
Sustainable Online Reinforcement Learning for
Auto-bidding

Zhiyu Mou1,2⇤ , Yusen Huo1, Rongquan Bai1, Mingzhou Xie1, Chuan Yu1,
Jian Xu1, Bo Zheng1†

1 Alibaba Group, Beijing, China
2 Department of Automation, Tsinghua University, Beijing, China

mouzy20@mails.tsinghua.edu.cn
{huoyusen.huoyusen, rongquan.br, mingzhou.xmz,
yuchuan.yc, xiyu.xj, bozheng}@alibaba-inc.com

Abstract

Recently, auto-bidding technique has become an essential tool to increase the
revenue of advertisers. Facing the complex and ever-changing bidding environ-
ments in the real-world advertising system (RAS), state-of-the-art auto-bidding
policies usually leverage reinforcement learning (RL) algorithms to generate real-
time bids on behalf of the advertisers. Due to safety concerns, it was believed that
the RL training process can only be carried out in an offline virtual advertising
system (VAS) that is built based on the historical data generated in the RAS. In
this paper, we argue that there exists significant gaps between the VAS and RAS,
making the RL training process suffer from the problem of inconsistency between

online and offline (IBOO). Firstly, we formally define the IBOO and systematically
analyze its causes and influences. Then, to avoid the IBOO, we propose a sustain-
able online RL (SORL) framework that trains the auto-bidding policy by directly
interacting with the RAS, instead of learning in the VAS. Specifically, based on
our proof of the Lipschitz smooth property of the Q function, we design a safe and
efficient online exploration (SER) policy for continuously collecting data from the
RAS. Meanwhile, we derive the theoretical lower bound on the safety degree of
the SER policy. We also develop a variance-suppressed conservative Q-learning
(V-CQL) method to effectively and stably learn the auto-bidding policy with the
collected data. Finally, extensive simulated and real-world experiments validate
the superiority of our approach over the state-of-the-art auto-bidding algorithm.

1 Introduction
In the era of Internet, online advertising business has become one of the main profit models for
many companies, such as Google [6] and Alibaba [3], which, at the same time, benefits millions of
advertisers who are willing to bid for impression opportunities. Contemporary online advertising
systems, as auctioneers, usually have large amount of candidate advertisers contesting for numerous
impression opportunities at every moment. Making auction decisions based on accurate evaluation
of each impression opportunity for all advertisers within several milli-seconds is computationally
infeasible. Therefore, a real-world advertising system (RAS) adopts a cascade architecture [7, 10].
In this architecture, the auction of each impression opportunity is completed through several stages.
Without loss of generality, we here simply view the RAS as a system with two stages: stage 1
and stage 2. The auction process of each impression opportunity is as follows: in stage 1, rough

⇤Work was done during an internship at Alibaba Group.
†Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

evaluations are conducted for all the candidate advertisers (⇠ 106), and a group of the most promising
advertisers (⇠ 102) are fed to the stage 2; and in stage 2, accurate valuations and auction are carried
out to determine the winning advertiser of the impression opportunity. The winner will gain the value
of the impression opportunity and pay the market price. See Appendix A.1.1 for detailed explanations
on the RAS structures. Faced with huge amount of impression opportunities at every moment,
advertisers cannot bid in the granularity of individual opportunities. Recently, many auto-bidding
policies have emerged to realize automatic real-time biddings for each impression opportunity on
behalf of advertisers [1, 2, 4, 5], which significantly increase their revenues. State-of-the-art auto-
bidding policies are usually learned with reinforcement learning (RL) algorithms [5]. It was believed
that the auto-bidding policy being trained cannot directly access to the RAS during the RL training
process due to safety concerns [1]. A common solution in most existing works [1, 2, 4, 5] is to train
the auto-bidding policy in a virtual advertising system (VAS) — an offline simulated environment
that is built based on the advertisers’ historical data generated in the RAS. See Appendix A.1.2 for
the details of the VAS structures.

IBOO Challenges. However, we argue that there exists gaps between the RAS and the VAS, which
makes this common solution suffer from the problem of inconsistencies between online and offline

(IBOO). Here, online refers to the RAS, while offline refers to the VAS, and inconsistencies refer to
the gaps. Formally, we can define the IBOO as follows.
Definition 1 (Inconsistencies Between Online and Offline, IBOO). The IBOO refers to the gaps

between the RAS and the VAS that prevent the VAS from accurately simulating the RAS.

Specifically, there are two dominated gaps between the RAS and the VAS. One is that the VAS
cannot accurately simulate the cascade auction architecture of the RAS. For example, due to the
constraint on computing power, the VAS is built only based on the historical data generated in stage
2 of the RAS3, which makes the VAS lack the mechanism of stage 1 in the RAS. In addition, the
VAS does not incorporate the exact influences of other advertisers as RAS does, which makes up the
second dominated gap. For example, in the RAS, the market prices are determined by the bids of all
advertisers which can change during the training process. However, the VAS always provides constant
market prices for the auto-bidding policy being trained. See figures in Appendix A.3 for illustrations.
Essentially, the IBOO makes the VAS provide the auto-bidding policy with false rewards and state
transitions during RL training process. As presented in Table. 1, the auto-bidding policy with better
performance in the VAS (i.e., higher R/R⇤) may yield poorer performance in the RAS (i.e., lower
A/B test value). Hence, the IBOO can seriously degrade the performance of the auto-bidding policy in
the RAS. One way to address the IBOO challenge is to improve the VAS and reduce the gaps as much
as possible. However, due to the complex and ever-changing nature of the RAS, the reduction in
IBOO is usually very limited, resulting in little improvement in the auto-bidding policy performance.
Hence, new schemes need to be devised so as to avoid the IBOO and improve the performance of
auto-bidding policies. Besides, it is worth noting that the IBOO resembles the sim2real problem
studied in other realms, such as computer visions [8] and robotics [9]. Nonetheless, to the best of
our knowledge, this is the first work that formally put forward the concept of IBOO in the field of
auto-bidding and systematically analyzes and resolves it.
Table 1: Influence of IBOO. R/R⇤ and A/B test values are the performance evaluations of the
auto-bidding policies in the VAS and RAS, respectively. Both are the higher the better. We rank the
ten policies accordingly. " means that the performance in the RAS is higher than that in the VAS,
while # means the opposite. � means that the evaluations in the RAS and VAS are the same.

