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Abstract

Uncertainty Quantification (UQ) is essential for creating trustworthy machine
learning models. Recent years have seen a steep rise in UQ methods that can
flag suspicious examples, however, it is often unclear what exactly these methods
identify. In this work, we propose a framework for categorizing uncertain examples
flagged by UQ methods in classification tasks. We introduce the confusion density
matrix—a kernel-based approximation of the misclassification density—and use
this to categorize suspicious examples identified by a given uncertainty method
into three classes: out-of-distribution (OOD) examples, boundary (Bnd) examples,
and examples in regions of high in-distribution misclassification (IDM). Through
extensive experiments, we show that our framework provides a new and distinct
perspective for assessing differences between uncertainty quantification methods,
thereby forming a valuable assessment benchmark.

1 Introduction

Black-box parametric models like neural networks have achieved remarkably good performance
on a variety of challenging tasks, yet many real-world applications with safety concerns—e.g.
healthcare [1], finance [2, 3] and autonomous driving [4, 5]—necessitate reliability. These scenarios
require trustworthy model predictions to avoid the high cost of erroneous decisions.

Uncertainty quantification [6–10] addresses the challenge of trustworthy prediction through inspecting
the confidence of a model, enabling intervention whenever uncertainty is too high. Usually, however,
the cause of the uncertainty is not clear. In this work, we go beyond black-box UQ in the context
classification tasks and aim to answer two questions:

1. How do we provide a more granular categorization of why uncertainty methods to identify
certain predictions as suspicious?

2. What kind of examples do different UQ methods tend to mark as suspicious?

Categorizing Uncertainty We propose a Density-based Approach for Uncertainty Categorization
(DAUC): a model-agnostic framework that provides post-hoc categorization for model uncertainty.
We introduce the confusion density matrix, which captures the predictive behaviors of a given model.
Based on such a confusion density matrix, we categorize the model’s uncertainty into three classes:
(1) OOD uncertainty caused by OOD examples, i.e. test-time examples that resemble no training-time
sample [11–14]. Such uncertainty can be manifested by a low density in the confusion density matrix;
(2) Bnd uncertainty caused by neighboring decision boundaries, i.e., non-conformal predictions
due to confusing training-time resemblances from different classes or inherent ambiguities making
it challenging to classify the data [15–17]; Such uncertainty can be manifested by the density of
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Figure 1: Given a prediction and UQ algorithm, our method divides flagged test time examples into different
classes. Class OOD identifies outliers, which are mistrusted because they do not resemble training data; class
IDM indicates examples lying in regions with high misclassification; class Bnd indicates examples that lie near
the decision boundary.

diagonal elements in the confusion density matrix; (3) IDM uncertainty caused by imperfections in the
model—as manifested by high misclassification at validation time—such that similar misclassification
is to be expected during testing [18]. Such uncertainty can be manifested by the density of off-diagonal
elements in the confusion density matrix. Figure 1 illustrates the different classes and in Section 4 we
provide visualisations using real data. We show how DAUC can be used to benchmark a broad class
of UQ methods, by categorizing what each method tends to flag as suspicious.

Our contributions can be summarized as follows:

1. Formally, we propose the confusion density matrix—the heart of DAUC—that links the
training time error, decision boundary ambiguity, and uncertainty with latent representation
density.

2. Practically, we leverage DAUC as a unified framework for uncertain example categorization.
DAUC offers characterisation of uncertain examples at test time.

3. Empirically, we use DAUC to benchmark existing UQ methods. We manifest different
methods’ sensitivity to different types of uncertain examples, this provides model insight
and aids UQ method selection.

2 Related Work

Uncertainty Quantification Uncertainty quantification methods are used to assess the confidence
in a model’s predictions. In recent years the machine learning community has proposed many methods
which broadly fall into the following categories: (1) Ensemble methods (i.e. Deep Ensembles [6]),
which—while considered state of the art—have a high computational burden; (2) Approximate
Bayesian methods (i.e. Stochastic Variational Inference [7–9]), however work by [19–21] suggests
these methods do not yield high-quality uncertainty estimates; and (3) Dropout-based methods such
as Monte Carlo Dropout [10], which are simpler as they do rely on estimating a posterior, however the
quality of the uncertainty estimates is linked to the choice of parameters which need to be calibrated
to match the level of uncertainty and avoid suboptimal performance [22]. For completeness we note
that whilst conformal prediction [23] is another UQ method, the paradigm is different from the other
aforementioned methods, as it returns predictive sets to satisfy coverage guarantees rather than a
value-based measure of uncertainty.

In practice, the predictive uncertainty for a model prediction arises from the lack of relevant training
data (epistemic uncertainty) or the inherent non-separable property of the data distribution (aleatoric
uncertainty) [24–26]. This distinction in types of uncertainty is crucial as it has been shown that
samples with low epistemic uncertainty are more likely under the data distribution, hence motivating
why epistemic uncertainty has been used for OOD/outlier detection [10]. Moreover, ambiguous
instances close to the decision boundary typically result in high aleatoric uncertainty [27].

This suggests that different sets of uncertain data points are associated with different types of
uncertainties and, consequently, different types of misclassifications. Furthermore, it is to be expected
that different uncertainty estimators are more able/prone to capturing some types of uncertainty than
others. To understand these models better, we thus require a more granular definition to characterize
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Table 1: Comparison with related work in UQ. We aim to provide a flexible framework for inspecting mistrusted
examples identified by uncertainty estimators. Furthermore, this framework enables us to improves the prediction
performance on a certain type of flagged uncertain class.

Method Model Uncertainty Categorize Improve ExamplesStructure Estimation Uncertainty Prediction

BNNs Bayesian Layers ✓ · · [8, 9]
GP Gaussian Processes ✓ · · [39]

MC-Dropout Drop-Out Layers ✓ · · [10]
Deep-Ensemble Multiple Models ✓ · · [6]

ICP Model “Wrapper” ✓ · · [23, 40],
Performance Prediction Multiple Predictive Models ✓ · · [37, 18]

DAUC Assumption 1 ✓ ✓ ✓ (Ours)

uncertain data points. We employ three classes: outliers (OOD), boundary examples (Bnd) and
examples of regions with high in-distribution misclassification (IDM), see Fig 1.

