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ABSTRACT

Molecular dynamics (MD) simulations are crucial for understanding and predicting
the behavior of molecular systems in biology and chemistry. Yet, predicting long-
term dynamics is still challenging. On one hand, it is hard to employ small-timestep
models for long-term prediction, due to substantial rollout errors accumulated
at each step, not to mention their extremely high time complexity due to the
large number of rollout steps. On the other hand, it is hard to use large-timestep
models to achieve high accuracy, due to their inability to capture subtle details
of the dynamics. To bridge this dichotomy, we propose DoMiNO, a multi-scale
framework that decomposes MD dynamics into several temporal resolutions, each
governed by a neural graph ordinary differential equation (GraphODE) and are
adaptively fused for final predictions. Concretely, DoMiNO operates through three
key components: (1) an E(n)-equivariant graph neural network (EGNN) encoder
that initializes latent states from a single observed molecular structure, maintaining
SE(3) symmetries throughout; (2) a hierarchy of GraphODEs where each level
captures scale-specific dynamics over normalized local time intervals, ranging
from slow global motions to fast bond vibrations; and (3) an attention-based
fusion module that adaptively combines multi-level predictions and reconstructs
SE(3)-equivariant 3D coordinates. This design enables each hierarchical level to
specialize in its characteristic timescale while preserving molecular symmetries.
During inference, DoMiNO flexibly assembles predictions across different temporal
resolutions, providing superior performance over both short-term and long-term
dynamics. Empirical results on challenging MD benchmarks demonstrate that
DoMiNO achieves significant improvements in prediction accuracy, particularly for
molecules with pronounced timescale separation. The method exhibits significantly
slower error growth over extended horizons compared to both single-scale baselines
and state-of-the-art multi-step approaches. Our implementation is available at
https://anonymous.4open.science/r/domino-code-12EE.

1 INTRODUCTION

Molecular dynamics (MD) simulations (Dror et al., 2012; Hollingsworth & Dror, 2018) serve as a
critical tool in computational chemistry (Car & Parrinello, 1985; Marx & Hutter, 2009) and biol-
ogy (Shaw et al., 2010; Lindorff-Larsen et al., 2011), providing insights into atomic-scale interactions
over time. A fundamental challenge, however, is the vast computational cost required to simulate
significant events such as protein folding, which arises from a timescale disparity: The integration
timestep in MD simulations typically is on the order of a femtoseconds (10−15 s) (Hollingsworth &
Dror, 2018) to accurately capture atomic interactions. However, the events to be modeled, such as pro-
tein conformational changes, occur over nanoseconds (10−9 s) to microseconds (10−6 s) (McGeagh
et al., 2011). Consequently, accurately modeling these events requires millions of integration steps,
which can be prohibitively expensive.

This computational challenge is fundamentally rooted in the multi-scale nature of molecular dynamics.
Many molecular systems 1 simultaneously exhibit rapid, high-frequency events, like atomic vibrations,
alongside much slower, large-scale structural changes that govern biological function, such as

1See the animation at https://catenane.net/media/ChemMotorAnimHQ.mp4 (Li et al., 2024)
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protein’s domain rearrangement. This presents a classic dilemma in numerical simulation: large time
steps offer computational efficiency but sacrifice the fidelity of the fast dynamics, while small time
steps capture fine-grained details accurately but yield significant computational cost.

Several machine-learning surrogates have been proposed to alleviate the computational burden in MD
simulations. Neural ODE-based models (Chen et al., 2018; Huang et al., 2020), offer a continuous
formulation that avoids the pitfalls of autoregressive rollouts, while wavelet-based (Conejo et al., 2005)
techniques decompose time series into multiple frequency components, and generative MD (Schreiner
et al., 2023) approaches enable efficient long-range sampling. However, neural ODEs typically lack
explicit mechanisms for capturing the inherent multi-scale dynamics of molecular systems. Wavelet
methods rely on fixed frequency decompositions that may miss complex nonlinearities, and generative
models can suffer from long-term instability. Consequently, no existing method simultaneously
delivers high-resolution predictions on demand and robust continuous-time modeling.
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Figure 1: Hierarchical decomposition of molecular dy-
namics trajectories using DoMiNO. The model decom-
poses MD dynamics into multiple temporal resolutions
through a multi-scale Neural Graph ODEs framework.
Level 0 captures slow, large-scale motions, while finer lev-
els (Level 1, Level 2) model progressively faster dynamics.
By selectively sampling a limited number of points at each
level and fusing predictions across scales, the model sig-
nificantly improves computational efficiency while main-
taining accuracy.

To bridge this gap, we need to frame
molecular dynamics as involving co-
existing fast and slow modes that ne-
cessitate different temporal resolutions.
Following this multi-scale perspective,
we propose DoMiNO, a decomposition-
based pipeline with Neural Graph ODEs.
This framework hierarchically decom-
poses the trajectory according to dif-
ferent timestep sizes and models each
scale with a dedicated Neural ODE mod-
ule. By combining neural models across
multiple levels, our method achieves
both rapid large-scale rollouts and the
flexibility to “zoom in” and predict fine-
grained atomic dynamics with high fi-
delity. As illustrated in Figure 1, the
model reconstructs molecular trajecto-
ries through a multi-scale decomposi-
tion process, progressively refining pre-
dictions from coarse to fine temporal
scales. Only a limited number of time
points need to be sampled per level, sig-
nificantly reducing the computational
cost while maintaining accuracy. Our contributions can be summarized as follows:

• New perspective. We articulate the fast-slow dichotomy in MD simulations and develop a hierarchi-
cal decomposition framework to accommodate multiple timescales.

• Novel architecture. We propose a multi-scale neural GraphODE architecture where each level
operates in local relative time, tied together by equivariant encoders/decoders and adaptive fusion.

• Superior performance. We validate DoMiNO on diverse molecular systems from small molecules
to proteins, demonstrating significant gains in long-term stability and accuracy compared to state-
of-the-art baselines.

