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Abstract

Chain-of-thought (CoT) prompting teaches001
large language models (LLMs) in context to002
reason over queries that require more than003
mere information retrieval. However, human004
experts are usually required to craft demon-005
strations for in-context learning (ICL), which006
is expensive and has high variance. More007
importantly, how to craft helpful reasoning ex-008
emplars for ICL remains unclear. In this work,009
we investigate whether LLMs can be better in-010
context teachers for knowledge reasoning. We011
follow the “encoding specificity” hypothesis012
in human’s memory retrieval to assume in-013
context exemplars at inference should match014
the encoding context in training data. We015
are thus motivated to propose Self-Explain016
to use one LLM’s self-elicited explanations017
as in-context demonstrations for prompting018
it as they are generalized from the model’s019
training examples. Self-Explain is shown to020
significantly outperform using human-crafted021
exemplars and other baselines. We further022
reveal that for in-context teaching, rationales023
by distinct teacher LLMs or human experts024
that more resemble the student LLM’s self-025
explanations are better demonstrations, which026
supports our encoding specificity hypothesis.027
We then propose Teach-Back that aligns028
the teacher LLM with the student to enhance029
the in-context teaching performance. For030
example, Teach-Back enables a 7B model031
to teach the much larger GPT-3.5 in context,032
surpassing human teachers by around 5% in033
test accuracy on medical question answering.034

1 Introduction035

Knowledge reasoning, different from numerical rea-036
soning, requires large language models (LLMs) to037
deduce the association between questions and answers038
that do not usually explicitly appear in the training039
corpus, although LLMs may have memorized all the040
facts involved in the question. Such a compositionality041
gap [Press et al., 2023] between testing and pretraining042
makes knowledge reasoning difficult and beyond mere043

fact retrieval. However, LLMs have demonstrated 044
impressive knowledge reasoning performance on di- 045
verse tasks [Wei et al., 2022] with few-shot prompting. 046
Exemplars of reasoning are provided in the prompt as 047
context to teach LLMs to reason through in-context 048
learning (ICL) [Brown et al., 2020] at inference. LLMs 049
will generate intermediate reasoning steps (known 050
as Chain-of-Thought (CoT)1 [Wei et al., 2022]) for 051
deducing the test cases. 052

Standard few-shot CoT prompting requires humans 053
to first craft high-quality demonstrations of reasoning 054
for LLMs, as depicted in the upper part of Figure 1. 055
However, this may bring some issues. On the one hand, 056
in professional domains such as medicine, experts like 057
physicians are needed to produce fine-grained ratio- 058
nales with correct jargon, which is time-consuming 059
and expensive [Pal et al., 2022, Yang et al., 2023]. On 060
the other hand, different from labels, rationales can be 061
phrased in varied ways, while all being correct [Yao 062
et al., 2023]. Collecting reasoning examples through 063
crowd-sourcing can thus have great uncertainty [Ge- 064
breegziabher et al., 2023]. The constructed rationales 065
heavily depend on human annotators’ own experience 066
and thus, may be very subjective [Lee et al., 2022]. 067

More fundamentally, there is a limited understanding 068
of the principles behind constructing effective ratio- 069
nale exemplars for in-context learning. Currently, the 070
majority of works depend on human-crafted demon- 071
strations (usually by professionals) that are based on 072
some heuristic rules [Fu et al., 2023b, Zhou et al., 073
2022, Khot et al., 2023]. However, it is unclear whether 074
those sophisticated rationales crafted by humans are 075
equally the most sensible to LLMs. Demonstrations 076
of rationales from humans may not always be help- 077
ful [Yao et al., 2023], although they are often assumed 078
to be gold standards [Muller et al., 2021]. 079

Therefore, we are motivated to ask, can an LLM 080
teach itself or other models through in-context 081
learning for knowledge reasoning, preferably better 082
than humans? We consider a generic framework of in- 083
context teaching, where a teacher LLM provides exam- 084
ple rationales that are then used as in-context demon- 085
strations to prompt a student LLM. For constructing ef- 086
fective in-context exemplars, we assume the Encoding 087

1We use “CoT” and “rationale” interchangeably to refer
to reasoning paths.
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Standard

Ours
Encoding Specificity Hypothesis: In-context exemplars should match the training data of the student LLM.

[Design 1] Self-Explain: Self-elicited rationales imply the student’s training data the most.

[Design 2] Teach-Back: Aligning the teacher LLM with the student improves teaching performance.

Generate rationales Student LLMHuman Expert
Few-shot prompting

Student LLM Generate rationales

Few-shot prompting

◼ 56% Acc

◼ 58% Acc

◼ w/o Teach-Back: 54% Acc
◼ w/ Teach-Back:   61% Acc

Teacher LLM

Generate rationales

Student LLM Generate rationales

Few-shot prompting

Train

Figure 1: Overview of our approaches. Existing few-shot CoT prompting methods rely on human experts to craft
rationales as in-context demonstrations. We propose Encoding Specificity Hypothesis to make large language
models better in-context teachers than humans. We accordingly design Self-Explain for an LLM itself to be the
teacher and Teach-Back to improve the LLM’s capability of teaching another model in context.

Specificity Hypothesis [Tulving, 1972] from human’s088
episodic memory as inspired by the convergence089
between attention and memory [Ramsauer et al., 2020,090
Bricken and Pehlevan, 2021, Zhao, 2023]. The hypoth-091
esis postulates the context during recalling information092
from the episodic memory should match the context093
during encoding it. Similarly, for few-shot prompting,094
ideal in-context exemplars of reasoning at test time are095
hypothesized to match the rationales from the training096
corpora related to the test domain. For example, when097
reasoning over medical questions at inference, in-098
context rationales are expected to be phrased similarly099
to examples in the medical corpus during pre-training.100

The encoding specificity hypothesis can be easily101
satisfied when the teacher model is the same as the102
student model. We directly prompt the student model103
to explain the given answer to a question sampled from104
the same dataset as the test data as inspired by learning105
theory in cognitive science [Chi et al., 1989]. Those106
elicited self-explanations can represent the model’s107
encoded knowledge for the test task and are then used108
as in-context demonstrations for ICL at inference. We109
refer to this approach as Self-Explain. On the other110
hand, when the teacher model is different from the111
student model (e.g., using a weak and small model112
to teach a much larger model [Burns et al., 2024]),113
we first let the teacher model learn from the student’s114
explanations before eliciting the teacher’s explanations115
(see the lower part of Figure 1). We refer to this116
method as Teach-Back, which is how healthcare117
providers (i.e., teacher) reduce the communication118
gap with patients (i.e., student) for effective health119
education [Talevski et al., 2020].120

