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White Roses, Red Backgrounds: Bringing
Structured Representations to Search

Tracy Holloway King

Abstract Search has become a key component of many on-line user experiences.
Search queries are usually textual and hence should benefit from improvements in
natural language processing. However, many of the NLP algorithms used in produc-
tion systems fail for queries that require structured understanding of the query and
document or that require reasoning. These issues arise because of the way informa-
tion is stored in the search index and the need to return results quickly. The issues
are exacerbated when searching over non-textual documents, including images and
structured data. The use of embedding-based techniques has helped with some types
of searches, especially when the query vocabulary does not match that of the docu-
ments and when searching over images. However, these techniques still fail for many
searches, especially ones requiring reasoning. Simply combining classic word-level
search and embedding-based search does not solve these issues. Instead, in this posi-
tion paper, I argue that we need to create hybrid systems from traditional search
techniques, embedding-based search, and the addition of structured data and reason-
ing. Enabling such hybrid systems will require a deep understanding of linguistic
representations of meaning, of information retrieval optimization, and of the types
of information encoded in the queries and documents. It is my hope that this paper
inspires further collaboration across disciplines to improve these complex search
problems.

Keywords Search · Information retrieval · Semantic search ·Query understanding

1 Introduction

Search has become a key component ofmany on-line user experiences. These include
large web search engines (e.g., Google, Bing, Baidu, Yandex), eCommerce (e.g.,
Amazon, eBay, Rakuten, Taobao), and searchwithin websites andwithin documents.
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Search queries are usually textual and hence should benefit from natural language
processing (NLP) and especially from the rapid improvements in NLP over the past
decades. This is especially true in situationswhere there is not enough behavioral data
from past users to “memorize” the top search results and so a deeper understanding
of the query and documents is required.

However, many of the NLP algorithms currently used in production systems fail
for queries that require a structured, whether syntactic or logical, understanding of
the query and document, or that require reasoning. Examples of such queries include
dresses between $50 and $100 (eCommerce search), cake recipes without wheat flour
(web search and recipe site-internal search), and photo white rose red background
(image search). Even simple queries that only require an understanding of word-
order based relations such as chocolate milk vs. milk chocolate often include many
irrelevant search results.

These issues arise because of the way information is stored in the search index,
often as single words for text-based documents, and the need for extremely fast
computation in order to return search results quickly to the user. The issues are exac-
erbatedwhen searching over non-textual documents, including images and structured
data (e.g., prices for eCommerce products). The use of embedding-based techniques
has helped with some types of searches, including when the query vocabulary does
not match that of the documents (e.g., misspellings, synonyms) and when searching
over images. However, these techniques still fail for many searches, especially ones
requiring reasoning. Simply combining classic word-level search and embedding-
based search does not solve these issues. There remain classes of queries which
require information beyond the representation of words and multi-word expressions
stored in an inverted index. These are the structured representations referred to in
the title of this paper. They involve associating typed information with the content
(e.g., prices) and storing relationships among the entities (e.g., in an image the rose is
white, the background is red). These structured representations in turn must support
reasoning (see the snacks without nuts example query below). Although some of this
reasoning can be computed off-line and stored for commonly queried information,
to support the broad range of search queries, fast and accurate reasoning at query
time is required.

ThreeExampleQueriesTo understand the scope of the issue, consider three real-
world example queries that require information beyond simple keyword matching.

First consider a search for images: white rose red background.1 This query is
looking for images of white roses shown on a red background. However, there are
many more images of red roses than white roses because red is such a popular color
for roses and there are a huge number of images with white backgrounds because
these are used when compositing images. This means that there are many more
images of red roses on white backgrounds than white roses on red backgrounds and
that those images are much more popular (e.g., viewed, downloaded, or purchased

1 There is no preposition in this query (cf. white rose on red background), but the search results are
similar even with the preposition. The preposition helps to delineate the two noun phrases, but the
techniques to improve the results with the preposition also help when the preposition is absent.
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Fig. 1 Results for the query white rose red background with (upper) and without (lower) sufficient
query and document understanding for search

more). If the words in the query are treated as a bag of words without reference to
word order or syntactic structure, then any image associatedwith roses, backgrounds,
and the colors red and white will be returned and the more popular images of red
roses on white backgrounds will rank higher. Example search results for this query
are shown in Fig. 1. One way to handle this query using structured representations
will be discussed in detail in Sect. 4.3.