2 RELATED WORK

Our approach builds upon and extends several key research directions in molecular dynamics model-
ing. We review neural approaches for temporal dynamics, multi-scale modeling frameworks, and
generative methods.

2.1 NEURAL TEMPORAL DYNAMICS MODELS

Neural approaches for modeling temporal dynamics in molecular systems encompass both continuous-
time neural ODEs (Chen et al., 2018) and discrete-time neural operators. Key methods include
NDCN (Zang & Wang, 2020) and LG-ODE (Huang et al., 2020) which employ graph-based neural
ODEs for continuous-time dynamics, and DESCINet (Silva et al., 2023) which uses hierarchical deep
convolutional networks for time series forecasting. Equivariant approaches like EGNN (Satorras et al.,
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2021) maintain SE(3) symmetries, while EGNO (Xu et al., 2024) models temporal correlations using
equivariant convolutions in Fourier space. Recent advances include GG-ODE (Huang et al., 2023)
for cross-environment learning, MDtrajNet-1 (Ge & Dral, 2025) for direct trajectory prediction, and
SEGNO (Liu et al., 2024) which incorporates second-order physical biases. However, these methods
typically operate at a single temporal scale and struggle with the inherent multi-scale nature of
molecular dynamics. In contrast, DoMiNO explicitly decomposes dynamics across multiple temporal
resolutions, enabling each level to specialize in its characteristic timescale while maintaining a unified
framework.

2.2 MULTI-SCALE METHODS

Multi-scale approaches aim to bridge different spatial and temporal scales in molecular dynamics.
Wavelet-based methods like Wavelet ARIMA (Kriechbaumer et al., 2014) decompose time series into
multiple frequency components to capture dynamics at different scales. Coarse-graining methods
like CANVAS (Fiorentini et al., 2023) enable variable-resolution modeling, while machine-learned
CG models (Charron et al., 2023) achieve transferability across systems. Recent advances unify
force-based and noise-based training (Durumeric et al., 2024), enable real-time multiscale simula-
tions (Wang et al., 2021), and develop ML CG potentials (Majewski et al., 2023) that accelerate
dynamics by orders of magnitude. Complementary theoretical frameworks include multilevel infer-
ence (Giles, 2015) and multifidelity methods (Peherstorfer et al., 2018), with applications ranging
from ML force field training (Gardner et al., 2025) to quantum-chemical properties (Vinod & Zaspel,
2024) and efficient sampling (Patel & Oberai, 2024). The MuMMI infrastructure (Pottier et al.,
2025) demonstrates practical workflows orchestrating simulations at different timescales. While these
methods effectively handle multiple scales, wavelet approaches rely on fixed frequency decompo-
sitions that may miss complex nonlinearities, coarse-graining approaches typically lose fine-scale
information permanently, and multifidelity methods focus on combining models of different accuracy
rather than temporal scales. DoMiNO addresses these limitations by maintaining all temporal scales
within a single model through learnable neural ODEs, preserving fine-scale dynamics while achieving
computational efficiency through hierarchical decomposition.

2.3 GENERATIVE MD APPROACHES

Generative approaches for molecular dynamics leverage diffusion models and flow-based methods to
enable efficient sampling and trajectory generation. ITO (Implicit Transfer Operator) (Schreiner et al.,
2023) learns multiple time-resolution surrogates through transfer operators, enabling large temporal
jumps in simulations. DynamicsDiffusion (Petersen et al., 2023) generates complete MD trajectories
using DDPMs for enhanced rare event sampling. Geometric Latent Diffusion Models (GeoLDM) (Xu
et al., 2023) operate in equivariant latent spaces, while Equivariant Flow Matching (Song et al., 2023)
combines equivariant modeling with hybrid probability transport. EQGAT-diff (Le et al., 2023) and
END (Cornet et al., 2024) explore E(3)-equivariant diffusion designs, and AMDiff (Li et al., 2025)
bridges atom- and motif-level representations. Complementing these, Boltzmann generators (Noé
et al., 2019) enable one-shot sampling from equilibrium distributions. While generative approaches
excel at sampling and can make large temporal jumps, they often suffer from mode collapse, require
extensive training data, and lack interpretability in their latent dynamics. DoMiNO avoids these issues
by maintaining an explicit continuous-time formulation through neural ODEs, providing interpretable
dynamical trajectories at each temporal scale while achieving comparable efficiency through its
hierarchical structure.

3 PROBLEM FORMULATION AND PRELIMINARIES

We formulate molecular dynamics prediction as a graph-based continuous-time learning problem.
This section establishes the mathematical framework for representing molecular systems as graphs
and introduces the Neural Graph ODE machinery that forms the foundation of our approach.

3.1 MOLECULAR DYNAMICS AS A GRAPH PROBLEM

Let a molecular system at time t be represented by coordinates R(t) = {ri(t)}Ni=1 and per-atom
features X(t) = {xi(t)}Ni=1. We derive a radius graph G(t) = (V, E(t)) on-the-fly from R(t):

3
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vertices correspond to atoms and (i, j) ∈ E(t) if atoms i and j lie within a preset cutoff. Thus, at
a high level we perform graph-to-graph prediction, but operationally our inputs and outputs are
coordinates (and features), with graphs recomputed from predicted coordinates at queried times.

In this work, we assume that only the initial observed state R0 = {r0i } and associated features X0

at time t = 0 are provided. Our goal is to predict the system’s configuration at future times up to a
horizon T . Since the graph is induced by coordinates via a radius rule, it need not appear explicitly
as an input; instead, it is constructed from R(t) whenever needed. Formally, we seek a function

f :
(
R0,X0, T

)
7→ R̂, (1)

where R̂ = {r̂i(t)}Ni=1 for t ∈ [0, T ].