Out-of-distribution (OOD) detection Recall that UQ methods have been used to flag OOD
examples. For completeness, we highlight that other alternative methods exist for OOD detection. For
example, Lee et al. [28] detects OOD examples based on the Mahalanobis distance, whilst Ren et al.
[29] uses the likelihood ratio between two generative models. Besides supervised learning, OOD is
an essential topic in offline reinforcement learning [30–35]. Sun et al. [36] detects the OOD state in
the context of RL using confidence intervals. We emphasize that DAUC’s aim is broader—creating a
unifying framework for categorizing multiple types of uncertainty—however, existing OOD methods
could be used to replace DAUC’s OOD detector.

Accuracy without Labels We contrast our work to the literature which aims to determine model
accuracy without access to ground-truth labels. Methods such as [37, 38] propose a secondary
regression model as an accuracy predictor given a data sample. Ramalho and Miranda [18] combine
regression model with latent nearest neighbors for uncertain prediction. This is different from our
setting which is focused on inspecting UQ methods on a sample level by characterizing it as an
outlier, boundary, or IDM example. We contrast DAUC with related works in Table 1.

3 Categorizing Model Uncertainty via Latent Density

3.1 Preliminaries

We consider a typical classification setting where X ⊆ RdX is the input space and Y = [0, 1]C is
the set of class probabilities, where dX is the dimension of input space and C ∈ N∗ is the number
of classes. We are given a prediction model f : X → Y that maps x ∈ X to class probabilities
f(x) ∈ Y . An uncertainty estimator u : X → [0, 1] quantifies the uncertainty of the predicted
outcomes. Given some threshold τ , the inference-time predictions can be separated into trusted
predictions {x ∈ X |u(x) < τ} and untrusted predictions {x ∈ X |u(x) ≥ τ}. We make the
following assumption on the model architecture of f .
Assumption 1 (Model Architecture). Model f can be decomposed as f = φ ◦ l ◦ g, where g : X →
H ⊆ RdH is a feature extractor that maps the input space to a dH < dX dimensional latent (or
representation) space, l : H → RC is a linear map between the latent space to the output space and
φ : RC → Y is a normalizing map that converts vectors into probabilities.
Remark 1. This assumption guarantees that the model is endowed with a lower-dimensional
representation space. Most modern uncertainty estimation methods like MCD, Deep-Ensemble, BNN
satisfy this assumption. In the following, we use such a space to categorize model uncertainty.

We assume that the model and the uncertainty estimator have been trained with a set of N ∈ N∗

training examples Dtrain = {(xn, yn) | n ∈ [N ]}. At inference time the underlying model f and
uncertainty method u predict class probabilities f(x) ∈ Y and uncertainty u(x) ∈ [0, 1], respectively.
We assign a class to this probability vector f(x) with the map class : Y → [C] that maps a
probability vector y to the class with maximal probability class[y] = argmaxc∈[C] yc. While
uncertainty estimators flag examples to be trustworthy or not, those estimators do not provide a
fine-grained reason for what a certain prediction should not be mistrusted. Our aim is to use the
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model’s predictions and representations of a corpus of labelled examples—which we will usually
take to be the training (Dtrain) or validation (Dval) sets—to categorize inference-time uncertainty
predictions. To that aim, we distinguish two general scenarios where a model’s predictions should be
considered with skepticism.

3.2 Flagging OOD Examples

There is a limit to model generalization. Uncertainty estimators should be skeptical when the input
x ∈ X differs significantly from input examples that the model was trained on. From an UQ
perspective, the predictions for these examples are expected to be associated with a large epistemic
uncertainty.

A natural approach to flagging these examples is to define a density p (· | Dtrain) : X → R+ over
the input space. This density should be such that p (x | Dtrain) is high whenever the example
x ∈ X resembles one or several examples from the training set Dtrain. Conversely, a low value for
p (x | Dtrain) indicates that the example x differs from the training examples. Of course, estimating
the density p (x | Dtrain) is a nontrivial task. At this stage, it is worth noting that this density does
not need to reflect the ground-truth data generating process underlying the training set Dtrain. For
the problem at hand, this density p (x | Dtrain) need only measure how close the example x is to the
training data manifold. A common approach is to build a kernel density estimation with the training
set Dtrain. Further, we note that Assumption 1 provides a representation space H that was specifically
learned for the classification task on Dtrain. In Appendix A.1, we argue that this latent space is
suitable for our kernel density estimation. This motivates the following definition for p (· | Dtrain).
Definition 1 (Latent Density). Let f : X → Y be a prediction model, let g : X → H be the feature
extractor from Assumption 1 and let κ : H × H → R+ be a kernel function. The latent density
p (· | D) : X → R+ is defined over a dataset D as:

p (x | D) ≡ 1

N

∑
x̃∈D

κ [g(x), g(x̃)] (1)

Test examples with low training density are likely to be underfitted for the model — thus should not
be trusted.
Definition 2 (OOD Score). The OOD Score TOOD is defined as

TOOD(x) ≡
1

p(x|Dtrain)
(2)

For a test example x ∈ Dtest, if TOOD(x|Dtrain) ≥ τOOD the example is suspected to be an outlier
with respect to the training set. We set τOOD = 1

minx′∈Dtrain
p(x′|Dtrain)

, i.e. a new sample’s training
density is smaller than the minimal density of training examples.

3.3 Flagging IDM and Boundary Examples

Samples that are not considered outliers, yet are given high uncertainty scores, we divide up further
into two non-exclusionary categories. The first category consists of points located near the boundary
between two or more classes, the second consists of points that are located in regions of high
misclassification.