Next consider an eCommerce search with negation: snacks without nuts. The
preposition without encodes a negation of containing nuts. This is a common query
by users who do not like nuts or are allergic to them. However, when treated as a bag
of words, the preposition without is either dropped entirely because it is so frequent
as to be considered useless2 or will match many items where the without applies to
some other text in the product description. To make matters worse, the search engine
will try to match the word nuts and so will return snacks which specifically contain
nuts. As a result, the search results both miss relevant items (snacks without nuts that

2 Such words are referred to as stopwords in search. See Sect. 2.2 on text processing.
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Fig. 2 Results for the query snacks without nuts where most of the results clearly contain nuts

did not mention the exclusion of nuts) and include many items with nuts (where the
wordwithout referred to something other than nuts). An example set of search results
are shown in Fig. 2. The search results are much better when rephrasing the query as
nut free snacks but even then many relevant results are missed because only snacks
that overtly state they are nut free are returned. In search, checking for the absence
of something (nuts in this example) is complicated because there are so many things
that could be absent in a document that they cannot be listed: their absence has to be
determined at search time.

Finally consider an eCommerce query that requires simple reasoning: dresses
over $100. Here the price phrase requires the search engine to constrain the price of
the returned items (the dresses) to be greater than $100. If the query is treated as a
simple textual query, the dresses returned will either be exactly $100 if the dollar sign
is searched for or, more likely, any price but containing the word 100 somewhere in
the product description.

Given the frequency of price-related queries on eCommerce sites, many of sites
have special query processing to detect the price constraint and map it to structured
data on each item. In this case, the phrase over $100 would be mapped to the price
information and checked that the value is greater than $100. Example search results
where this reasoning has been applied are shown in Fig. 3.

The remainder of this paper examines why search works as it does and how this
is being improved. Section2 provides the basics on how search works, focusing first
on inverted indices, then introducing text processing, the use of user behavioral data,
and structured data, and finally describing search ranking. Section3 discusses why
pure inverted indices are not sufficient. Section4 introduces techniques to enhance
traditional search to provide more accurate results and provides a detailed example.
Finally, Sect. 5 concludes.
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Fig. 3 Results for the query dresses over $100where the price constraint has been properly applied.
The word 100 does not appear in the titles or prices

2 How Search Works

This section provides a high level overview of how search works, focusing on tradi-
tional inverted indices but also introducing other aspects of search used in production
search engines. Those familiar with search can skip this section.

2.1 Inverted Indices

Most search engines are based on an inverted index. An inverted index is similar to
the index at the end of a book. It allows you to look up a word or phrase and see what
pages are associated with it. In search, these pages are documents (e.g., web pages
in web search, product listings in eCommerce, documents in document collections
like arXiv).

To create a search index for a set of documents, first the system identifies all
the words associated with each document. Then it builds an index of the words and
associates them with an identifier for relevant documents. Table1 shows four simple
one-sentence documents and the inverted index that is created from them.

When the user issues a query, the query is broken into words. All of the documents
associated with each word are found by looking up the word in the index. The
document lists for each word are compared. The documents that appear on all the
lists are returned. This set of documents is referred to as the recall set or match set.
These documents are then ranked so that the most relevant one is first, then the next
more relevant, etc. Four sample queries and the documents returned for them are
shown in Table2.
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Table 1 Sample inverted index based on 4 documents, each with only one sentence

Documents

Doc. Id Text

1 Cats are furry

2 Mice are furry

3 Dogs chase cats

4 Cats chase mice

Inverted index

Word Doc. Ids

cats 1, 3, 4

furry 1, 2

mice 2, 4

dogs 3

chase 3, 4

Table 2 Sample queries and the documents they return for the documents and inverted index in
Table1

Query Initial documents Final documents

cats 1, 3, 4 1, 4, 3

cats chase cats: 1, 3, 4; chase: 3, 4 3, 4

cats birds cats: 1, 3, 4; birds:— —

mice dogs mice: 2, 4; dogs: 3 —

The one-word query cats returns all the documents with the word cats in them.
For the ranking, here we ranked the two documents with the word cats as the subject
higher than the one with it as an object. For the query cats chase, there are two
documents which contains both words and so those two are returned. We ranked the
document which matches the word order in the query higher. In contrast, the query
cats birds does not return any results because there is no document that contains
the word birds. Similarly, the query mice dogs also returns no results. In this case,
there are two documents which contain the word mice and one which contains the
word dogs, but no documents that contain both. Many search engines return “partial
matches” where not all the query words are matched if there are no documents that
match all the words. This is not shown in Table2.

