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ABSTRACT

Recent advancements in large language models (LLMs) have demonstrated remark-
able reasoning abilities to solve complex tasks, which has propelled the progress
toward artificial general intelligence (AGI). However, these gains come with sig-
nificant computational costs, limiting their practical deployment. A promising
direction is to distill reasoning skills from larger teacher models into smaller, more
efficient student models, yet existing data-centric distillation approaches suffer
from passive learning, over-learning on simple tasks, and persistent knowledge
gaps. To overcome these limitations, we introduce AGENTIC DISTILLATION, a
novel framework for adaptive and active distillation. In AGENTIC DISTILLATION,
student LLMs interact with teacher LLMs modeled as environments, receiving
feedback tokens to guide their reasoning process and selectively updating their
capabilities when necessary. To address the off-policy and gradient vanishing chal-
lenges introduced by feedback tokens, we devise a tailored importance sampling
and clipping strategy within a unified objective that both incentivizes reasoning and
injects knowledge into student LLMs. Extensive experiments show that AGENTIC
DISTILLATION significantly enhances reasoning performance while improving
efficiency, offering a scalable path for equipping compact LLMs with advanced
reasoning abilities.

1 INTRODUCTION

In recent years, large language models (LLMs) have undergone rapid advancements, showcasing
exceptional performance across various natural language processing tasks (Pu et al., 2023; Zhang &
Soh, 2024; Gupta et al., 2024; Xu et al., 2024). Especially, LLMs employing long chain-of-thought
(CoT) reasoning ability, which have demonstrated remarkable proficiency in solving complex tasks
spanning mathematics, coding, and science, significantly advancing progress toward artificial general
intelligence (AGI) (OpenAI, 2024a;b; 2025; DeepSeek-AI et al., 2025; Kimi-Team et al., 2025; Yang
et al., 2025; Comanici et al., 2025; Huang & Yang, 2025; xAI, 2025).

However, the enhanced model reasoning capability introduces increased computational costs. The
growth in model parameters and the extended length of CoT reasoning elevate computational demands,
limiting practical applications (Chen et al., 2025). Therefore, equipping more efficient small language
models with robust reasoning capabilities via learning from stronger large models has garnered
significant attention from researchers and the broader community (DeepSeek-AI et al., 2025; Wen
et al., 2025; Muennighoff et al., 2025; Guha et al., 2025; Ye et al., 2025).
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Figure 1: Illustration of over-learning and knowledge grap
issues in data-centric distillation.

A prevalent approach is data-centric
distillation, which employs rejection
sampling (Wang et al., 2024; Yang
et al., 2024b; Shao et al., 2024; Ying
et al., 2024) to generate training
trajectory-level data for distilling stu-
dent models. This method generates
multiple reasoning trajectories from
stronger LLMs for a given query, se-
lects those with correct conclusions,
and uses them to train the student
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model via supervised finetuning (SFT). (Qin et al., 2024; DeepSeek-AI et al., 2025) or reinforcement
learning (RL) (Zhang et al., 2025a). This enables student models to acquire the knowledge and
reasoning capabilities of teacher LLMs. However, this approach has notable limitations due to its
characteristic of passive learning as shown in Figure 1: 1) Over-Learning: Training on static and
complete trajectories from teacher LLMs does not dynamically adapt to the evolving capabilities
of the student model, often leading to over-learning on simpler questions (Chu et al., 2025) and
wasting data and training resources on mastered questions.; 2) Knowledge Gap: Teacher-centered
data generation may overlook the specific knowledge requirements and capability gaps of student
LLMs (Liu et al., 2024a). Analogous to a classroom setting where generalized teaching overlooks
students’ individual knowledge deficiencies. Some reasoning steps that seem obvious to the teacher
LLMs may be difficult for the student LLMs to understand and learn. This causes the student model
to merely mimic the teacher’s output format rather than truly acquiring reasoning ability (Chu et al.,
2025; Kirk et al., 2024; Wu et al., 2025).

To address these limitations, we propose AGENTIC DISTILLATION, a novel framework for distilling
knowledge and reasoning capabilities from strong LLMs into smaller student LLMs through active
and adaptive interaction. Unlike traditional distillation methods that passively transfer knowledge,
AGENTIC DISTILLATION empowers the student LLM to dynamically determine when to query
the teacher LLM during reasoning, seeking feedback only when necessary as shown in Figure 2.
This enables the student LLM to refine its reasoning process based on teacher feedback, leading
to more accurate outcomes. Additionally, we design a mechanism to allow the student LLM to
effectively learn essential knowledge and reasoning abilities from the teacher LLM’s feedback.

x

Teacher
LLMsQuestions

Q: How to solve this
step? feedback

Ok! I got it. I will
continue reasoning...

Figure 2: Simple Illustration of AGENTIC DISTILLATION.

To tackle off-policy and gradient van-
ishing issues inherent in learning from
feedback tokens, we introduce a tai-
lored importance sampling coefficient
and clipping strategy. They are seam-
lessly integrated into a unified objec-
tive that both incentivizes reasoning

and injects knowledge into student LLMs. Notably, recent works (e.g., Search-R1) (Wang et al.,
2025; Singh et al., 2025; Jin et al., 2025; Liu et al., 2025) primarily focus on enhancing LLMs’
interactions with external environments (e.g., tools), often overlooking the rich information embedded
in feedback, which can be utilized to improve the reasoning ability of student LLMs themselves. In
contrast, AGENTIC DISTILLATION leverages teacher feedback as a direct learning signal, enabling
continuous improvement of the student model. Even without interaction during inference, AGENTIC
DISTILLATION-trained student LLMs can successfully reason on previously unsolvable tasks.

We conduct extensive experiments to validate the effectiveness of AGENTIC DISTILLATION. For
example, AGENTIC DISTILLATION enhances the performance of Qwen2.5-7B-Instruct on mathe-
matical reasoning benchmarks, achieving an average improvement of approximately 4 points over
baseline distillation strategies. Significant gains are also observed on out-of-domain benchmarks,
demonstrating AGENTIC DISTILLATION’s robust generalization. Additional experiments confirm
that AGENTIC DISTILLATION generalizes effectively across various student and teacher LLMs.
Additionally, we investigate whether AGENTIC DISTILLATION expands the knowledge boundaries
of student LLMs. Analysis of training dynamics and student LLM responses reveals that AGENTIC
DISTILLATION enables student LLMs to effectively acquire new knowledge and capabilities, aligning
their reasoning abilities with those of teacher LLMs.