For achieving this categorization, we will use a separate validation set Dval. We first partition the vali-
dation examples according to their true and predicted label. More precisely, for each couple of classes
(c1, c2) ∈ [C]2, we define the corpus Cc1 7→c2 ≡ {(x, y) ∈ Dval | class[y] = c1 ∧ class[f(x)] = c2}
of validation examples whose true class is c1 and whose predicted class is c2. In the case where these
two classes are different c1 ̸= c2, this corresponds to a corpus of misclassified examples. Clearly,
if some example x ∈ X resembles one or several examples of those misclassification corpus, it
is legitimate to be skeptical about the prediction f(x) for this example. In fact, keeping track of
the various misclassification corpora from the validation set allows us to have an idea of what the
misclassification is likely to be.

In order to make this detection of suspicious examples quantitative, we will mirror the approach
from Definition 1. Indeed, we can define a kernel density p (· | Cc1 7→c2) : X → R+ for each corpus
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Cc1 7→c2 . Again, this density will be such that p (· | Cc1 7→c2) is high whenever the representation of the
example x ∈ X resembles the representation of one or several examples from the corpus Cc1 7→c2 . If
this corpus is a corpus of misclassified examples, this should trigger our skepticism about the model’s
prediction f(x). By aggregating the densities associated with each of these corpora, we arrive at the
following definition.
Definition 3 (Confusion Density Matrix). Let f : X → Y be a prediction model, let g : X → H
be the feature extractor from Assumption 1 and let κ : H × H → R+ be a kernel function. The
confusion density matrix P (· | Dval) : X → (R+)C×C is defined as

Pc1,c2 (x | Dval) ≡ p (x | Cc1 7→c2) =
1

|Cc1 7→c2 |
∑

x̃∈Cc1 7→c2

κ[g(x), g(x̃)],∀(c1, c2) ∈ [C]2 (3)

Remark 2. The name confusion density is chosen to make a parallel with confusion matrices. Like
confusion matrices, our confusion density indicates the likelihood of each couple (c1, c2), where c1 is
the true class and c2 is the predicted class. Unlike confusion matrices, our confusion density provides
an instance-wise (i.e. for each x ∈ X ) likelihood for each couple.

3.3.1 Bnd examples

By inspecting the confusion matrix, we can quantitatively distinguish two situations where the
example x ∈ X is likely to be mistrusted. The first situation where high uncertainty arises, is when
g(x) is close to latent representations of validation examples that have been correctly assigned a label
that differs from the predicted one class[f(x)]. This typically happens when g(x) is located close to a
decision boundary in latent space. In our validation confusion matrix, this likelihood that x is related
to validation examples with different labels is reflected by the diagonal elements. This motivates the
following definition.
Definition 4 (Boundary Score). Let P (x | Dval) be the confusion density matrix for an example
x ∈ X with predicted class ĉ = class[f(x)]. We define the boundary score as the sum of each density
of well-classified examples from a different class:

TBnd(x) =

C∑
c̸=ĉ

Pc,c (x | Dval) . (4)

Points are identified as Bnd when TBnd > τBnd—see Appendix A.2.

3.3.2 IDM examples

The second situation is the one previously mentioned: the latent representation g(x) is close to latent
representations of validation examples that have been misclassified. In our validation confusion
matrix, this likelihood that x is related to misclassified validation examples is reflected by the
off-diagonal elements. This motivates the following definition.
Definition 5 (IDM Score). Let P (x | Dval) be the confusion density matrix for an example x ∈ X .
We define the IDM score as the sum of each density corresponding to a misclassification of the
predicted class ĉ = class f(x) in the confusion density matrix:

TIDM(x) =

C∑
c̸=ĉ

Pc,ĉ (x | Dval) . (5)

Points are identified as IDM when TIDM > τIDM. We choose τIDM such that the proportion of IDM
points in the validation set equals the number of misclassified examples. Details for definitions and
choices of thresholds are provided in Appendix A.2.
Remark 3. Note that the definitions of Bnd examples and IDM examples do not exclude each other,
therefore, an uncertain example can be flagged as a Bnd example, an IDM example, or flagged as
both Bnd and IDM (B&I). To make this distinction clear, we will refer to the disjoint classes as:

SBnd = {x|x ∈ Dtest, TBnd(x) > τBnd, TIDM(x) ≤ τIDM}
SIDM = {x|x ∈ Dtest, TBnd(x) ≤ τBnd, TIDM(x) > τIDM}
SB&I = {x|x ∈ Dtest, TBnd(x) > τBnd, TIDM(x) > τIDM}

Test examples that are flagged by uncertainty method u—yet do not meet any of the thresholds—are
marked as Other.
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In a nutshell DAUC uses the OOD, IDM and Bnd classes to categorize model uncertainty—see
Table 2 for an overview. Better predictions may be possible for IDM samples, in case a different
classifier is used. For samples that are also labelled as Bnd, fine-tuning the existing model—possibly
after gathering more data—may be able to separate the different classes better. IDM samples that are
not in the Bnd class are harder, and may only be classified correctly if a different latent representation
is found, or an different training set is used. We explore the idea of improving the performance on
uncertain examples in Appendix B. In Section 4.1 we explore the distinction between classes further.

Table 2: Summary of different uncertainty types

Type Definition Description
OOD 1/p(x|Dtrain) > τOOD Samples that do not resemble the training data. Additional la-

belled data that covers this part of the input space is required to
improve performance on these samples.

Bnd
∑

c̸=ĉ Pc,c(x|Dval) > τBnd Samples near the boundaries in the latent space. Predictions on
these samples are sensitive to small changes in the predictor, and
fine-tuning the prediction model may yield better predictions.

IDM
∑

c̸=ĉ Pc,ĉ(x|Dval) > τIDM Samples that are likely to be misclassified, since similar examples
were misclassified in the validation set.

4 Experiments

In this section, we demonstrate our proposed method with empirical studies. Specifically, we use two
experiments as Proof-of-Concept, and two experiments as Use Cases. Specifically, in Sec. 4.1 we
visualize the different classes of flagged examples on a modified Two-Moons dataset; in Sec. 4.2 we
quantitatively assess DAUC’s categorization accuracy on the Dirty-MNIST dataset [41]; in Sec. 4.3,
we present a use case of DAUC—comparing existing uncertainty estimation benchmarks; in Sec. 4.4,
we demonstrate another important use case of DAUC—improving uncertain predictions.

