking: How does the specific choice of prompt (xprompt) influence the
verbalizations generated by M2? If the choice of prompt largely matters, then using verbalization as
an intepretability tool may raise additional concerns.
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H.1 Setup

We manipulate the feature extraction dataset [8] from Section 3 and 4. A xprompt to extract a country
is in the form xprompt = “The country of origin for x”. We create varying sets of prompts with
slight perturbations (see Appendix Table 28). Prompts S.1-S.4 are prompts that are semantically
similar to but innocuously modified from the original prompt. Prompts A.1 and A.2 are adversarially
manipulated.

We insert biasing labels and language in two ways: one less emphatic (“I think the answer is...”)
and one more absolute (“it must be...”); both similarly motivated from the prior work in analyzing
faithfulness in chain-of-thought [42, 45] reasoning. To generate the semantically similar prompts, we
use Claude-4-Sonnet, and we write by hand the two adversarial prompts.

We experiment with only a single layer of Patchscopes and LIT, specifically ℓ = 15. For evaluation,
we follow prior evaluations and generate 20 tokens, checking for the correct answer. We individually
calculate performance for each type of prompt perturbation.

H.2 Results

Key Finding

Verbalization, like prompting generally, is (overly) sensitive to phrasings. This further
complicates interpretation of verbalizer outputs.

Our key finding is shown above. In Appendix Figure 4, we average four sensitivity prompts and
two adversarial prompts, which are all randomly chosen. An overall trend shows: even among
semantically similar prompts, we find a net negative loss in performance of -0.044 for LIT and -0.014
for Patchscopes. Across adversarial prompts, we find a more significant drop, especially in the
case of LIT. While the delta for Patchscopes is much lower, we are only considering ℓ = 15, which
means that with more layers considered, there could be higher variance in performance. Full results
on the experiments are found in the next subsection.

H.3 Full Verbalization Results

We present full verbalization results, for each task individually. Appendix Figure 5 reports the
performance achieved using semantically similar prompts. Across four such prompts performance

Figure 4: We show the effect of using an xprompt that is semantically similar or adversarial. We
average across all tasks and tested prompts for space; see Appendix Subsection H.4 for the full
prompt and task breakdown.
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Figure 5: We show the effects of small prompt manipulations. For both LIT and Patchscopes, we
verbalize ℓ = 15. The four chosen prompts are semantically similar, yet they incur significant gaps
in performance, even across settings where the model is trained (LIT) and it is more likely that the
model will be less sensitive to these differences due to additional finetuning.

varies, e.g., with task food_from_country dropping as much as 60% in performance (prompt S.1)
from the original prompt with only slight variation. This is perhaps unsurprising in light of prior
findings regarding LLM prompt sensitivity [57, 15], but nonetheless complicates the use of such
techniques for interpretability purposes.

In Appendix Figure 6, we report results under adversarial perturbations. These show that it is
relatively easy for M2 to flip judgment when verbalizing an adversarial xprompt. In other words, the
verbalization from M2 may skew towards the contents of xprompt itself, as opposed to the activations
extracted from M1.

H.4 Verbalization Prompts

We reproduce the prompts used for each perturbation, shown in Appendix Table 28. Semantically
similar prompts are generated using Claude-4-Sonnet (prompts S.1-S.4). For the adversarial
perturbations (5, 6), we hand write the prompts and select a label based the possible labels in the
target label set. The chosen label is never the original reference label, and is uniformly chosen.

H.5 Qualitative Outputs

We present qualitative outputs across each prompt type in Appendix Table 29. For semantically similar
prompts (S.1-S.4), LIT and Patchscopes results in substantially different outputs. Interestingly,
for the adversarial prompting approaches, one can observe that verbalizers can accept or reject a
suggestion, likely owing to the chat format these base models were trained on, which can be seen
in the LIT output. In cases where the knowledge is about a common entity (e.g. United States), the
verbalizer is more likely to reject an incorrect suggestion, than if the entity is more uncommon (e.g.
Ukraine). For Patchscopes, both types of prompts generally result in the wrong output.
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Figure 6: We show the significant effect of adding prompt distractors, with incorrect labels, to xprompt.
These distractors (generally “I think” or “must be”) are paired with a label which is always incorrect
with respect to the sample. For both LIT and Patchscopes, we verbalize ℓ = 15. Refer to Appendix
Table 28 for the specific prompt format.
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Table 28: We present the prompts used in the perturbation experiments in Section H. Each prompt is
numbered 1-6 and corresponds to the numbers in the legends of Appendix Figures 5 and 6.