Our experimental results provide sources of evi-121

dence for the encoding specificity hypothesis. We find 122
that the student model itself tends to be the best in- 123
context teacher for it, surpassing human teachers or 124
other LLM teachers (w/o Teach-Back). Our experi- 125
ments across models of different sizes and reasoning 126
abilities suggest that for in-context teaching, larger and 127
stronger models are not necessarily better in-context 128
teachers, though they may produce more reliable ra- 129
tionales. Instead, our findings demonstrate a strong 130
linear correlation that in-context exemplars of reason- 131
ing that more resemble the student’s self-explanations 132
may yield better student’s performance, which supports 133
our encoding specificity hypothesis. Furthermore, ap- 134
plying Teach-Back can significantly improve the in- 135
context teaching capability of a teacher model for the 136
student model and even outperform Self-Explain de- 137
pending on the teacher model. For example, Teach- 138
Back enables a small deployable 7B model to teach 139
the much larger GPT-3.5 in context, surpassing hu- 140
man teachers by around 5% in test accuracy on medical 141
question answering. 142

In summary, our contributions are mainly in three 143
folds: 144

• We investigate in-context teaching of LLMs for 145
knowledge reasoning, where we use a teacher 146
LLM to provide in-context demonstrations to 147
teach a student model to reason over the question. 148
We propose the Encoding Specificity Hypothesis 149
as our guideline for composing in-context exem- 150
plars. 151

• We propose a new way of eliciting rationales from 152
an LLM by prompting it to explain question- 153
answer pairs. We then propose Self-Explain 154
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prompting to use an LLM’s self-explanations as155
its in-context exemplars, which outperforms using156
human-crafted CoTs.157

• Our experiments suggest that in-context exem-158
plars of rationales from LLM teachers or human159
teachers that more resemble the student’s self-160
explanations may produce better reasoning perfor-161
mance. We then propose Teach-Back, demon-162
strating that the in-context teaching ability of163
LLMs can be improved by aligning the teacher164
with the student’s self-explanations.165

2 Revisiting ICL166

We first detail some annotations and give a formal setup167
of ICL. We denote the model parameters as θ, ratio-168
nale as π and assume a labeled dataset D with distribu-169
tion p∗. Given a test query x, the model will predict ỹ170
by conditioning on the query and in-context exemplars.171
We can then have,172

ỹ = argmaxyP (y|e,x, θ), (1)173

where e, is the sequence of all K in-context exemplars174
i.e., e = e1, ..., eK) and ei = (xi, πi, yi) where (xi, yi)175
is sampled from p∗.176

2.1 Encoding Specificity Hypothesis177

A key question for ICL is how to compose in-context178
rationales for some specific dataset D(x,y)? Rationales179
can be rephrased differently while delivering the same180
logic. To understand this question, we take a mem-181
ory view of ICL by conceptualizing LLMs as mem-182
ory networks [Hopfield, 1982, Kanerva, 1988, Kaiser183
and Bengio, 2016, Ramsauer et al., 2020, Krotov and184
Hopfield, 2016]. The feed-forwarding through hidden185
layers of LLM is to retrieve and generalize learned in-186
formation in memory to construct the output y to com-187
plete the query x under the guidance of context C (i.e.,188
in-context exemplars). The pretraining stage can be189
viewed as encoding information into the weights, i.e.,190
memories of LLMs.191

From a memory view, we are inspired to assume192
the encoding specificity [Tulving and Thomson, 1973]193
in humans’ memory retrieval that requires the match194
of context between testing and training. To see this195
hypothesis, a simplified thought experiment can be196
considered: supposing that a specific datapoint (x, y)197
has been seen during language modeling in pretraining198
and C is the corresponding context prepending (x, y),199
(i.e., a consecutive string (C, x, y) is seen by LLM200
during training), at test time, to let the model generate201
y with great probability, we can prompt it with (C, x).202

More generally, the encoding specificity hypothesis203
implies that in-context exemplars of reasoning204
should match the distribution of reasoning exam-205
ples seen during training, especially the training cor-206
pus containing information similar to task data D(x,y).207

LLMs may have seen many sentences involving rea- 208
soning during pre-training and also explicit examples 209
of reasoning (e.g., responses to users’ questions) during 210
further instruction fine-tuning. Thus, for ICL, it may be 211
easier for LLMs to generalize from in-context exem- 212
plars similar to those rationales from training data (e.g., 213
having similar reasoning logic or using similar expres- 214
sions/ jargon) to answer new questions at inference. 215

3 Methodology 216

The general framework of our proposed methods and 217
our prompting format is shown in Figure 2. We first 218
introduce Self-Explain, where the student and teacher 219
are the same (Section 3.1), as a straightforward im- 220
plementation of the encoding specificity hypothesis. 221
We then extend this approach to employing a different 222
teacher model (Section 3.2). 223

3.1 Self-Explain 224

Motivated by the encoding specificity, we would like 225
our in-context exemplars of reasoning to match the 226
LLMs’ training corpus containing information similar 227
to the task data. To achieve this, we directly prompt an 228
LLM to elicit its explanation for some question-answer 229
pairs of task data. Such self-explaining is actually how 230
humans integrate new information with their existing 231
knowledge [Chi et al., 1989]. Similarly, the LLM is 232
expected to utilize its existing encoded knowledge 233
relevant to the unseen question provided, in order 234
to generate its explanations. These self-explanations 235
are then used as in-context exemplars of reasoning to 236
prompt the model itself. 237

Eliciting LLMs’ Self-explanations. Formally, we 238
assume access to labeled training data where we have 239
some data (x, y) sampled from the distribution ptrain 240
and assume ptest ≈ ptrain. We consider a realistic set- 241
ting where human-crafted CoTs are not available. We 242
define an oracle CoT as 243

π∗ := argmaxπP (y|x, π, θ). (2) 244

Self-explanation is then obtained as, 245

πself = argmaxπP (π|x, y, γ, θ), (3) 246

where γ is an instruction. We hope LLMs to 247
generate reasoning path based on given (x, y) by 248
recalling from its according encoded knowledge 249
so as to satisfy encoding specificity. we further 250
find P (y|x, πself, θ) >> P (y|x, πhuman, θ) (see Ap- 251
pendix C). We may arguably state that πself is a more 252
reasonable estimation to π∗ than πhuman. 253

Filtering Self-explanations. We filter out the elicited 254
self-explanations based on the explanation faithful- 255
ness [Jacovi and Goldberg, 2020]. Explanations that 256
fail to guide the model to produce the given answer, i.e., 257
y ̸= argmaxỹP (ỹ|x, πself, θ), are screened. We em- 258
pirically verify the self-explanation ability of different 259
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Explanation: Ethambutol is a medication that

is used to treat tuberculosis …

Q: You are seeing a patient in clinic who …

A: Ethambutol is a … The answer is D: Visual Loss.

