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Abstract

In the era of Large Language Models (LLMs),001
generative linguistic steganography has be-002
come a prevalent technique for hiding infor-003
mation within model-generated texts. However,004
traditional steganography methods struggle to005
effectively align steganographic texts with orig-006
inal model-generated texts due to the lower en-007
tropy of the predicted probability distribution of008
LLMs. This results in a decrease in embedding009
capacity and poses challenges for decoding ste-010
gos in real-world communication channels.011
To address these challenges, we propose a012
semantic steganography framework based on013
LLMs, which constructs a semantic space and014
maps secret messages onto this space using015
ontology-entity trees. This framework offers016
robustness and reliability for transmission in017
complex channels, as well as resistance to text018
rendering and word blocking. Additionally, the019
stegos generated by our framework are indistin-020
guishable from the covers and achieve a higher021
embedding capacity compared to state-of-the-022
art steganography methods, while producing023
higher quality stegos.024

1 Introduction025

With the rapid iterations of Large Language Mod-026

els (LLMs) (Touvron et al., 2023; Du et al., 2022),027

texts generated by LLMs flood cyberspace, provid-028

ing a thriving environment for generative linguistic029

steganography (Yang et al., 2021a, 2019a; Dai and030

Cai, 2019; Ziegler et al., 2019; Shen et al., 2020;031

Kaptchuk et al., 2021; de Witt et al., 2023; Ding032

et al., 2023; Yang et al., 2019b, 2021b, 2024; Wang033

et al., 2023). As a technique for hiding information034

in model-generated texts, mainstream steganogra-035

phy methods (Kaptchuk et al., 2021; de Witt et al.,036

2023; Ding et al., 2023) focus on aligning stegano-037

graphic texts (stegos for short) with original model-038

generated texts (covers for short).039

However, current steganography techniques have040

two major weak points.041

Low Symbol-level Entropy. Given the same 042

text prefix, the entropy of the predicted probability 043

distribution of LLMs is likely to be lower than that 044

of GPT-2 (Alec Radford, 2019) or BERT (Devlin 045

et al., 2019). The main reason is that LLMs have 046

learned more data and are able to make more ac- 047

curate predictions. But for SOTA provably secure 048

steganography algorithms (Kaptchuk et al., 2021; 049

de Witt et al., 2023; Ding et al., 2023), entropy is 050

an upper bound on the embedding capacity. A large 051

decrease in entropy leads to a dramatic decrease in 052

embedding capacity. Nevertheless, it seems that the 053

more powerful models have lower entropy. As fig- 054

ure 1 shows, with the same steganography method 055

Arithmetic Coding (AC) (Ziegler et al., 2019), the 056

embedding rate of ChatGLM-2-6B is about 1/4 ∼ 057

1/5 lower than that of ChatGLM-2-6B-int4. With 058

stricter top-k truncation and more detailed prompt- 059

ing, the embedding rate may decrease further. 060

Not Robust. When applying these steganogra- 061

phy methods to real-world communication chan- 062

nels, particularly in social networks, we have found 063

that most received stegos cannot be decoded. This 064

problem is caused by three main reasons: 065

(1) Text Rendering. It involves the transcod- 066

ing and merging of format control characters like 067

spaces, tabs, and newlines, which may be stripped 068

when at the beginning or end of a sentence. It 069

also includes deceptive practices with line breaks 070

and tabs, which can confuse the decoding system. 071

While the transcoding and stripping process may be 072

reversible, the merging is not, leading to inevitable 073

decoding errors. 074

(2) Word Blocking. Social communication 075

channels censor specific words or phrases deemed 076

inappropriate, offensive, or undesirable. It is a 077

common feature in online platforms and messaging 078

apps. However, if words in the stegos are removed, 079

decoding will fail. 080

(3) Ambiguous Tokenizing. It occurs when the 081

tokenizer used in this process results in a single 082
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(a) AC + ChatGLM2-6B-int4

(b) AC + ChatGLM2-6B

Figure 1: Perplexity(PPL) and embedding rate of ste-
gos generated by Arithmetic Coding(AC)(Ziegler et al.,
2019) with ChatGLM2-6B-int4/ChatGLM2-6B. The
left axis represents PPL, while the right two axes rep-
resent embedding rate, estimated in bits per sentence
and bits per token. Prompt 1 is null, while prompts
2-4 require the model to generate a single given word,
namely “the”, “like”, or “Washington”, respectively.

