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Abstract

Contagion effect refers to the causal effect of peer behavior on the outcome of an
individual in social networks. Contagion can be hard to estimate when it is confounded
by latent homophily because nodes in a homophilic network tend to have ties to peers
with similar attributes and can behave similarly without influencing one another. One way
to account for latent homophily is by considering proxies for the unobserved confounders.
However, as we demonstrate in this paper, existing proxy-based methods for contagion
effect estimation have a very high variance when the proxies are high-dimensional. To
address this issue, we introduce a novel framework, Proximal Embeddings (ProEmb), that
integrates variational autoencoders with adversarial networks to create low-dimensional
representations of high-dimensional proxies and help with estimating contagion effects.
While VAEs have been used previously for representation learning in causal inference, a
novel aspect of our approach is the additional component of adversarial networks to balance
the representations of different treatment groups, which is essential in causal inference
from observational data where these groups typically come from different distributions.
We empirically show that our method significantly increases the accuracy and reduces the
variance of contagion effect estimation in observational network data compared to state-
of-the-art methods. We also demonstrate its applicability to two real-world scenarios,
estimating contagion on social media and in adolescent smoking behavior.

Keywords: causal inference, contagion effect, proxy variable,peer effects, interference

1. Introduction

The goal of causal inference is to estimate the effect of an intervention on individuals’ out-
comes. Traditionally, causal inference has relied on the assumption of no interference, which
states that any individual’s response to treatment depends only on their own treatment and
not on the treatment of others. However, individuals can impact each other through their
interactions. Contagion is a type of interference that is defined as the influence of neigh-
bors’ actions on the actions of an individual. Contagion effect estimation plays a central role
in understanding how social environments shape personal actions, behavior, and attitudes
(Bramoullé et al., 2009; Christakis and Fowler, 2007; Eckles et al., 2016). Some real-world
applications of contagion effect estimation include studying the spread of obesity (Chris-
takis and Fowler, 2007; Krauth, 2005), smoking behavior (Christakis and Fowler, 2008),
and fake news (Torres et al., 2018).

Despite their importance, identification and estimation of contagion effects are chal-
lenging due to latent homophily Manski (1993); Shalizi and Thomas (2011); VanderWeele
and An (2013), the tendency of ties to form between individuals with similar unobserved
attributes. When contagion effects are confounded with latent homophily, it is hard to
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tell if any changes in the individual’s outcome are the result of neighbors’ influence or the
similarity between the individual and neighbors characteristics. For example, people with
similar political affiliations would be more likely to interact on social media (e.g., Twitter)
and they may express similar opinions (e.g., agree or disagree with social distancing policies
during a pandemic), not because one influences the other but because they share similar
political views in the first place.

To identify and estimate contagion effects in the presence of unobserved confounders,
existing approaches look for observed variables that can be considered as valid proxies of
the unobserved confounders (Miao et al., 2018; Tchetgen et al., 2020; Egami and Tchet-
gen Tchetgen, 2023). However, such approaches can perform poorly on real-world observa-
tional data, such as web and social media, in which a high-dimensional covariate space is the
norm. High-dimensional control proxies (e.g., tweet words of a user) lead to a sparse vector
of model parameters and higher asymptotic bias and variance of the estimation (De Luna
et al., 2011). Another source of variance is selection bias (Guo et al., 2020; Shalit et al.,
2017; Assaad et al., 2021). Selection bias occurs when there is a mismatch in attribute
distribution between the treatment and control groups in observational data. For instance,
a treatment group can comprise mostly individuals who prioritize their health and have
friends who follow social distancing guidelines, while the control group comprises of indi-
viduals who do not prioritize their health and have friends who largely disregard social
distancing measures. A common method for dealing with selection bias in observational
studies is matching, where a balanced sample is created by identifying similar units from
the opposite treatment group. However, matching tends to encounter scalability issues when
applied to high-dimensional data (Abadie and Imbens, 2006; Assaad et al., 2021).

Key idea and highlights. To address high dimensionality and selection bias in real-
world contagion estimation settings, we introduce ProEmb, a framework for inferring conta-
gion effects in homophilic networks. ProEmb learns embeddings of high-dimensional proxies
for unobserved confounders. ProEmb combines variational autoencoders (VAEs) and adver-
sarial networks (Goodfellow et al., 2014; Mescheder et al., 2017) to map high-dimensional
proxies to a probability distribution over the latent space with the goal of obtaining a
balanced low-dimensional proxy representation. While the use of VAEs for causal effect es-
timation is not new (Grari et al., 2022; Kim et al., 2021; Louizos et al., 2017), our framework
has two novel components. The first one is in defining and developing the first solution to
the problem of contagion estimation with high-dimensional proxies, an important problem
in real-world contagion estimation scenarios. The second one is the novel enhancement of
VAEs with adversarial networks, similar to matching (Stuart, 2010), which play the impor-
tant role of addressing the selection bias in treatment groups and is of independent interest
for causal effect estimation beyond contagion. In addition to being meaningful for causal
inference, this enhancement is crucial for the empirical performance of the estimator.