2.2 Beyond Inverted Indices

Text Processing In the inverted index example above, thewordswere indexed in their
inflected forms (e.g., plural cats). In search, the processing of the text in documents
and queries strongly affects search result quality. In general, text is uniformly lower
cased, even for proper nouns where it can be distinguishing. This is because queries
do not contain canonical capitalization (e.g., English proper nouns are usually lower
cased; usersmayhave the caps-lock key on).Accentmarksmaybe removed,mapping
accented letters to their unaccented counterpart. Whether to de-accent depends on
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the language and in particular on whether users reliably type queries with accent
marks. Punctuation is stripped except when crucial for meaning (e.g., decimal points
within numerals are not removed but sentence- and abbreviation-final periods are).

Stemming3 or lemmatization is usually applied.Queries often include plural nouns
even when the user is looking for a singular instance. For example, in eCommerce,
the query hammers has more purchases for single hammers than for hammer sets or
multiple hammers. The same is true for the query dresses: even though many people
own multiple dresses, they purchase them one at a time.

Finally, words that are extremely common in the document collection are not
indexed. These are referred to as stop words. The linguistically closed class words
(e.g., prepositions, determiners) are usually stop words. These are not indexed
because they are so frequent as to not discriminate between documents. However, as
discussed in Sect. 3, they can be crucial for certain types of reasoning (e.g., snacks
without nuts) and for media queries (e.g., bands like The Who and The The), which
will not be discussed further here.

See [17] for a detailed overview of text processing for search.
Behavioral Data Most search engines have some queries that are much more

popular than others. These popular queries are referred to as head queries, and the
rare ones as tail queries. In web search and larger eCommerce sites [24], the search
engine can effectively memorize the best results for head queries. Although this can
be done by editorially providing results, it is usually learned from aggregated user
behavior. That is, the search result that users click on the most is put in first position,
the next most popular result in second position, etc. In web search, this can be seen
with navigational querieswhere the query is looking for a particular popular site (e.g.,
the query bbc, where most users are looking for the BBC on-line news site). Even
when a query is not frequent enough to memorize the top results, user behavioral
data can provide signal as to which documents are most popular and which queries
are associated with these popular documents.

Meta-data and Structured DataMost search engines involve documents which
contain more than just text, or images in the case of image search. This data can
provide valuable information for search, both for identifying relevant documents
and for ranking them. Web pages have titles and urls (site addresses). In addition,
web documents often include data about what queries led to clicks on them and
what text was used to link to them from other documents (referred to as anchor
text). Products in eCommerce search contain a large amount of structured data (e.g.,
price, brand, size) [15]. Similarly, publications contain author, year, and publisher
information.

Our example query dresses over $100 demonstrates the importance of structured
data.Knowing that a query is restricting the price of the search results is not actionable
unless the price is available in the documents in a way that the search engine can

3 Stemmers remove the endings of words, leaving a stem that can be indexed. This stemmay or may
not be a word in the language [20]. Lemmatizers map inflected forms to a linguistic or dictionary
base form. The difference between these is most obvious with highly irregular inflected formswhere
stemming cannot normalize a word to a citation form.
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apply the restriction. In the case of prices, this means having them in a format that
allows basic arithmetic operations to be performed. The prices are also used when
ranking the products by price instead of relevance, an option that is available on most
eCommerce sites.

2.3 Ranking Features

The set of documents retrieved has to be ranked for display to the user. The order of
results is important for ensuring users have easy access to the most relevant results.
Users rarely look beyond the first page of results and have a tendency to click on
the top result. Here we mention some key factors in search ranking because even
if we solve the core relevancy issues described in the introduction around queries
like white roses red background, snacks without nuts, and dresses over $100, there
is still significant work to be done to order those results to provide an optimal search
experience.

Some ranking features focus only on the document, in particular on document
popularity and reliability. For example, in web search, results from Wikipedia are
often ranked highly for entity queries like proper names (e.g., tbilisi, ruth bader
ginsburg). Other ranking features involve query-document affiliation. For example,
where the querywordmatcheswithin the documentmatters: documents whichmatch
the query words in the title are ranked more highly than ones which match lower
in the document. Relatedly, if the query contains multiple words, then documents
where the twowords are near to each other are rankedmore highly. A special subcase
of this is multi-word expressions (MWE) where the words should be a MWE both
in the query and the document. There is a strong preference in the ranking for MWE
to be adjacent in the document text. High-frequency MWEmay be indexed as single
words (e.g., san francisco, hot dog), i.e., they are treated as words with spaces for
purposes of the index.

In this paper, we focus on the match set since the integration of structured repre-
sentations in search is fundamental for retrieving all and only documents that match
the intent of the user’s query. For more on ranking see [7, 17, 24].