…
Q: A 42-year-old man comes to the office for

preoperative…

A: The patient has an adrenal … The answer is D:

Phenoxybenzamine.

Q: Two weeks after undergoing an emergency 

cardiac catherization … ?

The patient has undergone an emergency

cardiac catheterization with stenting … So,

the answer is C: Cholesterol embolization.

Test question

Teacher LLM

In-context exemplars

Student LLM

Q: A 42-year-old man comes to the office for preoperative

… Choose from …

A: The answer is D: Phenoxybenzamine.

Generate Self-explanation

Q: You are seeing a patient in clinic who recently started

treatment for active tuberculosis…… which of the

following is a known side effect? Choose from A:

Cutaneous flushing, B: Elevated liver enzymes…

A: The answer is D: Visual Loss.

Explain how to reach this answer.

Generate explanations

Figure 2: The overall framework and prompting format of our approach. The teacher LLM is prompted to generate
explanations on sampled training data. Those teacher’s explanations are used as in-context demonstrations for the
student model at test time. The student model and the teacher model can be the same.

LMs that models actually succeed to justify the given260
(x, y) most of the time (see Section 5.1).261

ICL with Self-explanations. The self-explanations262
πself elicited by the model are then used as in-context263
exemplars for prompting it following Equation 1. This264
can be viewed as the model teaching itself via ICL265
to do reasoning. Additionally, the ICL performance266
is very close when using respective πself elicited with267
either wrong or ground-truth y for the input question x268
in Equation 3 (see Section 4.2).269

Generalization through generation diversity. The270
underlying logic of πself might be very specific to its271
corresponding (x, y) and thus lacks generalizability to272
other different cases from test data. Then, the output273
explanation π̂te at test time may fail to apply to the input274
cases, leading to wrong answers. To mitigate this issue,275
we also design a new instruction γ′ so as to prompt the276
model to generate solutions employing distinct logics.277
Formally, we have,278

(πself
1 , ..., πself

n ) = argmaxπP (π|x, y, γ′, θ), (4)279

where n ∈ (1, N) and N is the number of different280
explanations to generate. For example, if N = 5, γ′281
will be “Explain how to reach this answer in five dif-282
ferent ways”. Then at test time, πself

i for an in-context283
exemplar (xi, yi) will be randomly sampled from the284
according {πself

n |n ∈ (1, N)} of (xi, yi).285

3.2 Teach-Back286

Instead of ICL with self-explanations, those explana-287
tions as in-context exemplars can be provided by a sep-288
arate model as the teacher, i.e.,289

πself = argmaxπP (π|x, y, γ, θteacher). (5)290

However, explanations of one model may not serve 291
as the most helpful reasoning demonstrations for an- 292
other model, especially when the teacher’s expla- 293
nations are very distinct from the student’s self- 294
explanations (see results in Section 4.3). Based on 295
our encoding specificity hypothesis, we propose to 296
let the teacher model learn from the student’s self- 297
explanations (through supervised fine-tuning) before 298
eliciting the teacher’s explanations. This method is 299
called Teach-Back, which is similar to how health- 300
care providers reduce the communication gap with pa- 301
tients for effective health education [Talevski et al., 302
2020]. Doctors will rephrase and clarify their expla- 303
nations based on patients’ explanations for better com- 304
munication. In Section 4.4, we empirically show the 305
effectiveness of Teach-Back in improving teaching ef- 306
ficacy and enhancing student’s performance. 307

4 Experiments 308

4.1 Experimental Setup 309

Datasets. We are focused on knowledge-intensive 310
question-answering tasks that require logical thinking 311
on information and associating encoded knowledge 312
but mere facts retrieval. Such knowledge-intensive 313
QA is common and important for the applications of 314
LLMs [Jin et al., 2021b, Tran et al., 2023]. We eval- 315
uate our method in both general domains and expert 316
domains. We employ widely-used StrategyQA [Geva 317
et al., 2021] for commonsense reasoning. For expert 318
domains, we use challenging MedMCQA [Pal et al., 319
2022] and MedQA [Jin et al., 2021a] with standard 320
splits. These datasets consist of multiple-choice ques- 321
tions to diagnose clinical cases, which are used for 322
physician qualification exams. 323
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Method\Dataset MedCQA MedQA StrategyQA
No CoT 51.7 52.1 46.8

Zero-shot CoT [Kojima et al., 2022] 51.1 54.4 45.6

Auto-CoT [Zhang et al., 2023] 52.5 55.2 52.7

Human CoT 53.1 55.6 56.1

Self-Explain 53.2 57.5 58.5

w/ Multi-Exp 56.6 59.6 59.7

Table 1: Test accuracy of different prompting methods on three datasets for knowledge reasoning.

MedMCQA MedQA StrategyQA
Right 56.6 59.6 59.7

Wrong 56.0 59.4 59.1

Table 2: Test accuracy of prompting with self-
explanations that are generated provided by right an-
swers and wrong answers.