Policy R/R⇤ (rank) A/B Tests (rank) Policy R/R⇤ (rank) A/B Tests (rank)

1 0.9118 (1) �2.50% (9) # 6 0.8563 (6) +4.30% (2) "
2 0.8731 (2) +3.10% (6) # 7 0.8535 (7) +4.40% (1) "
3 0.8656 (3) �3.20% (10) # 8 0.8434 (8) �1.50% (8) �
4 0.8656 (4) +1.20% (7)# 9 0.8428 (9) +3.60% (5) "
5 0.8594 (5) +4.30% (2) " 10 0.8111 (10) +3.80% (4) "

In this paper, we propose a novel sustainable online reinforcement learning (SORL) framework to
address the IBOO challenge. For the first time, the SORL abandons the way of learning with the VAS
and trains the auto-bidding policy by directly interacting with the RAS. Notably, the SORL can obtain
true rewards and state transitions from the RAS and thereby does not suffer from the IBOO problem.

3Detailed reasons are shown in Appendix A.1.2.

2

The SORL contains two main algorithms. The first one is a safe and efficient online exploration policy
for collecting data from the RAS, named as the SER policy. Specifically, to guarantee the safety of
explorations, we design a safety zone to sample actions from based on the Lipschitz smooth property
of the Q function we theoretically proved. We also derive the lower bound on the safety degree. To
increase the efficiency of explorations, we develop a sampling distribution that can make the collected
data give more feedbacks to the auto-bidding policy being trained. The second main algorithm is an
effective and stable offline RL method to train the auto-bidding policy based on the collected data,
named as the variance-suppressed conservative Q-learning (V-CQL). Specifically, motivated by the
observation that the optimal4 Q function is in the quadratic form, we design a regularization term in
the V-CQL to optimize the shape of the Q function. The V-CQL can train the auto-bidding policy with
high average — hence effective, and low variance — hence stable, in performance under different
random seeds. The whole SORL works in an iterative manner, alternating between collecting data
and training the auto-bidding policy. Extensive simulated and real-world experiments validate the
effectiveness of our approach.

2 Related Work
VAS-based RL Auto-bidding Methods. Impressed by powerful contextual learning and sequential
decision-making capabilities of RL, modern auto-bidding policies, such as DRLB [1], RLB [4],
MSBCB [2] and USCB (state-of-the-art) [5], are usually learned by RL algorithms in a manually
built VAS. However, as stated before, they all suffer from the IBOO problem. The SORL avoids
using the VAS and thereby completely address the IBOO challenge.

Offline RL. Offline RL (also known as batch RL) [11, 13, 26, 27, 30, 31, 38, 39, 40] aims to learn
better policies based on a fixed offline dataset collected by some behavior policies. The main challenge
offline RL addressed is the extrapolation error caused by missing data [27]. Specifically, offline RL
algorithms usually address this challenge in three ways, including policy constraint methods such as
BCQ [11], BEAR [30], and conservative regularization methods such as CQL [13], BRAC [40], as
well as modifications of imitation learning [37] such as ABM [31], CRR [38], BAIL[39]. However,
there is another important challenge that offline RL cannot solve: the fixed offline dataset cannot
be guaranteed to contain sufficient state-action pairs from high-reward regions [27]. This challenge
exists in many practical applications, including the auto-bidding problem, and can inherently prevent
offline RL algorithms from learning excellent policies. Hence, a great advantage of the SORL is its
ability to continuously collect data from OOD high-reward regions that can give new feedbacks to
the auto-bidding policy being trained.

Off-Policy Evaluation (OPE). OPE is an algorithm to evaluate the performance of the policy with
offline data collected by other policies [12]. The state-of-the-art OPE algorithm in auto-bidding is to
calculate the R/R⇤ of the evaluated policy in the VAS (see Appendix B for details). However, as
shown in Table. 1, the OPE in auto-bidding is not accurate. This indicates that we cannot rely on the
OPE to select auto-bidding policies with good performance for directing further online explorations.
Notably, the proposed offline training algorithm in the SORL, V-CQL, outperforms existing offline
RL algorithms in training stabilities and helps to reduce the OPE process during iterations in SORL.

Online RL. Safety is of vital importance in the online exploration of many real-world industrial
systems, including the RAS. Many safe online RL algorithms have been proposed to guarantee the
safety of explorations [17, 18, 19, 20, 21, 22, 33, 34, 35]. However, many of them are either developed
based on the constraints that are not suitable for the auto-bidding problem or designed for systems
with specific assumptions (see Appendix B for details). Besides, many existing works [33, 34, 35, 21]
assume that there exists a specific set of safe state-action pairs that can be explored. Some work [33]
even requires to know the safe states in advance. However, in the auto-bidding problem, no specific
actions at any state cannot be explored as long as the expected accumulative reward maintains at a high
level. This requires the exploration policy to maintain high performance throughout the iterations,
which is more challenging. Notably, the SER policy can meet this requirement with theoretical
guarantees. Recently, with the development of the offline RL field, many algorithms for efficient
online explorations on the premise of having an offline dataset [14, 23] have emerged. However, they
often only focus on the efficiency of data collections but ignore the safety of it. Notably, the SER
policy in the SORL strikes a good balance between the efficiency and safety.