Through empirical analysis, we demonstrate that state-of-the-art methods for inferring
contagion effects are prone to high bias and variance in high-dimensional scenarios, while
our proposed approach exhibits remarkable performance improvements.
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2. Related Work

Here, we review prior studies that focus on causal inference in observational network data.
Ogburn and VanderWeele (2014) explore the role of structural causal models in causal
effect estimation in the presence of different types of interference. Shalizi and Thomas
(2011) show that in networks formed by latent homophily, contagion, and homophily can
be confounded and the causal effect is not always identifiable. Controlling for the cluster
assignment of nodes helps with identifiablity (Shalizi and McFowland III, 2016). A recent
study deploys negative control outcome and exposure variables to estimate contagion effects
in low-dimensional settings (Egami and Tchetgen Tchetgen, 2023). Our work builds upon
this work and focuses on estimating contagion effects when the proxies are high-dimensional.

Recently, a series of methods have been proposed to leverage representation learning
to relax the strong ignorability assumption in networked data. Guo et al. (2020) map the
network structure and observed node features to a latent representation space to capture
the influence of hidden confounders. Veitch et al. (2019) estimate treatment effects using
network embeddings by reducing the causal estimation problem to a semi-supervised predic-
tion of the treatments and outcomes and using embedding models for the semi-supervised
prediction. Cristali and Veitch (2021) use node embeddings learned from the network struc-
ture for estimating contagion effects in a different setting where covariates and the network
structure are unobserved. However, these works either do not consider interference (Guo
et al., 2020; Veitch et al., 2019), or selection bias (Cristali and Veitch, 2021).

Methods to improve the distribution mismatch between treatment groups include com-
bining weighting with representation learning (Guo et al., 2020; Hassanpour and Greiner,
2019; Li and Fu, 2017), linear ridge regression with representation learning and a discrim-
inator component (Jiang and Sun, 2022). Our approach is distinct in that it balances the
proxy representations generated by VAEs with adversarial networks. Several studies have
utilized VAEs to estimate proxies for confounding variables in non-network data. Louizos
et al. (2017) leverage VAEs to infer latent variables proxies that help with estimating in-
dividual treatment effects. Grari et al. (2022) integrate VAEs with an adversarial training
component aimed at acquiring a proxy for latent sensitive information, such as gender.
Their approach differs from our framework in the sense that adversarial training focuses on
guaranteeing the independence of the generated latent space from the unobserved sensitive
variable. In contrast, our approach utilizes the discriminator component of an adversarial
network to achieve a balance in the representation of treatment and control groups.

3. Problem Description

In this section, we introduce data and causal models, estimand, proxy variable types, and
challenges in estimating contagion effects in high-dimensional settings.

3.1. Data model

We assume a graph G = (V,E) that consists of a set of |V| nodes and a set of edges E =
{eij}, where eij denotes that there is an edge between node vi ∈ V and node vj ∈ V. Each
node has an observed n-dimensional vector of attributes, Zi, unobserved characteristics, Ui,
and outcomes in two consecutive time steps, Yi,t−1 ∈ R, and Yi,t ∈ R. Let Ni = {vj |vj ∈
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V & ∃ eij ∈ E} denote the set of neighbors of node vi and Ai be the adjacency vector
for node vi where Aij = 1 if ∃eij . For each node, there exists a set of neighbors’ hidden
characteristics Ungb, a set of neighbors’ observed attributes Zngb, and two sets of neighbors’
outcomes Yngb,t−1 and Yngb,t.

3.2. Causal Model

Following Egami and Tchetgen Tchetgen (2023), we assume the causal graph depicted in
Fig. 1, where the connections (Ai) are formed based on the similarity of the unobserved
homophilic attributes. Latent variables are represented by dashed circles. Treatment is the
set of peer outcomes Yngb,t−1 and the outcome is the ego’s outcome Yi,t. Here, an ego refers
to a node vi whose contagion effects we estimate, and a peer (or neighbor) refers to a node
that influences the ego’s outcome. The potential outcome of node vi under contagion effects
is defined as the value that Yi,t would take if peer outcomes Yngb,t−1 had been set to y.
The factual outcome Y F

i,t refers to the observed outcome of an individual when Yngb,t−1 = y

and the counterfactual outcome Y CF
i,t shows the unobserved response of an individual when

Yngb,t−1 6= y.

Given a set of activated neighbors N̂i ⊆ Ni, we define h : {Yngb,t−1}|Ni| → {0, 1} as
a function which maps the neighbors’ outcomes at t-1 to a binary value. We consider an
ego-network connection model where multiple peers may exist (|Ni| ≥ 1). Dyads, i.e., pairs
of two individuals, are a special case of the ego-networks model where for every node vi,
|Ni| = 1.