sentence having two equivalent lists of token IDs.083

This frequently occurs in LLMs.084

The challenges of applying LLMs to state-of-the-085

art steganography methods highlight the lack of ro-086

bustness of symbolic token-level embedding in cy-087

berspace. It is necessary to search for a steganogra-088

phy method that can generate robust stegos. There-089

fore, we have proposed a semantic steganography090

framework based on LLMs. This framework pri-091

marily constructs a semantic space and uses LLMs092

to generate responses that belong to a subset of093

that space. To ensure the rationality of LLMs’094

output and their embedding capacity, we mapped095

the secret messages onto a semantic space using096

ontology-entity trees. During the decoding phase,097

the semantic information in stegos will be retrieved098

and converted back into secret messages.099

Compared to the symbol-based steganography100

techniques, our framework has the following ad-101

vantages:102

• Our framework is more reliable and robust for103

transmission in network environments. The104

stegos generated by our method are able to105

resist ambiguous tokenizing and text render-106

ing. As for word blocking, our steganography107

techniques can be decoded correctly with a 108

high probability. 109

• The stegos in our framework are directly gen- 110

erated by LLMs, which is different from cur- 111

rent steganography works that manually con- 112

trol the generation procedure. From the aspect 113

of the semantic, our method produces almost 114

indistinguishable semantic contents. 115

• Our framework achieves a higher embedding 116

capacity than state-of-the-art steganography 117

methods under the same prompt and gener- 118

ation configurations while producing higher- 119

quality stegos. 120

2 Methods 121

2.1 Construct the Semantic Space 122

Semantic space is a set in which sentences are rep- 123

resented based on their meanings and relationships. 124

And the basic step of our steganography framework 125

is to construct the semantic space. 126

Various methods exist for constructing a seman- 127

tic space. 128

(1) Classifiers. In previous work (Zhang et al., 129

2021), classifiers were used to control the semantic 130

information at the sentence level, but such classi- 131

fiers need training and are not easy to share with 132

the receiver. To ensure objectivity, avoid using 133

emotions or main themes as they are not realistic 134

due to limited semantic space and restricted embed- 135

ding capacity. Additionally, the meanings inside 136

the sentence are mostly unused. 137

(2) Embeddings. The embedding output of lan- 138

guage models can be used to construct a semantic 139

space, but this method seems to be too sensitive and 140

difficult to design. While this does not affect the 141

encoding method, it can confuse the decoding pro- 142

cess. We believe that using the embedding output 143

of language models is feasible and requires further 144

exploration. 145

(3) Entities. Entities are considered to be effec- 146

tive and efficient for steganography encoding. The 147

capacity of steganography is associated with the 148

number of entities, because the more entities we 149

have, the more bits we can use to uniquely represent 150

each entity. So adding more entities is a feasible 151

and convenient approach to expanding capacity. 152

We prefer to use Entities to construct the seman- 153

tic space because there exists a helpful structure 154

called the ontology-entity tree. This tree comprises 155

multiple top layers of concepts and the final layer 156
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of entities. The paths within this tree indicate a pro-157