4Here "optimal" refers to the optimal Q function in the simulated experiments. See Section 4.2 for details.

3

Supplementary related works are described in Appendix B.

3 Problem Settings

We consider the auto-bidding problem from the perspective of a single advertiser, which can be
viewed as an episodic task with T 2 N+ time steps. Specifically, between time step t and t + 1,
there are Nt 2 N+ impression opportunities, each of which has a positive value vj,t  vM and is
sold to the winning advertiser at a market price pj,t  pM , where vM > 0 and pM > 0 are the
upper bounds for values and market prices, respectively, j 2 {1, 2, ..., Nt}, t 2 {1, 2, ..., T}. Denote
p1j,t  pM and v1j,t  vM as the market price and rough value of impression opportunity j in stage 1,
and p2j,t  pM and v2j,t  vM as the market price and accurate value of it in stage 2. Note that they
are all positive values. Let the total budget of the advertiser be B > 0. The auto-bidding problem can
be modeled as a Constraint Markov Decision Process (CMDP) [15] < S,A, R,P, �, C >. The state
st , [bt, T � t, B� bt] 2 S is composed of three elements5, including the budget left st(1) = bt, the
time left st(2) = T � t and the consumed budget st(3) = B� bt. The action at 2 A , [Amin, Amax]
is the “a-bid" at time step t, where Amax > Amin > 0 are the upper and lower bounds, respectively.
The real bidding price for impression opportunity j under action at is atvj,t. See [5] for detailed
explanations. In addition, the reward function rt(st, at) and the constraint function ct(st, at) are the
total value of impression opportunities won between time step t and t+1 and the corresponding costs,
respectively, and P denotes the state transition rule. Note that R, C and P are all directly determined
by the RAS. Moreover, � 2 [0, 1] is the discounted factor. We denote the auto-bidding policy as
µ : S ! A, and let ⇧ be the policy space. The goal of the auto-bidding problem is to maximize
the total values of the impression opportunities earned by the advertiser under the budget constraint,
which can be expressed as

max
µ2⇧

V (µ) , Est+1⇠P,at⇠µ

 T�1X

t=0

�trt(st, at)

�
, subject to

T�1X

t=0

ct(st, at)  B. (1)

One can leverage standard RL algorithms to train a state-of-the-art auto-bidding policy [5] with the
VAS, where the constraint in (1) is met by terminating the training episode early once the budget runs
out. However, as stated before, this way of learning suffers from the challenge of IBOO. Hence, we
propose the SORL framework to avoid the IBOO in the following section.

4 Our Approach

The SORL framework consists of two algorithms, including the SER policy for online explorations
and data collections, as well as the V-CQL method for offline training of the auto-bidding policy
based on the collected data. The SORL works in an iterative manner, alternating between online data
collections and offline training.

4.1 Online Exploration: SER Policy
There are two requirements on the online exploration policy. As the exploration policy is directly
deployed in the RAS, the primary requirement is safety. Unlike the safety in other realms such as
robotics, it is not appropriate to construct an immediate-evaluated safety function to assess the safety
degree of each state-action pair merely based on their values in auto-bidding. Actually, any action
in any state would be safe as long as the summation of all rewards of the whole episode maintains
at a high level. See Appendix F.1.3 for detailed explanations. Let µs be the auto-bidding policy
originally6 deployed in the RAS. Note that µs is safe. Denote the online exploration policy as ⇡e. We
can formally define the safety requirement as: the performance of ⇡e cannot be lower than that of

5In fact, more elements can be added to the state, and we claim that the under mild additional assumptions,
the propositions and theorems in this paper still hold.

6There is always an auto-bidding policy µs deployed in the RAS. For example, the state-of-the-art method
USCB [5] will do.

4

(a) The Q function of any auto-bidding policy is
LQ-Lipschitz smooth. The safety zone is de-
signed as the range between µs(st) � ⇠ and
µs(st) + ⇠, where ⇠  ✏s

LQ�t1�T
.

(b) Sampling distribution of the SER policy, ⇡̃e,
under different hyper-parameters � and �, as well
as ⇡̃e,N with different hyper-parameter �.

Figure 1: Design of the safety zone and sampling distributions in the SER policy.

µs by a threshold ✏s > 0, i.e., V (µs)� V (⇡e)  ✏s. Besides, ⇡e needs to be efficient, i.e., it should

collect data that can give new feedbacks to the auto-bidding policy being trained, which constitutes
the second requirement. We next propose the SER policy for online explorations that can satisfy both
requirements.

4.1.1 Theory: Lipschitz Q Function

Our basic idea of ensuring the safety of exploration is to design a safety zone for taking actions
around the outputs of µs. The theoretical foundation of this idea is our proof of the Lipschitz smooth
property of the Q function in the auto-bidding problem. We next report the theorem of this Lipschitz
smooth property, as well as corresponding propositions and assumptions. Let µ be an arbitrary
auto-bidding policy. According to the Bellman equation, we have:

Qµ(st, at) = rt(st, at) + �Est+1⇠P(·|st,at)[Q
µ(st+1, µ(st+1))]. (2)

Based on the mechanism of RAS, we formulate the reward function R, the constraint function C and
the transition rule P as follows, and the proof can be found in Appendix D.1.
Proposition 1 (Analytical expressions of R, C and P). Based on the characteristic of the two-stage

cascaded auction in the RAS, we can formulate the reward function R as rt(st, at) =
P

j {atv1j,t �

p1j,t, atv
2
j,t � p2j,t}vj,t, the constraint function C as ct(st, at) =

P
j {atv1j,t � p1j,t, atv

2
j,t �

p2j,t}pj,t, and the state transition rule P as st+1 = st + [4st(1),4st(2),4st(3)], where4st(1) =
�4st(3) = �

P
j {atv1j,t � p1j,t, atv

2
j,t � p2j,t}pj,t and4st(2) = �1.