2 METHOD

In this section, we introduce the motivation to propose the AGENTIC DISTILLATION framework
for adaptive and active distillation (§ 2.1). Then, we introduce the details of proposed AGENTIC
DISTILLATION (§§ 2.2 and 2.3)

2.1 PRELIMINARIES

Distillation from Strong LLMs. In a typical LLM reasoning task, given a question q from the
question distribution q ∼ P (Q), the LLM πθ is prompted with an instruction I to generate an answer

2
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Figure 3: Illustration of AGENTIC DISTILLATION. In the AGENTIC DISTILLATION framework,
during each rollout process, the student LLM initially attempts to solve a given question independently.
If the student LLM fails to resolve the question, it engages in external interaction by querying the
teacher LLM for feedback. Otherwise, the student LLM proceeds with its reasoning to derive the final
answer. Subsequently, we compute the reward and optimize the student LLM using losses derived
from both internal tokens and feedback tokens, respectively.

a′:
a′ ← πθ(· | q, I). (1)

For chain-of-thought based LLM reasoning, the reasoning process involves a step-by-step sequence,
typically enclosed within tags such as <think> and </think>, represented by the token sequence
τthinking. This culminates in a final conclusion τconclusion, which includes the predicted answer a′:

[τthinking, τconclusion]← πθ(· | q, I). (2)

The objective of this paper is to distill knowledge and capabilities from a strong teacher LLM πt
ϕ to

enhance a student LLM πs
θ:

πs′

θ ← D(πs
θ, π

t
ϕ, q), (3)

where D represents the distillation method, such as passive data-centric distillation (Qin et al., 2024;
DeepSeek-AI et al., 2025; Wen et al., 2025) or the AGENTIC DISTILLATION proposed in this paper.

Data-Centric Distillation. The predominant distillation approach is rejection sampling (Yang et al.,
2024b; Shao et al., 2024; Guha et al., 2025; Wen et al., 2025). Specifically, given a question set Q, a
strong teacher LLM πt generates predictions T for each question q ∈ Q:

τ ∼ πt
ϕ(· | q, I), τ ∈ T , q ∈ Q. (4)

The prediction set T is then filtered based on the correctness of each prediction:

T ′ =
{
τ | I(a, a′)

}
, (5)

where a denotes the ground truth answer to q and I is an indicator function that returns 1 only when
the prediction is correct. The selected predictions T ′ are used to train the student LLM πs:

L(θ) = Eq∈Q,τ∼T ′

[
− log πs

θ(τ | q; θ)
]
, (6)

where θ denotes the parameters of the student LLM πs.

Distillation from Interaction. To address the limitations of passive data-centric distillation as
mentioned in § 1, we propose a novel approach that distills knowledge through active interaction with
the teacher LLM. Specifically, we augment the reasoning process τthinking to include multiple turns of
interaction, comprising queries to the teacher LLM τq and external feedback from the teacher LLM
τo, formally expressed as:[

. . . , τq,(1), τo,(1), . . . , τq,(N), τo,(N), . . .
]
← τthinking. (7)

The mechanisms governing interaction with the teacher LLM and the process of learning from its
feedback are detailed in § 2.2 and § 2.3, respectively.

2.2 AGENTIC INTERACTION WITH TEACHER LLMS.

To distill knowledge from the teacher LLM, we design an agentic interaction mechanism that enables
the student LLM to actively and flexibly interact with the teacher during the reasoning process.

When faced with a question q, the student LLM first performs basic reasoning using its internal
knowledge, such as problem decomposition, solution planning, and simple arithmetic operations (Wei
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et al., 2022). If the student LLM can solve the question using only its own knowledge and reasoning
abilities, we argue that external knowledge distillation from an oracle is unnecessary. This important
distinction is often overlooked by typical SFT-based methods (Qin et al., 2024; Huang et al., 2024;
Muennighoff et al., 2025; Guha et al., 2025). Conversely, during reasoning, when the student
recognizes that a (sub-)question exceeds the limits of its internal knowledge, it must refer to external
oracle information. In such cases, we allow the student LLM to query the teacher LLM in natural
language.

Specifically, we provide the student LLM with the prompt shown in Prompt 2.1 (full version is
provided in Prompt A.1), which instructs it to enclose natural language queries to the teacher within
<query> and </query> tags. The teacher LLM then responds with the corresponding answer (i.e.,
feedback or observation), appended to the student’s reasoning process within <result> and
</result> tags. To avoid meaningless or inefficient loops, we also impose an interaction budget
limiting the number of queries the student may direct to the teacher.

Prompt 2.1: Prompt to Equip Student LLM with Agentic Interaction Capability

Reasoning Process
• Decomposition: Break down the user’s question into a logical, step-by-step sequence of reasoning. Start from the

most basic facts and build upon them.

• External Inquiry (Optional but Encouraged):
– You may issue up to max turns queries to an External Environment to validate hypotheses, clarify informa-

tion, or advance your reasoning.
– Each query must be a self-contained question enclosed in <query>...</query> tags.
– Wait for the <result>...</result> block from the environment before continuing your reasoning.
– Critically analyze and integrate the content from the <result>...</result> block into your reasoning

chain.
– Do not invent, assume, or hallucinate any <result> content. Your reasoning must be grounded in the

provided results.

2.3 LEARNING FROM AGENTIC INTERACTION

This section addresses learning from agentic interaction. Given a query τv generated by the student
LLM and feedback τo provided by the teacher LLM, prior RL approaches typically exclude τo from
the loss calculation (Song et al., 2025; Liu et al., 2025), as the student LLM is not expected to generate
tokens from the external environment. In contrast, our approach integrates feedback tokens τo,(1:To)

into the RL policy loss to enable the student LLM to acquire new knowledge and capabilities.

The classical clipped surrogate objective is defined as:

J (θ) = Eq∼P,{τi}∼πθ

[
1

G

G∑
i=1

1

|τi|

|τi|∑
t=1

{
min

(
ρi,tÃ

i
t, clip(ρi,t, 1− ϵ, 1 + ϵ) Ãi

t

)
− βDKL

[
πθ∥πref

]}] , (8)

where the importance sampling coefficient for each token τi,(t) at index t is given by:

ρi,t =
πθ

(
τi,(t) | τi,(≤t)

)
πθold

(
τi,(t) | τi,(≤t)

) , (9)

and πθold denotes the previous policy of the student LLM. Directly applying this loss to feedback
tokens τo,(1:To) may introduce the off-policy error due to the mismatch between feedback tokens and
the student LLM’s policy, which can destabilize RL training (Schulman et al., 2017; Zhang et al.,
2025a).