cess of gradual refinement from a vague concept to158

a specific entity, offering additional information to159

describe the final entity.160

Open-sourced ontology-entity trees do not typ-161

ically contain information about the frequency of162

these entities or the relationships between them.163

This information is essential for estimating seman-164

tic distribution. Therefore, we embarked on con-165

structing our own ontology-entity tree.166

We extracted entities using the PaddleNLP UIE167

model (PaddleNLP, 2021). The dataset used for168

extraction and construction of the semantic space169

is LCCC (Wang et al., 2020), a large-scale cleaned170

dataset containing 12 million daily conversations.171

Based on the extraction results, we hand-crafted172

two upper layers of concepts and a bottom layer of173

entities to construct the ontology-entity tree. The174

first level of the tree includes fundamental concepts175

such as “person” and “location”. The subsequent176

level comprises subconcepts like “tourism location”177

or “educational location”. The final level contains178

entities such as “Las Vegas” or “Taj Mahal”, which179

belong to the subconcept “tourism location”.180

This tree also provides additional information181

to assist language models in generating decodable182

responses and determining which entity to use. The183

model may get confused when the entity “Wash-184

ington" is given, since it could represent a person185

or a location. But if we use the path from the186

root of the tree to the leaf node of the entity, we187

can get a detailed entity like “Location/Tourism188

Location/Washington". Therefore the words that189

have multiple meanings can be distinguished and190

correctly extracted.191

For any entity ei ∈ E , we construct an extrac-192

tion method Extei . Using the extraction method193

Extei we can extract the number of entity ei that194

appears in a sentence, denoted as Extei(S) = ni.195

This extraction method can be completed by LLMs196

with appropriate prompts or other machine learning197

modules.198

We define the type of a sentence as follows:199

The type of sentence S is en1
1 ...e

n|E|
|E| , where ei ∈200

E is an entity, ni = Extei(S) is the times that ei201

appears in sentence S.202

For instance, consider the sentence “An apple203

a day, keeps the doctor away” with the entities204

“apple” and “doctor”. From this, we can determine205

that the type of this sentence is apple1doctor1.206

We define the length of a type |T | as the number207

of entities inside the sentence. 208

|T | =
|E|∑
i=1

ni (1) 209

For the sake of clarity, we provide a definition 210

of the partial order relation between types: type 211

T (1) = e
n
(1)
1

1 · · · e
n
(1)
|E|

|E| is not greater than type 212

T (2) = e
n
(2)
1

1 · · · e
n
(2)
|E|

|E| if and only if 213

∀i ∈ {1, 2, · · ·, |E|}, n(1)
i ≤ n

(2)
i (2) 214

We can also define an add operation on the type, 215

which represents combining 2 sentences into one. 216

T (1) + T (2) = e
n
(1)
1 +n

(2)
1

1 · · · e
n
(1)
|E|+n

(2)
|E|

|E| (3) 217

Sentences with the same type are highly corre- 218

lated as they are likely referring to the same entities 219

and have a relationship. We define class C to de- 220

note the set of possible sentences that share the 221

same type. 222

C(en1
1 · · ·e

n|E|
|E| ) = {S|type(S) = en1

1 · · ·e
nM
M } (4) 223

In the end, the semantic space is defined as the 224

set of all possible classes. 225

S = {C(en1
1 · · · e

n|E|
|E| )|ei ∈ E , ni ∈ N+} (5) 226

Instead of generating a sentence with specific 227

attributes, we prefer to determine and arrange the 228

entities that should appear in the output. 229

2.2 Sample from the Semantic Distribution 230

This section discusses a secure method of sampling 231

from the semantic space. 232

For provably secure symbolic steganography 233

methods such as METEOR (Kaptchuk et al., 234

2021), MEC (de Witt et al., 2023), and DIS- 235

COP (Ding et al., 2023), it is expected that 236

the model-generated stegos are indistinguishable 237

from the model-generated covers. That means 238

DKL(p(cover)||p(stego)) = 0 (Cachin, 1998). 239

To ensure the KL divergence is 0, secure sampling 240

methods are often designed. As our method does 241

not alter the sampling strategy of LLM, the stegos 242

remain the same as the covers. 243

Although there is no difference between stegos 244

and covers from a symbolic perspective, there is 245
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FINE-GRAINED

CONCEPTS

LOCATION_TOURISM
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LEVEL III
ENTITIES

BIG BEN

JIU ZHAI GOU
LAS VEGAS

Stega Encoding: 0,1

Stega Encoding: 0,0

Stega Encoding: 0,0,1,0

Embedded Concept Path: ["Location", "Location_Tourism", "Las Vegas"]
Embedded Bits: [0, 1, 0, 0, 0, 0, 1, 0]

Semantic Tree

Embedding Phase

Semantic Distribution

PERSON

TIME LOCATION

An example of 
3-dimension simplex

Probability Coding

Distribution of Level I

Sampling from Level I

Sampling from Level II

Sampling from Level III

Generation Phase

Extraction Agent

Description of Tasks: 
Identify all TIME-, LOCATION-, and PERSON-

related entities that appear in the sentence.

Extracted Entities:  ["Las Vegas"]
Extracted Concept Path: ["Location", "Location_Tourism", "Las Vegas"]

Probability Decoding

Extracted Bits: [0, 1, 0, 0, 0, 0, 1, 0]

Extraction Phase

First Generation:
"It is a popular tourist destination known for its vibrant
nightlife, world-class entertainment, and bustling casinos."

Generation Agent

Description of Tasks: 
Please generate a sentence with "Las Vegas"

Additional Information: 
Las Vegas is a location of tourism.

Check Agent

Not contain "Las Vegas"?

Influent?

Any factual error?

Any other entity?

Hint for regeneration: 
Please regenerate a fluent sentence with "Las Vegas",

do not generate other LOCATION-related entities.
Regeneration 1

"Las Vegas is a popular tourist destination known for its vibrant
nightlife, world-class entertainment, and bustling casinos." Good, no errors.

Permission

Check

Feedback
CoT

Bit Stream: [0, 1, 0, 0, 0, 0, 1, 0, ...]