Models. We use a variety of models. We employ324
the chat version of 7B model and 13B model of325
Llama2 [Touvron et al., 2023], the 7B model of Mis-326
tral [Jiang et al., 2023], the Phi3-128k-mini that has327
3.8B parameters [Abdin et al., 2024] and the frozen328
version (0613) of GPT-3.5 2.329

Prompting. For the instruction used for eliciting330
models’ self-explanations, an ablation study is con-331
ducted in Appendix A. For few-shot prompting at test332
time, we use five in-context exemplars sampled from333
the training data.334

Baselines. Apart from comparing our approach with335
standard few-shot prompting with human CoTs, we in-336
clude three more baselines. (1) “No CoT”: We remove337
rationales and use input-output pairs only for in-context338
exemplars; (2) ”Zero-shot CoT” [Kojima et al., 2022]:339
This method does not require human-crafted demon-340
strations as it is not few-shot prompting. It directly341
elicits reasoning from LLMs for the test question by342
using the prompt “Let’s think step by step”. (3) “Auto-343
CoT” [Zhang et al., 2023]: This work uses the same344
method as Kojima et al. [2022] to elicit rationales from345
LLMs. But it further proposes a way of exemplar se-346
lection to choose elicited rationales as in-context ex-347
emplars. For fair comparison, in each trial, we use348
the same question-answer pairs for few-shot demon-349
strations for all baselines.350

4.2 Few-shot Prompting with Self-explanations351

In this section, we evaluate the test performance of352
Self-Explain, i.e., when the model’s self-explanations353
are used as in-context exemplars of reasoning for few-354
shot prompting. We conduct experiments with GPT-355
3.5-turbo on reasoning tasks in both general domains356

2https://platform.openai.com/docs/models/gpt-3-5-turbo
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Figure 3: The test performance with respect to the num-
ber of self-explanations to generate for each exemplar.

and expert domains. 357

Prompting with self-explanations is better than 358
using human-crafted CoT. Our results are shown 359
in Table 1. Self-Explain can impressively outper- 360
form using CoTs crafted by human professionals by 361
around 2% in both challenging MedQA and general 362
domain, while reaching similar performance to Human 363
CoT for MedCQA. Our approach also outperforms 364
Auto-CoT [Zhang et al., 2023] and vanilla zero-shot 365
CoT [Kojima et al., 2022], both of which cannot 366
effectively surpass Human CoT for knowledge reason- 367
ing. The superior performance of Self-Explain may 368
support our encoding specificity hypothesis. Overall, 369
considering the difficulty and expense of crafting CoTs 370
by humans, Self-Explain can thus be very useful in 371
expert domains. Example self-explanations and human 372
CoTs can be found in Appendix D. 373

Generation diversity is helpful. Apart from naive 374
Self-Explain, we generate five different explanations 375
for each in-context exemplar and randomly select one 376
for ICL at test time (see explanation in Section 3.1). As 377
shown in results of “w/ Multi-Exp” in Table 1, this ap- 378
proach further boosts the performance of Self-Explain 379
to significantly surpass Human CoT by around 4% in 380
all datasets. To better understand the effects of this 381
component, we experiment with generating different 382
numbers of self-explanations for one exemplar input. 383
Results are shown in Figure 3. We find generating 384
different self-explanations for an in-context exemplar 385
can generally improve the test performance, while such 386
improvement experiences diminishing returns with fur- 387
ther increased numbers of generations. 388
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Teacher\Student Llama2-7B Llama2-13B Mistral-7B Phi3-mini GPT-3.5
No CoT 28.4 31.1 31.8 49.5 41.1
Human 27.3 31.4 38.2 53.3 55.6
Llama2-7B 30.6 32.2 40.8 49.1 51.2
Llama2-13B 30.2 35.5 41.1 55.3 56.9
Mistral-7B 25.1 34.7 44.2 54.4 53.5
Phi3-mini 18.7 35.1 40.7 57.1 57.1
GPT-3.5 18.1 34.4 43.1 57.7 57.5

Table 3: Results of teaching student LLMs with teachers’ self-explanations through in-context learning. The best
test accuracy is highlighted in bold.

Human
Llama-7B

Llama-13B
Mistral-7B

Phi3-mini
GPT-3.5

Human

Llama-7B

Llama-13B

Mistral-7B

Phi3-mini

GPT-3.5

100.0 9.3 14.0 15.8 14.2 12.9

9.3 100.0 23.6 18.9 15.9 15.2

14.0 23.6 100.0 31.0 29.6 32.6

15.8 18.9 31.0 100.0 28.2 26.9

14.2 15.9 29.6 28.2 100.0 30.8

12.9 15.2 32.6 26.9 30.8 100.0
10

100

(a)
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ROUGE (%)
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)

Llama-7B; Pearson=52.6
Llama-13B; Pearson=88.2
Mistral-7B; Pearson=83.0

Phi3-mini; Pearson=81.3
GPT-3.5; Pearson=72.6

(b)

Figure 4: (a) ROUGE scores between self-explanations of teacher and student. For “Human” teachers, human-
crafted CoTs are used for computation. (b) Strong linear correlation is observed between ROUGE scores of
self-explanations of teacher and student and the student’s test accuracy.

Does the correctness of self-explanations matter?389
A natural question raised in Self-Explain is what if390
the self-generated explanations are wrong since the391
generation process is not supervised by humans. We392
look into this question by providing the LLM with393
random wrong answers to generate misleading expla-394
nations of the input question (i.e., we use (x, ywrong)395
in Equation 3). Those self-explanations with wrong396
answers i.e., (x, πself

wrong, ywrong) are then used for397
prompting as in-context exemplars. The results are398
shown in Table 2. We find that the performance of399
prompting with self-explanation seems insensitive to400
its correctness. This result suggests that a correctly401
labeled dataset may not be necessary for Self-Explain402
prompting. Similar results on text classification are403
observed that label space is more important for ICL404
than label correctness [Min et al., 2022]. We simi-405
larly speculate that what carries more weight is how406
self-explanations are phrased, as they should match407
the context seen during encoding relevant information408
according to our encoding specificity hypothesis. We409
look deeper into this hypothesis in Section 4.3.410

4.3 In-context Teaching via Explantions411

We have demonstrated LLMs can teach themselves412
with Self-Explain for better knowledge reasoning. We413
further extend this to study whether self-explanations414
of one model can be used as in-context exemplars to415
teach another model through ICL. Teaching through su-416

pervised learning on teacher’s generated data has been 417
widely investigated [Zhao et al., 2024, Ho et al., 2023, 418
Hsieh et al., 2023], which can be framed as knowledge 419
distillation. However, machines’ supervision through 420
ICL has not yet been well studied. In this section, we 421
have a teacher LLM generate self-explanations that are 422
then used as in-context exemplars to teach a student 423
LLM for reasoning unseen test cases. Saha et al. [2023] 424
have explored a similar research question, while they 425
insert teacher’s explanations into student’s generation 426
for test examples during inference. This may not be 427
fully considered as teaching as the taught model re- 428
ceives assistance with test examples, and its general- 429
ization ability is thus not evaluated. 430