Amending Importance Sampling Coefficient for Feedback Tokens. To mitigate the off-policy
error, we introduce a modified importance sampling coefficient ρ̃. Within the standard clipped
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surrogate loss, the off-policy error stems from sampling the trajectory τ from πθold :

J (θ) = Eτ∼πθold

 1

|τ |

|τ |∑
t=1

πθ

(
τ(t)|τ(≤t)

)
πθold

(
τ(t)|τ(≤t)

) Ãt

 , (10)

where clipped and KL-penalty terms are omitted for simplicity. However, feedback tokens follow the
distribution πϕ, defined by the teacher LLM, leading to the modified objective:

J (θ) = Eπθold

 1

N

∑
τ(t) /∈τo

πθ

(
τ(t)|τ(≤t)

)
πθold

(
τ(t)|τ(≤t)

) Ãt

+ Eπϕ

 1

M

∑
τ(t)∈τo

πθ

(
τ(t)|τ(≤t)

)
πϕ

(
τ(t)|τ(≤t)

) Ãt

 , (11)

where N and M are the number of non-feedback tokens and feedback tokens, respectively. Di-
rectly using the teacher LLM’s distribution to compute the importance sampling coefficient is a
straightforward approach but has two limitations: 1) vocabulary differences between the teacher and
student LLMs may cause inconsistent distributions, and 2) computing the teacher LLM’s distribution
incurs additional computational overhead. To address these, we propose treating the teacher LLM’s
distribution as a one-hot distribution, yielding:

J (θ) = Eπθold

 1

N

∑
τ(t) /∈τo

πθ

(
τ(t)|τ(≤t)

)
πθold

(
τ(t)|τ(≤t)

) Ãt

+ Eπϕ

 1

M

∑
τ(t)∈τo

πθ

(
τ(t)|τ(≤t)

)
Ãt

 . (12)

This method employs a temperature coefficient to sharpen the teacher LLM’s distribution, reducing
computational complexity and resolving vocabulary inconsistencies.

Gradient Vanishing for Feedback Tokens. The standard surrogate objective employs a clipping
mechanism on the importance sampling coefficient to prevent excessive policy deviation from the
previous policy. However, for feedback tokens, the importance sampling coefficient πθ is inherently
bounded due to the softmax activation. Consequently, we remove the standard clipping mechanism
for feedback tokens. The gradient of these tokens can be computed as

πθ · Ãt · ∇θ · log πθ. (13)
Nevertheless, when the probability of a feedback token τo,(t) in the student LLM’s policy is low
(πθ(τo,(t)) → 0), the gradient approaches zero (πθ · Ãt · ∇θ log πθ → 0). This vanishing gradient
leads to suboptimal learning, particularly for off-policy feedback tokens from the teacher LLM, which
are critical for the student LLM to learn effectively. These tokens often have low probabilities in the
student LLM’s policy, exacerbating the vanishing gradient issue and hindering knowledge transfer.

Clipping Strategy for Feedback Tokens. To address the vanishing gradient problem, we propose a
clipping strategy inspired by the standard mechanism (Schulman et al., 2017):

clip
(
πθ,

ω

sg (πθ)
· πθ, ∞

)
, (14)

where ω is a clipping hyperparameter and sg(·) denotes the stop-gradient operation. This approach
sets a lower bound on the importance sampling coefficient for feedback tokens, with the πθ/sg(πθ)
term ensuring numerical equivalence. The resulting gradients are:{

πθ · Ãt · ∇θ · log πθ, if πθ ≥ ω,

ω · Ãt · ∇θ · log πθ, if 0 ≤ πθ < ω.
(15)

This ensures that feedback tokens with high advantage maintain non-vanishing gradients, mitigating
the impact of policy deviation.

Final Objective. By integrating the modified importance sampling coefficient and the proposed
clipping strategy for mitigating the off-policy and the vanishing gradient issues, we formulate the
final objective for optimizing the student LLM:

J (θ) = Eπθold

[
min

{
πt
θ

πt
θold

Ãt, clip

(
πt
θ

πt
θold

, 1− ϵ, 1 + ϵ

)
Ãt

}]

+ Eπϕ

[
min

{
πt
θÃt, clip

(
πt
θ,

ω

sg (πt
θ)
· πt

θ,∞
)
Ãt

}]
,

(16)
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where πt
θ = πθ(τ(t)|τ(≤t)). Intuitively, the objective of AGENTIC DISTILLATION unifies the RLVR

and SFT in a single function. For action tokens autonomously generated by student LLMs, such as
problem decomposition, solving, and query formulation, we employ the standard RLVR objective
function for optimization (first part). For feedback tokens provided by teacher LLMs, we adopt an
SFT-inspired optimization objective, enhanced by advantage and clipping-controlled update (second
part), to effectively inject new knowledge into the student LLMs.

3 EXPERIMENTS

3.1 SETUP

Baselines. We compare AGENTIC DISTILLATION against several representative LLM post-training
methods: ❶ Supervised Fine-Tuning (SFT): Utilizes teacher LLM-generated data through rejection
sampling; ❷ Vanilla Reinforcement Learning (RL): Trains the student LLM using the GRPO algo-
rithm (Shao et al., 2024) without external environment interactions; ❸ Reinforcement Learning with
Supervised Fine-Tuning (RL+SFT): Combines GRPO training (Shao et al., 2024) with data generated
via rejection sampling; ❹ Reinforcement Learning with Masked Interaction (RL+MI): Employs the
GRPO algorithm (Shao et al., 2024) with teacher LLM interactions, but excludes feedback tokens
from loss computation.

Evaluation Benchmarks. We evaluated all models across four domain-specific benchmarks: ❶
Mathematical Reasoning: Includes AIME24, AIME25, MATH500 (Hendrycks et al., 2021), and
LiveMathBench (Liu et al., 2024b); ❷ Scientific Reasoning: Represented by GPQA-Diamond (Rein
et al., 2023); ❸ Code Reasoning: Comprises MBPP (Austin et al., 2021) and LiveCodeBench (Jain
et al., 2025); ❹ Puzzle Reasoning: Includes puzzles from Reasoning-Gym (Stojanovski et al., 2025).