Figure 2: Workflow of our framework, with a simple example. A type “Las Vegas1” is selected according to
the secret bit stream. The LLMs follow the instructions and generate a sentence “Las Vegas is a popular tourist
destination known for its vibrant nightlife, world-class entertainment, and bustling casinos. ”, which belongs to the
class of type “Las Vegas1”. The number of embedded bits depends on the estimated probability of corresponding
entity, which is not manually set.

still a sampling issue from a semantic perspective.246

To begin with, we need to consider the empirical247

semantic distribution.248

As the semantic space is made up of classes that249

represent different types, we must first extract sen-250

tence types from a large corpus and then estimate251

their probability by their frequency. In cases where252

the entities within a sentence cannot be obtained, a253

prediction model can be used. An empirical seman-254

tic distribution can then be constructed by either255

counting sentences or training a model.256

To sample from this distribution, randomized257

methods are necessary to ensure secure sampling.258

Pseudo-random functions (PRFs) are commonly259

used to convert a secret bit stream into a pseudo-260

random bit stream that follows a uniform distribu-261

tion. The definition of PRFs is as follows.262

Fkey : {0, 1}s → {0, 1}s is PRF if for all proba-263

bilistic polynomial-time (P.P.T.) classifiers C and264

key, 265

|Pr(CFkey(1s) = 1)−Pr(CO(1s) = 1)| ≤ 1

poly(s)
(6) 266

where O is an oracle that randomly generates bits 267

and poly(·) denotes polynomial functions. 268

The first step in sampling is to use a key and a 269

PRF to invert the ciphertext into a uniformly dis- 270

tributed bitstream. Then the problem is to map the 271

bit stream into entities. 272

Since a uniformly distributed bit stream B = 273

[b1, b2, · · ·, b|B|] can be mapped to a decimal B̂ = 274∑|B|
i=1 2

−ibi ∼ Unif [0, 1]. Then Arithmetic Cod- 275

ing (AC) can be used to map the decimal B̂ to 276

an probability interval which represents a class in 277

semantic space. In the sampling procedure, we 278

start with the ROOT of the ontology-entity tree 279

and begin to sum up the probability of its chil- 280

dren. If we find that the sum has exceeded the 281
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Algorithm 1 Estimate the probability of each node

Input: Ontology-entity tree To, type prefix Tpre,
empirical distribution p(C(T )), entity set E

Output: Probabilities of nodes P (·)
1: · · · Initial probabilities of nodes in tree
2: for node ∈ To do
3: P (node)← 0
4: end for
5: · · · Assign probabilities to entities
6: sum← 0
7: for e ∈ E do
8: for C(T ) ∈ S and p(C) ̸= 0 do
9: if Tpre + e ≤ T then

10: P (e)← P (e) + p(C(T ))
11: end if
12: end for
13: sum← sum+ P (e)
14: end for
15: · · · Assign probabilities to stop sampling
16: P (stop)← p(C(Tpre))
17: sum← sum+ p(C(Tpre))
18: · · · Normalization
19: for e ∈ To do
20: P (e)← P (e)/sum
21: end for
22: · · · Accumulate probabilities to upper nodes
23: for e ∈ To do
24: parent← e.parent
25: while parent ̸= T.ROOT do
26: P (parent)← P (parent) + P (e)
27: end while
28: end for
29: return P (·)

B̂ after adding the probability of k-th child pk,282

we will stop adding the rest children and choose283

the last added k-th child. This procedure dose284

not change the original distribution because B̂ is285

uniformly random in [0, 1], and the probability of286

B̂ ∈ [
∑k

i=1 pi,
∑k+1

i=1 pi] is pk itself. In the pro-287

cess of going down through a path in that tree, the288

probability sum will approximate B̂. In the end,289

a leaf node will be sampled and we compute the290

binary form of probability sum. We should find291

that the binary form of probability sum and the292

original bit stream B share the same binary prefix,293

and this shared prefix is the embedded bits in the294

whole procedure.295

In our practice, the algorithms used for sampling296

are referenced in Alg. 1 and 2. It is possible to297

Algorithm 2 Sample a type from semantic space

Input: Ontology-entity tree To, empirical distribu-
tion p(C(T )), cipher bits C, PRF Fkey

Output: Target type Tt

1: · · · Randomize cipher bits
2: B ← Fkey(C)
3: Tt ← null
4: · · · Select entities one by one
5: while pointer ̸= stop do
6: sum← 0
7: · · · Select nodes layer by layer
8: pointer ← ROOT
9: for node ∈ pointer.child do