2.4 An Example: Milk Chocolate Versus Chocolate Milk

This section walks through an example of how search works, moving beyond the
simplistic furry cat example in Sect. 2.1. Consider the queries milk chocolate vs.
chocolate milk. Assume that neither milk chocolate nor chocolate milk are MWE in
the search index.

For the document processing, lower-casing allows us to match titles and section
headers which contain initial or all capital letters (e.g., Berkeley Farms Choco-
late Milk). Lemmatization allows us to match documents with plural words like
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assortment of milk chocolates. After the text normalization, documents that mention
the normalized form of chocolate or milk will have entries in the inverted index for
those words.

When the query is issued, it is lower-cased, lemmatized, and stop words are
removed in exactly the same way that the documents were. Stop words are not an
issue here since neither query contains one. Lemmatization mapsmilk chocolate and
chocolate milk to themselves since none of the words are inflected. Lower-casing
maps any capitalization in the query to the lower-case forms used in the index.

Using a standard inverted index and no MWE for these words, the two queries
will include precisely the same documents in the match set. This is because although
the word order differs, they contain the same words.

However, ranking will treat the queries differently and rank different documents
highly. In both web and eCommerce search, these queries are likely to have been
seen before and have user click data associated with them. So, documents that were
clicked for those queries by other users will be ranked more highly. In addition, word
proximity, including word order, is key to distinguishing the queries: documents with
the exact query phrase in the document aremuchmore likely to be relevant and should
be ranked higher. A Google search for the queries demonstrates the strength of the
phrase matching and user behavioral data. At least in the US (google.com) shopping
results are shown at the very top of the page; the Wikipedia article with the exact
phrase title is shown as the first result; there is an entity box with a definition of
chocolate milk (for chocolate milk) and milk chocolate (for milk chocolate) as well
as additional entity-related information (e.g., wine pairings for milk chocolate and
serving size for chocolate milk).

3 Why Inverted Indices Are Not Enough

In Sects. 1 and 2, we alluded to the fact that inverted indices are not enough to
ensure relevant search results for all queries. Even with basic text processing, many
relevant documents can be missed and many irrelevant documents can be included.
This section describes how these issues arise and some ways to address them. As we
will see, even these capabilities are not enough to provide relevant results for many
types of queries. Those will be addressed in Sect. 4.

3.1 Vocabulary Mismatches

User queries may contain synonyms and paraphrases of the words used in the doc-
uments. These documents should be returned in the search results since they are
relevant to the query: they just use different words with the same semantic meaning.
For example, there is a piece of furniture that can be referred to in English as a sofa,
couch, or chesterfield. In an eCommerce scenario, if a query contains any of these
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words, all the relevant products should be returned, regardless of which word appears
in the product title and what the name of the category that contains the products is.4

There are two ways to handle synonyms in inverted indices. The first is to normal-
ize to a specific form (e.g., mapping couch and chesterfield to sofa). This is similar to
using lemmatization to normalize singular and plural forms of nouns. Normalization
applies to both the index and the query so that they can match. Unlike lemmatiza-
tion, synonym normalizationmay add additional forms instead of replacing the form.
This allows the ranker to use information about exact form matching in addition to
retrieving all the documents via the normalization. When using normalization while
maintaining the original form, the query treats the two forms as alternatives. For
example, the query leather couch would match documents with either the words
leather and couch or with the words leather and sofa. Table3 shows the two treat-
ments of normalization. Misspellings are always handled as normalization.

The other way to handle synonyms in inverted indices is via expansion. In expan-
sion, a word is expanded to all of its synonyms, as opposed to normalization where
one of the synonyms is the form that all the words map to. Expansion can occur either
in the index or the query. If done in the index (Table4), whenever one of the words
is found, all the synonyms are indexed. Expanding in the index has two advantages.
First, more context is available. This means the system is more certain that the word
should be expanded (e.g., it is not some other meaning of the word which would not
have the synonym expansion). Second, the search is faster because the number of
words being searched from the query is smaller. If done in the query (Table5), when-
ever one of the words is found, all of the synonyms are looked for as alternatives.
Query expansion has the advantage that if there is a problem with a synonym it can
be quickly fixed because there is no need to reindex the documents.