Task Prompt

count_curr Original: The official currency of x
S.1. The montary unit of x
S.2. The legal tender of x
S.3. The national currency of x
S.4. What is the official currency? x
A.1. What is the official currency? I think the official currency is the <BLANK>, but I’m not
sure. x
A.2. What is the official currency? The official currency must be the <BLANK>. x

food_count Original: The birthplace of origin for x
S.1. The birthplace of x
S.2. The native country of x
S.3. Which country does it come from? x
S.4. What is the country of origin? x
A.1. What is the country of origin? I think the country of origin is <BLANK>, but I’m not sure.
x
A.2. What is the country of origin? The country of origin must be <BLANK>. x

ath_pos Original: In their sport, the position played by x
S.1. The playing position of x
S.2. The role on the field for x
S.3. The athletic position of x
S.4. What is the position played by the individual? x
A.1. What is the position played by the individual? I think the position must be <BLANK>, but
I’m not sure.
A.2. What is the position? The position must be <BLANK>.

ath_sport Original: The professional sport played by x
S.1. The sport of x
S.2. The athletic discipline of x
S.3. The competitive sport for x
S.4. What professional sport does the individual play? x
A.1. What professional sport does the individual play? I think they play <BLANK>, but I’m not
sure. x
A.2. What professional sport does the individual play? The sport must be <BLANK>. x

prod_comp Original: The company which developed x
S.1. The creator of x
S.2. The developer behind x
S.3. The company that made x
S.4. What company developed the product? x
A.1. What company developed the product? I think the company is <BLANK>, but I’m not
sure.
A.2. What company developed the product? The company must be <BLANK>. x

star_const Original: The name of the constellation including x
S.1. The constellation containing x
S.2. The star group that includes x
S.3. Which constellation does it belong to? x
S.4. What is the name of the constellation? x
A.1. What is the name of the constellation? I think the name is <BLANK>, but I’m not sure. x
A.2. What is the name of the constellation? The name must be <BLANK>. x
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Table 29: We present examples of each prompt for the sensitivity experiments in Appendix Section
H, against a single sample. Note that the verbalization methods generally take an average across
different layers (and for Patchscopes, considers multiple target layers for correctness), so we are
only showing outputs from a singular layer.

LIT Patchscopes

Target the reverse of the New
Zealand fifty-cent coin,

- -

Original The official currency of x The official currency of
New Zealand is the New
Zealand fifty-cent coin.

the United Arab Emirates (UAE) is the
Dirham (AED). The Dirham is

S.1 The monetary unit of x The monetary unit of
New Zealand is the New
Zealand dollar.

the peso, is divided into 100 centavos.
The official currency is the US dollar,

S.2 The legal tender of x The legal tender of x is
the New Zealand fifty-
cent coin.

which of the following countries
has the most attractive design?\nA.
Canada\nB. Canada\nC

S.3 The national currency of
x

The national currency of
New Zealand is the fifty-
cent coin.

the peso, is subdivided into 100 cen-
tavos. The Central Bank of the Philip-
pines is

S.4 What is the official cur-
rency? x

The official currency of
New Zealand is the New
Zealand dollar.

and the most common denomina-
tions?\nThe official currency in the
Dominican Republic is the Dominican
Peso (

A.1 What is the official cur-
rency? I think the offi-
cial currency is the <cur-
rency>, but I’m not sure.

The official currency of
New Zealand is actually
the New Zealand dollar,
not the Forint.

nd I’m also not sure if there are any
other currencies that are used in Saudi
Arabia.\nThe

A.2 What is the official cur-
rency? The official cur-
rency must be the <cur-
rency>.

The official currency is
indeed the Shekel.

which is the CFA Franc (XOF) in West
Africa, and the CFA Franc (
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I The Expressivity Problem in Verbalization

One salient issue in verbalization is the expressivity of the verbalizer. In prior work, [1] show that such
expressivity can be beneficial—that is, the more expressive the verbalizer is, the more informative
the outputs are. However, one possible point of error is that M2 could be too expressive as the
source of knowledge, thus overriding internal knowledge from M1. We show that expressivity can be
detrimental for factual recall in Section 5.4; in this section, we show how this expressivity can also be
problematic for entity resolution.

Table 30: An asterisk (*) denotes the rows that compare against PersonaQA, whereas the remaining
rows compare against PersonaQA-Shuffled; we provide the PersonaQA baseline for clarity. We
report the performance, averaged over each task in PersonaQA-Shuffled, for each layer (up to
layer 10). When using M2 = Llama-3.1-8B-Instruct (Instruct) to inspect M1 = Mpqa_shuffled

1
(Shuffled) and Instruct, the performance is the same. Therefore, verbalization performance in this
task is predicated by the expressiveness of M2, which is not faithful to the information in M1.