10: if sum + P (node) ≥
∑n

i=1B[i] ∗ 2−i

then
11: pointer ← node
12: B ← B[n :]
13: break
14: end if
15: sum← sum+ P (node)
16: end for
17: Tt ← Tt + pointer
18: end while

sample entities one by one, and these entities are 298

finally combined to form a type, then let LLM 299

generate a stego belonging to the class that relates 300

to this type in semantic space. As for decoding, 301

it is a simple reverse progress. In this way, secret 302

bits can be sequentially embedded in nodes of the 303

ontology-entity tree. 304

It is worthy to mention that the construction 305

of tree will not change the embedding capacity 306

of the steganography system. Because the upper 307

nodes of the tree is handcrafted, and it is neces- 308

sary to keep the probability of the entities (and 309

their combinations) the same as the estimation in 310

our dataset, in order to produce semantically near- 311

indistinguishable texts. Therefore, the embedding 312

capacity only correlates with the entropy of the es- 313

timated distribution of the entities (and their com- 314

binations). Anyway, it is better not to change the 315

distribution in the sampling procedure. 316

2.3 Feedback CoT for Stego Generation 317

A class is chosen for LLMs to generate after sam- 318

pling from the semantic distribution. However, 319

making LLMs generate sentences that belong to 320

the class is not always successful. A rejection sam- 321

pling method must be used for LLMs to generate 322

correct sentences. 323
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We proposed a method called feedback Chain324

of Thought(CoT) to increase the success rate of325

generation.326

Since each entity corresponds to a path in the327

ontology entity tree, additional information describ-328

ing the entities will be part of the prompt. In the329

generation process, the LLM for generating stegos330

is called Generation Agent (GA). To check whether331

the generated stego satisfies the sampled class, an-332

other LLM called Check Agent (CA) is used. For333

each generation loop, CA will return a hint for334

regeneration or it will consider the generated sen-335

tence compliant and return the approval. With the336

feedback from CA, GA is able to efficiently adjust337

the generated sentence and quickly converge to a338

correct version.339

Feedback CoT reduces the number of iterations340

and saves a lot of time in the experiment. A result341

about feedback CoT in section 3.1 shows that it is342

able to decrease the perplexity of generated stegos343

and reduce the times of regeneration.344

2.4 Workflow of Our Framework345

As Fig.2 shown, our framework works in 3 phases.346

(1) Embedding Phase: With a secret bit stream347

and a provably secure probability coding method,348

we use Alg.2 to sample a type from the seman-349

tic distribution. During the sampling process, the350

paths of entities that selected are preserved for the351

next phases.352

(2) Generation Phase: We use the paths of enti-353

ties and a description of task for GA to generate a354

primitive stego. Then the feedback loop starts run-355

ning. CA generates a hint for regeneration and GA356

is instructed by CA to correct the stego. Finally,357

CA confirms that stego meets the requirements and358

gives permission to proceed to the next step.359

(3) Extraction Phase: An LLM named extrac-360

tion agent(EA) is instructed to extract the type of361

sentence. Since the type represents an interval of362

probability [l, h], the decoding involves comput-363

ing bit stream B ∈ {0, 1}n that satisfies
∑n

i=1 bi ∗364

2−i ∈ [l, h] and
∑n

i=1 bi ∗ 2−i ± bn ∗ 2−n /∈ [l, h].365

3 Experiment & Result366

We use ChatGLM2-6B and ChatGLM2-6B-int4 as367

agents. ChatGLM2-6B-int4 is a weaker version of368

ChatGLM2-6B, but this model is extremely fast369

and only uses 6GB of GPU RAM.370

AC (Ziegler et al., 2019) is used as a baseline371

in our experiments for 2 reasons. It produces high372

quality stegoes and the embedding capacity is close373

Metrics PPL Distinct-3 GPT-4 score
AC-6B 2065.73 0.8024 5.6381
AC-6B-int4 2206.96 0.8009 5.3290
RS-6B 2027.34 0.8050 5.6419
RS-6B-int4 2085.65 0.8001 5.1578
Ours-6B 869.79 0.8753 7.3624
Ours-6B-int4 855.70 0.8742 7.1527

Table 1: Linguistic quality of the generated texts. AC
(Ziegler et al., 2019) stands for arithmetic coding of
generated stegos and RS stands for randomly generated
covers. 6B and 6B-int4 stand for ChatGLM2-6B and its
4-bit quantified version.

Metrics
ER

MSR
bit/sentence bit/token

AC-6B 2.5695 0.1788 0.459
AC-6B-int4 3.6863 0.2648 0.376
RS-6B - - 0.463
RS-6B-int4 - - 0.457
Ours-6B 28.5088 0.3958 0.893
Ours-6B-int4 27.8945 0.4130 0.884

Table 2: Embedding rate (ER) and mission success rate
(MSR) of AC, RS and ours.

to the entropy limit. We also tested 2 more base- 374

lines, METEOR (Kaptchuk et al., 2021) and DIS- 375

COP (Ding et al., 2023). Details are shown in 376

appendix. 377

For our experiments, we used a server equipped 378

with 4 RTX 3090 GPUs. The experiments consist 379

of 3 parts. First, we measured the quality of our 380

stegos and compared them with stegos generated 381

by AC (Ziegler et al., 2019) and model-generated 382

covers by random sampling. Then we tested the 383

robustness of our method and AC against attacks 384

that ignore/preserve the semantics of the original 385

sentence. 386

3.1 Quality of Stegos 387

The linguistic quality of stegos is estimated by per- 388

plexity(PPL), distinct-n, and GPT-4 semantic ratio- 389

nality score. The PPL and distinct-n are calculated 390

as PPL = exp
(
− 1

N

∑N
i=1 log p(xi|x1:i−1)