3.3. Contagion Effect Estimation

We define Individual Contagion Effects (ICE) as the difference between the outcome of node
vi under two different values for the neighbors’ activation h(Yngb,t−1):

τi = Yi,t(h(Yngb,t−1) = 1)− Yi,t(h(Yngb,t−1) = 0). (1)

Our objective is to estimate ACE, which represents the average of ICE over all nodes.
In observational data, estimating ICE is challenging because we can never simultaneously
observe the factual and counterfactual outcomes of a unit.

A main assumption in causal inference from observational data is strong ignorability or
no unmeasured confounding. According to this condition, the potential outcomes of a node
are independent of its treatment assignment given its observed attributes (Rosenbaum and
Rubin, 1983). In the causal model represented in Fig. 1, strong ignorability holds if:

(Yi,t(1), Yi,t(0)) ⊥⊥ Yngb,t−1 | Zi,Ai. (2)

However, conditioning on Ai introduces a dependence association between unobserved vari-
ables Ui and Ungb where the unblocked backdoor path Yi,t ← Ui → Ai ← Ungb → Yngb,t−1
violates the ignorability assumption (Yi,t 6⊥⊥ Yngb,t−1|Ai,Zi) and makes the contagion ef-
fects unidentifiable unless proxies are available. We are interested in measuring ACE in the
presence of an unobserved confounder, i.e., where the unobserved network confounder is the
direct cause of the outcome of an ego and its peers.
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Yi,t−1 Yngb,t−1

Yi,t Yngb,t

Ai

Ui Ungb

Zi

Zngb

Figure 1: The causal model for the ego-network of ego vi: Zi and Zngb are proxies of the
hidden confounders. Dashed circles show unobserved homophilic attributes.

3.4. Double Negative Control Proxies

One way to account for latent homophily is by considering proxies for unobserved con-
founders. Proxies are measurable variables that are correlated with the unobserved variable;
conditioning on them enables the identification of the causal effect (Miao et al., 2018). Two
groups of common proxies that make the causal effect identifiable in settings with unob-
served confounders are: 1) Negative Control Exposure (NCE) is a variable that does not
causally affect the outcome of interest, and 2) Negative Control Outcome (NCO) is a variable
that is not causally affected by the treatment of interest. Egami and Tchetgen Tchetgen
(2023) demonstrate that leveraging these two types of negative control proxies can enable
the identification of contagion effects in networked data with unobserved confounders. In
the causal model presented in Fig. 1, a variable Zi is considered as an NCO because:

Zi ⊥⊥ Yngb,t−1|Ui,Ungb,Ai, (3)

and variable Zngb is considered as an NCE because:

Zngb ⊥⊥ (Yi,t,Zi)|Yngb,t−1,Ui,Ungb,Ai. (4)

Various estimators can be employed to infer the causal effect of interest using proxies.
One commonly used approach is the Two-stage Least Squares estimator (TSLS). TSLS
consists of two stages (Angrist and Imbens, 1995). First, a new variable is constructed using
the instrumental variables, serving as a proxy for the unobserved confounders. Then, the
estimated values from the first stage replace the unobserved confounders, and an Ordinary
Least Squares (OLS) regression is performed to estimate the causal effect. Egami and
Tchetgen Tchetgen (2023) employ the TSLS estimator to quantify contagion effects by
leveraging the NCE and NCO proxies as:

Yi,t ∼ Yngb,t−1 + Zi|Zngb + Yngb,t−1, (5)

where the coefficient of Yngb,t−1 shows the estimated ACE.

3.5. Issues with high-dimensional proxies

In the presence of high-dimensional data, the number of model parameters p exceeds the
number of data samples n, a problem known as the “Large p Small n” issue in causal
effect estimation using regression models (Bernardo et al., 2003). Estimating contagion
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Low_dimensional 
 embedding (    )Ẑi
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Figure 2: Illustration of the ProEmb framework.

effects using control proxies can be problematic when the NCO and NCE proxies are high-
dimensional because the matrix of model parameters becomes sparse and exhibits a low-rank
structure (Deaner, 2021). Including correlated variables in the estimation process increases
the variance of the causal estimand (Abadie and Imbens, 2006; De Luna et al., 2011),
which adversely affects the performance of the estimator (Chao and Swanson, 2005; Hansen
et al., 2008). This issue becomes even more prominent in TSLS estimation, where the
computational burden increases with the number of instruments or predictors. The goal of
this paper is to solve the following problem:

Problem 1 (Contagion Effect Estimation with High-dimensional Proxies) Let G =
(V ,E) be a graph evolved by latent homophily with high-dimensional double negative con-
trol proxies, associated with nodes. Our goal is to find an estimate of the average contagion
effect (ACE) θ̂ that minimizes the expected error between θ̂ and the true value of ACE θ.