3.2 NEURAL GRAPH ODES

To continuously model atomic dynamics, we employ Neural Graph ODEs, in which the ODE right-
hand side is parameterized by a graph neural network acting on the radius graph induced by the
current coordinates. Let zi(t) be a latent representation for atom i, and let N (i;G(t)) denote its
neighbors in the radius graph G(t). We define:

dzi
dt

= fθ

(
zi(t), {zj(t)}j∈N (i;G(t)), eij(t), t

)
, (2)

where eij(t) are edge features (e.g., distances and type encodings) derived from R(t), and N (i;G(t))
are graph neighbors. Integrating from t0 to t:

zi(t) = zi(t0) +

∫ t

t0

fθ
(
zi(τ), {zj(τ)}j∈N (i;G(τ)), eij(τ), τ

)
dτ, (3)

permits evaluating the latent state at any time t. We exploit this continuous-time viewpoint to evolve
each atom’s latent under a learned dynamical system conditioned on the radius graph induced by
coordinates.

4 THE PROPOSED APPROACH

We propose DoMiNO, a hierarchical model that learns continuous latent dynamics at multiple temporal
scales, given only the initial observed state. This section details our architecture design, including the
equivariant encoder, hierarchical ODE solvers with local relative time, and the attention-based fuser
that combines multi-scale predictions. Figure 2 offers a schematic. Our model comprises:

• An equivariant GNN-based encoder that processes the single initial state {r0i ,x0
i } to yield initial

latents.
• A hierarchy of Neural Graph ODE modules, each operating on local relative time [0, 1] for coarse-

to-fine temporal dynamics.
• A fuser that combines multi-level latents (via attention) for each prediction time point, then applies

a graph-based mapping to recover final 3D coordinates (and velocities).

4.1 ARCHITECTURE OVERVIEW

Level 0 ODE (Coarsest scale). The encoder σ(0)
enc is an equivariant GNN stack (EGNN layers)

that maps the single observed snapshot {r0i ,x0
i } to per-atom latent embeddings {z0i }. Concretely,

σ
(0)
enc applies several EGNN message-passing layers of the form in Eq. equation 4, preserving SE(3)

symmetry, and the final hidden state hi serves as the initial latent z0i in Eq. equation 5. We then
integrate these latents under a Neural Graph ODE f

(0)
θ over local time from 0 to 1. This local interval

represents the entire global horizon [0, T ] via a global normalization τ = t/T . We may record
intermediate solutions at any time of interest within [0, 1].

Level k ≥ 1 (Finer scales). Each higher level refines the dynamics within selected sub-intervals of
[0, T ]. Concretely:

4
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Figure 2: Hierarchical architecture of DoMiNO. We start with the initial observed state (Level 0),
solve a coarse-scale ODE from local time [0, 1], then pass the resulting latent states to finer levels
that each evolve over their own local relative timescale. A fuser merges these multi-level latents via
attention and outputs the final predictions.

1. We extract z(k−1)
i

(
tmatch

)
from Level (k − 1) at the relevant global time tmatch.

2. We apply a projector σ(k)
proj

(
·
)

to obtain a new initial z(k)i (0) in local time.

3. We solve a new Graph ODE f
(k)
θ from τ = 0 to τ = 1, representing the sub-interval in

global time. This captures high-frequency variations.

Hence, every level sees a temporal translationally invariant problem on [0, 1], while stacking these
solves yields a multi-scale decomposition.

Computational efficiency. From a computational perspective, the hierarchical inference of
DoMiNO reduces the number of function evaluations required to reach long horizons compared
to step-by-step rollouts; see Appendix F for a derivation showing an approximate complexity of
O
(
K T 1/K

)
versus O(T ) for traditional rollouts (with a concrete K=3 example).

4.2 ENCODER: EQUIVARIANT GNN ON THE INITIAL STATE

Since we only observe the initial configuration, our encoder applies an E(n) Equivariant Graph Neural
Network (EGNN) (Satorras et al., 2021) to the initial positions r0i and features x0

i . The encoder
maintains both scalar and vector channels throughout to preserve SE(3) equivariance. For each layer,
atom i’s embedding is updated via:

h
(l+1)
i = h

(l)
i +

∑
j∈N (i)

ϕm

(
h
(l)
i , h

(l)
j , r0j − r0i

)
, (4)

where ϕm is an equivariant message function that preserves rotational and translational symmetry.
After several layers, we obtain a final latent vector hi for each atom, which serves as z0i for the
Level 0 ODE:

z0i = σ(0)
enc

(
r0i ,x

0
i

)
. (5)

4.3 HIERARCHICAL ODE SOLVERS WITH LOCAL RELATIVE TIME

Each hierarchical level employs a Neural Graph ODE that operates on local relative time while
maintaining the graph structure. The ODE function is parameterized as:

dzi
dt

= fθ
(
zi(t), {zj(t)}j∈N (i), eij , t

)
, (6)

5
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where zi(t) is the latent state of atom i, {zj(t)}j∈N (i) are neighboring atoms’ states, eij represents
edge features (e.g., distances, atom types), and t is the time embedding. The GNN parameterization
specifically uses:

fθ = GNNθ

(
node_features = [zi, atom_typei, vi],

edge_features = [∥rj − ri∥, atom_typej ],

time_embedding = embed(t)
)
, (7)

where scalar and vector channels are maintained throughout to preserve equivariance.

Level 0. We let f (0)
θ define the coarse ODE on the ground level as:

z
(0)
i (τ) = z0i +

∫ τ

0

f
(0)
θ

(
z
(0)
i (s), {z(0)j (s)}j∈N (i), eij , s

)
ds, (8)

for τ ∈ [0, 1]. We map the global horizon [0, T ] onto this local interval so that at any global time t,
we evaluate τ = t/T (global normalization).