)
and 391

distinct-n = count(unique ngrams)
count(ngrams) . PPL represents 392

the fluency of stegos and distinct-n measures the 393

diversity. 394

The prompt used for GPT-4 to measure seman- 395

tic rationality is: You are a professional linguist, 396

analyse the following sentences in terms of their 397

semantic fluency and rationality and give them a 398
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Attacks
Random

Paraphrase
SC

Insert Delete Replace Swap SNR=5 SNR=15 SNR=60

AC-6B

|T | = 1 0.034 0.012 0.016 0.010 0 0 0 0.0021
|T | = 2 0.049 0.025 0.044 0.037 0 0 0 0.0021
|T | = 3 0.073 0.057 0.065 0.028 0 0 0 0.0021
|T | = 4 0.070 0.056 0.061 0.021 0 0 0 0.0021

AC-6B-int4

|T | = 1 0.031 0.027 0.026 0.017 0 0 0 0.0051
|T | = 2 0.052 0.032 0.059 0.047 0 0 0 0.0037
|T | = 3 0.065 0.053 0.052 0.038 0 0 0 0.0003
|T | = 4 0.072 0.033 0.057 0.052 0 0 0 0.0000

Ours-6B

|T | = 1 0.933 0.837 0.840 0.848 0.4203 0.8364 0.8370 0.8446
|T | = 2 0.874 0.704 0.701 0.712 0.2869 0.7187 0.7819 0.7898
|T | = 3 0.852 0.625 0.627 0.619 0.2340 0.6249 0.7243 0.7339
|T | = 4 0.814 0.577 0.555 0.561 0.2111 0.5279 0.6683 0.6780

Ours-6B-int4

|T | = 1 0.931 0.821 0.823 0.817 0.4175 0.7778 0.7836 0.8132
|T | = 2 0.869 0.700 0.681 0.702 0.2819 0.7601 0.7676 0.7764
|T | = 3 0.832 0.608 0.607 0.605 0.2273 0.5943 0.7321 0.7334
|T | = 4 0.774 0.545 0.542 0.513 0.1827 0.5330 0.6599 0.6862

Table 3: Decoding success rates of AC and ours, under attacks that ignore/preserve semantics. |T | represents the
length of type.

score between 0 and 10.399

For this part of the experiment, we utilized400

ChatGLM2-6B/ChatGLM2-6B-int4 to generate401

text. AC (Ziegler et al., 2019) was employed to402

generate stegos, while the models were allowed to403

perform random sampling to generate covers. Dur-404

ing generation, we set the top-p truncation to 0.8405

and the temperature to 0.8, following the genera-406

tion configurations used by ChatGLM (Du et al.,407

2022). The results are presented in Tab.1.408

Our framework generates stegos with a lower409

PPL than AC/RS. This is due to the CA checking410

the fluency of the stegos and providing prompts411

for the GA to regenerate. The feedback from CoT412

significantly improves the quality of the stegos.413

We also tested the embedding rate (ER) and the414

“mission success rate” (MSR), which indicates the415

probability of generated texts meeting the require-416

ments in prompts. Details can be found in Tab.2.417

Since the prompt is very restrictive on the model418

output, the entropy of the model predicted distribu-419

tion is relatively low. This leads to the phenomenon420

that in some generated sentences, AC is not able421

to embed a single bit. However, such sentences422

are common in application scenarios. This result423

indicates that the entropy is compressed by LLMs424

and prompts with clear requests. The redundancy425

of the symbolic space has become difficult to use.426

With the help of feedback CoT, the MSR of ours427

is about 2 times of AC and RS. The average num-428

ber of loops in feedback CoT is 0.6312. 58.15% of 429

the sentences are allowed for output without regen- 430

eration and 29.25%/8.31%/4.22% of the sentences 431

require 1/2/3 iterations. Since the MSR of RS is 432

0.463, the MSR of the simplest rejection sampling 433

with n iterations can be estimated by MSRn = 434∑n
i=1 0.463 ∗ (1− 0.463)n−1 = 1− (1− 0.463)n. 435