4. Proximal Embedding Framework for Contagion Effect Estimation

To address high dimensionality and selection bias in contagion effect estimation, we intro-
duce the Proximal Embeddings (ProEmb) framework with three main components, shown
in Fig. 2. The first component tackles issues of sparsity and high dimensionality by reducing
dependent variables to uncorrelated ones, thereby improving estimator optimality (Wang
et al., 2014; De Luna et al., 2011). A key technique for this is variational autoencoders
(VAEs) (Kingma and Welling, 2014; Rezende et al., 2014), which we carefully adapt to our
problem. Embeddings generated by VAEs can vary across different treatment groups and
it can lead to confounding biases in estimating causal effects. The second component of
ProEmb integrates adversarial networks to update the representation generated by VAEs
and improve the distribution shift between the representations of treatment and control
proxies. This updated representation is then passed on to the third component, which
consists of a counterfactual learning module that measures counterfactual outcomes. To
the best of our knowledge, ProEmb is the first method that integrates VAEs, adversarial
networks, and meta-learners to improve causal effect estimation more generally and, more
specifically, contagion effect estimation in networks with unobserved confounders. Next, we
describe each component in more detail.
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4.1. Embedding learning

The goal of this component is learning a low-dimensional representation of high-dimensional
and sparse proxies while preserving the parts of proxies that are predictive of the outcomes.
We assume that the experimenter has classified observed variables into NCO and NCE
proxies based on assumptions 3-4. We use VAEs to learn low-dimensional representations
for each node’s proxies. VAEs have demonstrated remarkable success in dimensionality re-
duction due to their ability to both capture the underlying structure of high-dimensional
data and regularize the latent space, which helps to prevent overfitting and improve gener-
alization performance (Gregor et al., 2015; Jimenez Rezende et al., 2016).

In order to adapt VAEs to the problem of contagion estimation with high-dimensional
proxies, one has to be careful to consider 1) how to capture latent homophily, 2) how to
sample diverse low-dimensional representations from the representation space during train-
ing and inference, and 3) how to reconstruct the original high-dimensional proxy vectors,
in order to evaluate and improve the performance of the model. ProEmb’s variational
autoencoder addresses these considerations through each of its three parts:

1. Probabilistic Encoder. This component transforms high-dimensional proxies into a
distribution in the latent space to infer the unobserved confounders. Since Zi as an
NCO and Zngb as an NCE variable are proxies of the unobserved homophilic attributes,
we expect to recover latent features by applying a well-trained encoder model to the
concatenation of these proxies. Let Z̃i = {zi,1, ..., zi,n, zngb,1, ..., zngb,n} denote the
concatenated vector of proxies Zi = {zi,1, ..., zi,n} and Zngb = {zngb,1, ..., zngb,n} with
dimension n. We use the encoder layer with L fully-connected layers to map proxies
Z̃i to low-dimensional latent vector Z′i as:

Z′i = g(Wl...g(W1Z̃i)), (6)

where g indicates the activation function (e.g., Relu) and {Wl}, l ∈ {1, ..., L} repre-
sents the weight matrices of the fully connected layers of the encoder.

2. Sampler. The sampler plays a crucial role in generating latent vectors from the learned
distribution in the latent space. These vectors are randomly sampled from the dis-
tribution p(Ẑi|Z̃i), utilizing the mean and log-variance values obtained from the en-
coder’s output. The latent layer is represented by two sets of neurons: one representing
the means of the latent space, and one representing the log-variances, measured as:

µ = WµZ
′
i + bµ, ln δ2 = WδZ

′
i + bδ, (7)

where bµ and bδ are vectors of biases. A proxy representation is sampled from the
latent space as:

Ẑi ∼ p(Ẑi|Z̃i) = N (µ, exp(ln δ2)). (8)

Ẑi contains the low-dimensional representation of the proxies, later utilized by the
counterfactual learning module for estimating contagion effects.
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3. Probabilistic Decoder. The decoder attempts to reconstruct the original proxy vector
Z̃i from the proxy representation Ẑi. The decoder uses L̂ fully-connected layers to
map Ẑi to Z̃i, i.e.,

Z′′i = f(Ŵl...f(Ŵ1Ẑi)), (9)

where Z′′i shows the reconstructed representation, f indicates the activation function,
and {Ŵl}, l ∈ 1, ..., L̂ denotes the weight matrix of the fully connected layers.

The loss function of VAEs consists of two main parts: 1) the reconstruction loss which
measures the dissimilarity between the original data and the data reconstructed by the
VAEs, and 2) The Kullback–Leibler (KL) divergence, acting as a regularizer by quantifying
disparities between the inferred distribution p(Ẑ|Z̃) and the desire prior distribution p(Ẑ).
The VAE loss function is defined as:

Lvae =
1

|V|

|V|∑
i=1

|z′i − zi|2 +KL(p(Ẑi|Z̃i)|p(Ẑi))|V|i=1. (10)

4.2. Representation balancing

Since the embedding learning models are trained on the factual outcomes and used to
predict the counterfactual outcomes, minimizing the error in factual outcomes Y F

i,t does

not guarantee the simultaneous error reduction in counterfactual outcomes Y CF
i,t . In this

particular component, our focus is on enhancing proxy representation to achieve similarity
between the induced distributions for treated and control nodes. Inspired by Jiang and
Sun (2022), we employ the discriminator component of Generative Adversarial Networks
(Goodfellow et al., 2014) to address the imbalance proxy representations generated by VAEs.