Implementation Details. We conducted experiments on the Qwen-2.5 series models (Yang et al.,
2024a) and Llama-3.2 series models (Dubey et al., 2024), distilling from two prominent teacher LLMs
from distinct families: Qwen3-30B-A3B-Instruct-2507 (Yang et al., 2025) and GPT-OSS-20B (Agar-
wal et al., 2025). The training corpus, sourced from DAPO (Yu et al., 2025), OpenScienceReasoning-
2 1, and Reasoning Gym (Stojanovski et al., 2025), consists of approximately 60,000 high-quality
reasoning-intensive samples. Models were trained for 200 steps with a batch size of 256 and a group
size of 8, selecting the best model based on validation performance. During each generation, the
student LLM was allowed up to three interactions with the teacher LLM. Training was performed
using the veRL (Sheng et al., 2025) and vLLM (Kwon et al., 2023) frameworks. For evaluation, we
set the sampling temperature to 1.0, top-p to 1.0, top-k to -1, and the maximum generation tokens to
16384. To reduce variance, we report average performance relative to the size of each benchmark.
And the prompt utilized in inference phase is shown in Prompt A.2.

3.2 MAIN RESULTS AND ANALYSIS

Table 1 illustrates the performance of AGENTIC DISTILLATION and baselines on different bench-
marks, containing different student LLMs and teacher LLMs. From the experimental results, we have
the following findings.

AGENTIC DISTILLATION Outperforms Baseline Methods. As illustrated in Table 1, AGENTIC
DISTILLATION surpasses other training strategies, including supervised fine-tuning (SFT), vanilla
reinforcement learning (RL), RL combined with SFT (RL+SFT), and RL with masked interaction
(RL+MI). Notably, AGENTIC DISTILLATION achieves significant improvements on challenging
reasoning benchmarks such as AIME24 and AIME25, with average accuracy gains of 4-6 points
over the strongest baseline. Comparable enhancements are observed across science, code, and puzzle
tasks, underscoring AGENTIC DISTILLATION’s robustness in improving reasoning capabilities across
diverse task settings.

AGENTIC DISTILLATION Enhances Performance Across Diverse Student LLMs. As depicted
in Table 1, AGENTIC DISTILLATION consistently outperforms baseline methods across various
student LLMs, including Qwen-2.5-7B-Instruct and Llama-3.2-3B-Instruct. The framework achieves

1https://huggingface.co/datasets/nvidia/OpenScienceReasoning-2
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Table 1: Experimental results of AGENTIC DISTILLATION and baselines with Qwen2.5-7B-Instrcut
as the student LLM. We report the average performance for 16 runs on AIME24 and AIME25, and 4
runs on others. We abbreviate LMB as LiveMathBench v202505, LCB as LiveCodeBench v6, RG
as Reasoning Gym, MI as Masked Interaction, and AD as AGENTIC DISTILLATION. ♠ denotes
the in-domain evaluation benchmark and ♣ denotes the out-of-domain benchmark. We provide
performance of teacher LLMs in Table 4

Methods
Math ♠ Science ♠ Code ♣ Puzzle ♠

AIME24 AIME25 MATH500 LMB GPQA-D MBPP LCB RG
Avg@16 Avg@16 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4

Student LLM: Qwen2.5-7B-Instruct, Teacher LLM: Qwen3-30B-A3B-Instruct-2507

Original 9.79 7.50 73.00 10.75 33.33 58.66 15.71 9.63
+SFT 11.67 13.54 75.80 12.00 22.35 41.34 11.04 18.98
+RL 12.08 10.00 75.35 10.50 34.72 58.27 16.33 19.81
+RL+SFT 13.01 12.13 75.77 11.32 35.20 59.22 15.34 19.22
+RL+MI 11.25 6.46 72.80 10.25 34.47 58.17 14.55 9.17
+AD 14.82 14.33 78.17 14.27 37.13 62.73 18.62 21.11

Student LLM: Qwen2.5-7B-Instruct, Teacher LLM: GPT-OSS-20B

+SFT 14.67 13.54 75.80 12.00 37.34 61.04 22.35 18.98
+RL 12.08 10.00 75.35 10.50 34.72 58.27 16.33 19.81
+RL+SFT 13.01 12.13 75.77 11.32 35.20 59.22 15.34 19.22
+RL+MI 12.31 9.26 71.89 11.33 31.25 56.25 13.79 10.25
+AD 16.52 17.47 81.22 16.29 38.53 64.15 20.27 24.32

Student LLM: Llama-3.2-3B-Instruct, Teacher LLM: Qwen3-30B-A3B-Instruct-2507

Original 2.50 1.20 30.10 3.00 23.48 42.61 6.87 9.44
+SFT 5.50 2.67 48.65 5.50 22.98 43.39 3.95 13.89
+RL 8.96 1.12 44.10 7.00 25.76 52.59 10.92 13.70
+RL+SFT 6.24 3.62 41.25 8.11 26.45 53.45 10.23 12.44
+RL+MI 7.44 2.98 45.11 6.45 24.26 54.27 9.84 10.52
+AD 10.38 4.42 44.45 9.00 28.54 58.66 15.70 16.85

stable improvements across LLMs of different architectures and sizes, highlighting the generality of
AGENTIC DISTILLATION and its potential for broad application to diverse LLM families and types.

AGENTIC DISTILLATION Improves Across Different Teacher LLMs. AGENTIC DISTILLATION
consistently delivers performance improvements across different teacher models, including the
short-cot based reasoning LLMs Qwen3-30B-A3B-Instruct-2507 and the long-cot based reasoning
LLMs GPT-0SS-20B. While baseline methods exhibit variability depending on the teacher LLM,
AGENTIC DISTILLATION maintains superior results, indicating that its adaptive training mechanism
is independent of the teacher model. This stability highlights AGENTIC DISTILLATION’s flexibility,
making it suitable for scenarios with varying teacher quality or availability.

AGENTIC DISTILLATION Generalizes to Out-of-Domain Benchmarks. AGENTIC DISTILLATION
also performs generalization across in-domain and out-of-domain benchmarks. On mathematics,
science, and puzzle benchmarks, which align closely with the training data, AGENTIC DISTILLATION
consistently outperforms all baselines. More notably, on out-of-domain benchmarks such as code
(MBPP and LiveCodeBench), AGENTIC DISTILLATION achieves substantial gains, surpassing the
strongest baseline in several instances. These results demonstrate that AGENTIC DISTILLATION
not only excels in task-specific settings but also enables robust generalization across domains with
distinct reasoning ability.