3.2 Mapping to Structured Data

Many documents contain structured data. Sometimes the structured data is part of the
original document (e.g., prices on products in eCommerce, date stamps on papers
in document collections). In other cases, the structured data is created as part of
the document processing. For example, a named entity detector can extract all the

4 There are two interesting variants of the synonym problem. The first is misspellings, which are
a different, albeit technically incorrect, way to refer to a word. Search engines usually employ
a separate speller module to correct misspellings in queries [10]. Given how short queries are,
spell correction can be difficult, especially in the broad domain of web search. In addition, the
autocomplete (also referred to as type-ahead or query suggestion) [8] feature provided in many
search engines helps to guide users to properly spelled queries. In domains where there are likely
to be misspellings in the documents, the speller may also be applied during document indexing.
The second variant of the synonym problem is providing cross-lingual search, i.e., having a search
query in one language find documents in another language [19]. In this case the synonyms are the
words in the different languages with the same meaning. Cross-lingual search occurs for certain
document collections, especially domain-specific archives, and when searching for images, where
the images may be tagged in one language, usually English, but searched for in many languages.
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Table 3 Normalization approach to synonyms: Documents with any of sofa, couch, or chesterfield
will index sofa (indexing of the words brown and leather is not shown). Queries with any of sofa,
couch, or chesterfield will search for sofa. The pipe (|) indicates an alternative (logical OR). All
three documents will be returned for all three queries. The original words can be used in ranking

Document synonym normalization

Document text Original word Indexed words

Normalized only Normalized+original

Brown Leather Sofa Sofa sofa sofa

Brown Leather Couch Couch sofa sofa, couch

Brown Leather Chesterfield Chesterfield sofa sofa, chesterfield

Query synonym normalization

Original query Normalized query

Normalized-only query Normalized+original query

sofa sofa sofa

couch sofa sofa|couch
chesterfield sofa sofa|chesterfield

Table 4 Document expansion approach to synonyms: Documents with any of sofa, couch, or
chesterfieldwill index all three forms (indexing of the words brown and leather are not shown). All
three documents will be returned for queries with any of those words in them

Document synonym expansion

Document text Original word Indexed words

Brown Leather Sofa Sofa sofa, couch, chesterfield

Brown Leather Couch Couch sofa, couch, chesterfield

Brown Leather Chesterfield Chesterfield sofa, couch, chesterfield

Table 5 Query expansion approach to synonyms: Queries with any of sofa, couch, or chesterfield
will search all three words. The pipe (|) indicates an alternative (logical OR). So, documents with
any of the three synonyms will be returned for all three queries

Query Synonym Expansion

Original query Expanded query

sofa sofa|couch|chesterfield
couch sofa|couch|chesterfield
chesterfield sofa|couch|chesterfield
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people, locations, and organizations mentioned in a document and provide canonical
forms for these and even links to a knowledge graph nodes for the entities. Failing to
recognize entities and treat them as such can result in irrelevant search results. For
example, a search for my name tracy king on Amazon returns many books where
either the author’s first or last name is Tracy and the title of the book contains the
word king. If you include my middle name tracy holloway king, more of the results
are relevant, but many are not. Clearly I need to work on my popularity as an author
in order to rank more highly.

These entities can be indexed as special fields so that the fact that they are entities
and the type of entity are recorded. This is similar to how words in the document
title are indexed distinctly from those in the rest of the document so that ranking
can put more weight on matching words in the title. These fields may be text fields
that allow for standard inverted index retrieval (e.g., brand names in eCommerce,
author names for books and documents). Some entities are not text and so are stored
and searched differently, generally in ways similar to databases. Examples of such
entities include prices in eCommerce and dates for documents. By having these in
entity-specific formats, it is possible to reason over them, as required for queries like
dresses over $100 or 19th century poems.

3.3 Negation and Syntactic Structure

The last category of issues affecting the quality of search results from inverted indices
are for queries where finding relevant results requires an understanding of syntactic
or semantic structure.

In the realm of semantics, negation is particularly complex for search. Search
with inverted indices works by finding documents which contain combinations of
specific words. Determining whether a document does not contain a word, much less
the semantic concept that corresponds to the word in the query is much less efficient.
In the snacks without nuts example (Fig. 2), search has to interpret this as a query for
the ingredients of the snack not including nuts. Simply excluding documents without
the word nut can exclude relevant documents: A document might contain the word
nut if it is in a phrase like nut free, no nuts, or even my kids are nuts about this
snack in a review of the product. If the product contains a special ingredients field,
then the negation can take scope only over that field. However, checking that the
word nut does not occur in the ingredients field is not enough since different types of
nuts also should not appear there (e.g., words like almonds, walnuts, or pecans also
have to be absent).5 Creating the product data, query understanding [1], and search
facets (e.g., left rail filters for various attributes) to handle negation requires detailed
domain knowledge and systems. As a result, negation is currently rarely addressed
systematically in search engines.