Let D : Ẑi → {0, 1} denote the discriminator function, mapping the latent represen-
tation Ẑi to h(Yngb,t−1). Initially, we train the discriminator to maximize the probability
of accurately predicting h(Yngb,t−1) from the latent representation. This is achieved by
optimizing the discriminator loss function:

LD =
1

|V|

|V|∑
i=1

(h(Yngb,t−1) log D(Ẑi) + (1− h(Yngb,t−1)) log(1−D(Ẑi)).

The latent representation Ẑi is adjusted to achieve a uniform distribution for p(h(Yngb,t−1)|Ẑi).
Given the binary nature of Yngb,t−1, this distribution implies p(h(Yngb,t−1) = 1|Ẑi) =
p(h(Yngb,t−1) = 0|Ẑi) = 0.5. The regularization loss is defined as:

Lrb =
1

|V |

|V |∑
i=1

(D(Ẑi)− 0.5)2. (11)

The regularization loss Lrb is then backpropagated to the encoding part of the VAEs, en-
abling the update of the latent representation Ẑi such that the discriminator D cannot
accurately predict Yngb,t−1. This leads to a more balanced and unbiased latent representa-
tion for proxies.
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4.3. Counterfactual learning

This component focuses on training models to infer the counterfactual outcomes from low-
dimensional embeddings of proxies Ẑi ∈ Rm. The factual outcomes are used to train
the models. The objective function of this component during training is to minimize the

error of the inferred factual outcomes defined as 1
n

∑n
i=1 (Ŷi,t − Yi,t)

2
where Ŷi,t indicates the

predicted factual outcome by ProEmb. To make this process more concrete, we demonstrate
how our framework would use a common Heterogeneous Treatment Effect (HTE) estimation
algorithm, the T-learner. However, our framework could leverage other HTE estimation
algorithms as well. T-learner meta-learning algorithm is an example of such estimators
and is used to measure Conditional Average Treatment Effect (CATE). A meta-learner
is a framework to estimate the Individual Treatment Effects (ITE) using any supervised
machine learning estimators known as base-learners (Künzel et al., 2019). In T-learner,
two base-learners are trained with treatment (µt) and control nodes (µc) to estimate the
conditional expectations of the outcomes given observed attributes (in our case Z). µt and
µc are employed to predict the counterfactual outcomes of control and treatment nodes,
respectively. The difference between the predicted outcomes by treatment and control
models shows ITE.

5. Experiments

In this section, we evaluate the performance of different methods for contagion effect es-
timation. We also demonstrate the applicability of our approach for detecting contagion
effects in two real-world datasets.

5.1. Semi-synthetic data generation

In this section, we describe the semi-synthetic datasets we generated for our experiments.
It is important to note that the generation doesn’t consider embeddings and is therefore
not biased towards an embedding-based solution. We utilize four real-world datasets: 1)
Hateful Users, which is a sample of 5,000 hateful and normal tweets (Ribeiro et al., 2018), 2)
Stay-at-Home (SAH), which is a sample of 30,000 tweets reflecting users’ attitudes toward
stay-at-home orders during the COVID-19 pandemic (Fatemi et al., 2022), 3) BlogCatalog,
which is a sample of 5,196 bloggers from an online blog community, and 4) Flickr which is a
sample of 7,575 users who share photos on Flickr social media platform (Guo et al., 2020).

In the first two datasets, each tweet exhibits a unique distribution over several topics,
reflecting the hidden semantic structure of the tweet. We consider the topic distribution
of each tweet as the unobserved confounder Ui. To extract the topic distribution of each
tweet, we employ Latent Dirichlet Allocation (LDA) (Blei et al., 2003) and measure the
coherence score to determine the optimal number of topics. We obtain 20 topics for SAH
and 50 topics for the Hateful Users dataset. For the BlogCatalog and Flickr datasets, we
follow Guo et al. (2020) and learn 50 topics.

Ego-Network model. Since our causal model relies on the assumption that ties form
between nodes by latent homophily, we generate the connections synthetically. We consider
data for both ego-networks and dyads. In our network model, we assume that activated
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neighbors may activate an inactive ego with probability of 0.3. In the dyadic model, each
node in the graph is connected to only one other node. More details is provided in Appendix.