So to increase the MSR to 0.893, n is about 3.5945. 436

Feedback CoT can reduce the number of iterations 437

to 17% of the simplest rejection sampling. 438

3.2 Robustness Against Attacks that Ignore or 439

Preserve Semantics 440

In this section, we first test the robustness of 441

our method and AC against attacks that ignore 442

semantics. These attacks include random in- 443

sert/delete/replace/swap tokens in a sentence. Then 444

we test the robustness of our method and AC 445

against attacks that preserve semantics. These at- 446

tacks include paraphrasing and semantic commu- 447

nication (SC) (Xie et al., 2021; Qin et al., 2023). 448

These attacks completely change all of the tokens, 449

but they have a probability to preserve the meaning 450

of the original sentence. Details of these attacks 451

are given below. 452

Random Insert. Copy a random token from the 453

sentence and insert it at a random position. 454

Random Delete. Delete a random token. 455

Random Replace. Replace a random token 456

from the sentence with another random token. 457

7
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(a) Bertscore after paraphrasing
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(b) Bertscore after semantic communication (SNR=5)

Figure 3: Bertscore (Zhang et al., 2020) of stegos attacked by paraphrasing and semantic communication. The
contour line in the middle represents F1 score, and the estimated marginal distributions of the two samples are
plotted on the top and right sides.

Random Swap. Pick two random tokens from458

the sentence and swap them.459

Paraphrase. The prompt we used for GPT-460

4 to paraphrase is: You are an excellent editor.461

Rewrite the following sentences, keeping them462

about the same length and leaving the semantics463

as unchanged as possible.464

Semantic communication. Semantic communi-465

cation methods (Xie et al., 2021; Qin et al., 2023)466

are designed to overcome the extremely high noise467

level. These methods have a probability of trans-468

mitting the correct meaning of sentences instead of469

the correct symbols.470

Results are shown in Tab.3. The probability dis-471

tribution predicted by LLM is changed so that AC’s472

decoding is a disaster. In most cases, AC cannot473

decode the correct secret bits, and in most of these474

surviving examples, the attacks are targeted at the475

end of the sentence. Therefore, the prefix of the476

decoded bits is likely to be the same as the encoded477

bits, which will be judged as success. In contrast,478

our stegos shows explicit robustness against these479

attacks. Since secret bits are embedded in entities,480

attacks that randomly change tokens have a rela-481

tively low probability of destroying these entities.482

In some cases, the tokens that denote entities are483

changed, but the LLMs are able to correctly extract484

entities from perturbed tokens. This part of the485

robustness depends on the ability of the LLMs to486

correct sentences.487

Paraphrasing and SC completely change the sen-488

tences. As mentioned before, when the tokens are489

changed and the model prediction is different, AC 490

is unable to decode. Our stegos retain some robust- 491

ness against paraphrasing, and more than half can 492

be decoded under SC. 493

However, paraphrasing and SC seem to subtly 494

change the semantics. We measure the BertScore 495

(Zhang et al., 2020) of our stegos and paraphras- 496

ing/SC stegos to clarify the semantic noise level. 497

As shown in Fig. 3, the samples that could be de- 498

coded correctly are concentrated in the high-F1 re- 499

gion. In the paraphrased samples whose Bertscore 500

F1 is more than 0.8/0.9, the decoding success rate 501

is more than 60%/75%. The statistics of semantic 502

communication in the same situation is 85%/90%. 503

The result shows that most of our stegos remain 504

robust under attacks that preserve semantics well. 505

4 Conclusion 506

In this paper, we propose a semantic steganog- 507

raphy framework based on LLMs. We use enti- 508

ties to build the semantic space with the help of 509

ontology-entity tree, leverage Feedback CoT for 510

rejection sampling, and apply AC for efficient en- 511

coding and decoding. Experiments showe that our 512

framework are robust against attacks that ignore 513

or preserve semantics. The embedding capacity of 514

our framework is much higher than traditional sym- 515

bolic steganography, while the quality of generated 516

text is also better. Since our framework is able to 517

work with black-box LLMs’ API, it is easy to apply 518

our method to construct covert communications in 519

the real world scenario. 520
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5 Limitations521

Our framework is difficult to operate in a low522

semantic-level entropy condition, which is different523

from the symbolic-level entropy. When the entities524

and relations in a sentence are fixed, like given the525

prompt “1+1=”, there is no redundancy to embed526

bits because the answer is just “2”.527

The LLM used for this framework will affect528

the quality and robustness of the stegos. Therefore,529

we recommend using those large LLMs with open530

APIs. However, if the local use of LLMs is a ne-531

cessity, the need for GPU resources becomes a lim-532

itation. In our experiments, we used ChatGLM-6B-533

int4, which requires a maximum of 6GB of GPU534

RAM. Calculated as the product of GPU memory535

and time in use, generating a sentence takes about536

12.0754 GB·s.537

6 Ethics Statement538

We propose a steganography framework based on539

LLMs. Due to the convenience of accessing LLMs,540

this method may have an impact on the security of541

LLMs generated texts. In our future work, we will542

study the detection method against LLMs gener-543

ated steganographic texts. In our implementation544

and experiments we follow the licence of the used545

scientific artifacts.546
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A An Example of Generation &666