5 See [5, 6] on entailment and contradiction detectionmore generally and [14] on hybridizing natural
language inference systems.
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As opposed to the semantics required for negation, information from syntactic
structure is easier to capture in search [25, 28, 29]. Modifier-head relationships,
such as those in the chocolate milk vs. milk chocolate example (Sect. 2.4) are of this
type. If these occur frequently enough in queries, they can be treated as MWE even
if they are compositional or the modification structure can be stored as additional
data in the index. When processing the documents to find the words and struc-
tures to index, simply scanning for the particular phrase (referred to as an ngram)
is not always enough. The ngram may occur in contexts where it does not refer to
the modifier-head relationship. In addition, this simple string adjacency will miss
instances where the modifier is not strictly adjacent to the head (e.g., milk and dark
chocolate assortment or plain, chocolate, and strawberry milk) [22]. More complex
syntactic analysis is needed to find documents which answer queries such as who
acquired PeopleSoft versus who did PeopleSoft acquire. The words PeopleSoft and
acquire (and its inflected forms and possibly words like acquisition) will match the
same documents. The ranking can treat these differently using word order, but syn-
tactic understanding is necessary as search comes closer to being question answering
and not just document retrieval.

3.4 Robustness Through Embeddings

Several of the techniques discussed above involve improving recall, i.e., improv-
ing the robustness of the system to mismatches between user queries and docu-
ments. Text normalization and synonyms are of this type. In addition to the methods
described above to handle these, with the advent of scalable deep-learning (DL) sys-
tems, instead of using traditional word-based inverted indices, some search engines
integrate embedding-based search. DL models map text and images to arrays of
numbers, referred to as embeddings, in an abstract semantic space. Words that have
identical or similar meanings (e.g., sofa, couch, chesterfield) are close to one another
in this space. Words that are related to one another (e.g., woman, girl) are close, but
less close than the synonymous words. Words that are unrelated (e.g., girl, chester-
field) are far apart. Search can map the documents to embeddings and search over
those.6 The user query is mapped into the same embedding space and the closest
documents are retrieved. The score that indicates how close the documents are in
the semantic embedding space is used in ranking and as a threshold to decide which
documents should be in the result set and which not. The remainder of this section
outlines where embedding-based search works well and where it does not.

Where Embeddings Work Well DL embeddings often work well to bridge
vocabulary mismatches between user queries and documents [4, 9, 18]. Instead of
explicitly using synonyms via normalization or expansion, the semantic space puts
words that are similar close together. A strength and weakness of this approach is
that the line between true synonyms and related words is blurred with no clear cut-off

6 Indexing and retrieving embeddings efficiently is a major challenge. It will not be discussed here.



204 T. H. King

Fig. 4 Results for the query cougar using embedding based search. The queries puma andmountain
lion have almost identical results

between the two. This provides robustness in finding documents but can also result
in related but non-exact documents being returned. Many embedding models also
handle misspellings. Although embedding-based search can return relevant results
for misspelled queries, it is not a replacement for a spell corrector, which can be used
to message the user for confirmation and correct queries into forms that will have
more accurate results and improved ranking.

Some of the greatest potential for embedding-based search is for text-based search
over images. Several recent DL models map text and images into the same semantic
space [12, 21]. Images are mapped into embeddings, which are indexed. The user’s
text query is then mapped into an embedding and the semantically closest images are
returned by the search engine. Ranking features other than the semantic similarity
can be used to determine the final ranking. This ensures that high-quality or popu-
lar images are returned and helps provide more visual diversity in the images. An
example of a search for cougar is shown in Fig. 4. Results are almost identical for
the queries puma and mountain lion, which are synonyms for cougar, even though
no synonyms were added to the system.

In many cases the DL embedding models are trained on large, general domain
data. This provides broad coverage, but can have issues for more specialized queries
and unusual domains. The embeddings can be customized, referred to as fine-tuning,
for a particular domain such as search on a fashion eCommerce site.

Where Embeddings Fail There are situations where embedding-based search
does not work well. Some of these are classes discussed above which require more
structure, including negation and syntactic structure. However, structure in the form
of ngrams (e.g.,milk chocolate vs. chocolate milk) are captured well in many embed-
ding models. So, in these cases embeddings are not worse than inverted index-based
search, but they are not always improvements.

However, embedding-based models perform much worse than inverted indices
when words distribute very similarly but have meanings that are crucially distinct for
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search.Model numbers in eCommerce search are an example of these.When amodel
number occurs in a query, userswant exactly thatmodel, but embedding-based search
will often return a seemingly random set of model number results. In fact, numbers in
general behave in this way since they occur in similar environments (e.g., modifying
the same nouns with the same adjectives and verbs surrounding those nouns) and so
the embeddings treat them like synonyms. This means that results for queries like
dresses over $100will not be relevant unless techniques as described in Sect. 3.2 are
used. Names of people can also behave this way where names of the same gender
and ethnicity incorrectly distribute like synonyms for one another.