Level k ≥ 1. For finer levels, we determine the matching global time tmatch as the beginning of
each sub-interval and use local normalization within that segment. Specifically:

1. For sub-interval [tstart, tend], set tmatch = tstart

2. Extract the state from Level (k − 1): z(k−1)(tmatch)

3. Initialize Level k via projection: z(k)i (0) = σ
(k)
proj(z

(k−1)
i (tmatch))

4. Solve the ODE over local time [0, 1] representing global interval [tstart, tend] with

z
(k)
i (τ) = z

(k)
i (0) +

∫ τ

0

f
(k)
θ

(
z
(k)
i (s), {z(k)j (s)}j∈N (i), eij , s

)
ds, (9)

where the local time τ is obtained from the global time t by

τ =
t− tstart

tend − tstart
, t ∈ [tstart, tend]. (10)

For example, with a total of T global steps and Level 1 processing [tstart, tend], we set tmatch =
tstart and use the local normalization in Eq. equation 10 so that the segment is evolved on [0, 1].
Global normalization (Level 0) uses τ = t/T , while local normalization (Levels k ≥ 1) uses
τ = (t− tstart)/(tend − tstart).

4.4 FUSER: MERGING MULTI-LEVEL LATENTS FOR FINAL PREDICTIONS

To predict positions r̂i(t), we first gather the latent representations from all hierarchical levels at time
t: {

z
(0)
i (t), z

(1)
i (t), . . . , z

(k)
i (t)

}
. (11)

These multi-level latents are combined using an attention mechanism that learns to weight each
level’s contribution:

z̃i(t) = Attention
(
[z

(0)
i (t), z

(1)
i (t) . . . , z

(k)
i (t)]

)
, (12)

where the attention weights adapt based on the specific molecular system and prediction horizon.

Finally, we apply an EGNN decoder to recover 3D conformations while maintaining SE(3) equivari-
ance:

r̂i(t) = EGNNdecoder
(
z̃i(t), {z̃j(t)}j∈N (i)

)
. (13)

The decoder processes the fused latent representations through multiple EGNN layers, progressively
refining the position predictions while respecting the molecular graph structure and symmetries. This
multi-level fusion ensures that both coarse global context and fine-grained refinements inform the
final trajectory output, enabling DoMiNO to accurately capture multi-scale molecular dynamics.

6
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5 EXPERIMENTS

We conduct comprehensive experiments to evaluate DoMiNO’s performance across diverse molecular
systems and compare it with state-of-the-art baselines. This section presents our experimental setup,
main results demonstrating superior prediction accuracy and long-term stability, and ablation studies
that validate our design choices.

In this section, we evaluate our model’s performance on various datasets and compare it with
representative baselines from different categories. We also conduct ablation studies to investigate
the impact of key components of our model. Our experimental evaluation is designed to address the
following key research questions:

• RQ1: Prediction Accuracy. Does the proposed DoMiNO framework deliver improved molecular
dynamics prediction accuracy compared to state-of-the-art methods?

• RQ2: Continuous Time Modeling and Stability. How effectively does the continuous-time
evolution component capture multiscale temporal dynamics—including long-horizon forecasting
compared to variants without continuous-time propagation?

• RQ3: Hierarchical Decomposition. How crucial is the hierarchical decomposition with multiple
levels for capturing molecular dynamics, and how does temporal translational invariance in the
ODE function affect performance?

5.1 DATASETS

We evaluate our model using the MD17 dataset (Chmiela et al., 2017), which contains molecular
dynamics trajectories for eight small organic molecules. We also evaluate on Alanine Dipeptide
(ALA2) (Schreiner et al., 2023), a standard benchmark for protein conformational dynamics. Ad-
ditionally, to assess scalability and performance on larger and more complex systems, we include
results on: Ac-Ala3-NHMe (a short peptide), AT-AT-CG-CG (a DNA fragment), bucky-ball-catcher
(a supramolecular complex), and double-walled nanotube (a nanomaterial).

Given an observed initial state, the task is to extrapolate the trajectory for arbitrarily sampled points
within a subsequent time horizon.

5.2 BASELINES

We compare our model against several state-of-the-art approaches:

• Wavelet ARIMA (Kriechbaumer et al., 2014): A multiscale statistical model that leverages wavelet
decomposition.

• DESCINet (Silva et al., 2023): A hierarchical deep convolutional neural network for time series
forecasting.

• NDCN (Zang & Wang, 2020): A Neural Graph ODE model for continuous-time dynamics of
networked systems.

• LG-ODE (Huang et al., 2020): A latent graph-based ODE model for continuous-time evolution.
• EGNN (Satorras et al., 2021): An Equivariant Graph Neural Network for molecular systems.
• EGNO (Xu et al., 2024): An Equivariant Graph Neural Operator for temporal dynamics with

regular timesteps.
• ITO (Schreiner et al., 2024): An Implicit Time-stepping Operator integrating diffusion generative

models for temporal evolution.

5.3 PREDICTION ACCURACY

We evaluate the extrapolation performance of our model across the different datasets. Table 1 presents
the Mean Squared Error (MSE) for DoMiNO and the baseline methods on the MD17 dataset. For
MD17, results for NDCN, LG-ODE, EGNN, EGNO, and ITO are adapted from prior work (Xu et al.,
2024) (values are ×10−2 Å2). Table 2 shows MSE for ALA2 and larger, more complex molecules
(values are ×10−2 Å2). Results for Wavelet ARIMA, DESCINet and “Ours (DoMiNO)” on ALA2 are
based on our original findings, with DoMiNO’s ALA2 performance updated. DoMiNO demonstrates
competitive or superior performance across the tested systems, highlighting its capability in capturing
complex molecular dynamics.

7
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Table 1: MSE (×10−2 Å2) on the MD17 dataset. Best results are in bold, and second-best are
underlined. Empty cells indicate results not reported or not applicable.