3.3 ABLATION STUDY

Impact of Importance Sampling Coefficient in AGENTIC DISTILLATION. To assess the necessity
of the modified importance sampling coefficient for feedback tokens in AGENTIC DISTILLATION, as
introduced in Equation (12), we compare its performance against the importance sampling coefficient

7
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Figure 4: Training Dynamics of Reinforcement Learning, Reinforcement Learning with Masked
Interaction, and AGENTIC DISTILLATION on Qwen2.5-7B-Instruct with Qwen3-30B-A3B-Instruct-
2507 as the teacher LLM.
Table 2: Ablation study of AGENTIC DISTILLATION w.r.t. the modified importance sampling
coefficient (abbreviated as IS) and clipping strategy (abbreviated as CS).

Methods
Math Science Code Puzzle

AIME24 AIME25 MATH500 LMB GPQA-D MBPP LCB RG
Avg@16 Avg@16 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4

Student LLM: Qwen2.5-7B-Instruct, Teacher LLM: Qwen3-30B-A3B-Instruct-2507

AD 14.82 14.33 78.17 14.27 37.13 62.73 18.62 21.11
w/o IS 13.44 13.56 77.25 14.11 36.82 62.32 18.44 20.92
w/o CS 14.34 13.92 76.53 13.22 35.89 61.46 17.33 19.08

used in the vanilla reinforcement learning algorithm, as shown in Table 2. The results demonstrate
that the proposed modified importance sampling coefficient consistently outperforms the vanilla RL
approach, confirming its critical role in enhancing AGENTIC DISTILLATION’s effectiveness.

Impact of Clipping Strategy in AGENTIC DISTILLATION. Similarly, we evaluate the clipping
strategy proposed in Equation (14). As illustrated in Table 2, removing the clipping strategy leads to
a substantial decline in model performance across all tested scenarios. This indicates that the clipping
strategy effectively mitigates issues such as gradient vanishing, thereby significantly improving the
performance of the student LLM.

3.4 DOES THE LLM LEARN NEW KNOWLEDGE AND CAPABILITIES THROUGH AGENTIC
DISTILLATION?

To validate and elucidate the learning outcomes of AGENTIC DISTILLATION, we analyze its training
dynamics and the expansion of the knowledge boundary of the LLM.

0 20 40 60 80 100
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0.2
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0.6
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nc
y 
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Figure 5: Knowledge Boundary Ex-
pansion of AGENTIC DISTILLA-
TION-trained Student LLM.

Analysis of Training Dynamics. Figure 4 illustrates the dy-
namics of three key metrics during the training of Qwen2.5-7B-
Instruct, with Qwen3-30B-A3B-Instruct-2507 as the teacher
LLM, using Reinforcement Learning (RL), Reinforcement
Learning with Masked Interaction (RL+MI), and AGENTIC
DISTILLATION (AD). First, we examine the proportion of prob-
lems in a batch that the student LLM fails to solve across all roll-
outs (Batch Failed). Training with AGENTIC DISTILLATION
significantly reduces this proportion, indicating that AGENTIC
DISTILLATION enables the student LLM to acquire new knowl-
edge, allowing it to solve previously unsolvable problems. This
improvement is mirrored in the training batch accuracy, where
AGENTIC DISTILLATION-trained LLMs show markedly higher
gains. Additionally, we analyze the number of queries raised by
the student LLM per batch (Batch Queries). With AGENTIC DISTILLATION, the number of queries
initially increases, then decreases, and eventually stabilizes. This trend suggests that early in training,
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the student LLM queries the teacher LLM frequently to learn new knowledge. As its knowledge
boundary expands, the student LLM relies less on queries, solving problems independently. These
metric dynamics demonstrate that AGENTIC DISTILLATION effectively facilitates the student LLM’s
acquisition of new knowledge and capabilities from the teacher LLM.

Knowledge Boundary Expansion of AGENTIC DISTILLATION-trained Student LLM. To further
study the change of the knowledge boundary of the AGENTIC DISTILLATION-trained student LLM,
we collect the queries raised by student LLM Qwen2.5-7B-Instruct during the training process with
Qwen3-30B-A3B-Instruct-2507 as the teacher LLM. We let the student LLM at different training
stages to answer these queries and report the consistency with the answers of the teacher LLM. The
consistency is judged by the GPT-4o (OpenAI, 2023). As shown in Figure 5, we can observe that as
training progresses, the consistency of the student LLM on these unsolvable problems that are beyond
its knowledge boundary gradually aligns with that of the teacher LLM, indicating that AGENTIC
DISTILLATION can effectively inject the knowledge of the teacher LLM into the student LLM.

4 RELATED WORK

Distilling from Strong LLMs. Recent advancements in LLMs have led to remarkable performance
in complex reasoning tasks (OpenAI, 2024a;b; 2025; DeepSeek-AI et al., 2025; Kimi-Team et al.,
2025; Yang et al., 2025; Comanici et al., 2025; Huang & Yang, 2025; xAI, 2025). However, these
models are often closed-source or possess an excessively large number of parameters, limiting their
practical applications. Consequently, recent research has focused on distilling the capabilities of
these strong reasoning LLMs into smaller-scale LLMs. Early studies (Qin et al., 2024; Guan et al.,
2025; DeepSeek-AI et al., 2025) demonstrated that a small dataset generated by strong LRMs can
significantly enhance the reasoning performance of smaller LLMs. Subsequent works (Bespoke-
Labs, 2025; NovaSky-Team, 2025; Ye et al., 2025; Wen et al., 2025; Guha et al., 2025; Yang et al.,
2025) have further improved distillation by optimizing problem set quality, curated data, training
methods, loss functions, and integration of training stages. These approaches typically rely on
distilling complete reasoning trajectories, a passive learning method that often fails to address the
specific capabilities and knowledge gaps of student LLMs. In contrast, our proposed method enables
student LLMs to actively query strong LRMs and selectively learn knowledge beyond their current
capabilities, offering a more efficient and effective distillation.