The student is often its own best teacher. Results 431
are shown in Table 3. When doing few-shot prompting 432
with the students’ own self-explanations as in-context 433
exemplars, the students can generally reach the best 434
performance, which is aligned with results in Sec- 435
tion 4.2. This may also support that the encoding 436
specificity hypothesis for ICL is correct. Noticeably, 437
larger or stronger models may not necessarily be better 438
in-context teachers. For example, for Llama2 and 439
Mistral, prompting them with GPT-3.5’s explanations 440
gives worse results than using those models’ own 441
self-explanations. The performance for Llama2-7B 442
with GPT-3.5 as the in-context teacher is even worse 443
than not using any demonstrations of reasoning (i.e., 444
“No CoT”). 445
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Figure 5: Students’ performance improvement after ap-
plying Teach-Back. Values in brackets stand for stu-
dents’ respective test accuracy w/ Teach-Back. The
x-axis represents students who do reasoning. The y-
axis is teacher models that provide in-context demon-
strations for students.

Better teachers tend to produce rationales that more446
resemble student’s self-explanations. The perfor-447
mance or scale of the teacher model is shown not in-448
dicative of its in-context teaching ability via expla-449
nation. Instead, we observe a strong correlation be-450
tween students’ performance and the similarity be-451
tween teachers’ demonstrations and students’ self-452
explanations. Specifically, ROUGE-L [Lin, 2004] is453
used to measure the closeness between rationales of454
teachers and students. We observe that explanations455
generated by different LLMs tend to be more sim-456
ilar to each other than to human-crafted rationales,457
as shown in Figure 4a. Meanwhile, LLM teachers458
tend to yield better student’s performance than hu-459
man teachers shown in Table 3. We further compute460
Pearson correlation coefficient between the student461
LLM’s test accuracy and the ROUGE score between its462
self-explanations and the teacher LLMs’ explanations/463
human-crafted rationales. As shown in Figure 4b, evi-464
dent linear correlations between accuracy and ROUGE465
score are observed, especially for the models stronger466
than Llama2-7B. This may further support our encod-467
ing specificity hypothesis: in-context exemplars for the468
student should match its training data because ratio-469
nales similar to the student’s self-explanations are more470
likely to align with the student’s training data.471

4.4 Learning from Students for Better Teaching472

Given the strong correlation between students’ test ac-473
curacy and closeness between teacher and student ex-474
planations, we are motivated to further look into the475
underlying causality, i.e., whether in-context teach-476
ing can be improved by letting the teacher learn477
the student’s self-explanations. In this section, the478
teacher model will first be fine-tuned on the student’s479
self-explanations to generate its new self-explanations480
that are then used as in-context exemplars for the stu-481
dent (i.e., Teach-Back introduced in Section 3.2).482

We generate each student model’s self-explanations483
for 500 held-out training examples (will not be used484

for in-context demonstrations) for fine-tuning teacher 485
models. To accommodate our available computing re- 486
sources, we only fine-tune teacher models whose sizes 487
are smaller or equal to 7B with LoRA [Hu et al., 2021]. 488
Detailed implementations for fine-tuning are shown 489
in Appendix B. Example generations before and after 490
Teach-Back are shown in Appendix E. 491

Teach-Back improves in-context teaching. As 492
shown in Figure 5, when the teacher model is different 493
from the student model, Teach-Back can greatly en- 494
hance the teaching performance of the teacher LLM, as 495
evidenced by higher test accuracy among students. No- 496
ticeably, Some fine-tuned teachers using Teach-Back 497
can enable students to achieve significantly higher 498
accuracy than the former best teachers in Table 3. For 499
example, a fine-tuned Mistral-7B can guide Phi3-mini 500
to achieve 59.3% accuracy. This is 4.9% higher than 501
the accuracy achieved with an unfine-tuned Mistral-7B 502
teacher and 1.6% higher than the best unfine-tuned 503
teacher (i.e., GPT-3.5, see the column for “Phi3-mini” 504
in Table 3). Interestingly, Teach-Back enables the 505
smaller Mistral-7B to teach the much larger GPT-3.5 in 506
context, surpassing human teachers by around 5% and 507
Self-Explain by around 4% as visualized in Figure 7 508
of Appendix. Our results showcase the promising use 509
of Teach-Back in leveraging a small tunable model 510
to improve the few-shot prompting performance of a 511
much larger LM without human’s supervision (i.e., 512
human-crafted demonstrations). 513

5 Further Analysis of LLMs’ 514

Explanations 515

5.1 Faithfulness of Self-explanations 516

To elicit self-explanations πself from LLMs, we prompt 517
the model to explain a given pair of question and 518
answer (x, y) as shown in Equation 3, and then 519
(x, πself, y) will be used as one in-context demonstra- 520
tion. In this section, we evaluate how many of those 521
raw self-explanations (before filtering) actually support 522
the model to predict the given answer [Hase et al., 523
2020]. We append the elicited explanations πself back 524
to the given question x as the prompt fed to the model. 525
We then examine whether the model will correctly 526
output the given answer y. We empirically find that 527
diverse models can produce faithful explanations most 528
of the time. For example, Mistral-7B reaches 94.2 % 529
rate of faithful explanations, GPT 3.5 reaches 98.3% 530
and Llama2-13B reaches 93.9 %. Our results may 531
confirm the ability of LLMs’ explaining some given 532
questions and answers. 533

5.2 How Similar are Self-explanations to 534
Human-crafted CoTs? 535

The common standard to measure the quality of 536
machine-generated samples is how similar they are 537
to human-crafted ones [Lu et al., 2022, Wang et al., 538
2022]. The more similar, the better the quality is 539
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Figure 6: Similarity between human-crafted CoTs and self-explanations in terms of ROUGE score, terminology
covered, and length.