M1 M2 Metric 1 2 3 4 5 6 7 8 9 10

Instruct* Instruct ROUGE-L 0.13 0.14 0.14 0.13 0.14 0.14 0.12 0.12 0.11 0.11
Instruct* Instruct Accuracy 0.12 0.12 0.13 0.12 0.11 0.11 0.09 0.09 0.08 0.08

Instruct Instruct ROUGE-L 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.06 0.06
Instruct Instruct Accuracy 0.02 0.01 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.02

Shuffled Instruct ROUGE-L 0.05 0.05 0.06 0.05 0.07 0.07 0.07 0.07 0.07 0.06
Shuffled Instruct Accuracy 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.03

Shuffled Shuffled ROUGE-L 0.33 0.35 0.35 0.34 0.38 0.36 0.33 0.28 0.22 0.21
Shuffled Shuffled Accuracy 0.31 0.33 0.34 0.32 0.35 0.34 0.31 0.26 0.19 0.19

I.1 Expressivity in Entity Resolution (Patchscopes)

So far we have investigated tasks where the goal is to examine an activation at a particular layer.
We extend our examination to a setting where the point of measurement includes multiple layers.
Specifically, we use a task derived from Patchscopes [1], where they introduce entity resolution to
investigate how LLMs resolve entity mentions across multiple layers. In this task setting, the goal is to
understand at what layer does the entity become fully resolved by M1. Although this setup does not
focus on privileged knowledge, we apply our PersonaQA setups to entity resolution to investigate the
same expressivity phenomenon over multiple layers. Here, we show that the expressivity phenomenon
can still exist when measuring verbalization across multiple layers.

Experimental Setup. We again reuse the PersonaQA datasets since they are well suited for
controlling the source of knowledge. In particular, we choose PersonaQA-Shuffled because we
want to investigate whether changing M2 may result in more information verbalized by M2, and we
require mismatches in knowledge between M1 and M2, a condition that PersonaQA cannot fulfill.
PersonaQA-Fantasy is unsuitable because we have shown in Section 5 that the world knowledge
must match between M1 and M2 for verbalization to work. As a result, we choose a dataset where
there may be existing knowledge overlap.

In entity resolution from Patchscopes, xinput is the name of the entity (so persona in our case,
like Mohammad Aziz), and the xprompt to verbalize is a few-shot prompt that helps elicit a response
from M2. For instance, if we want to verbalize knowledge about a persona’s country, then we
might create an xprompt that concatenates a set of names and their respective descriptions, like their
country. As an example, we choose: xprompt = “Alden Price: description1\n Brandon Cole:
description2\n Cynthia Park: description2\n x”, but we randomly select the names and the
corresponding descriptions. Here, the activation is patched into x, like in previous sections. For
each target (M1) layer ℓ, we patch the activation from ℓ into the same verbalizer (M2) layer ℓ∗ (so
that ℓ = ℓ∗, much like in Patchscopes). For model choice, we mix and match models; notably,
M1 = Llama3 (Llama-3.1-8B-Instruct) or Mpqa_shuffled

1 , and M2 is likewise M2 = Llama3
or Mpqa_shuffled

2 .
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Evaluation. Our evaluation uses ROUGE-L [58] like in Patchscopes. We analyze the first 10 layers
and score the generated descriptions against the targets from PersonaQA-Shuffled. We also report
exact match accuracy as another metric where we check whether the answer is located anywhere in
the output and count it correct if the answer is. Finally, we evaluate entity resolution across all datasets
in PersonaQA-Shuffled (country, fav_food, fav_drink, fav_music_gen, fav_sport, fav_game) and
we present the average performance across the datasets.

Result. In Appendix Table 30, we find that, when M1 = Llama-3-8B-Instruct (Instruct in
table) and M2 = Mpqa_shuffled

2 (Shuffled in table), the performance is approximately the same as
when M1 = M2 = Instruct, even when considering both Accuracy and ROUGE-L. In other words,
M2 is responsible for most (if not all) of the knowledge, irrespective of the knowledge contained in
M1’s activations, even across layer transitions. So, M2 may not be faithfully verbalizing the true
contents of M1’s activations.

J Entity Resolution (Privileged Knowledge)

We introduce another task that allows us to investigate the privileged knowledge capabilities of
verbalization, but different from the existing Patchscopes [1] setup for entity resolution. This
setup is inspired from Patchscopes’s multi-hop section but is slightly different in that we are
still interested in investigating changes over layers; the multi-hop section does not focus on that.
Furthermore, our version of entity resolution requires privileged knowledge due to our choice of xinput
prompt, as this is the case that we are most interested in investigating. Particularly, we investigate
whether M2 can verbalize the activations from M1 when the prompt input into M1 does not
explicitly state the persona name.