Enhancing LLM Reasoning with External Information. Despite the remarkable performance of
LLMs in various reasoning tasks, their capabilities are limited by inherent knowledge constraints and
the fundamental limitations of deep learning architectures, which hinder their effectiveness in certain
real-world tasks (Wang et al., 2025; Yang et al., 2024b). Prior work has employed reinforcement
learning algorithms to enhance LLM decision-making, equipping them with autonomous capabilities
such as planning, reasoning, tool usage, memory maintenance, and self-reflection (Wang et al., 2025;
Singh et al., 2025; Jin et al., 2025; Liu et al., 2025). These efforts have improved LLM performance
in knowledge-intensive question answering (Jin et al., 2025; Song et al., 2025), mathematical reason-
ing (Li et al., 2025; Bai et al., 2025), planning (Liu et al., 2025), and real-world applications (Mialon
et al., 2024; Zhang et al., 2025b). However, these methods primarily focus on enhancing LLMs’
ability to utilize tools to improve task performance. In contrast, we propose a distillation approach that
leverages interactions between student LLMs and an external environment, specifically, teacher LLMs,
to enhance reasoning capabilities without relying on the external information during inference.

5 CONCLUSION

In this paper, we introduce AGENTIC DISTILLATION, a distillation framework that enables active and
adaptive knowledge transfer from strong LLMs to smaller student models. AGENTIC DISTILLATION
leverages interaction and feedback tokens from teacher LLMs, allowing student models to selectively
refine their reasoning and bridge knowledge gaps. To tackle off-policy and gradient vanishing issues
inherent in learning from feedback, we introduce a tailored importance sampling coefficient and
clipping strategy that seamlessly integrate into the reinforcement learning objective. Extensive
experiments demonstrate that AGENTIC DISTILLATION achieves consistent improvements in both
in-domain and out-of-domain reasoning tasks. We believe our framework could provide a promising
direction for equipping compact models with advanced reasoning abilities.
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A MORE IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS

Training utilized the veRL (Sheng et al., 2025) and vLLM (Kwon et al., 2023) frameworks on the
clusters equipped with NVIDIA H100 GPUs. Table 3 present the detailed training parameters for
AGENTIC DISTILLATION.

Table 3: Training Parameters.

Parameters Values
Batch Size 256
Number of Rollout Per Question 8
Rollout Temperature 1.0
Rollout Top-p 1.0
Rollout Top-k -1
Maximum Number of Generation Tokens 16384
Learning Rate 1e-6
KL Loss Coefficient 0.001
ϵmin 0.2
ϵmax 0.28
Gradient Clipping 1.0
Number of Training Steps 300

A.2 FULL TRAINING PROMPT

Prompt A.1 illustrates the full training prompt.

Prompt A.1: Full Training rompt

OBJECTIVE:
To answer a User’s question by providing a clear, verifiable reasoning process, potentially interacting with an
external environment.

INTERACTION PROTOCOL:
For each question you receive, you MUST follow this two-step process:

Step 1: Reasoning Process

• Decomposition: Break down the user’s question into a logical, step-by-step sequence of reasoning. Start
from the most basic facts and build upon them.

• External Inquiry (Optional but Encouraged):

– You may issue up to max turns queries to an External Environment to validate hypotheses, clarify
information, or advance your reasoning.

– Each query must be a self-contained question enclosed in <query>...</query> tags.
– Wait for the <result>...</result> block from the environment before continuing your reason-

ing.
– Critically analyze and integrate the content from the <result>...</result> block into your

reasoning chain.
– Do not invent, assume, or hallucinate any <result> content. Your reasoning must be grounded in

the provided results.

Step 2: Final Answer

• After your reasoning is complete, state your final answer clearly.

• The final answer, and only the final answer, MUST be enclosed in “\boxed{...}”.

17
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A.3 INFERENCE PROMPT

To focus on distilling knowledge and capabilities from the teacher LLM, we prohibit the trained
student LLM from interacting with the teacher LLM during the inference phase. For mathematical
and puzzle reasoning benchmarks, we employ the prompt specified in Prompt A.2. For science and
code reasoning benchmarks, we use the default prompts provided with the original benchmarks.

Prompt A.2: Prompt for Mathematical Reasoning Benchmarks

{question}
Please reason step by step, and put your final answer within “\boxed{...}”.

A.4 TRAINING DATA

The training data of AGENTIC DISTILLATION is composed of three parts:

• DAPO-Math-17K. DAPO-Math-17K (Yu et al., 2025) is a dataset comprising 17,000 mathemati-
cal problems with integer answers, specifically designed for large-scale reinforcement learning of
LLMs. The dataset was meticulously curated to ensure accurate reward signals by collecting ques-
tions and answers from the Art of Problem Solving (AoPS) website and competition homepages,
followed by manual annotation and conversion to unify answers in integer form. We utilize the
English subset, consisting of 14,000 questions, for training.

• OpenScienceReasoning-2. OpenScienceReasoning-2 is a multi-domain synthetic dataset aimed
at enhancing general-purpose reasoning in LLMs. It includes multiple-choice and open-ended
question-answer pairs with detailed reasoning traces, covering diverse scientific domains such as
STEM, law, economics, and humanities. We randomly sample 20,000 examples from the original
dataset for training.

• Reasoning-Gym. Reasoning-Gym (Stojanovski et al., 2025) is a community-developed Python
library featuring procedural dataset generators and algorithmically verifiable reasoning environ-
ments for training reasoning models with RL. It encompasses over 100 tasks across domains
including algebra, arithmetic, computation, cognition, geometry, graph theory, logic, and various
games. We generate 27,000 samples for training, with each of 27 configurations producing 1,000
samples.

t a s k s = [
( ” ab ” , 1 . 0 , {

” seed ” : 42 ,
” l e n g t h ” : 10 ,
” s i z e ” : s i z e

} ) ,
( ” ab ” , 1 . 0 , {

” seed ” : 42 ,
” l e n g t h ” : 15 ,
” s i z e ” : s i z e

} ) ,
( ” a c r e ” , 1 . 0 , {

” seed ” : 42 ,
” s i z e ” : s i z e

} ) ,
( ” a d v a n c e d g e o m e t r y ” , 1 . 0 , {

” seed ” : 42 ,
” min coord ” : −100 ,
” max coord ” : 100 ,
” s i z e ” : s i z e

} ) ,
( ” aiw ” , 1 . 0 , {

” seed ” : 42 ,
” m a x e n t i t i e s ” : 10 ,
” s i z e ” : s i z e

} ) ,
( ” c r y p t a r i t h m ” , 1 . 0 , {

18
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” seed ” : 42 ,
” min words ” : 5 ,
” max words ” : 20 ,
” s i z e ” : s i z e