Counterfactual model. We generate the outcome of each node in two consecutive
time steps. Yi,t−1 is generated as:

Yi,t−1 = αuUi + ε, (12)

where ε ∼ N (0, , 1), and αu is the vector of unobserved confounder coefficients with the size
of Ui. We generate the factual and counterfactual outcomes as:

Y F
i,t = βuUi + βyYi,t−1 + τh(Yngb,t−1) + ε, (13)

Y CF
i,t = βuUi + βyYi,t−1 + τ(1− h(Yngb,t−1)) + ε, (14)

where βu is the unobserved confounder coefficient vector. In our experiments, we utilize
both the max() and sigmoid(mean()) functions for h().

5.2. Experimental setup

We consider two types of attributes Zi. We use bag-of-words (BoW) to represent documents
as vectors (vector size of 4,939 for SAH, 13,146 for Hateful Users, 8,189 for BlogCatalg,
and 12,047 for Flickr). To understand whether there is value in VAE or using embedding
representation is sufficient, we also experiment with simple embeddings derived from BoW
for the datasets for which original text is available, BlogCatalog and Flickr. We consider
GloVe-200d model (Pennington et al., 2014) and Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019). We further fine-tune the BERT model
for 1, 000 steps to obtain new embeddings specific to each dataset (BERT-ft model).

To understand the value of ProEmb using different base-learners, we employ three types
of base-learners for the T-Learner estimator: 1) ProEmb with Linear Regression (PE-LR),
2) ProEmb with Gradient Boosted Trees (PE-GB), and 3) ProEmb with Multi-layer Per-
ceptrons (PE-NN). We set the embedding dimension of the VAEs as the dimension of the
unobserved confounder variable (20 in SAH and 50 in the Hateful Users, BlogCatalog, and
Flickr datasets). The hyperparameter tuning is described in the Appendix.

To report the estimation error of different models, we measure the Root Mean Squared
Error (RMSE) of contagion effects over 10 runs. We consider the BoW or word embedding
vector of each user’s tweet as an NCO proxy and the BoW or word embedding vector of
the peer’s tweet as an NCE proxy of the hidden topic distributions. Following Egami and
Tchetgen Tchetgen (2023), we set βy = 0.2 in Eq. 13 and Eq.14. In addition, we vary the
strength of unobserved confounding coefficient vector βu with two different distributions
βu ∼ N (5, 2) and βu ∼ N (0, 3) and αu ∼ N (0, 1).

Baselines: We compare the performance of ProEmb variants against four different base-
lines. TSLS is the only existing and state-of-the-art method that makes contagion effects
identifiable in network data with unobserved confounders using negative control proxies
(Egami and Tchetgen Tchetgen, 2023). Causal Effect Variational Autoencoder (CEVAE) is
a VAEs-based model for inferring ITE with unobserved confounders (Louizos et al., 2017).
Although this model is primarily intended for non-network datasets, we adapt it to net-
work data by concatenating available proxies for the unobserved confounders (Zi and Zngb)
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Table 1: RMSE of ACE using BoW feature representation in networked datasets. Numbers
following ± indicate the standard deviation of the estimates.

max() mean()

Dataset TSLS CEVAE NetD T-GB PE-GB TSLS CEVAE NetD T-GB PE-GB

SAH 2.75 ± 1.35 2.27 ± 0.09 0.87 ± 0.7 0.61 ± 0.13 0.4 ± 0.1 5.42 ± 3.6 2.42 ± 0.09 0.85 ±0.45 0.65±0.21 0.47± 0.24

Hateful Users 3.28 ± 1.96 2.6± 0.08 0.88± 0.16 0.58± 0.07 0.41± 0.08 4.6 ± 2.8 2.51± 0.06 0.66± 0.16 0.62 ± 0.11 0.47 ± 0.15

BlogCatalog 207 ± 109 1.83± 0.12 0.38± 0.13 0.27± 0.06 0.09±0.03 620±481 3.41±0.25 0.23 ± 0.12 0.19±0.09 0.11±0.06

Flickr 128 ± 105 2.12±0.13 0.46±0.27 0.35±0.11 0.12±0.04 160±120 2.76±0.18 0.36±0.21 0.28±0.12 0.13 ± 0.07
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Figure 3: RMSE of ACE employing the max() activation function in networked datasets.

as the noisy proxy vector for each node. Network Deconfounder (NetD) exploits Graph
Convolutional Networks (GCNs) to learn representations of hidden confounders by map-
ping features and network structure into a shared representation space (Guo et al., 2020).
We also consider only a T-Learner with Linear Regression (T-LR), Gradient Boosted Tree
(T-GB), and MLP (T-NN ) as the base-learners.