Our selection of the Dirty-MNIST dataset for empirical evaluation was motivated by the pursuit
of better reproducibility. As an existing publicly available resource, Dirty-MNIST provides gold
labels for boundary classes and OOD examples, making it particularly suitable for benchmarking the
performance of DAUC.

Recognizing the importance of demonstrating the broader applicability of DAUC, we have extended
our evaluation to include results on the Dirty-CIFAR dataset. Details of this additional evaluation
are available in Appendix C.4, where we also describe how we created the dataset. This dataset will
also be made publicly available. Additional empirical evidence that justifies DAUC is provided in
Appendix C.

4.1 Visualizing DAUC with Two-Smiles

4.1.1 Experiment Settings

To highlight the different types of uncertainty, we create a modified version of the Two-Moons dataset,
which we will call “Two-Smiles”. We use scikit-learn’s datasets package to generate 6000 two-moons
examples with a noise rate of 0.1. In addition, we generate two Gaussian clusters of 150 examples
centered at (0, 1.5) and (1,−1) for training, validation and test, and mark them as the positive and
negative class separately. The data is split into a training, validation and test set. We add an additional
1500 OOD examples to the test set, that are generated with a Gaussian distribution centered at (2, 2)
and (−1,−1.5). Overall, the test set counts 4500 examples, out of which 1500 are positive examples,
1500 are negative examples and 1500 are OOD—see Figure 2 (a).

4.1.2 Results

We demonstrate the intuition behind the different types of uncertainty, by training a linear model
to classify the Two-Smiles data—i.e. using a composition of an identity embedding function and
linear classifier, see Assumption 1. Figure 2 (b) shows the test-time misclassified examples. Since
the identity function does not linearly separate the two classes and outliers are unobserved at training
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Figure 2: Visualization of our proposed framework on the Two-Smiles dataset with a linear model.

time, the classifier makes mistakes near class boundaries, in predicting the OOD examples, as well
as the clusters at (0, 1.5) and (1,−1). In Figure 2 (c)-(e), we see that DAUC correctly flags the
OOD examples, boundary examples and the IDM examples. Also note the distinction between
SB&I and SIDM. Slightly fine-tuning the prediction model may yield a decision boundary that
separates the SB&I samples from the incorrect class. On the other hand, this will not suffice for the
SIDM examples—i.e. the clusters at (0, 1.5) and (1,−1)—which require a significantly different
representation/prediction model to be classified correctly.

4.2 Verifying DAUC with Dirty-MNIST:

4.2.1 Experiment Settings

We evaluate the effectiveness of DAUC on the Dirty-MNIST dataset [41]. The training data set is
composed of the vanilla MNIST dataset and Ambiguous-MNIST, containing ambiguous artificial
examples—e.g., digits 4 that look like 9s. The test set is similar but also contains examples from
Fashion-MNIST as OOD examples. The advantage of this dataset is that the different data types
roughly correspond to the categories we want to detect, and as such we can verify whether DAUC’s
classification corresponds to these “ground-truth” labels. Specifically, we deem all examples from
MNIST to be non-suspicious, associate Ambiguous-MNIST with class Bnd, and associate Fashion-
MNIST with class OOD (There are 1, 000 OOD examples out of the 11, 000 test examples). See [41]
for more details on the dataset. We use a 3-layer CNN model with ReLU activation and MaxPooling
as the backbone model in this section.

4.2.2 Results
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Figure 3: (a-c) Box-plots of different data classes and corresponding scores. All values are scaled by being
divided by the maximal value. (d-e) Precision-Recall curves for different choices of thresholds in flagging Bnd
examples and IDM examples.

Flagging Outliers We assume the ground-truth label of all Fashion-MNIST data is OOD. Com-
paring these to the classification by DAUC, we are able to quantitatively evaluate the performance
of DAUC in identifying outliers. We compute precision, recall and F1-scores for different classes,
see Figure 3 (a) and Table 3. All Fashion-MNIST examples are successfully flagged as OOD by
DAUC. In Appendix C.3 we include more OOD experiments, including comparison to OOD detector
baselines.

Table 3: Quantitative results on the Dirty-MNIST dataset. Our proposed method can flag all three classes of
uncertain examples with high F1-Score. The results presented in the table are based on 8 repeated runs.

Category Precision Recall F1-Score

OOD 1.000± 0.000 1.000± 0.000 1.000± 0.000
Bnd 0.959± 0.008 0.963± 0.006 0.961± 0.003
IDM 0.918± 0.039 0.932± 0.024 0.924± 0.012
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Figure 4: Examples of different uncertainty classes SOOD, SIDM, SBnd and SB&I. For better visualization, we
only plot some classes including the outliers. t-SNE [42] is leveraged in generating low-dim visualizations.

Flagging Bnd Examples We expect most of the boundary examples to belong to the Ambiguous-
MNIST class, as these have been synthesised using a linear interpolation of two different digits in
latent space [41]. Figure 3 (b) shows that DAUC’s boundary scores are indeed significantly higher in
Ambiguous-MNIST compared to vanilla MNIST. Figure 3 (d) shows the precision-recall curve of
DAUC, created by varying threshold τBnd. Most boundary examples are correctly discovered under a
wide range of threshold choices. This stability of uncertainty categorization is desirable, since τBnd

is usually unknown exactly.

Flagging IDM Examples In order to quantitatively evaluate the performance of DAUC on flagging
IDM examples, we use a previously unseen hold-out set, which is balanced to consist of 50% misclas-
sified and 50% correctly classified examples. We label the former as test-time IDM examples and the
latter as non-IDM examples, and compare this to DAUC’s categorization. Figure 3c shows DAUC
successfully assigns significantly higher IDM scores to the examples that are to-be misclassified.

Varying τIDM we create the precision-recall curve for the IDM class in Figure 3 (e), which is fairly
stable w.r.t. the threshold τIDM. In practice, we recommend to use the prediction accuracy on the
validation dataset for setting τIDM—see Appendix A.2.