assumed to be. However, Hase et al. [2020] have540
pointed out that evaluation based on plausibility by541
matching human explanations is not sufficient. Our re-542
sults also challenge this evaluation criterion. We show543
that LLMs’ self-explanations are very different from544
human-crafted CoTs in terms of ROUGE-L score, ter-545
minology used, and length. However, few-shot prompt-546
ing with LLMs’ self-explanations demonstrates supe-547
rior performance to using human-crafted CoTs.548

We use MedCQA as our testbed, which provides549
high-quality human-crafted explanations. For termi-550
nology comparison, we extract terms in both kinds of551
CoTs through scispaCy 3 and calculate F1 score be-552
tween the two terms lists. Results are shown in Fig. 6.553
We find in terms of content (measured by ROUGE-554
L and term coverage), self-explanation differs from555
human-crafted CoTs greatly, given the average simi-556
larity is around 15%. The length distribution of self-557
explanation is more centric, while the human-crafted558
CoTs have more varied lengths.559

6 Related Work560

In-Context Learning. In-Contex Learning (ICL) is561
the ability of language models to induce answers from562
given demonstrations without weights updating in su-563
pervised tuning. In-context exemplars are the key to564
ICL which have dominating influence on the genera-565
tion. Quite a few works have been proposed to opti-566
mize the selection of exemplars [Lu et al., 2023, Rubin567
et al., 2022, Fu et al., 2023b]. On the other hand, in the568
cases of no access to task labels, Lyu et al. [2023] pro-569
posed a zero-shot ICL that employs pseudo exemplars570
with random labels for classification tasks.571

Chain-of-Thought prompting without human-572
crafted exemplars. Prompting with reasoning ex-573
emplars triggers LLMs to generate similar intermediate574
steps of thinking through ICL, known as Chain-of-575
Thought (CoT) [Wei et al., 2022]. Kojima et al. [2022]576
propose zero-shot CoT prompting to elicit LLMs’ rea-577
soning without human-crafted exemplars. This method578
is then leveraged to prompt LLMs to generate CoT579
exemplars by themselves for ICL [Zhang et al., 2023,580
Wan et al., 2023, Chen et al., 2023]. Different from581
our work, which focuses on eliciting rationales from582
LLMs, Zhang et al. [2023], Wan et al. [2023] concen-583

3https://allenai.github.io/scispacy/

trate on selecting rationales generated according to Ko- 584
jima et al. [2022]. And Chen et al. [2023] further incor- 585
porate pseudo task generation alongside self-generated 586
CoTs. Additionally, Yasunaga et al. [2024] propose 587
analogical prompting to solve emerging new tasks 588
without human-crafted demonstrations. Importantly, 589
these works mainly focus on prompting engineering 590
for very large, closed-source LMs (e.g., GPT-4). 591
None of them formally investigate the fundamental 592
in-context teaching among different LMs. Instead, 593
our work proposes encoding specificity hypothesis to 594
understand in-context teaching for LLMs, which is 595
evidenced by experiments across different models. 596

Teaching via explanations. Many past works have 597
explored teaching student LLMs with teacher model’s 598
explanations through supervised fine-tuning [Ho et al., 599
2023, Hsieh et al., 2023, Fu et al., 2023a]. Few 600
have investigated in-context teaching. Lampinen 601
et al. [2022] demonstrate that LLMs can learn from 602
human-crafted explanations in context. Saha et al. 603
[2023] feed the teacher’s explanations of test examples 604
to the student model during inference. However, this 605
may not be fully considered as teaching as the taught 606
model receives assistance with test examples, and thus, 607
the student model’s generalization ability from the 608
teacher is not evaluated. 609

7 Conclusion 610

In this work, we investigate whether LLMs can teach 611
themselves or other models in the context of knowl- 612
edge reasoning. We introduce the encoding speci- 613
ficity hypothesis that in-context exemplars at inference 614
should match the encoding context of the model’s train- 615
ing data. Motivated by our hypothesis, we propose 616
Self-Explain to let an LLM teach itself with its self- 617
explanations through in-context learning, which out- 618
performs human-crafted chain-of-thoughts and other 619
baselines in different reasoning tasks. We reveal that 620
for in-context teaching, rationales by distinct teacher 621
LLMs or human teachers that more resemble the stu- 622
dent LLM’s self-explanations are better demonstra- 623
tions, which further supports the encoding specificity 624
hypothesis. We then propose Teach-Back that aligns 625
the teacher LLM with the student that can enhance the 626
in-context teaching performance. 627
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8 Limitations628

We propose Self-Explain and Teach-Back that ver-629
ify our encoding specificity hypothesis for few-shot630
prompting. They also demonstrate impressive per-631
formance on diverse models for knowledge reasoning632
without human guidance. The student model’s per-633
formance with Self-Explain is consistently among the634
best. However, the student performance in Teach-635
Back does not necessarily surpass standard prompting636
with human CoTs, depending on the teacher model.637
For example, Mistral-7B with Teach-Back enables638
different student models to reach optimal test perfor-639
mance, while teachers like Llama2-7B are less effec-640
tive. Therefore, we suggest using Self-Explain as a641
starting point in real applications. In the future, we will642
further investigate the influence of the teacher model643
in Teach-Back on student performance and how fine-644
tuning affects the teacher model’s self-explanations.645
Overall, in this work, the main contribution of our pro-646
posed Teach-Back is that it can greatly improve the647
ability of one LLM to teach a different student model.648

In addition, our work is limited to only one teacher.649
Future work could explore many teachers, including650
mixture of experts. Moreover, there are various emerg-651
ing advanced prompting methods for different kinds652
of reasoning tasks, e.g., tree-of-thoughts [Yao et al.,653
2024] or multi-round prompting [Khot et al., 2023,654
Zhou et al., 2022]. In this work, we do not consider655
these more advanced designs of prompting, but focus656
on commonly used CoT prompting to eliminate the657
need of human-crafted CoTs. However, our approaches658
can be adapted to these methods e.g., by modifying659
the instructions used to elicit LLMs’ rationales. The660
majority of these methods still require human-crafted661
demonstrations. We will further investigate whether662
LLMs can implement these advanced prompting meth-663
ods without human-crafted exemplars under our frame-664
work in the future.665
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Figure 7: Few-shot prompting performance of GPT-
3.5 on knowledge reasoning with different kinds of
in-context exemplars of reasoning. “Human” is us-
ing chain-of-thought examples crafted by humans.
“Self-Explain” is prompting GPT-3.5 with its self-
explanations elicited. ”LLM Teacher” is using ra-
tionales generated by a separate model (Mistral-7B)
as teacher, while for “w/ Teach-Back”, the teacher
model has been first fine-tuned with GPT-3.5’s self-
explanations.