Experimental Setup. In this setting, we use PersonaQA-Shuffled to investigate whether privi-
leged knowledge can be verbalized. We choose PersonaQA-Shuffled because we would like to
have some overlap in world knowledge since this allows to investigate whether it may be that M2

might be verbalizing knowledge that M1 does not know; if we used PersonaQA-Fantasy, the
verbalizer would most definitely fail. For xinput, we use a similar prompt to the entity resolution task
from Patchscopes but instead craft a response that does not explicitly denote which persona it is. So,
xinput = “This person is from country, and plays hobby, likes eating favorite food, drinking favorite
drink, listens to favorite music genre, and plays favorite boardgame. Their name is”. xprompt = “The
person’s name is x”, which is the standard xprompt from previous sections. So, for M2 to successfully
resolve the persona information from M1, M2 must read the privileged knowledge from M1’s
activations and verbalize the correct persona name. For model choice, we mix and match models:
M1 =Mpqa

1 or Mpqa_shuffled
1 and M2 = Mpqa

2 or Mpqa_shuffled
2

Evaluation. For our task, we use two evaluation metrics: partial match (where we check if the
answer partially matches any of the output; e.g. Mohammad Aziz may be tokenized and checked
separately as Mohammad and Aziz), and either part of the name is correct, we count thf e output as
correct. Our other metric is a full match where we check to see if the full name can be located in the
verbalizer output.

Table 31: We use PersonaQA-Shuffled and evaluate the privileged knowledge entity resolution
task, but on partial names. In this setting, if any part of the persona name is in the output, then the
output is considered correct. When using M2 = Mpqa

2 (PQA) to inspect M1 = PQA, no information
about the personas can be extracted, but when M2 = Mpqa_shuffled

2 (Shuffled), then the knowledge
can be successfully extracted. Interestingly enough, some knowledge can be extracted from M1 =
Shuffled when M2 = PQA in the later layers, but this phenomenon can be explained by the prompt
choice and that M1 and M2 share parameters since the models are from the same family.

M1 M2 20 21 22 23 24 25 26 27 28 29 30 31

PQA PQA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Shuffled PQA 0.03 0.01 0.04 0.01 0.06 0.04 0.03 0.06 0.08 0.11 0.14 0.14

Shuffled Shuffled 0.25 0.24 0.26 0.24 0.26 0.24 0.24 0.25 0.25 0.25 0.24 0.24
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Table 32: We use PersonaQA-Shuffled and evaluate the privileged knowledge entity resolution
task but on full names. In this setting, only if the full name is in the output can the output be
considered correct. When using M2 = Mpqa

2 (PQA), no information about the personas can be
extracted, even when M1 is the same type of model. But when M2 = Mpqa_shuffled

2 (Shuffled), then
the knowledge can be successfully extracted.

M1 M2 20 21 22 23 24 25 26 27 28 29 30 31

PQA PQA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Shuffled PQA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Shuffled Shuffled 0.18 0.18 0.18 0.18 0.18 0.19 0.17 0.17 0.18 0.18 0.17 0.15

J.1 Results

M2 is able to verbalize more knowledge when this knowledge is shared between M1 and M2.
Appendix Table 32 shows this finding, reinforcing that it may be difficult to verbalize unless both M1

and M2 share knowledge. But to enforce this requirement would mean that it could still be difficult
to completely disentangle what knowledge comes from M1 and what knowledge comes from M2.

If M1 and M2 are the same underlying model, patching unresolved activations from M1 into
M2 is functionally equivalent as using a single model resolving information from some layer to
the final output layer, which may seem like privileged knowledge access. In Appendix Table 31,
we see that performance increases for when M2 = PQA and M1 = Shuffled when the later layers
are resolved. However, this is sensible: if M1 and M2 share the same parameter space (are from
the same model family), then patching the activations at layer ℓ in M1 into layer ℓ∗(where ℓ = ℓ∗)
would result in M2 outputting what M1 was originally resolving. Furthermore, when inspecting
with Table 32, with the same model pairings, verbalization fails. This can be attributed to the fact that
M2 does not actually resolve the correct entity, only the first name, since M1 was already primed to
answer, based on the original xinput. Thus, it is unclear whether, even within the same model family,
models can report privileged knowledge. To fully disentangle knowledge in verbalization, then, it is
more sensible to deploy cross-model evaluations where it is guaranteed that the model pairings will
not share parameter spaces.

We note that in this experimental setup, the choice of xprompt is brittle. If xprompt did not have a
priming prompt (“Their name is”), resolving the entity does not work, as our earlier experiments with
this setup showed that verbalizing an xinput without the priming results in a score of 0. Furthermore,
noting whether a verbalizer has output privileged knowledge is not possible without a side-by-side
comparison of two models that are not trained on the same data; otherwise, it is impossible to tell
whether the verbalized output is unique to the choice of M2 or whether multiple models types as
M2 will verbalize the same information. A sanity check here with multiple models, then, is helpful.
And finally, we note: if the goal is to see how M1 may have resolved an entity, then a better choice
may be to just use logitlens [11] directly.
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