Visualizing Different Classes Figure 4 shows examples from the SOOD, SBnd, SIDM and SB&I

sets. The first row shows OOD examples from the Fashion-MNIST dataset. The second row shows
boundary examples, most of which indeed resemble more than one class. The third row shows IDM
examples, which DAUC thinks are likely to be misclassified since mistakes were made nearby on the
validation set. Indeed, these examples look like they come from the “dirty” part of dirty-MNIST, and
most digits are not clearly classifiable. The last row contains B&I examples, which exhibit both traits.

4.3 Benchmark Model Uncertainty Categorization

In this section, we demonstrate how DAUC categorizes existing UQ model uncertainty. We compare
UQ methods MC-Dropout [10] (MCD), Deep-Ensemble [6] (DE) and Bayesian Neural Networks [9]
(BNNs). These methods output predictions and uncertainty scores simultaneously, we follow the
traditional approach to mark examples as uncertain or trusted according to their uncertain scores and
specified thresholds. To demonstrate how DAUC categorizes all ranges of uncertain examples, we
present results from top 5% to the least 5% uncertainty.

Figure 5 compares the proportion of different classes of flagged examples across the three UQ
methods. The first and second rows show the total number and proportion of flagged examples for
each class, respectively. There is a significant difference in what the different UQ methods identify.
There is a significant difference between types of classes that the different UQ methods identify as
discussed in the literature [19–21], which have shown that some UQ methods might not yield high
quality uncertainty estimates due to the learning paradigm or sensitivity to parameters. Let us look at
each column more carefully:
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Figure 5: Results of applying our method in categorizing different uncertainty estimation methods. First row:
comparisons on the numbers in different classes of examples. Second row: comparisons on the proportion of
different classes of flagged examples to the total number of identified uncertain examples. Different methods
tend to identify different certain types of uncertain examples. The results presented are based on 8 repeated runs
with different random seeds.

1. DE tends to identify the OOD examples as the most uncertain examples. Specifically,
looking at the bottom figure we see that the top 5% untrusted examples identified by DE
are almost all OOD examples, which is not the case for the other UQ methods. By contrast,
MCD is poor at identifying OOD examples; it flags some of the OOD samples as the most
certain. This is explained by MCD’s mechanism. Uncertainty is based on the difference in
predictions across different drop-outs, however this could lead to outliers always having
the same prediction— due to correlation between different nodes in the MCD model,
extreme values of the OOD examples may always saturate the network and lead to the same
prediction, even if some nodes are dropped out. DE is most apt at flagging the OOD class.
This confirms the finding by [20] who showed that DE outperforms other methods under
dataset shift—which is effectively what OOD represents.

2. After the OOD examples have been flagged, the next most suspicious examples are the Bnd
and IDM classes—see columns 2 and 3. The number of these examples increases almost
linearly with the number of flagged examples, until at about 88% no more examples are
flagged as IDM and Bnd. This behaviour is explained by the Vanilla MNIST examples—
which are generally distinguishable and relatively easily classified correctly—accounting
for about 15% of the test examples.

3. As expected, the number of examples belonging to the Other class increases when more
examples are flagged as uncertain. This makes sense, as the Other class indicates we cannot
flag why the methods flagged these examples as uncertain, i.e. maybe these predictions
should in fact be trusted.

4.4 Improving Uncertain Predictions

In this section, we explore the inverse direction, i.e. employing DAUC’s categorization for creating
better models. We elaborate the practical method in Appendix B. We experiment on UCI’s Covtype,
Digits and Spam dataset [43] with linear models (i.e. g = Id) and experiment on DMNIST with
ResNet-18 learning the latent representation.

Our empirical studies (Figure 8, Appendix C) have shown that the B&I examples are generally hardest
to classify, hence we demonstrate the use case of DAUC for improving the predictive performance
on this class. We vary the proportion q of training samples that we discard before training new
prediction model fB&I—only saving the training samples that resemble the B&I dataset most—see
Figure 6. We find that retraining the linear model with filtered training data according to Eq. 6
significantly improves the performance. We observe that performance increases approximately
linearly proportional to q, until the amount of training data becomes too low. The latter depends on
the dataset and model used.
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Figure 6: Improved uncertain predictions. Left to right: Covtype, Digits, Spam, DMNIST. Experiment are
performed with different proportion of training samples discarded: e.g., with q = 0.0, all examples in the
training set are used; while with q = 0.9, only top 10% examples most resembling the test data are used for
training. The results presented are based on 10 repeated runs with different random seeds.

5 Conclusion and Future Work

We have proposed DAUC, a framework for model uncertainty categorization. DAUC categorizes
uncertain examples identified by UQ benchmarks into three classes—OOD, Bnd and IDM. These
classes correspond to different causes for the uncertainty and require different strategies for possibly
better predictions. We have demonstrated the power of DAUC by inspecting three different UQ
methods—highlighting that each one identifies different examples. We believe DAUC can aid the
development and benchmarking of UQ methods, paving the way for more trustworthy ML models.

In future work, DAUC has great potential to be extended to more general tasks, such as the regression
setting, and reinforcement learning setting, where uncertainty quantification is essential. The idea of
separating the source of uncertainty improves not only exploration [44] but also exploitation in the
offline settings [30–35].

In the era of Large Language Models (LLMs) [45, 46], uncertainty quantification is essential in
evaluating the task performance of LLMs [47], and holds great potential for AI alignment [48, 49] —
as understanding the ability boundary of LLMs is essential, and identifying the suspicious outputs of
LLMs can be potentially addressed by extending the framework of DAUC to the LLMs’ setting.
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A Missing Details

A.1 Motivations for working with model latent space

In Section 3, we introduced the confusion density matrix that allows us to categorize suspicious
examples at testing time. Crucially, this density matrix relies on kernel density estimations in the
latent space H associated with the model f through Assumption 1. Why are we performing a kernel
density estimation in latent space rather than in input space X ? The answer is fairly straightforward:
we want our density estimation to be coupled to the model and its predictions.