Regeneration667

As Sec.2.4 presents, the generated stegos will be668

checked by CA and regenerate if necessary. With669

the entities “many years” and “Mr. Kee”, an simple670

example of regeneration is shown below:671

Prompt: Write a sentence containing the follow-672

ing keywords: many years, Mr Kee. In this case,673

many years is the element of time category, and674

no other time-like element should appear in the675

sentence. Mr Kee is an element in person category,676

no other person-like element should appear in the677

sentence.678

Generation v0: Mr. Kee dedicated many years679

to teaching the children of the village.680

Feedback of CA: “Children” should not be in 681

the sentence because it is an element in person 682

category. 683

Regeneration v1: Mr. Kee toiled for many years 684

on his beloved farm. 685

Feedback of CA: “Farm” should not be in the 686

sentence because it is an element in location cate- 687

gory. 688

Regeneration v2: Mr. Kee fostered wisdom over 689

many years. 690

Feedback of CA: Good. No errors. 691

It is important to mention that the completeness 692

of entities affects the rationality of stegos. Since we 693

decide that some entities should be in the sentence 694

and the others should not, the sentence might be 695

somewhat strange if the chosen entities are not 696

related. 697

B An Example of Paraphrase & Semantic 698

communication 699

We trained the model proposed by (Xie et al., 2021) 700

in Chinese corpus. The impact of paraphrasing and 701

semantic communication is presented below. 702

Entities: 演员,观众 703

Stego: 电影中的群众演员为影片增色不 704

少，他们的不懈努力得到了观众的高度认 705

可。 706

Paraphrased stego: 影片里的临时演员为电 707

影增添了丰富的色彩，他们孜孜不倦的付出赢 708

得了广大观众的赞誉。 709

Stego after semantic communication(SNR=5): 710

电影中的阮演员为诲真相产生了不少，他们的 711

弹努力得到了观众的高度认可认可。 712

Stego after semantic communication(SNR=15): 713

中的群众演员为多个灵感色不少，他们的不懈 714

努力得到了观众的高度认可。 715

Stego after semantic communication(SNR=60): 716

中的群众演员为多个冲突色不少，他们的不懈 717

努力得到了观众的高度认可。 718

In this case, the entities演员 and观众 are not 719

changed after paraphrase. Even those decoding 720

methods based on retrieving are able to decode the 721

correct bits. 722

Although the sentence attacked by semantic com- 723

munication appears to make no sense, it still con- 724

tains the correct entities and can be decoded appro- 725

priately. 726
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C Additional Experiments727

Method PPL Dist-3 bit/sent bit/tok MSR
Ours 869.79 0.8753 28.5088 0.3958 0.893

METEOR 2461.97 0.8179 2.1547 0.1747 0.458
DISCOP 2524.63 0.8317 2.4573 0.1755 0.461

Table 4: Comparison with METEOR(Kaptchuk et al.,
2021) and DISCOP(Ding et al., 2023), testing by
ChatGLM2-6B.

Method PPL Dist-3 bit/sent bit/tok MSR
AC 2065.73 0.8024 2.5695 0.1788 0.459

AC+prompt1 3297.14 0.9315 3.9218 0.2673 0.326
AC+prompt2 3622.07 0.9567 4.5410 0.3154 0.375

Table 5: Comparison with prompts that will cause high-
entropy responses, testing by ChatGLM2-6B. Prompt 1
is You are a creative writter. Prompt 2 is Please give a
high entropy response.

Here we provide some additional results. We728

compared our method with 2 provably secure729

method METEOR (Kaptchuk et al., 2021) and DIS-730

COP (Ding et al., 2023). Table 4 shows that ME-731

TEOR and DISCOP also produce high-PPL texts732

and low MSR. These phenomenon is similar to the733

results of AC. In conclusion, METEOR, DISCOP734

and AC are symbol-level embedding methods and735

they are not suitable for LLMs due to the redun-736

dancy of symbol space is compressed.737

If we want the LLMs to generate texts with high738

entropy, some prompts may be helpful. We tested739

2 prompts: You are a creative writter. and Please740

give a high entropy response. These prompts sig-741

nificantly increase the embedding capacity of AC,742

and also degrade the quality of generated texts.743

However, the increased capacity is still much less744

than our method, and the PPL is unacceptably745

high. Moreover, the MSR of texts is also decreased.746

Therefore, using prompts to increase the capacity747

may be restricted by the quality and MSR of texts.748
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