We make the following assumption on the impression opportunities, whose rationalities can be found
in Appendix C.1.
Assumption 1 (Bounded Impression Distributions). Between time step t and t+ 1, we assume the

numbers of winning impressions with action at in the first stage nt,1 and the second stage nt,2 can

both be bounded by linear functions, i.e., nt,1  k1at, nt,2  k2at, where k1, k2 > 0 are constants.

Based on this assumption, we claim that the reward function rt(st, at) is Lipschitz smooth with
respect to actions at at any given state st. See Appendix E.1 for the proof.
Theorem 1 (Lipschitz Smooth of rt(st, at)). Under Assumption 1, the reward function rt(st, at) is

Lr-Lipschitz smooth with respect to actions at at any given state st, where Lr = (k1 + k2)vM .

We make the following mild assumptions, whose rationalities can be found in Appendix C.2.
Assumption 2 (Bounded Partial Derivations of Qµ(st, at)). We assume that the partial derivation of

Qµ(st, at) with respect to st(1) and st(3) is bounded, i.e.,

��@Qµ(st,at)
@st(1)

��  k3 and

��@Qµ(st,at)
@st(3)

��  k4,

where k3, k4 > 0 are constants.

5

Equipped with Theorem 1, we can prove that the Q function Qµ(st, at) is also Lipschitz smooth. See
Appendix E.2 for proof.
Theorem 2 (Lipschitz Smooth of Qµ(st, at)). Under Assumption 1 and 2, the Q function Qµ(st, at)
is an LQ-Lipschitz smooth function with respect to the actions at at any given state st, where

LQ = [vM + �(k3 + k4)pM](k1 + k2).

This means that the decrease rate of Qµ, the subsequent accumulated rewards, due to action offset at
any time step t is bounded by LQ, which gives us a way to design the safety zone. Specifically, as
shown in Fig. 1(a), the safety zone at state st can be design as the neighborhood of action µs(st),
i.e., [µs(st) � ⇠, µs(st) + ⇠], where ⇠ > 0 is the range. In this way, the online exploration policy
⇡e can be designed as: sampling within the safety zone [µs(st)� ⇠, µs(st) + ⇠] in certain �T � 1
consecutive time steps, and sticking to µs in the rest of T ��T time steps, i.e.,

⇡e(st) =

⇢
sampling from [µs(st)� ⇠, µs(st) + ⇠], t1  t  t2;
µs(st), otherwise.

8t, (3)

where 0  t1 < t2  T � 1, �T = t2 � t1 + 1, and t1, t2 2 N+. In the following theorem, we give
the upper bound of |V (⇡e)� V (µs)|.
Theorem 3 (Upper Bound of |V (⇡e)� V (µs)|). The expected accumulated reward V (⇡e) satisfies����V (⇡e)� V (µs)

����  ⇠�t1


vM + �

�
k3 + k4

�
pM

��
k1 + k2

�
�T. (4)

See Appendix E.3 for the detailed proofs. Hence, to meet the safety requirement, we design the range
of the safety zone as ⇠  ✏s

LQ�t1�T .

4.1.2 Sampling Method

With the safety guarantee, we can further design the sampling method in ⇡e to increase the efficiency
of exploration.

Vanilla Sampling Method. A vanilla sampling method in the safety zone can directly be sampling
from a (truncated) Gaussian distribution ⇡̃e,N = N (µs(st),�2) with mean µs(st) and variance �2.
However, ⇡̃e,N resembles the policy µs to a large extent and cannot change with the auto-bidding
policy being trained, which makes the explorations conservative and lack of new feedbacks.

SER Sampling Method. To lift up the efficiency of explorations, we shift the distribution ⇡̃e,N
towards the actions of the auto-bidding policy being trained, while constraining the deviations within
a threshold ✏e > 0. This can be formulated as a functional optimization problem:

max
⇡̃e,8st

Eat⇠⇡̃e(·|st)
bQ(st, at) s.t. DKL(⇡̃e, ⇡̃e,N)  ✏e, (5)

where the optimization variable ⇡̃e denotes the shifted distribution, bQ is the Q function of the
auto-bidding policy being trained. Using Euler equations, we can derive the form of ⇡̃e from (5) as

⇡̃e =
⇡̃e,N
C(st)

exp

⇢
1

�
bQ(st, at)

�
=

1

C(st)
exp

⇢
�
(at � µs(st))2

2�2
| {z }

safety

+
1

�
bQ(st, at)

| {z }
efficiency

�
, (6)

where C(st) =
R
at
exp{� (at�µs(st))

2

2�2 + 1
�
bQ(st, at)}dat acts as the normalization factor. The

complete deductions of ⇡̃e are given in Appendix F.1.1. We can interpret ⇡̃e as a deviation from ⇡̃e,N
towards the Q function bQ(st, at), where ⇡̃e,N further guarantees the safety and the Q function ensures
the efficiency. Note that � and � in (6) are both hyper-parameters that can control the randomness
and deviation degrees from µs of the SER policy, respectively. As shown in Fig. 1(b), the smaller
the value of �, the larger the deviation degree of ⇡̃e from µs; besides, the bigger the value of �, the
greater the randomness degree of ⇡̃e. Hence, we can control the randomness and deviation degrees
from the safe policy µs of exploration policy easily by adjusting the value of � and �. In addition,
we describe the way of practically implementing the sampling of distribution ⇡̃e in Appendix F.1.2.
Then the complete SER policy is

⇡e(st) =

⇢
sampling from [µs(st)� ⇠, µs(st) + ⇠] with ⇡̃e, t1  t  t2;
µs(st), otherwise.