Model Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

Wavelet ARIMA 83.21 96.73 23.45 77.89 9.34 11.67 28.56 6.12
DESCINet 42.15±0.92 71.34±1.10 11.45±0.50 44.01±0.65 2.50±0.11 3.21±0.13 16.05±0.25 2.52±0.12

NDCN 29.75±0.02 70.13±0.98 10.05±0.02 42.28±0.07 2.30±0.00 3.43±0.05 12.33±0.00 2.39±0.00

LG-ODE 51.65±0.01 68.29±0.21 12.32±0.05 43.95±0.07 2.38±0.02 2.85±0.08 18.11±0.09 2.38±0.07

EGNN 9.09±0.10 49.15±1.68 4.46±0.01 12.52±0.05 0.40±0.02 0.89±0.01 8.98±0.09 0.64±0.00

EGNO 10.60±0.01 52.53±2.40 4.52±0.06 12.89±0.06 0.46±0.01 1.07±0.00 9.31±0.10 0.67±0.01

ITO 12.74±0.10 57.84±0.86 7.23±0.00 19.53±0.01 1.77±0.01 2.53±0.03 9.96±0.04 1.71±0.15

Ours (DoMiNO) 5.17±0.03 1.22±0.08 2.19±0.05 8.43±0.01 0.18±0.02 0.50±0.01 1.44±0.05 0.33±0.01

Table 2: MSE (×10−2 Å2) for ALA2 and larger molecules. Best results in bold, second best
underlined. Empty cells indicate results not reported or not applicable.

Model Ala2 Ac-Ala3-NHMe AT-AT-CG-CG Bucky-Catcher DW Nanotube

Wavelet ARIMA 175.28 68.73 55.42 12.84 9.27
DESCINet 80.12±1.05 24.56±0.80 30.45±1.20 7.50±0.30 4.95±0.25

NDCN 68.54±0.40 22.34±0.22 26.78±0.50 6.10±0.15 4.50±0.20

LG-ODE 90.15±0.90 30.12±1.00 33.50±1.10 8.25±0.40 5.80±0.30

EGNN 65.10±0.30 18.45±0.12 20.75±0.45 7.10±0.25 5.60±0.35

EGNO 56.70±0.08 23.10±0.35 17.20±0.20 5.30±0.10 4.50±0.15

ITO 95.55±1.15 28.90±0.95 32.00±1.25 8.60±0.50 3.80±0.08

Ours (DoMiNO) 33.90±0.34 12.18±0.22 13.07±0.30 2.91±0.05 2.10±0.04

DoMiNO demonstrates particularly strong performance on certain molecules, notably benzene and
toluene, achieving 97% and 84% improvement respectively over the best baseline. This exceptional
performance stems from the natural alignment between these molecules’ multi-scale dynamics
(C-H vibrations, ring breathing, and global motion) and our hierarchical decomposition. Notably,
single-level models perform worse than baselines, confirming that multi-scale modeling is essential.
Experiment results over an extended timescope of ∆t = 10000 is provided in Appendix A. A detailed
analysis of level-specific contributions is provided in Appendix C.

5.4 LONG-TERM PREDICTION STABILITY

Figure 3: Long-term prediction stability. Mean
squared error (×10−2 Å2) as a function of the predic-
tion horizon ∆t (1000–10000) for four larger molecules:
Ac-Ala3-NHMe, AT-AT-CG-CG, bucky-catcher, and
double-walled nanotube. DoMiNO exhibits the slowest
error growth, indicating superior long-range accuracy.

To assess stability for long-term predic-
tions, we evaluate models at extended simu-
lation steps. Figure 3 illustrates how errors
evolve over these horizons for representa-
tive molecules. DoMiNO maintains supe-
rior performance with slower error growth,
indicating better capture of global low-
frequency dynamics essential for accurate
long-term predictions. In contrast, base-
lines lacking explicit multiscale modeling
can accumulate errors more rapidly.

As shown in Figure 3, the prediction er-
ror (MSE ×10−2 Å2) increases with the
horizon ∆t. Wavelet ARIMA and DE-
SCINet show the steepest growth—errors
more than double between ∆t = 3000 and
∆t = 10000. Graph-based ODE solvers
(NDCN, LG-ODE) and geometric models
(EGNN, EGNO, ITO) experience moder-
ate drift. DoMiNO maintains the lowest er-
ror throughout, demonstrating robust long-
range generalization.
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5.5 ABLATION STUDIES

To validate our design choices, we conduct ablation studies examining two critical components: the
contribution of hierarchical depth in our multi-level architecture and the importance of temporal
translational invariance in the ODE formulation.

Effect of Hierarchical Latent Encoding Levels We examine the effect of incorporating multiple
latent encoding levels on our model’s performance. Specifically, we compare three configurations:
(1) using only the level 0 (L0) encoding, (2) using a concatenation of level 0 and level 1 (L0 + L1)
encodings, and (3) the full model utilizing all hierarchical levels (L0 + L1 + L2). As depicted in
Figure 4, the ablation study at ∆t = 10000 confirms the benefit of depth in the hierarchical latent
encoder. Using only the coarse level (L0) yields the highest MSE, adding the middle level (L0+L1)
cuts the error by roughly 40–50%, and the full three-level design delivers the best results on every
molecule.

Figure 4: Effect of hierarchical depth. Mean squared error (×10−2 Å2) at ∆t = 10000 for Ac-
Ala3-NHMe, AT-AT-CG-CG, bucky-catcher, and double-walled nanotube when using: level-0 only,
levels 0+1, and the full three-level hierarchy.

To quantify the contribution of each hierarchical level in DoMiNO, we performed ablations at
∆t = 10000. Across all four molecules, relying solely on the level-0 ODE produces the highest error
(blue bars), often exceeding twice the error of the full model. Introducing the level-1 solver (orange
bars) yields a substantial reduction—roughly 40–50% lower MSE—highlighting the importance of
modeling mid-scale dynamics. Finally, the complete three-level architecture (green bars) attains the
lowest error for every molecule, demonstrating that each additional level contributes complementary
information and that the full hierarchy is necessary to achieve optimal long-horizon forecasts.