} ) ,
( ” d i c e ” , 1 . 0 , {

” seed ” : 42 ,
” num dice ” : 5 ,
” m a x d i c e s i z e ” : 30 ,
” s i z e ” : s i z e

} ) ,
( ” f u t o s h i k i ” , 1 . 0 , {

” seed ” : 42 ,
” s i z e ” : s i z e

} ) ,
( ” g a m e o f l i f e ” , 1 . 0 , {

” seed ” : 42 ,
” g r i d s i z e x ” : 30 ,
” g r i d s i z e y ” : 30 ,
” s i m u l a t i o n s t e p s ” : 3 ,
” s i z e ” : s i z e

} ) ,
( ” g a m e o f l i f e ” , 1 . 0 , {

” seed ” : 42 ,
” g r i d s i z e x ” : 30 ,
” g r i d s i z e y ” : 30 ,
” s i m u l a t i o n s t e p s ” : 4 ,
” s i z e ” : s i z e

} ) ,
( ” g a m e o f l i f e ” , 1 . 0 , {

” seed ” : 42 ,
” g r i d s i z e x ” : 30 ,
” g r i d s i z e y ” : 30 ,
” s i m u l a t i o n s t e p s ” : 5 ,
” s i z e ” : s i z e

} ) ,
( ” g a m e o f l i f e h a l t i n g ” , 1 . 0 , {

” seed ” : 42 ,
” g r i d s i z e x ” : 30 ,
” g r i d s i z e y ” : 30 ,
” d i f f i c u l t y ” : 3 ,
” n u m o s c i l l a t o r s ” : 8 ,
” m a x s i m u l a t i o n s t e p s ” : 40 ,
” s i z e ” : s i z e

} ) ,
( ” j u g s ” , 1 . 0 , {

” seed ” : 42 ,
” d i f f i c u l t y ” : 20 ,
” s i z e ” : s i z e

} ) ,
( ” k n i g h t s w a p ” , 1 . 0 , {

” seed ” : 42 ,
” s i z e ” : s i z e

} ) ,
( ” k n i g h t s k n a v e s ” , 1 . 0 , {

” seed ” : 42 ,
” n p e o p l e ” : 3 ,
” d e p t h c o n s t r a i n t ” : 3 ,
” w i d t h c o n s t r a i n t ” : 3 ,
” s i z e ” : s i z e

} ) ,
( ” k n i g h t s k n a v e s ” , 1 . 0 , {

” seed ” : 42 ,
” n p e o p l e ” : 5 ,
” d e p t h c o n s t r a i n t ” : 5 ,
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” w i d t h c o n s t r a i n t ” : 5 ,
” s i z e ” : s i z e

} ) ,
( ” m a h j o n g p u z z l e ” , 1 . 0 , {

” seed ” : 42 ,
” min num rounds ” : 30 ,
” s i z e ” : s i z e

} ) ,
( ” n e e d l e h a y s t a c k ” , 1 . 0 , {

” seed ” : 42 ,
” m i n n u m s t a t e m e n t s ” : 50 ,
” s i z e ” : s i z e

} ) ,
( ” quan tum lock ” , 1 . 0 , {

” seed ” : 42 ,
” d i f f i c u l t y ” : 10 ,
” s i z e ” : s i z e

} ) ,
( ” quan tum lock ” , 1 . 0 , {

” seed ” : 42 ,
” d i f f i c u l t y ” : 20 ,
” s i z e ” : s i z e

} ) ,
( ” r u s h h o u r ” , 1 . 0 , {

” seed ” : 42 ,
” min moves ” : 10 ,
” s i z e ” : s i z e

} ) ,
( ” s e l f r e f e r e n c e ” , 1 . 0 , {

” seed ” : 42 ,
” d i f f i c u l t y ” : 10 ,
” s i z e ” : s i z e

} ) ,
( ” sudoku ” , 1 . 0 , {

” seed ” : 42 ,
” s i z e ” : s i z e

} ) ,
( ” z e b r a p u z z l e s ” , 1 . 0 , {

” seed ” : 42 ,
” num people ” : 4 ,
” n u m c h a r a c t e r i s t i c s ” : 4 ,
” s i z e ” : s i z e

} ) ,
( ” z e b r a p u z z l e s ” , 1 . 0 , {

” seed ” : 42 ,
” num people ” : 5 ,
” n u m c h a r a c t e r i s t i c s ” : 5 ,
” s i z e ” : s i z e

} ) ,
( ” z e b r a p u z z l e s ” , 1 . 0 , {

” seed ” : 42 ,
” num people ” : 6 ,
” n u m c h a r a c t e r i s t i c s ” : 6 ,
” s i z e ” : s i z e

} ) ,
( ” z e b r a p u z z l e s ” , 1 . 0 , {

” seed ” : 42 ,
” num people ” : 7 ,
” n u m c h a r a c t e r i s t i c s ” : 7 ,
” s i z e ” : s i z e

} )
]
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A.5 EVALUATION BENCHMARKS

The following details describe our evaluation benchmarks:

• AIME24. AIME24 comprises 30 challenging questions from the 2024 American Invitational
Mathematics Examination (AIME), designed to test advanced mathematical reasoning skills.

• AIME25. AIME25 includes 30 challenging questions from the 2025 American Invitational
Mathematics Examination (AIME), focusing on complex mathematical problem-solving.

• MATH500. The original MATH dataset (Hendrycks et al., 2021) contains 12,500 problems from
American high school mathematics competitions. For this study, we use MATH500 (Lightman
et al., 2024), a subset of the test split consisting exclusively of Level 5 questions.

• LiveMathBench. LiveMathBench (Liu et al., 2024b) is a continuously updated dataset of
challenging mathematical problems. We utilize the December 2024 hard split, which includes 45
questions in English and Chinese.

• GPQA. The Graduate-Level Google-Proof Q&A Benchmark (GPQA) (Rein et al., 2023) is a
challenging dataset of professional-level, multiple-choice science questions. We evaluate on its
diamond subset, comprising 198 questions.

• MBPP. The Mostly Basic Programming Problems (MBPP) dataset (Austin et al., 2021) evaluates
programming models on basic Python tasks. Constructed via crowdsourcing, the problems and
solutions undergo revision and manual inspection to ensure clarity and accurate test cases.

• LiveCodeBench. LiveCodeBench (Jain et al., 2025) is a benchmark for comprehensive and uncon-
taminated evaluation of LLM code-related capabilities, incorporating questions from LeetCode,
AtCoder, and Codeforces.