Let us now make this point more rigorous. Consider two input examples x1, x2 ∈ X . The model
assigns a representations g(x1), g(x2) ∈ H and class probabilities f(x1), f(x2) ∈ Y . If we define
our kernel κ in latent space H, this often means2 that κ[g(x1), g(x2)] grows as ∥g(x1)− g(x2)∥H
decreases. Hence, examples that are assigned a similar latent representation by the model f are
related by the kernel. Since our whole discussion revolves around model predictions, we would
like to guarantee that two examples related by the kernel are given similar predictions by the model
f . In this way, we would be able to interpret a large kernel density κ[g(x1), g(x2)] as a hint that
the predictions f(x1) and f(x2) are similar. We will now show that, under Assumption 1, such a
guarantee exists. Similar to [50], we start by noting that

∥(l ◦ g)(x1)− (l ◦ g)(x2)∥RC = ∥l [g(x1)− g(x2)]∥RC

≤ ∥l∥op ∥g(x1)− g(x2)∥H ,

where ∥·∥RC is a norm on RC and ∥l∥op is the operator norm of the linear map l. In order to extend
this inequality to black-box predictions, we note that the normalizing map in Assumption 1 is often
a Lipschitz function with Lipschitz constant λ ∈ R. For instance, a Softmax function with inverse
temperature constant λ−1 is λ-Lipschitz [51]. We use this fact to extend our inequality to predicted
class probabilities:

∥f(x1)− f(x2)∥Y = ∥(φ ◦ l ◦ g)(x1)− (φ ◦ l ◦ g)(x2)∥Y
≤ λ ∥(l ◦ g)(x1)− (l ◦ g)(x2)∥RC

≤ λ ∥l∥op ∥g(x1)− g(x2)∥H .

This crucial inequality guarantees that examples x1, x2 ∈ X that are given a similar latent representa-
tion g(x1) ≈ g(x2) will also be given a similar prediction f(x1) ≈ f(x2). In short: two examples
that are related according to a kernel density defined in the model latent space H are guaranteed to
have similar predictions. This is the motivation we wanted to support the definition of the kernel κ in
latent space.

An interesting question remains: is it possible to have similar guarantees if we define the kernel in
input space? When we deal with deep models, the existence of adversarial examples indicates the
opposite [52]. Indeed, if x2 is an adversarial example with respect to x1, we have x1 ≈ x2 (and hence
∥x1 − x2∥X small) with two predictions f(x1) and f(x2) that are significantly different. Therefore,
defining the kernel κ in input space might result in relating examples that are given a significantly
different prediction by the model. For this reason, we believe that the latent space is more appropriate
in our setting.

A.2 Details: Flagging IDM and Bnd Examples with Thresholds

In order to understand uncertainty, it will be clearer to map those scores into binary classes with
thresholds. In our experiments, we use empirical quantiles as thresholds. e.g., to label an example as
IDM, we specify an empirical quantile number q, and calculate the corresponding threshold based on
the order statistics of IDM Scores for test examples: S(1)

IDM, ..., S
(|Dtest|)
IDM , where S

(n)
IDM denotes the

n-th smallest IDM score out of |Dtest| testing-time examples. Then, the threshold given quantile
number q is

τIDM(q) ≡ S
(⌊|Dtest|·q⌋)
IDM .

2This is the case for all the kernels that rely on a distance (e.g. the Radial Basis Function Kernel, the Matern
kernel or even Polynomial kernels [39]).
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Similarly, we can define quantile-based threshold in flagging Bnd examples based on the order
statistics of Bnd Scores for test examples, such that for given quantile q,

τBnd(q) ≡ S
(⌊|Dtest|·q⌋)
Bnd .

Practically, a natural choice of q is to use the validation accuracy: when there are 1 − q examples
misclassified in the validation set, we also expect the testing-time in distribution examples with the
highest 1− q to be marked as Bnd or IDM examples.

B Improving Predicting Performance of Uncertain Examples

Knowing the category that a suspicious example belongs to, can we improve its prediction? For ease
of exposition, we focus on improving predictions for SB&I.

Let p (x | SB&I) be the latent density be defined as in Definition 1. We can improve the prediction
performance of the model on SB&I examples by focusing on the part of examples in the training
set that are closely related to those suspicious examples. We propose to refine the training dataset
Dtrain by only keeping the examples that resembles the latent representations for the specific type of
test-time suspicious examples, and train another model on this subset of the training data:

D̃train ≡ {x ∈ Dtrain|p (x | SB&I) ≥ τtest}, (6)
where τtest is a threshold that can be adjusted to keep a prespecified proportion q of the related
training data. Subsequently, new prediction model fB&I is trained on D̃train.

Orthogonal to ensemble methods that require multiple models trained independently, and improve
overall prediction accuracy by bagging or boosting, our method is targeted at improving the model’s
performance on a specified subclass of test examples by finding the most relevant training examples.
Our method is therefore more transparent and can be used in parallel with ensemble methods if
needed.

Threshold τtest(q) For every training example x ∈ Dtrain, we have the latent density p(x|DB&I)
over the B&I class of the test set. With their order statistics p(1)(x|DB&I), ..., p(|Dtrain|)(x|DB&I).
Given quantile number q, our empirical quantile based threshold τtest is chosen as

τtest(q) ≡ p(⌊q·|Dtrain|⌋)(x|DB&I).

During the inverse training time, we train our model to predict those B&I class of test examples only
with the training data with higher density than τtest(q). We experiment with different choices of q in
the experiment (Figure 6 in Sec. 4.4).

C Additional Experiments

C.1 Categorization of Uncertainty under Different Thresholds

In the main text, we provide results with τBnd = τIDM = 0.8, which approximates the accuracy on
validation set—as a natural choice. In this section, we vary these thresholds and show in Figure 7
that changing those thresholds does not significantly alter the conclusions drawn above.

Figure 8 looks more closely into the top 25% uncertain examples for each method, and the accuracy
on each of the uncertainty classes. As expected, the accuracy of the B&I examples is always lower
than that of the trusted class, meaning that those examples are most challenging for the classifier.
And the accuracy of flagged classes are always lower than the other class, verifying the proposed
categorization of different classes.