8t. (7)

6

Figure 2: Sustainable online reinforcement learning (SORL) framework which learns the auto-bidding
policy directly with the RAS in a safe and efficient way. The SORL works in an iterative manner.

4.2 Offline Training: V-CQL

Due to the safety constraint on the explorations, the SER policy can only collect data within the
safety zone and the data outside the safety zone will be missed. Hence, we leverage a strong baseline
offline RL algorithm, CQL, to address the extrapolation error and make the offline training effective.
Moreover, as the sampling distribution ⇡̃e in the SER policy involves the Q function bQ, the training
result will affect the directions of further explorations. However, on the one hand, as stated in Section
2, the OPE in the auto-bidding is not reliable; and on the other hand, the performance variance under
different random seeds of existing offline RL algorithms can be large, as shown in Fig. 5.2 in the
experiment. Hence, we further design a novel regularization term in the CQL loss to increase the
stability of offline training and thereby reduce the OPE process. This forms the V-CQL method.
Specifically, we observe that the Q functions of the state-of-the-art auto-bidding policy are always in
nearly quadratic forms. In addition, we conduct simulated experiments where the auto-bidding policy
is directly trained in a simulated RAS7 with traditional RL algorithms. We find out the optimal Q
functions in the simulated experiments are also in nearly quadratic forms. See Appendix F.2.1 for
illustrations. Based on these observations, we assume that the optimal Q functions in the RAS are
also in nearly quadratic forms. Hence, the key idea of V-CQL is to restrict the Q function to remain
nearly quadratic, and the regularization term in the V-CQL is designed as:

R(µ) = �Esk⇠Ds


DKL

✓
exp(bQ(sk, ·))P
a exp(

bQ(sk, a))| {z }
distribution(form) of bQ

,
exp(bQqua(sk, ·))P
a exp(

bQqua(sk, a))| {z }
distribution(form) of bQqua

◆�
, (8)

where Qqua is selected as the Q function of the state-of-the-art auto-bidding policy, DKL(·, ·) represents
the KL-divergence, and � > 0 is a constant controlling the weight of R(µ). Moreover, we can
interpret (8) from another aspect, i.e., R(µ) tries to limit the distance between the distribution of
the Q function and the distribution of bQqua. This can limit the derivation of the auto-bidding policy
from the corresponding state-of-the-art policy, which can increase the training stability. Complete
implementations of the V-CQL are shown in Appendix F.2.2.

4.3 Iterative Updated Structure

Fig. 2 shows the whole structure of the SORL framework. Specifically, the SORL works in an
iterative manner, alternating between collecting data with the SER policy from the RAS and training
the auto-bidding policy with the V-CQL method.

Warm Booting. To start with, we use the safe policy µs to boot the explorations in the RAS. Denote
the data collected by µs as Ds = {(sk, ak, rk, s0k)}k, and the auto-bidding policy trained by Ds with
the V-CQL as µ0.

Iteration Process. Denote the SER policy and the auto-bidding policy in the ⌧ -th iteration as
⇡e,⌧ and µ⌧ , and the data collected in the ⌧ -th iteration as Don,⌧ , where ⌧ 2 {1, 2, ...} The design

7The details of this simulated RAS are described in Appendix A.2

7

for the sampling distribution ⇡̃e,⌧ in iteration ⌧ is ⇡̃e,⌧ = 1
C⌧ (st)

⇡̃e,N exp{ bQ⌧ (st, at)/�⌧}, where
C⌧ (st) acts as the normalization factor and �⌧ is the hyper-parameter used in iteration ⌧ , and
bQ⌧ is the Q function of µ⌧ . We note that the exploration policies in each iteration are safe, i.e.,
|V (⇡e,⌧)� V (µs)|  ✏s, 8⌧ , since they all taking actions within the safety zone only with different
sampling distributions. We leverage the V-CQL to in each iteration improve the auto-bidding policy.
Specifically, at iteration ⌧ , we substitute bQqua in (8) with bQ⌧�1, and train a new Q function bQ bQ⌧

for the next iteration. The auto-bidding policy are expected to be continuously improved. A summary
of the SORL framework is present in Appendix F.3.

5 Experiments
We conduct both simulated and real-world experiments to validate the effectiveness of our approach8.
The following three questions are mainly studied in the experiments: (1) What is the performance
of the whole SORL framework? Is the SER policy safe during iterations? Can the V-CQL method
continuously improve the auto-bidding policy and outperform existing offline RL algorithms and the
state-of-the-art auto-bidding policy? (2) Is the safety zone reliable? Is the SER policy still safe when
using Q functions of auto-bidding policies with bad performance? (3) Does the V-CQL really help to
reduce the performance variance compared to existing offline RL algorithms?

Experiment Setup. We conduct the real-world experiments on one of the world’s largest E-commerce
platforms, TaoBao. See Appendix G.1 for details. The simulated experiments are conducted in a
manually built offline RAS and the corresponding VAS. See Appendix A.2 for details. The safe
auto-bidding policy µs used for warm booting and constructing the safety zone is trained by the
state-of-the-art auto-bidding policy, USCB[5]. The safety threshold is set as ✏s = 5%V (µs).