• Reasoning-Gym. Using the configurations outlined in Appendix A.4, we generate 270 samples
for evaluation, with each of 27 configurations producing 10 samples.

B ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

B.1 PERFORMANCE OF TEACHER LLMS

Table 4 shows the performance of Qwen3-30B-A3B-Instruct-2507 and GPT-OSS-20B, which are
utilized as teacher LLMs in this work. The performance of teacher LLMs can be seen as the upper
bound of the distillation.

Table 4: Performance of Qwen3-30B-A3B-Instruct-2507 and GPT-OSS-20B.

Methods
Math Science Code Puzzle

AIME24 AIME25 MATH500 LMB GPQA-D MBPP LCB RG
Avg@16 Avg@16 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4

Qwen3-30B-A3B-Instruct-2507

- 76.88 63.96 96.75 44.50 55.18 84.05 44.74 19.54

GPT-OSS-20B

- 78.62 73.75 96.45 50.50 59.22 93.68 60.53 13.98

B.2 AGENTIC DISTILLATION ON LARGER STUDENT LLMS

In this section, we evaluate the effectiveness of AGENTIC DISTILLATION on student LLMs with
larger parameter sizes, specifically training Qwen2.5-32B-Instruct (Yang et al., 2024a) with AGENTIC
DISTILLATION. As shown in Table 5, the evaluation results demonstrate that AGENTIC DISTIL-
LATION remains effective for larger-scale models, with AGENTIC DISTILLATION-trained models
outperforming baseline models across all benchmarks. Notably, the performance improvements
for Qwen2.5-32B-Instruct are more pronounced compared to those for Qwen2.5-7B-Instruct. This
enhanced improvement may stem from the 32B model’s stronger baseline capabilities, enabling it
to formulate higher-quality questions and acquire knowledge more efficiently during training with
AGENTIC DISTILLATION.
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Table 5: Experimental results of AGENTIC DISTILLATION and baselines with Qwen2.5-32B-Instrcut
as the student LLM. We report the average performance for 16 runs on AIME24 and AIME25, and 4
runs on others. We abbreviate LMB as LiveMathBench v202505, LCB as LiveCodeBench v6, RG as
Reasoning Gym, MI as Masked Interaction, and AD as AGENTIC DISTILLATION.

Methods
Math Science Code Puzzle

AIME24 AIME25 MATH500 LMB GPQA-D MBPP LCB RG
Avg@16 Avg@16 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4

Student LLM: Qwen2.5-32B-Instruct, Teacher LLM: Qwen3-30B-A3B-Instruct-2507

Original 14.38 13.12 80.85 12.25 47.10 85.12 24.71 13.06
+SFT 16.83 15.79 83.47 15.33 46.13 84.74 23.15 15.61
+RL 15.73 14.11 82.51 13.33 50.89 86.71 26.43 17.62
+AD 17.56 18.19 86.82 17.37 51.05 88.74 26.91 22.48

B.3 AGENTIC DISTILLATION ON LONG-COT STUDENT LLMS

In this section, we assess the performance of AGENTIC DISTILLATION on reasoning LLMs utilizing
long CoT prompting. Given the substantial inference overhead of long CoT LLMs, we conducted
experiments using DeepSeek-R1-Distill-Qwen-1.5B, with results presented in Table 6. The findings
demonstrate that AGENTIC DISTILLATION achieves consistent performance improvements for student
LLMs with extended reasoning chains, underscoring the generalization capability of AGENTIC
DISTILLATION across such models.

Additionally, we observe a performance decline in models trained with SFT. This may be attributed
to the teacher LLM, Qwen3-30B-A3B-Instruct-2507, not being optimized for long CoT reasoning.
Consequently, fine-tuning based on its responses may disrupt the original reasoning patterns of the
student LLM, leading to degraded performance. In contrast, AGENTIC DISTILLATION selectively
injects knowledge into the student LLM via query-answer pairs, preserving its inherent reasoning
patterns. This preservation represents a key advantage of AGENTIC DISTILLATION, enhancing its
effectiveness without compromising the student LLM’s original reasoning capabilities.

Table 6: Experimental results of AGENTIC DISTILLATION and baselines with DeepSeek-R1-Distill-
Qwen-1.5B as the student LLM. We report the average performance for 16 runs on AIME24 and
AIME25, and 4 runs on others. We abbreviate LMB as LiveMathBench v202505, LCB as Live-
CodeBench v6, RG as Reasoning Gym, MI as Masked Interaction, and AD as AGENTIC DISTILLA-
TION.

Methods
Math Science Code Puzzle

AIME24 AIME25 MATH500 LMB GPQA-D MBPP LCB RG
Avg@16 Avg@16 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4 Avg@4

Student LLM: DeepSeek-R1-Distill-Qwen-1.5B, Teacher LLM: Qwen3-30B-A3B-Instruct-2507

Original 21.88 21.46 83.95 13.00 29.80 60.12 14.69 3.33
+SFT 18.35 19.89 77.16 14.02 26.64 55.51 15.27 10.98
+RL 28.43 25.70 86.82 17.39 34.68 65.05 14.72 13.53
+AD 30.56 29.21 88.47 18.90 36.53 67.19 17.06 16.44

C LIMITATIONS

In this paper, we propose AGENTIC DISTILLATION, a novel framework for active distillation to
enhance the reasoning capabilities of LLMs. While AGENTIC DISTILLATION achieves significant
performance improvements, several areas warrant further exploration. First, our framework does
not explicitly guarantee the accuracy of feedback provided to the student LLM. In cases where
the teacher produces suboptimal or noisy guidance, the student may inadvertently learn misleading
patterns, which could diminish the effectiveness of the distillation process and lead to unstable
improvements across tasks. Second, as the scale and inference complexity of teacher LLMs increase,
the training time required by AGENTIC DISTILLATION may grow considerably. This not only elevates

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

computational costs but may also impose practical challenges when deploying the framework in
resource-constrained environments or when scaling to very large datasets and extended training
regimes.

D LLM USAGE

In this paper, the use of LLMs is intentionally restricted to the final stages of the research process,
specifically for refining and proofreading the written content. The LLMs are employed solely
to enhance the clarity, coherence, and grammatical accuracy of the text, ensuring effective and
professional communication of the presented ideas. Importantly, LLMs played no role in the core
components of this work, including the development of the research methodology, the design of
experiments, or the analysis of results. We are aware that we will be responsible for all content in the
paper.
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