A Effects of Instructions in Eliciting 974

Self-explanations 975

In this section, we examine the performance of ICL 976
with self-explanations prompted by different cues in 977
our framework. We mainly follow cues in Liévin et al. 978
[2022] as shown in Table 4. The first one is by de- 979
fault used in our framework. Since Liévin et al. [2022] 980
focuses on medical domains, for general domains, we 981
modify its cues by removing information specific to 982
medical domains. We then generate self-explanations 983
and perform ICL with them. The final test results are 984
shown in Table 5. We find no matter what cues are 985
employed, ICL with self-generations elicited can all 986
outperform using human-crafted CoTs, which demon- 987
strates the robustness of our proposed Self-Explain on 988
the choice of cues. 989

B Implementation for Teach-Back with 990

Fine-tuning 991

We reformat the training data with students’ self- 992
explanations following the template in Table 6. We set 993
the learning rate as 1 × 10−5 and fine-tune the teacher 994
model with five epochs. We use the default setting for 995
LoRA. 996

C Analysis on Model Confidence 997

We find models are more confident with their predic- 998
tions when using Self-Explain. For exemplars se- 999
lected for generating self-explanation, we use Text- 1000
Davinci-003 to compute the average P (y|x, πself, θ) 1001
which reaches 99.96%. In comparison, for human- 1002
crafted explanation of the same exemplars, average 1003
P (y|x, πhuman, θ) is lower, reaching 89.05%. This im- 1004
plies that given (x, y), self-explanation πself may be 1005
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Medical Domain General Domain
1 Explain how to reach this answer.
2 Let’s think step by step.
3 Let’s think step by step like a medical expert. Let’s think step by step like an expert.
4 Let’s use step by step inductive reasoning, Let’s use step by step inductive reasoning.

given the medical nature of the question.

Table 4: Different cues to elicit self-explanations.

Dataset Cue #1 Cue #2 Cue #3 Cue #4 Human
MedMCQA 56.6 54.6 54.3 54.2 53.1

MedQA 63.7 63.3 62.6 62.3 61.7
StrategyQA 59.7 57.7 57.2 57.3 56.1

Table 5: Test results of ICL with self-explanations elicited by different cues.

Input:{input string of training example i}
Output:{output result of training example i}
Explain how to reach this answer.
{explanation for training example i}

Table 6: The format of training data for fine-tuning
teacher LLMs on students’ self-explanations.

much more related context to elicit y than πhuman.1006
In addition, for inference with self-explanation as1007

demonstrations in ICL, log probabilities are computed1008
for correct and wrong model outputs prompted with1009
self-explanation and human-crafted one. Results are1010
shown in Figure 8. We can observe that models’ out-1011
put log probabilities with self-explanation are much1012
higher than with human-crafted explanation, indicating1013
greater model’s confidence in its output. This suggests1014
self-explanation can be more acceptable and effective1015
for LLMs to elicit reasoning. Self-Explain may also1016
improve model’s calibration. Calibration requires the1017
model’s output confidence should indicate the correct-1018
ness of answers (e.g., wrong answers have lower con-1019
fidence). Well-calibrated output confidence can assist1020
human users to determine whether to trust model’s out-1021
puts or to look for alternatives in high-stakes applica-1022
tions. Figure 8a showcases the model is generally more1023
calibrated when using self-explanation. Further results1024
in Fig. 8b show that output confidence by using human1025
CoT is not indicative especially when the question is1026
debatable (i.e., using self-explanation and human CoT1027
generate different answers).1028
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Figure 8: Comparison of model confidence in different cases by using human-crafted CoT and self-explanation.
Prompting with self-explanations makes the model more calibrated and more confident as well. (a) Comparison
between confidence of true answers and false ones. (b) Further comparison of confidence in more specific cases.
“S” denotes “Self exp”, “H” denotes “Human cot”, “T” denotes “True” and “F” denotes “False”, e.g., “S T &
H F” means self explanation gives true answer, while human-crafted CoT leads to false answer.
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D Example self-explanations 1029

D.1 MedQA 1030

Question: A 22-year-old male marathon runner presents to the office with the complaint of right-sided rib pain 1031
when he runs long distances. Physical examination reveals normal heart and lung findings and an exhalation 1032
dysfunction at ribs 4-5 on the right. Which of the following muscles or muscle groups will be most useful in 1033
correcting this dysfunction utilizing a direct method? (A) anterior scalene (B) latissimus dorsi (C) pectoralis 1034
minor (D) quadratus lumborum 1035

1036
Self-explanation: The patient is a pregnant woman, and nitrofurantoin is considered safe for use during 1037
pregnancy. Other antibiotics, such as ciprofloxacin and doxycycline, are contraindicated in pregnancy due to 1038
potential harm to the fetus. 1039

1040
Human-crafted explanation: We refer to Wikipedia articles on medicine for help. Among the options, only 1041
pectoralis minor muscle origins from the outer surfaces of the 3rd to 5th ribs. 1042

1043
1044
1045

Question: A 44-year-old man comes to the office because of a 3-day history of sore throat, nonproductive 1046
cough, runny nose, and frontal headache. He says the headache is worse in the morning and ibuprofen does 1047
provide some relief. He has not had shortness of breath. Medical history is unremarkable. He takes no medi- 1048
cations other than the ibuprofen for pain. Vital signs are temperature 37.4 C (99.4 F), pulse 88/min, respirations 1049
18/min, and blood pressure 120/84 mm Hg. Examination of the nares shows erythematous mucous membranes. 1050
Examination of the throat shows erythema and follicular lymphoid hyperplasia on the posterior oropharynx. There 1051
is no palpable cervical adenopathy. Lungs are clear to auscultation. Which of the following is the most likely 1052
cause of this patient2̆019s symptoms? (A) Allergic rhinitis (B) Epstein-Barr virus (C) Mycoplasma pneumonia 1053
(D) Rhinovirus 1054