5.3. Results

5.3.1. Comparison to all baselines

In Table 1, we provide a comparison of the best of our three method variants, PE-GB,
with all baseline models (TSLS, CEVAE, NetD, and T-GB), assessing their performance in
estimating ACE using BoW features as proxy variables across all datasets. We employ both
the max() and mean() activation functions in the ego-networks model. The results show that
in all datasets TSLS consistently achieves significantly higher error and variance compared
to the other models, especially our proposed method PE-GB. This was one of the most
surprising results in our study since TSLS is a well-established estimation method in causal
inference. It’s worth noting that CEVAE, a method that utilizes VAEs for causal effect
inference in non-network data, demonstrates worse performance when contrasted with our
approach, PE-GB. This observation highlights the significance of the counterfactual model
the discriminator component of our model. As represented in Fig. 5 in the Appendix, we
obtain consistent results with datasets on dyads. We also perform an ablation study to
assess the impact of integrating VAEs and a discriminator module, confirming that PE-GB
outperforms all other models. Further details are provided in the Appendix.

5.3.2. Sensitivity to word embedding methods

In this experiment, we evaluate the performance of baseline methods using embedding
representations instead of BoW and with different unobserved confounding coefficients.
As depicted in Fig. 3, our observations consistently align with those obtained using the
BoW method in the ego-network model. TSLS exhibits the highest levels of bias and
variance while NetD outperforms both TSLS and CAVAE, it doesn’t quite reach the level of
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Figure 4: RMSE of ACE in ProEmb with varying embedding vector dimensions and βu ∼
N (0, 3) employing max() activation function. The x-axis represents different types of base-
learners used in the ProEmb framework.

effectiveness demonstrated by our proposed method, PE-GB. With dyadic data, we observe
consistent results.

5.3.3. Sensitivity to the dimension of the embedding

To investigate the impact of the embedding vector dimension on the estimation error of
ProEmb variants, we train the ProEmb models with BoW features and different numbers of
VAE embedding dimensions from 20 to 4000. As the number of dimensions increases (Fig.
4), the estimation error also increases for all ProEmb variants, with PE-GB achieving the
lowest error among all ProEmb variants. The results are consistent across different datasets,
with network and dyads ego-network, and when utilizing mean() activation functions.

5.3.4. Real-world demonstration

One of the main challenges in social studies is measuring the effect of friends on their peers
and the strength of such effects in different domains. As a demonstration of the applica-
bility of our approach to detecting contagion effects in real-world scenarios, we analyze two
datasets: 1) French Election, and 2) Peer Smoking. French Election is a Twitter dataset
about the 2017 French presidential election (Burghardt et al., 2023). This dataset comprises
of 5.3M tweets related to the election, encompassing attitudes, concerns, and emotions ex-
pressed in each tweet. Our objective is to measure the extent to which a friend’s tweet with
a specific emotion or attitude influences a user’s decision to post a tweet with the same
emotion or attitude. Further details on filtering dataset can be found in the Appendix.

Since a user may have multiple retweets, we consider the average of each user’s tweets’
Bag of Words (BoW) representation, which has a vector size of 7,573, as the NCO proxy.
Additionally, we calculate the average of each user’s retweet embeddings and use them
as the NCE proxy. We employ the BoW representation because our approach yields the
lowest estimation error when it is utilized. We use the mean() activation function in this
experiment. We report the estimation of the contagion effect using PE-GB because it
achieves the best performance in almost all datasets.

We consider four different outcomes in our analysis: 1) vote against which represents
the author’s attitude toward voting against a candidate, 2) anger emotion, 3) love emotion,
and 4) religious concern. Overall, we find:

• Friends’ tweets about voting against a candidate have a small negative effect, mean-
ing that they are less likely to tweet about it themselves (θ̂PE−GB = −0.013, P-
value=0.001).
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• Our method does not reveal a significant contagion effect between users regard-
ing concerns related to religion (θ̂PE−GB = −0.002, P-value = 0) or love emotion
(θ̂PE−GB = 0.007, P-value=0.019).

• The anger emotions expressed by peers in their tweets have a small negative impact
on the emotional tone of users who retweet those posts, leading to a tendency for
opposite emotions to be reflected in their retweets (θ̂PE−GB = −0.016, P-value=0).

The Peer Smoking dataset comprises 1,263 9th and 10th graders from 16 high schools in
the Chicago area, observed across three distinct waves (Mermelstein et al., 2009). Our pri-
mary objective with this dataset is to assess the influence of peer smoking behaviors during
Wave I on an individual’s smoking habits during Wave II. We filter the dataset for youth
who do not smoke cigarettes in Wave I. We investigate two scenarios: 1) to what extent does
an individual’s boyfriend or girlfriend’s smoking behavior affect their own smoking habits?,
and 2) How does the smoking behavior of the group of friends an individual hang out with
influence their own smoking habits? We examine both cigarette and marijuana smoking
habits as outcomes. To prepare the dataset for analysis, we employ one-hot encoding to
transform categorical features into numerical representations. In summary, our findings
reveal the following:

• The cigarette smoking habits of boyfriends or girlfriends have a positive effect on the
individual’s cigarette smoking behavior (θ̂PE−GB = 0.112, P-value= 0.0005).