Performance Index. The objective function V (µ) in (1), i.e., the total value of impression opportuni-
ties won by the advertiser in the episode, acts as the main performance index in our experiments and
is referred as BuyCnt in the following. In addition, we utilize three other metrics that are commonly
used in the auto-bidding problem to evaluate the performance of our approach. The first metric the
total consumed budget (ConBdg) of the advertiser. The second metric is the return on investment

(ROI) which is defined as the ratio between the total revenue and the ConBdg of the advertiser. The
third metric is the cost per acquisition (CPA) which is defined as the average cost for each successfully
converted impression. Note that larger values of BuyCnt, ROI, and ConBdg with a smaller value of
CPA indicate better performance of the auto-bidding policy.

Baselines. We compare our approach with the state-of-the-art auto-bidding policy, USCB [5], that is
trained by RL in the VAS. We also compare the V-CQL method with modern offline RL algorithms,
including BCQ [11] and CQL [13]. Recall that many safe online RL algorithms are not suitable for
explorations in the auto-bidding problem as stated in Section 2, we compare the SER policy with
⇡e,N in our experiments.

5.1 Main Results

To Answer Question (1): We first conduct simulated experiments with the SORL, and the results
during iterations are shown in Fig. 5.1. Specifically, from Fig. 3(a), we can see that the decline rate in
BuyCnt of both the SER policy and the vanilla exploration policy are smaller than 5%, which verifies
the safety of the SER policy. Moreover, the BuyCnt of the SER policy ⇡e,⌧ rises with iterations and
is alway higher than that of ⇡e,N , which indicates that the SER policy is more efficient. From Fig.
3(b), we can see that the BuyCnt of the auto-bidding policy µ⌧ trained with V-CQL is higher than
that of BCQ, CQL and USCB, which indicates the effectiveness of the V-CQL. Besides, the BuyCnt
rises with the number of iterations and converges to the optimal BuyCnt (i.e., the BuyCnt of the
optimal policy) at the 5-th iteration. This validates the superiority of the whole SORL framework.
This indicates the effectiveness of the V-CQL method. For real-world experiments, we utilize 10, 000
advertisers to collect data from the RAS with ⇡e and compare the auto-bidding policies in 4 iterations
on 1, 500 advertisers using A/B tests, and the results are shown in Table. 2. We can see that the
performances of auto-bidding policies are getting better with iterations and exceeds the state-of-the-art
algorithm, USCB, which validates the superiority of the whole SORL framework.

8The codes of simulated experiments are available at https://github.com/nobodymx/SORL-for-Auto-bidding.

8

https://github.com/nobodymx/SORL-for-Auto-bidding

(a) BuyCnt of ⇡e,⌧ and ⇡e,N . (b) BuyCnt of µ using different algorithms.

Figure 3: The change of BuyCnt of both the SER policy ⇡e,⌧ and auto-bidding policy µ⌧ with
iterations ⌧ when applying the SORL framework.

Table 2: The results of SORL framework in the real-world experiments.

Iterations A/B Tests with µ⌧�1 A/B Tests with the safe policy µs

BuyCnt ROI CPA ConBdg BuyCnt ROI CPA ConBdg

0-th: µ0 +3.21% +1.28% -2.01% +1.12% +3.21% +1.28% -2.01% +1.12%
1-th: µ1 +0.65% +1.96% -1.27% -0.62% +3.41% +2.88% -0.93% +2.45%
2-th: µ2 +0.47% +0.26% -0.13% +0.33% +3.57% +1.60% -0.98% +2.55%
3-th: µ3 +0.95% +3.20% -1.01% +0.06% +3.75% +2.48% -3.91% -0.15%

5.2 Ablation Study

Figure 4: BuyCnt of ⇡e,N , ⇡e.

To Answer Question (2): We fully examine the safety of the
SER policy using the Q function bQ of auto-bidding policies with
different performance levels. Specifically, in the simulated exper-
iment, we utilize seven different versions of auto-bidding policies
{µ(k)}

7
k=1 with Q functions { bQ(k)}

7
k=1 that have various per-

formance levels to construct seven corresponding SER policies,
where V (µ(1)) < V (µ(2)) < ..., V (µ(7)). We also construct
a vanilla exploration policy ⇡e,N for comparison. The hyper-
parameters for all exploration policies are � = 1,� = 0.1. We
apply the ⇡e,N and seven SER policies to the simulated RAS, and
the BuyCnt of explorations policies are shown in Fig. 4. We can
see that the BuyCnt of the SER policy rises with the performance level of the auto-bidding policy.
The worst BuyCnt of the SER policy drops about 3.52% compared with µs, which meets the safety
requirement. Moreover, we can balance between the safety and efficiency of the SER policy by
regulating the hyper-parameters � and �. The corresponding results are shown in Appendix G.2.2.

Table 3: Real-world A/B tests between ⇡e

and µs, as well as between ⇡e,N and µs.
Methods BuyCnt ConBdg

vanilla ⇡e,N -3.32% +1.11%
SER policy ⇡e -1.83% +0.67%

For real-world experiments, we apply ⇡e and ⇡e,N to
1, 300 advertisers in the RAS and compare their perfor-
mance to µs in A/B tests, as shown in Table. 3. We can
see that the variations of the ConBdg and BuyCnt of
⇡e are all with in 5%, and are better than those of ⇡e,N ,
which indicates the safety of the SER policy.

To Answer Question (3): We leverage the V-CQL, CQL, BCQ and USCB to train auto-bidding
policies under 100 different random seeds in the simulated experiment, and the results are shown in
Fig. 5(a). We can see that the performance variance of the V-CQL is much smaller than those of other
algorithms. At the same time, the average performance of the V-CQL can maintains at a high level.
In addition, we leverage the V-CQL and CQL algorithm to train the auto-bidding policies based on
the real-world data under 100 different random seeds. To ensure fairness, we also utilize the USCB
to train the auto-bidding policies in the VAS under exactly the same random seeds. We carry out the
OPE for these three sets of auto-bidding policies, as shown in Fig. 5(b). Recall that R/R⇤ is the main

9

(a) BuyCnt of the auto-bidding policy trained by
different methods in the simulated RAS.