1055
Self-explanation: The presentation of a fussy infant who is regurgitating all of his feeds and has yellow 1056
vomit is consistent with pyloric stenosis, which is characterized by abnormal hypertrophy of the pylorus. This 1057
condition causes narrowing of the passage between the stomach and the small intestine, leading to difficulty in 1058
food passage and subsequent vomiting. 1059

1060
Human-crafted explanation: We refer to Wikipedia articles on medicine for help. The symptoms, espe- 1061
cially the headache, suggest that the most likely cause is Rhinovirus. Epstein-Barr virus will cause swollen 1062
lymph nodes but there is no palpable cervical adenopathy. Lungs are clear to auscultation suggests it2̆019s not 1063
Mycoplasma pneumonia. 1064

D.2 MedCQA 1065

Question: Which of the following statements about Total Infra Venous Anaesthesia (TIVA) is true? (A) Causes 1066
More Renal Toxicity (B) Reduces Cerebral Metabolic Rate (C) Risk of Malignant Hyperthermia is high (D) 1067
Inhibits Hypoxic Pulmonary Vasconstriction 1068

1069
Self-explanation: By understanding the mechanism of action: Total Intravenous Anaesthesia (TIVA) in- 1070
volves the administration of intravenous drugs to induce and maintain anesthesia. One of the main drugs used in 1071
TIVA is propofol, which is known to reduce cerebral metabolic rate. 1072

1073
Human-crafted explanation: Total intravenous anaesthesia refers to a technique in general anaesthesia us- 1074
ing a compination of agents given solely by IV route and in the absence of all inhalation agents. TIVA (Total 1075
intravenous anaesthesia) is produced by IV propoful. Propofol decreases the cerebral metabolic rate. Propofol 1076
does not impair renal function, does not trigger malignant hyperthermia and does not inhibit hypoxic pulmonary 1077
vasoconstriction. 1078

1079
1080
1081

Question: Shock causes: Choose the answer from A to D. A: Stagnant hypoxia. B: Anemic hypoxia. C: 1082
Hypoxic hypoxia. D: Histotoxic hypoxia. 1083

1084
Self-explanation: Shock is characterized by a decrease in blood pressure and impaired circulation. This 1085
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can result in reduced blood flow to the tissues, leading to stagnant hypoxia.1086
1087

Human-crafted explanation: Ans: A (Stagnant hypoxia)Ref: Pat GK, Hypoxia and Oxygen Therapy, In:1088
Textbook of Medical Physiology, 2nd ed, Abuja Publishing House 2011: 94: 754-551089

D.3 StrategyQA1090

Question: Would ramen be bad for someone with heart failure?1091
1092

Self-explanation: Ramen can be bad for someone with heart failure due to its high sodium content. Sodium can1093
cause fluid retention and increase blood pressure, which can put additional strain on the heart.1094

1095
Human-crafted explanation: People with heart failure have to limit their sodium intake. Ramen is notori-1096
ous for having incredibly high sodium levels.1097

1098
1099
1100

Questions: Is Cape Town south of the Equator?1101
1102

Self-explanation: By looking at a map: You can visually locate Cape Town on a map and observe that it is1103
situated below the Equator, in the southern hemisphere.1104

1105
Human-crafted explanation: Cape Town is an important city in South Africa. South Africa is located en-1106
tirely south of the Equator.1107

E Examples of Different LLMs’ Self-explanations1108

Llama2-7B: The patient’s symptoms of decreased appetite, difficulty falling asleep, sadness, and compulsive1109
behaviors (rechecking the door lock and counting toilet paper) are consistent with a diagnosis of obsessive-1110
compulsive disorder (OCD). OCD is characterized by recurrent, intrusive thoughts (obsessions) and repetitive1111
behaviors or mental acts (compulsions) that are time-consuming and cause significant distress or impairment.1112
The neurotransmitter serotonin is involved in the pathophysiology of OCD. Selective serotonin reuptake inhibitors1113
(SSRIs), which increase the levels of serotonin in the synaptic cleft, are the most commonly used medications to1114
treat OCD.1115

1116
1117

Mistral-7B: The patient’s symptoms are consistent with major depressive disorder and obsessive-compulsive1118
disorder (OCD). OCD is characterized by recurrent and intrusive thoughts (obsessions) and repetitive behaviors1119
or mental acts (compulsions) aimed at reducing anxiety or distress caused by the obsessions. Serotonin is a neu-1120
rotransmitter that plays a crucial role in regulating mood and anxiety, as well as in the modulation of obsessive-1121
compulsive symptoms. Therefore, pharmacotherapy for this patient should be targeted towards increasing sero-1122
tonin levels in the brain. Dopamine is associated with motivation and reward, glutamate with learning and memory,1123
and norepinephrine with the fight-or-flight response.1124

E.1 Examples of Self-explanations after Teach-Back1125

Mistral-7B fine-tuned on Llama2-7B: The patient’s symptoms are consistent with major depressive disorder1126
and obsessive-compulsive disorder (OCD). Both conditions are associated with alterations in neurotransmission,1127
particularly serotonin. Serotonin plays a role in mood regulation and impulse control, which are affected in major1128
depressive disorder and OCD, respectively. Additionally, selective serotonin reuptake inhibitors (SSRIs) are1129
commonly used to treat both conditions.1130

1131
1132

Llama2-7B fine-tuned on Mistral-7B: The patient’s symptoms are consistent with a diagnosis of obsessive-1133
compulsive disorder (OCD). OCD is a neuropsychiatric disorder characterized by recurrent, intrusive thoughts1134
(obsessions) and repetitive behaviors or mental acts (compulsions). The most commonly affected neurotransmitter1135
in OCD is serotonin, which is involved in regulating mood, impulse control, and cognitive function. Therefore,1136
pharmacotherapy targeting serotonin should be considered as a first-line treatment for the patient’s symptoms.1137
The other options are not as relevant to the patient’s symptoms:1138
A) Dopamine: While dopamine is involved in reward processing and motivation, it is not typically implicated in1139
OCD.1140
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B) Glutamate: Glutamate is involved in excitatory neurotransmission and is not typically associated with OCD. 1141
C) Norepinephrine: While norepinephrine is involved in arousal and attention, it is not typically implicated in 1142
OCD. 1143
In summary, the patient’s symptoms are best explained by a diagnosis of obsessive-compulsive disorder, and 1144
pharmacotherapy targeting serotonin is the most appropriate treatment option. 1145
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