• The cigarette smoking habits of the individual’s circle of close friends, have a lower
but also positive effect on the cigarette behavior of the individual (θ̂PE−GB = 0.061,
P-value=0.0001).

6. Conclusion

In this paper, we introduce the Proximal Embeddings (ProEmb) framework for increasing
the accuracy of contagion effect estimation in network data affected by latent homophily
and selection bias. Our framework comprises three key components: 1) embedding learning,
which utilizes variational autoencoders to map high-dimensional proxies to low-dimensional
representations and capture latent homophily, 2) representation balancing, which leverages
adversarial networks to address the representation mismatch between treatment groups’
proxy representations, and 3) counterfactual learning, which employs meta-learners to es-
timate counterfactual outcomes. Our results demonstrate the compelling performance of
the ProEmb framework compared to the baselines in reducing the contagion effect estima-
tion error. A potential future direction is developing a framework to measure multi-hop
contagion effects in networks with latent confounders.
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7. Appendix

7.1. Experiments

7.1.1. Semi-synthetic data generation

The advantage of considering both dyadic and network data is that it allows us to examine
scenarios where a node is influenced by either a single activated neighbor or multiple acti-
vated neighbors. By considering dyadic data, we can focus on the interactions between pairs
of nodes and gain insights into how one node’s activation affects its immediate neighbor.
This analysis provides valuable information about the dynamics at the micro-level. On the
other hand, analyzing network data allows us to capture the broader influence of multiple
activated neighbors on a node. The probability of an edge forming between node vi and
vj is determined by the cosine similarity of their latent attribute vectors Ui and Uj . This
means that individuals with similar latent attributes are more likely to be connected. In
the network model, we aim to generate networks growing based on latent homophily and
preferential attachment. We start with m0 = 3 fully connected seed nodes. At each time
step, a new node vj connects to m = 3 existing nodes, selected randomly with a probability
proportional to the node’s degree ki (Piva et al., 2021):

π(ki|vj) =
cos(Ui,Uj)ki∑
n cos(Ui,Un)kn

. (15)

where cos(Ui,Uj) is used as the module of the similarity between node vj and vj .

7.2. Experimental setup

To train the VAEs, discriminators, and MLP models, we conduct a hyperparameter search
for the learning rate and the number of epochs. The learning rate is searched within the set
{0.1, 0.01, 0.001, 0.0001}, while the number of epochs is searched within {10, 30, 50, 70, 100}.
The best results are achieved with a learning rate of 0.001 and 50 epochs for both models.
For the VAEs, we search the number of hidden units of the hidden layers in {100, 200, 300}
and the number of encoder and decoder layers in 1, 2, 3, 4. We select a network with 100
hidden nodes, a 3-layer encoder, and a 3-layer decoder with a ReLU activation function. In
the discriminator component, after hyperparameter search, we determine that four hidden
layers, with linear activation functions, produce the best performance. The output layer
utilizes a Sigmoid function. Regarding the MLP, we search for the number of hidden units
and the number of fully connected layers. Ultimately, we train an MLP model with two
fully connected layers, each containing 125 hidden units.
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Figure 5: Comparison of RMSE of ACE using various baseline methods in dyadic data.
Error bars represent the standard deviation of the estimated effects.
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Figure 6: RMSE of ACE in SAH (left) and Hateful Users dataset (right) in ablation study,
considering network data and utilizing the max() activation function, with βu ∼ N (0, 3).

7.3. Results

7.3.1. Sensitivity to word embedding methods

We also evaluate the performance of various methods used to estimate peer contagion effects
in the SAH and Hateful Users datasets, based on dyad data and observe that the findings
align consistently with the results from the network data (Fig. 5).

7.3.2. Ablation study

In this experiment, we systematically modify components of the ProEmb framework to in-
vestigate their individual importance. In Fig. 6, we denote S-GB as the S-Learner estimator,
where one GB classifier is trained using both treatment and control nodes (unlike T-learner
which has two classifiers). PE-S-GB represents ProEmb with both the S-Learner and GB
for the counterfactual model. For VAE-GB, we utilize a variational autoencoder to reduce
the dimensionality of the proxies, followed by a T-Learner with GB for the counterfactual
model. In contrast, VAE-S-GB employs an S-Learner for the counterfactual model. Our
results highlight the importance of integrating VAEs and a discriminator module to mit-
igate representation mismatches between treatment and control nodes, thereby enhancing
estimation accuracy. Our findings demonstrate that T-Learner outperforms the S-Learner
as a meta-learner, and PE-GB exhibits superior performance compared to all models.

7.3.3. Real-world demonstration

We begin by filtering this dataset to include only tweets and retweets that were posted
before the second election date (May 2023), resulting in 4.2M tweets. Then, we construct
the retweet network containing 3.1M connections. Following this, we filter the dataset for
tweets from users who tweeted at least one tweet after retweeting a tweet. This process
yields a total of 13k users with 190k tweets.
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