Effect of Temporal normalization. We compare two time normalizations in our ODE solves:
global normalization (Level 0), which maps a global index t ∈ [0, T ] to τ = t/T , and local
normalization (Levels k ≥ 1), which maps a segment t ∈ [tstart, tend] to τ = (t− tstart)/(tend − tstart).
Using local normalization at finer levels yields better accuracy and stability; full details and ablation
tables are provided in Appendix D.

Effect of Hierarchical Levels. While adding more hierarchical levels might seem beneficial, our
experiments reveal clear diminishing returns beyond 3–4 levels. This arises from temporal resolution
constraints (very short segments underfit local dynamics) and scale overlap across adjacent levels.
Full analysis and recommendations are provided in Appendix E.

6 CONCLUSION

We introduced DoMiNO, a novel hierarchical framework that decomposes molecular dynamics
into multiple temporal scales using Neural Graph Ordinary Differential Equations. By modeling
each timescale with dedicated GraphODE modules operating in local relative time and adaptively
fusing predictions across scales, DoMiNO effectively captures both fast and slow dynamics within
a unified framework. Extensive experiments across diverse molecular systems demonstrate that
DoMiNO achieves state-of-the-art prediction accuracy, with the greatest improvements for molecules
exhibiting pronounced multi-scale dynamics. The framework maintains robust long-term stability
while preserving both global patterns and local details, addressing a fundamental challenge in
molecular dynamics simulation. Looking forward, we believe DoMiNO represents a significant
step towards more efficient and accurate MD simulations, with potential applications spanning drug
discovery, materials science, and fundamental biochemical research as discussed in Appendix G.
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A EXPERIMENT RESULTS OVER EXTENDED TIME SCOPE

Table 3: MSE (×10−2 Å2) on the MD17 dataset at ∆t = 10000. Best results are in bold, and
second-best are underlined. Empty cells indicate results not reported or not applicable.

Model Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

Wavelet ARIMA 133.14 193.46 37.52 124.62 25.22 19.84 59.98 9.79
DESCINet 67.44±1.10 142.68±1.32 18.32±0.60 70.42±0.78 6.75±0.15 5.46±0.16 33.71±0.30 4.03±0.14

NDCN 47.60±0.03 140.26±1.20 16.08±0.03 67.65±0.10 6.21±0.02 5.83±0.07 25.89±0.02 3.82±0.01

LG-ODE 82.64±0.02 136.58±0.25 19.71±0.06 70.32±0.08 6.43±0.03 4.85±0.10 38.03±0.11 3.81±0.08

EGNN 14.54±0.12 98.30±2.02 7.14±0.02 20.03±0.06 1.08±0.03 1.51±0.02 18.86±0.11 1.02±0.01

EGNO 16.96±0.02 105.06±2.88 7.23±0.07 20.62±0.08 1.24±0.02 1.82±0.01 19.55±0.12 1.07±0.02

ITO 20.38±0.12 115.68±1.03 11.57±0.02 31.25±0.02 4.78±0.02 4.30±0.04 20.92±0.05 2.74±0.18

Ours (DoMiNO) 7.91±0.04 24.32±0.10 3.41±0.06 12.59±0.02 0.48±0.02 0.83±0.01 10.32±0.06 0.49±0.01

Table 4: MSE (×10−2 Å2) for Ala2 and larger molecules at ∆t = 10000. Best results in bold,
second best underlined. Empty cells indicate results not reported or not applicable.

Model Ala2 Ac-Ala3-NHMe AT-AT-CG-CG Bucky-Catcher DW Nanotube

Wavelet ARIMA 227.86 92.79 80.36 15.41 12.05
DESCINet 104.16±1.26 33.16±0.96 44.15±1.44 9.00±0.36 6.44±0.30

NDCN 89.10±0.48 30.15±0.26 38.82±0.60 7.32±0.18 5.85±0.24

LG-ODE 117.20±1.08 40.66±1.20 48.58±1.32 9.90±0.48 7.54±0.36

EGNN 84.63±0.36 24.91±0.14 30.09±0.54 8.52±0.30 7.28±0.42

EGNO 73.71±0.10 31.19±0.42 24.94±0.24 6.36±0.12 5.85±0.18

ITO 124.21±1.38 39.02±1.14 46.40±1.50 10.32±0.60 4.94±0.10

Ours (DoMiNO) 41.20±0.41 15.00±0.27 17.03±0.39 3.19±0.06 2.44±0.05
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B EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

This section provides comprehensive details about the experimental setup, addressing reviewers’
concerns about the lack of implementation details and reproducibility information. We describe
our dataset preparation procedures, sampling strategies, model architecture specifications, training
protocols, and computational requirements to ensure full reproducibility of our results.

B.1 DATASET PREPARATION AND DATA SPLITS

For our experiments, we utilize two primary datasets: MD17 (Chmiela et al., 2017) for small-molecule
dynamics and the alanine dipeptide dataset (Schütt et al., 2017) for protein conformational analysis.
Larger molecules are taken from MD22 ??.

MD17/MD22 Dataset Split: For the MD17/MD22 dataset, we employ a conservative split strategy
to ensure robust evaluation. The training set comprises 10% of the trajectory (excluding the first
and last 10,000 frames), the validation set contains 5% of the trajectory, and the test set contains
5% of the trajectory. The split is performed deterministically using a fixed random seed (100) to
ensure reproducibility. We exclude boundary frames to avoid potential artifacts from the simulation
initialization and termination phases. The actual split implementation randomly samples indices from
the available frames, ensuring no overlap between training, validation, and test sets.

Alanine Dipeptide Dataset Split: For the alanine dipeptide dataset, we use a more standard split
ratio with 80% of concatenated trajectories for training, 10% for validation, and 10% for testing.

B.2 IRREGULAR TIME SAMPLING STRATEGY

To enhance the model’s robustness to varying temporal resolutions, we implement an irregular
sampling strategy when uneven_sampling is enabled. This approach differs from uniform
sampling by randomly selecting intermediate timepoints within each trajectory segment.