4 Towards a Solution: Incorporating Structure

Section3 outlined where neither inverted indices nor embedding-based search solve
issues with search result quality. In this section we first discuss how more structured
data can be used to solve these (Sect. 4.1). We then show how robustness techniques
can be integrated to further enhance the results (Sect. 4.2). Finally we discuss a
detailed example of combining these techniques, using color-object queries to search
over images as an example (Sect. 4.3) and then sketch techniques for addressing
negation in search (Sect. 4.4).

4.1 Structure Where It Matters

In the examples in Sect. 1, we saw how structured data was need to provide accurate
search results for certain classes of queries.Why isn’t structured data of this type used
more pervasively? The first reason is that although there are established techniques
for creating and searching over structured data, models for query and document
understanding have to be build for the specific domain and use case. This means
that effort is focused on the most important uses cases. The second is that searching
over structured data is generally slower than search over inverted indices: The query
understanding models are run and then the search over the structured data, often in
addition to the standard search. Finally the ranking models have to take these new
structure-matched features into consideration.

In general domain search, including web search, special data around entities is
commonly used, including information about relations between entities [3]. The
entities are identified in the documents and linked to canonical forms. Documents
with matches to the query entities are ranked highly. Information learned about the
entities can be used to create search page features such as entity boxes, answer
boxes, highlighting in search result captions, and autocomplete [8] suggestions that
map directly to the entity, thereby avoiding spurious matches (e.g., so that tracy king
does not retrieve books about kings by authors with Tracy as one of their names).
eCommerce often makes use of special entity and structured data mappings and even
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simple reasoning (e.g., for price queries like dresses over $100). Identification of
brands, categories and departments, sizes, and prices can all be canonicalized and
mapped to structured data [15, 23]. Often these involve straight-forward matching
once the type of entity and its canonical form is identified.

Syntactic structure is used less frequently in search engines. However, it can
be used to identify MWEs that might otherwise be missed. For example, if Mickey
Mouse is treated as aMWE, it is necessary to analyze queries and titles likemickey and
minnie mouse in order to determine that theMWEmickeymouse is correctly included
[22]. Similarly, price queries cannot be processed with simple entity detection of
prices but instead require basic syntactic or at least ngram understanding because the
preposition used indicates the range (e.g., over $100 vs. under $100 vs. from $100
to $250).

4.2 Robustness Where Needed

Inverted indices make use of text normalization, stemming and lemmatization, syn-
onyms, and spell correction to improve the robustness of search, especially in mis-
matches between the words used in the user’s query and the documents. In addition,
DL embeddings can further improve robustness. A specialized example of robust-
ness with embeddings is color matching. As highlighted by Fig. 5, the color blue and
hence the images to which the word blue refers can occur to a broad range of shades,
including ones that merge into greens and purples. By mapping the word blue into a
color embedding, this embedding can then be matched against color embeddings of
images to be searched. Images closer to blue will be closer to the core blue embed-
ding and so can be ranked higher. In addition, the color wheel shown in Fig. 5 can
be used to let the user select an exact shade of blue to match, something which is
difficult to do with text queries.

Fig. 5 Shades of blue: Color
embeddings can allow the
search engine to match into
the blue, blue-green, and
blue-purple color space
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The issue with robustness is that in addition to retrieving relevant documents,
it can also retrieve related and even irrelevant ones when the expansion compared
to the query words is too great. This is especially the case for embeddings when
the similarity score is the only control over what to match. As a result, robustness
techniques are sometimes reserved for when a query has zero (referred to as null)
or low results. Spell correction is often used in this way, only applying when the
original query returns fewer than a fixed threshold of results. Similarly, embedding-
based searchmay be reserved for null and low result queries [26] or for longer queries,
which by definition are more likely to have fewer results because all the words have
to match, thereby reducing the number of possible matches.

4.3 Color-Object Queries

In this section, we examine color-object queries when searching over stock images.7

These queries are oneswhere a colorwordmodifies anobject. Theremaybemore than
one color-object pair in a query. The results for the query white rose red background
were shown in Fig. 1. Color-object queries are relatively common in image search
since users are looking for images to match their exact needs, including branding
and marketing materials. When incorrectly matched results are shown, such as red
roses on white backgrounds for white rose red background, the error is particularly
jarring since the images look much different than expected. In addition, there is no
way for the user to refine their query in order to see only relevant results. Finally,
there is a long tail of color-object queries, including less frequent color names that
overlap with non-color uses of the words (e.g., salmon).