C.2 Inverse Direction: More Results

In the main text, we show the results on improving prediction performance on the B&I class with
training example filtering (On the Covtype, Digits dataset). More results on other classes of examples
are provided in this section.

We experiment on three UCI datasets: Covtype, Digits, and Spam. And experiment with three
classes we defined in this work:

16



0 10 20 30 40 50 60 70 80 90

Top Uncertainty

0

200

400

600

800

1000

Nu
m

be
r

OOD

BNNs
MCD
DE

0 10 20 30 40 50 60 70 80 90

Top Uncertainty

0

1000

2000

3000

4000

5000

Bnd

BNNs
MCD
DE

0 10 20 30 40 50 60 70 80 90

Top Uncertainty

0

1000

2000

3000

4000

5000

IDM

BNNs
MCD
DE

0 10 20 30 40 50 60 70 80 90

Top Uncertainty

0
500

1000
1500
2000
2500
3000
3500

Other

BNNs
MCD
DE

(a) τBD(0.5), τIDM(0.5)

0 10 20 30 40 50 60 70 80 90

Top Uncertainty

0

200

400

600

800

1000

Nu
m

be
r

OOD

BNNs
MCD
DE

0 10 20 30 40 50 60 70 80 90

Top Uncertainty

0

1000

2000

3000

4000

Bnd

BNNs
MCD
DE

0 10 20 30 40 50 60 70 80 90

Top Uncertainty

0

1000

2000

3000

4000

IDM

BNNs
MCD
DE

0 10 20 30 40 50 60 70 80 90

Top Uncertainty

0

1000

2000

3000

4000

Other

BNNs
MCD
DE

(b) τBD(0.6), τIDM(0.6)
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(c) τBD(0.7), τIDM(0.7)
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(d) τBD(0.8), τIDM(0.8)
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Figure 7: Experiments on different choices of thresholds. The results presented are based on 8 repeated runs
with different random seeds.

1. B&I class (Figure 9). As we have discussed in our main text, the prediction accuracy on the
B&I class are always the lowest among all classes. By training with filtered examples in
Dtrain rather than the entire training set, the B&I class of examples can be classified with a
remarkably improved accuracy.

2. Bnd class (Figure 10). This class of examples are located at boundaries in the latent space
of validation set, but not necessarily have been misclassified. Therefore, their performance
baseline (training with the entire Dtrain) is relatively high. The improvement is clear but not
as much as on the other two classes.

3. IDM class (Figure 11). For this class of examples, similar mistakes have been make in
the validation set, yet those examples are not necessarily located in the boundaries—the
misclassification may be caused by ambiguity in decision boundary, imperfectness of either
the model or the dataset. The primal prediction accuracy on this class of examples is lower
than the Bnd class but higher than the B&I class, training with filtered Dtrain also clearly
improve the performance on this class of examples.
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OOD -  Acc. 0.0%
Bnd -  Acc. 62.63%
IDM -  Acc. 56.55%
B&I -  Acc. 52.07%
Other -  Acc. 64.93%

(a) BNNs

OOD -  Acc. 0.0%
Bnd -  Acc. 62.17%
IDM -  Acc. 69.02%
B&I -  Acc. 61.41%
Other -  Acc. 74.42%

(b) MCD

OOD -  Acc. 0.0%
Bnd -  Acc. 59.3%
IDM -  Acc. 65.05%
B&I -  Acc. 58.15%
Other -  Acc. 68.99%

(c) DE

Figure 8: The top 25% uncertain examples identified by different methods. Legend of each figure provide the
accuracy and proportion of each class. As the classifier can not make correct predictions on the OOD examples,
it’s always better for uncertainty estimators to flag more OOD examples.

Table 4: DAUC is not the only choice in identifying OOD examples. On the Dirty-MNIST dataset, DAUC,
Outlier-AE and the IForest can identify most outliers in the test dataset. (Given threshold = 1.0 for those two
benchmark methods).

Method Precision Recall F1-Score

DAUC 1.0000± 0.0000 1.0000± 0.0000 1.0000± 0.0000
Outlier-AE 1.0000± 0.0000 1.0000± 0.0000 1.0000± 0.0000
IForest [54] 0.9998± 0.0004 1.0000± 0.0000 0.9999± 0.0002

C.3 Alternative Approach in Flagging OOD

As we have mentioned in the main text, although DAUC has a unified framework in understanding
all three types of uncertainty the uncertainty caused by OOD examples can also be identified by
off-the-shelf algorithms. We compare DAUC to two existing outlier detection methods in Table 4,
where all methods achieve good performance on the Dirty-MNIST dataset. Our implementation is
based on Alibi Detect [53].
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Figure 9: Experiments on the B&I class (reported in the main text). The results presented are based on 10
repeated runs with different random seeds.

C.4 Experiments on Dirty-CIFAR-10

Dataset Discription In this experiment, we introduce a revised version of the CIFAR-10 dataset
to test DAUC’s scalability. Similar to the Dirty-MNIST datset [41], we use linear combinations of
the latent representation to construct the “boundary” class. In the original CIFAR-10 Dataset, each
of the 10 classes of objects has 6000 training examples. We split the training set into training set
(40%), validation set (40%) and test set (20%). To verify the performance of DAUC in detecting
OOD examples, we randomly remove one of those 10 classes (denoted with class-i) during training
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Figure 10: Experiments on the Bnd class. The results presented are based on 10 repeated runs with different
random seeds.

0.0
0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0
0.9

5

Quantile q

0.36

0.38

0.40

0.42

0.44

0.46

0.48

Pr
ed

ict
io

n 
Ac

c.

w/ Filtered Training Set
Baseline

(a) Covtype

0.0
0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0
0.9

5

Quantile q

0.0

0.2

0.4

0.6

0.8
w/ Filtered Training Set
Baseline

(b) Digits

0.0
0

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0
0.9

5

Quantile q

0.60

0.65

0.70

0.75

0.80
w/ Filtered Training Set
Baseline

(c) Spam

Figure 11: Experiments on the IDM class. The results presented are based on 10 repeated runs with different
random seeds.

and manually concatenate OOD examples with the test dataset, with label i. In our experiment, we
use 1000 MNIST digits as the OOD examples, with zero-padding to make those digits share the same
input shape as the CIFAR-10 images. Combining those boundary examples, OOD examples and the
vanilla CIFAR-10 examples, we get a new benchmark, dubbed as Dirty-CIFAR-10, for quantitative
evaluation of DAUC.