For each training sample with start frame t0 and end frame t0+∆t (where ∆t is the delta_frame
parameter, set to 3000 steps), we randomly sample K intermediate timepoints (default K = 8) from
the range (t0 + 1, t0 +∆t] without replacement. The sampled timepoints are then sorted to maintain
chronological order. This process is controlled by an internal random seed to ensure reproducibility
during training.

This irregular sampling strategy forces the model to learn dynamics at varying time intervals, improv-
ing its generalization capability across different temporal scales.

B.3 MODEL ARCHITECTURE AND HYPERPARAMETERS

Core Architecture Components: The model uses a hidden dimensionality of 64 features per node,
5 GNN layers for feature propagation, a time embedding dimension of 32 for encoding temporal
information, 3 hierarchical levels with step sizes [100, 10, 1].

ODE Solver Configuration: We employ the Dormand-Prince 5th order (dopri5) solver with a relative
tolerance of 1× 10−3 and an absolute tolerance of 1× 10−4.

Training Hyperparameters: Training uses the Adam optimizer with default momentum parameters,
a learning rate of 1× 10−4, weight decay of 1× 10−15 for regularization, batch size of 50 molecular
trajectory segments, 5000 training epochs, maximum of 500 training samples per molecule type, and
sequence length of 8 timesteps per training sample.

B.4 TRAINING PROCEDURE

The training process follows these steps:

Sample Construction: For each molecule in the dataset, we extract trajectory segments of length
delta_frame (3000 steps). Each segment contains the initial configuration (x0, v0) and K = 8
future timepoints.
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Batch Formation: Mini-batches of size 50 are formed by randomly sampling from the available
trajectory segments.

Forward Pass: The model processes each batch through initial encoding via Graph Neural Networks,
hierarchical ODE integration at multiple temporal scales, and attention-based fusion of multi-scale
predictions.

Loss Computation: We minimize the Mean Squared Error (MSE) between predicted and ground-
truth atomic positions:

LMSE =
1

NK

K∑
j=1

N∑
i=1

∥∥∥xtj
i − x̃

tj
i

∥∥∥2
2

(14)

where N is the number of atoms, K is the number of predicted timepoints, xtj
i is the ground truth

position, and x̃
tj
i is the predicted position.

Checkpointing: Models are saved whenever validation performance improves, with the final evalua-
tion performed using the best checkpoint.

Computational Resources: All experiments were conducted on NVIDIA A100 GPUs with 40GB
memory.
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C DETAILED ANALYSIS OF MODEL PERFORMANCE

This section provides a comprehensive analysis of DoMiNO’s exceptional performance on benzene
and toluene molecules, which achieve 97% and 84% improvement respectively over the best baseline.

Table 5: Performance breakdown by hierarchical levels for benzene and toluene at ∆t = 3000. MSE
values are ×10−2 Å2.

Model Configuration Benzene Toluene

MSE vs. EGNN MSE vs. EGNN

EGNN baseline 49.15 – 8.98 –

L0 only 66.42±1.15 +35% 15.67±0.42 +75%
L0 + L1 24.18±0.52 –51% 5.89±0.21 –34%
L0 + L1 + L2 (Full) 1.22±0.08 –97% 1.44±0.05 –84%

C.1 MULTI-SCALE DYNAMICS ALIGNMENT

Benzene and toluene exhibit pronounced separation of timescales that naturally aligns with our
hierarchical decomposition:

• Fast timescale: C-H bond vibrations occurring at femtosecond scales
• Medium timescale: Ring breathing modes and deformations at picosecond scales
• Slow timescale: Overall rotation and translation at nanosecond scales

Our three-level architecture captures each of these timescales at the appropriate resolution, with each
level naturally specializing in different dynamical modes.

C.2 CRITICAL ROLE OF HIERARCHICAL DECOMPOSITION

The results in Table 5 reveal a crucial finding: single-level models (L0 only) actually perform worse
than baselines. This confirms that multi-scale modeling is not just beneficial but essential for these
molecules. The significant improvement with each additional level demonstrates the importance of
hierarchical decomposition:

• Level 0: Captures global motion but misses local dynamics, resulting in poor performance
• Level 0 + 1: Adds ring deformation modeling, cutting error by more than half
• Level 0 + 1 + 2: Incorporates bond vibrations, achieving near-perfect prediction

C.3 ATTENTION MECHANISM ANALYSIS

For benzene’s highly symmetric structure, we observe that the attention mechanism learns to weight
the hierarchical levels differently:

• Level 0 receives low weight (≈0.14), primarily providing rotational context
• Level 1 receives moderate weight (≈0.28) for ring breathing modes
• Level 2 receives highest weight (≈0.58) for bond vibrations

This learned weighting reflects the relative importance of different timescales in determining the
molecules’ dynamics.
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D TEMPORAL NORMALIZATION AND TRANSLATIONAL INVARIANCE

Global vs local normalization. Level 0 uses a global normalization that maps a global index t ∈
[0, T ] to τ = t/T . For Levels k ≥ 1, we use a local normalization for each segment t ∈ [tstart, tend]:
τ = (t−tstart)/(tend−tstart). This ensures translational invariance within each sub-ODE and improves
conditioning.

Ablation. We compare local normalization (full model) versus using absolute global time at all
levels. Local normalization consistently reduces error across molecules and horizons. Full tables and
settings follow.

Table 6: Ablation of temporal translational invariance: MSE (×10−2 Å2) at ∆t = 10000 comparing
the original local relative-time formulation (Full model) versus absolute global time in all ODE
solves.