(b) OPE of the auto-bidding policy trained by differ-
ent methods with real-world data.

Figure 5: The performance of different methods under 100 random seeds.

Table 4: Real-world A/B tests between
the V-CQL and USCB under different
random seeds.

Seeds BuyCnt Seeds BuyCnt

1 +1.70% 6 +1.94%
2 +1.06% 7 +1.38%
3 +3.01% 8 +1.19%
4 +1.89% 9 +0.31%
5 -0.53% 10 +0.71%

main metric used in the OPE for auto-bidding (see Appendix
B). We can see that the maximum R/R⇤ of the V-CQL is
much larger than that of the USCB, which indicates that
the V-CQL is capable of training a better policy. Although
the maximum R/R⇤ of the V-CQL and the CQL are about
in the same level, the variance of R/R⇤ of the V-CQL is
smaller than that of the CQL. For real-world experiments,
we apply the auto-bidding policies trained by the V-CQL
and USCB to 1, 600 advertisers in the A/B test for seven
days in the RAS, and the average values of the metrics are
shown in Table 5. We can see that the V-CQL outperforms USCB method in almost all metrics.
Moreover, we present the A/B test results under 10 random seeds in Table. 4. We can see that the
V-CQL outperforms the USCB under 9 seeds, and only slightly worse under the other one seed. All
these results indicate that the V-CQL can really help to reduce the performance variance and increase
the training stability, while keeping the average performance at a high level.

Table 5: Real-world A/B Tests between the V-CQL and USCB.

Methods USCB: policy trained with new data USCB : the safe policy µs

BuyCnt ROI CPA ConBdg BuyCnt ROI CPA ConBdg

USCB 40,926 3.90 20.71 847,403.12 35,627 3.82 21.58 768,832.64
V-CQL 42,236 3.95 20.29 856,913.14 37,090 3.97 20.61 764,467.39

variations +3.20% +1.28% -2.03% +1.12% +4.11% +3.93% -4.49% -0.57%

6 Conclusions
In this paper, we study the auto-bidding problem in online advertisings. Firstly, we define the IBOO
challenge in the auto-bidding problem and systematically analyze its causes and influences. Then, to
avoid the IBOO, we propose the SORL framework that can directly learn the auto-bidding policy
with the RAS. Specifically, the SORL framework contains two main algorithms, including a safe and
efficient online exploration policy, the SER policy, and an effective and stable offline training method,
the V-CQL method. The whole SORL framework works in an iterative manner, alternating between
online explorations and offline training. Both simulated and real-world experiments validate the
superiority of the whole SORL framework over the state-of-the-art auto-bidding algorithm. Moreover,
the ablation study shows that the SER policy can guarantee the safety of explorations even under the
guide of the auto-bidding policy with bad performance. The ablation study also verifies the stability
of the V-CQL method under different random seeds.

Acknowledgments and Disclosure of Funding
This work is supported by Alibaba Research Intern Program. The authors would like to thank
Mingyuan Cheng, Guan Wang, Zongtao Liu, Zhaoqing Peng, Lvyin Niu, Miao Xu, and Tianyu Wang
for their valuable feedbacks and insightful discussions.

10

References
[1] D. Wu, X. Chen, X. Yang, et al., Budget constrained bidding by model-free reinforcement learning

in display advertising, in Proceedings of the 27th ACM International Conference on Information and

Knowledge Management, Oct. 2018.
[2] X. Hao, Z. Peng, Y. Ma, et al., Dynamic knapsack optimization towards efficient multi-channel sequential

advertising, in Proceedings of the 37th International Conference on Machine Learning, Nov. 2020.
[3] Alibaba. 2022. alimama, https://www.alimama.com/index.htm.
[4] H. Cai, K. Ren, W. Zhang, et al., Real-time bidding by reinforcement learning in display advertising, in

Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Jan. 2017.
[5] Y. He, X. Chen, D. Wu, et al., A unified solution to constrained bidding in online display advertising, in

Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Aug. 2021.
[6] Google. 2022. google ads, https://ads.google.com/.
[7] Z. Wang, L. Zhao, B. Jiang B, et al., Cold: Towards the next generation of pre-ranking system, arXiv

preprint arXiv:2007.16122, Aug. 2020.
[8] D. Carl, and A. Zisserman, Sim2real transfer learning for 3d human pose estimation: motion to the rescue,

in Advances in Neural Information Processing Systems 32, 2019.
[9] S. Höfer, K. Bekris, A. Handa, et al., Sim2Real in robotics and automation: Applications and challenges,

IEEE transactions on automation science and engineering, vol. 18, no. 2, pp. 398–400, Apr. 2021.
[10] X. Liu, C. Yu, Z. Zhang, et al., Neural auction: End-to-end learning of auction mechanisms for e-commerce

advertising, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data

Mining, Aug. 2021.
[11] S. Fujimoto, D. Meger, and D. Precup, Off-policy deep reinforcement learning without exploration, in