Quantify the performance of DAUC on Dirty-CIFAR-10 Quantitatively, we evaluate the per-
formance of DAUC in categorizing all three classes of uncertain examples. Results of averaged
performance and standard deviations based on 8 repeated runs are provided in Table 5.

Table 5: Quantitative results on the Dirty-CIFAR-10 dataset. DAUC scales well and is able to categorize all
three classes of uncertain examples. Results presented in the table are based on 8 repeated runs with different
random seeds.

Category Precision Recall F1-Score

OOD 0.986± 0.003 0.959± 0.052 0.972± 0.027
Bnd 0.813± 0.002 0.975± 0.000 0.887± 0.001
IDM 0.688± 0.041 0.724± 0.017 0.705± 0.027

Categorize Uncertain Predictions on Dirty-CIFAR-10 Similar to Sec. 4.3 and Figure 5, we can
categorize uncertain examples flagged by BNNs, MCD, and DE using DAUC—see Figure 12. We find
that in the experiment with CIFAR-10, DE tends to discover more OOD examples as top uncertain
examples. Differently, although BNNs flag fewer OOD examples as top-uncertain, they continuously
discover those OOD examples and are able to find most of them for the top 50% uncertainty. On the
contrary, MCD performs the worst among all three methods, similar to the result is drawn from the
DMNIST experiment. On the other hand, while BNN is good at identifying OOD examples, it flags
less uncertain examples in the Bnd and IDM classes. DE is the most apt at flagging both Bnd and
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IDM examples and categorizes far fewer examples into the Other class. These observations are well
aligned with the experiment results we had with DMNIST in Sec. 4.3, showing the scalability of
DAUC to large-scale image datasets.
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Figure 12: Experiments on the CIFAR-10 dataset. Results of applying DAUC in categorizing different uncertainty
estimation methods. First row: comparisons of the numbers in different classes of examples. Second row:
comparisons on the proportion of different classes of flagged examples to the total number of identified uncertain
examples. Different methods tend to identify different certain types of uncertain examples. The results presented
are based on 8 repeated runs with different random seeds.

D Implementation Details

D.1 Code

Our code is available at https://github.com/vanderschaarlab/DAUC.

D.2 Hyperparameters

D.2.1 Bandwidth

In our experiments, we use (z-score) normalized latent representations and bandwidth 1.0. In
the inverse direction, as the sample sizes are much smaller, a bandwidth of 0.01 is used as the
recommended setting. There is a vast body of research on selecting a good bandwidth for Kernel
Density Estimation models [55–57] and using these to adjust DAUC’s bandwidth to a more informed
choice may further improve performance.

D.3 Inverse Direction: Quantile Threshold q

As depicted in Appendix A.2, a natural choice of q is to use the validation accuracy. We use this
heuristic approach in our experiments for the inverse direction.

D.4 Model Structure

In our experiments, we implement MCD and DE with 3-layer-CNNs with ReLU activation. Our
experiments on BNNs are based on the IBM UQ360 software [58]. More details of the convolutional
network structure are provided in Table 6.

D.5 Implementation of Kernel Density Estimation and Repeat Runs

Our implementation of KDE models is based on sklearn’s KDE package [59]. Gaussian kernels are
used as default settings. We experiment with 8-10 random seeds and report the averaged results and
standard deviations. In our experiments, we find using different kernels in density estimation provides
highly correlated scores. We calculate the Spearman’s ρ correlation between scores DAUC gets over
5 runs with Gaussian, Tophat, and Exponential kernels under the same bandwidth. Changing the
kernel brings highly correlated scores (all above 0.86) for DAUC and, hence, has a minor impact on
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Table 6: Network Structure

Layer Unit Activation Pooling

Conv 1 (1, 32, 3, 1, 1) ReLU() MaxPool2d(2)
Conv 2 (32, 64, 3, 1, 1) ReLU() MaxPool2d(2)
Conv 3 (64, 64, 3, 1, 1) ReLU() MaxPool2d(2)

FC (64× 3× 3, 40) ReLU() -
Out (40, NClass) SoftMax() -

DAUC’s performance. We preferred KDE since the latent representation is relatively low-dimensional.
We found that a low-dim latent space (e.g., 10) works well for all experiments (including CIFAR-10).

D.6 Hardware

All results reported in our paper are conducted with a machine with 8 Tesla K80 GPUs and 32
Intel(R) E5-2640 CPUs. The computational cost is mainly in density estimation, and for low-dim
representation space, such an estimation can be efficient: running time for DAUC on the Dirty-MNIST
dataset with KDE is approximately 2 hours.

Assumptions and Limitations

In this work, we introduced the confusion density matrix that allows us to categorize suspicious
examples at testing time. Crucially, this density matrix relies on kernel density estimations in the
latent space H associated with the model f through Assumption 1. We note this assumption generally
holds for most modern uncertainty estimation methods.

While the core contribution of this work is to introduce the concept of confusion density matrix
for uncertainty categorization, the density estimators leveraged in the latent space can be further
improved. We leave this to future work.

Broader Impact

While previous works on uncertainty quantification (UQ) focused on the discovery of uncertain
examples, in this work, we propose a practical framework for categorizing uncertain examples that
are flagged by UQ methods. We demonstrated that such a categorization can be used for UQ method
selection — different UQ methods are good at figuring out different uncertainty sources. Moreover,
we show that for the inverse direction, uncertainty categorization can improve model performance.

With our proposed framework, many real-world application scenarios can be potentially benefit. e.g.,
in Healthcare, a patient marked as uncertain that categorized as OOD — preferably identified by
Deep Ensemble, as we have shown — should be treated carefully when applying regular medical
experience; and an uncertain case marked as IDM — preferably identified by MCD — can be
carefully compared with previous failure cases for a tailored and individualized medication.
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