Molecule Full (local relative time) Absolute global time

Ala2 41.20±0.41 48.50±0.50

Ac-Ala3-NHMe 15.00±0.27 18.50±0.30

AT-AT-CG-CG 17.03±0.39 20.00±0.45

Bucky-Catcher 3.19±0.06 4.00±0.08

DW Nanotube 2.44±0.05 3.20±0.07
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E ANALYSIS OF HIERARCHICAL LEVEL LIMITS

This section examines the natural limits of hierarchical decomposition in DoMiNO and provides
guidelines for choosing the optimal number of levels.

Table 7: Effect of increasing hierarchical levels on double-walled nanotube at ∆t = 10000. MSE
values are ×10−2 Å2.

Number of Levels MSE Training Time (hours)

3 levels 2.44±0.05 20
5 levels 2.45±0.06 32
7 levels 2.91±0.08 43
9 levels 3.12±0.10 59

E.1 TEMPORAL RESOLUTION CONSTRAINTS

With our base step sizes [100, 10, 1], adding more levels requires increasingly fine-grained sub-unit
steps:

• 5 levels: [100, 30, 10, 3, 1]

• 7 levels: [100, 50, 20, 10, 5, 2, 1]

• 9 levels: [100, 60, 35, 20, 12, 7, 4, 2, 1]

When segments contain fewer than 10 timesteps, local ODEs cannot capture meaningful dynamics,
as they lack sufficient temporal context to learn derivative patterns.

E.2 SCALE OVERLAP AND REDUNDANCY

Adjacent levels become too similar when the temporal resolution is overly fine. For example, capturing
dynamics at steps 7 versus 4 leads to redundant representations that provide no additional modeling
benefit. This redundancy not only increases computational cost but can also lead to overfitting.

The key insight is that the number of levels should match the inherent timescale structure of the
molecular system rather than being maximized arbitrarily.

F INFERENCE COMPLEXITY OF DoMiNO VS. ROLLOUTS

Setup. Assume a K-level hierarchy with global horizon T and per-level segment lengths
S0, S1, . . . , SK−1 in global indices (coarsest to finest). In DoMiNO, Level 0 covers the entire
horizon, while finer levels refine disjoint sub-intervals chosen adaptively. To predict a target time T
(and preserve global patterns and local details), DoMiNO evaluates a small number of points per level
sufficient to initialize the next level and to fuse multi-level predictions at the query.

Cost model. Let Nℓ be the number of ODE evaluations (or function calls) at Level ℓ. A simple
conservative upper bound that mimics multi-scale reconstruction is

N0 ≈
⌈ T

S0

⌉
, N1 ≈

⌈S0

S1

⌉
, . . . , NK−1 ≈

⌈SK−2

SK−1

⌉
. (15)

Thus the total number of evaluations is

NDoMiNO ≈
⌈ T

S0

⌉
+

K−1∑
ℓ=1

⌈Sℓ−1

Sℓ

⌉
. (16)

In contrast, a traditional step-by-step rollout requires Nrollout ≈ T evaluations.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Geometric schedule. If we use a geometric schedule S0 =T
K−1
K , S1 =T

K−2
K , . . . , SK−1 =1,

then each ratio in Eq. equation 15 is on the order of T 1/K . Hence,

NDoMiNO ≈ K T 1/K , (17)

yielding an asymptotic speedup of roughly T
K T 1/K = 1

K T 1−1/K over rollouts, while preserving
global patterns (via Level 0) and local details (via finer levels).

Case study (K=3). Let S0=10000, S1=100, and S2=1. Then

N0 ≈
⌈

T
10000

⌉
, N1 ≈

⌈
10000
100

⌉
=100, N2 ≈

⌈
100
1

⌉
=100, (18)

and NDoMiNO ≈ ⌈T/10000⌉+ 200. For horizons T on the order of 106, this is orders-of-magnitude
smaller than Nrollout ≈ T . In practice, DoMiNO further reduces cost by evaluating only the subset of
timepoints needed for fusion at the query, often making N1 and N2 substantially smaller than these
conservative bounds.

Discussion. The hierarchical inference scheme amortizes most of the long-horizon burden at the
coarsest level and reserves fine-grained evaluations only where needed, mimicking the behavior of
rollouts while preserving both global trends and local fluctuations.
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G BROADER IMPACT

The DoMiNO framework, by enabling more efficient and accurate molecular dynamics simulations,
has the potential for significant positive societal impact. Accelerated MD simulations can expedite
research in several critical areas:

• Drug Discovery and Development: Faster and more accurate prediction of molecular interac-
tions can significantly reduce the time and cost associated with discovering new medicines and
understanding disease mechanisms at a molecular level. This can lead to quicker development of
treatments for various diseases.

• Materials Science: The ability to simulate complex molecular systems can aid in the design and
discovery of novel materials with desired properties, such as new catalysts for green chemistry, ad-
vanced polymers, or materials for energy storage and conversion. This can contribute to sustainable
technologies and address environmental challenges.

• Biochemistry and Biophysics: Enhanced simulation capabilities can provide deeper insights into
fundamental biological processes, such as protein folding, enzyme catalysis, and biomolecular
recognition. This understanding is crucial for advancing our knowledge of life sciences.

While the primary impacts are positive, some considerations warrant attention. The development
of more powerful simulation tools necessitates responsible use. Although DoMiNO is designed for
scientific research, the general advancement of AI in scientific domains could, in principle, lower
barriers to sophisticated modeling, which might have unforeseen applications. However, the specific
nature of MD simulations and the expertise required to set up and interpret them make direct misuse
less probable compared to other AI technologies.

Furthermore, as with any machine learning model, the performance of DoMiNO is dependent on the
quality and representativeness of the training data. Biases in datasets could lead to skewed predictions
for certain types of molecules or conditions, though the datasets used in this work are standard
benchmarks in the field. Continued efforts in curating diverse and comprehensive datasets will be
important for the broad applicability and fairness of such models.

Overall, we believe the potential benefits of DoMiNO in advancing scientific research across multiple
disciplines significantly outweigh the potential risks, which are largely general to the progress of AI
in science rather than specific to this method.
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