Proceedings of 36th International Conference on Machine Learning, May. 2019.
[12] C. Voloshin, HM. Le, N. Jiang, and Y. Yue, Empirical study of off-policy policy evaluation for reinforcement

learning, in 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track

(Round 1), Jun. 2021.
[13] A. Kumar, A. Zhou, G. Tucker, and S. Levine, Conservative q-learning for offline reinforcement learning,

in Advances in Neural Information Processing Systems 33, 2020.
[14] A. Nair, A. Gupta, M. Dalal, and S. Levine, Awac: Accelerating online reinforcement learning with offline

datasets, arXiv preprint arXiv:2006.09359, 2020.
[15] E. Altman, Constrained Markov decision processes: stochastic modeling, Routledge, 1999.
[16] TP. Lillicrap, JJ. Hunt, A. Pritzel, et al., Continuous control with deep reinforcement learning, arXiv

preprint arXiv:1509.02971, 2015.
[17] H. Bharadhwaj, A. Kumar, N. Rhinehart, et al., Conservative safety critics for exploration, arXiv preprint

arXiv:2010.14497, 2020.
[18] DRR. Scobee, SS. Sastry, Maximum likelihood constraint inference for inverse reinforcement learning,

arXiv preprint arXiv:1909.05477, 2019.
[19] U. Anwar, S. Malik, A. Aghasi, et al., Inverse Constrained Reinforcement Learning, arXiv preprint

arXiv:2011.09999, 2020.
[20] B. Thananjeyan, A. Balakrishna, U. Rosolia, et al., Safety augmented value estimation from demonstrations

(saved): Safe deep model-based rl for sparse cost robotic tasks, IEEE Robotics and Automation Letters, vol.
5, no. 2, pp. 3612–3619, 2020.

[21] F. Berkenkamp, M. Turchetta, A. Schoellig, et al., Safe model-based reinforcement learning with stability
guarantees, in Advances in neural information processing systems, 2017.

[22] T. Koller, F. Berkenkamp, M. Turchetta, et al., Learning-based model predictive control for safe exploration,
IEEE Conference on Decision and Control (CDC), 2018.

[23] S. Lee, Y. Seo, K. Lee, et al., Offline-to-Online Reinforcement Learning via Balanced Replay and
Pessimistic Q-Ensemble, in Conference on Robot Learning, 2022.

[24] TL. Paine, C. Paduraru, A. Michi, et al., Hyperparameter selection for offline reinforcement learning, arXiv

preprint arXiv:2007.09055, 2020.
[25] X. Zhan, H. Xu, Y. Zhang, et al., Deepthermal: Combustion optimization for thermal power generating

units using offline reinforcement learning, arXiv preprint arXiv:2102.11492, 2021.
[26] R. Qin, S. Gao, X. Zhang, et al. NeoRL: A near real-world benchmark for offline reinforcement learning,

arXiv preprint arXiv:2102.00714, 2021.

11

[27] S. Levine, A. Kumar, G. Tucker, et al., Offline reinforcement learning: Tutorial, review, and perspectives
on open problems, arXiv preprint arXiv:2005.01643, 2020.

[28] P. Jan, M. Katharina, and A. Yasemin, Relative Entropy Policy Search, in Proceedings of the AAAI

Conference on Artificial Intelligence, 2010.
[29] X. Peng, A. Kumar, G. Zhang, and S. Levine. Advantage-Weighted Regression: Simple and Scalable

Off-Policy Reinforcement Learning, arXiv preprint arXiv:1910.00177, 2019.
[30] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, Stabilizing off-policy q-learning via bootstrapping

error reduction. In Advances in Neural Information Processing Systems 32, 2019.
[31] N. Siegel, J. Springenberg, F. Berkenkamp, A. Abdolmaleki, M. Neunert,T. Lampe, R. Hafner,and M.

Riedmiller, Keep doing what worked: Behavioral modelling priors for offline reinforcement learning. arXiv

preprint arXiv:2002.08396, 2020.
[32] A. Kumar, A. Singh, S. Tian, et al., A workflow for offline model-free robotic reinforcement learning,

arXiv preprint arXiv:2109.10813, 2021.
[33] M. Turchetta, F. Berkenkamp, and A. Krause, Safe exploration in finite markov decision processes with

gaussian processes, in Advances in Neural Information Processing Systems 29, 2016.
[34] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa, Safe exploration in continuous

action spaces, arXiv preprint arXiv:1801.08757, 2018.
[35] R. Laroche, P. Trichelair, and R. T. Des Combes, Safe policy improvement with baseline bootstrapping, in

Proceedings of 36th International Conference on Machine Learning, 2019.
[36] Z. Guan, H. Wu, Q. Cao, et al., Multi-Agent Cooperative Bidding Games for Multi-Objective Optimization

in e-Commercial Sponsored Search, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, 2021.
[37] D. Brandfonbrener, W. F. Whitney, R. Ranganath, and J. Bruna, Offline RL Without Off-Policy Evaluation,

in Advances in Neural Information Processing Systems 34, 2020.
[38] Z. Wang, A. Novikov, K. Zolna, J. Merel, J. S., S. Reed, B. Shahriari, N. Siegel, C. Gulcehre, N. Heess, et

al,. Critic regularized regression. Advances in Neural Information Processing Systems 33, 2019.
[39] X. Chen, Z. Zhou, Z. Wang, .C. Wang, Y. Wu, and K. Ross, Bail: Bestaction imitation learning for batch

deep reinforcement learning, Advances in Neural Information Processing Systems 33, 2019.
[40] Y. Wu, G. Yucker, and O. Nachum, Behavior Regularized Offline Reinforcement Learning, arXiv preprint

arXiv:1911.11361, 2019.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6 and social impact

in Appendix H.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We believe

there is no negative societal impacts.

12

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section

4.1.1 and Appendix C.
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix D and

Appendix E.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We include the
codes for simulated experiments in Section 5 in the paper. The codes for real-world
experiments are proprietary.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] Our work uses own

data, and the data used in the simulation experiments and real-world experiments is
released in supplementarymaterial.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Problem Settings
	Our Approach
	Online Exploration: SER Policy
	Theory: Lipschitz Q Function
	Sampling Method

	Offline Training: V-CQL
	Iterative Updated Structure

	Experiments
	Main Results
	Ablation Study

	Conclusions