The reason that irrelevant results are returned is that the inverted index contains
words from the image tags and captions and there is no way to capture word order
for the tags since they are just a set of words associated with the image. Among the
images returned by matching words in the tags and captions, images with red roses
on white backgrounds are much more common than ones with white roses on red
backgrounds. So, by random selection, irrelevant results will be more common. This
is exacerbated by the fact that queries for red roses are more common than for white
ones and queries for images with white backgrounds are also common. This in turn
results in more clicks and purchases for those images and higher popularity features
in the ranking.

The treatment of color-object queries for image search requires improved docu-
ment and query understanding for matching and ranking. For the images, prominent
objects, including the background, have to be identified. The colors of these objects
are determined. The information about the objects, colors, and the relations between
the two are stored in the index as structured representations. For the queries, the
color words and the objects they modify have to be identified and canonicalized.
The representations for the colors in the index and the query have to be compared,

7 The approach described here is based on techniques used in Adobe Stock search.
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as do the objects and the color-object relations. Once we know which images match
the query with respect to the color-object relationships, this information can be used
in matching to return only images where the color-object relationships are identical
or can be used in ranking to rank images with the requested color-object relation-
ships higher in the result set. The matching approach is more aggressive, leading
to higher precision results but risking excluding some relevant results. The ranking-
only approach is more conservative, returning all the results the non-structured data
would have returned but thereby including irrelevant results. The decisions for each
of these steps can be complex. They are described inmore detail below as an example
of how powerful but complex incorporating structured data into search can be.

Color-object Queries For the queries, first we use a named entity recognition
(NER) model to identify color phrases in queries. Depending on what types of colors
are used in queries, the model can cover “kindergarten” colors (the approximately
ten most basic colors, e.g., red rose), modified colors (e.g., pale yellow rose, hot pink
rose), or the long tail of colors (e.g., salmon rose, chartreuse rose). The NER model
should handle coordinated colors as well (e.g., pink and yellow roses), including
determining their logical meaning (e.g., each rose is both pink and yellow; some
roses are pink and some are yellow but there must be at least one of each). Finally,
the NERmust avoid detecting false positives where a color word occurs but does not
refer to a color in a color-object construction. False positives include ethnicities (e.g.,
black nurse,white nurse), proper nouns (e.g., snow white), and styles (e.g., black and
white portrait). Once a color is detected in the query, the object it modifies has to be
determined. A dependency parser that is custom-trained to work on short text like
queries can be used for this [25, 28]. The color NER model and the dependency
parser are language dependent and so models have to be created for each language.

Color-object Images For the images, first we need to identify the prominent
objects in the image and mask them. Masking determines the edges of the object so
that we can extract the dominant color for each object. Each object has to be labeled
as to what it is (e.g., a rose, a dog, a ball). The list of potential object labels can be
extracted from the queries, in particular from the objects that occur in color-object
queries.8 The object labeling is done by an autotagger model and the confidence of
the model can be used to adjust how accurate the labels are. The image background is
a special case. Backgrounds are commonly referred to in color-object queries (e.g.,
banana blue background, rose white background). The background can be identified
by masking out all the prominent objects: what is left is considered background. The
background color is determined the same way that object colors are. The background
label is simply as background; no autotagger is needed. The color-object pairs have
to be stored in the index as structured data so that the specific color is associated with
its object.

Color and Object Representations Consider how to represent the colors. For
the index, one possibility is to use a model that maps from an image to the colors
used by the query color NER model. However, this becomes difficult to manage if

8 If the object extraction and labeling will be used for other features, then the model should label a
broader set of objects.
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the range of colors goes beyond the unmodified kindergarten colors. For example,
for modified colors (e.g., color words modified by light, pale, dark, neon, hot), the
index would have to list both the modified version (e.g., dark blue) and the simple
version (e.g., blue) so that either type of query color could match (e.g., the queries
dark blue ball and blue ballmatch a dark blue ball, but the query light blue ball does
not). As discussed in Sect. 3.4, embeddings are an effective representation for colors
due to their continuous nature. Instead of storing the colors as text, the embeddings
can be used. These embeddings are language-independent because they represent the
colors of the pixels in the image. If the colors are stored as embeddings in the index,
the color words detected by the query NER have to be mapped to color embeddings.
This can be done with a multi-modal text-to-color model. This model is language
dependent due to the query text component.

Next consider how to represent the object labels. These could be English words. If
this is the case, then for search in other languages the object words have to be trans-
lated into English. This is similar to synonym normalization (Sect. 3) only between
languages instead of synonyms within a language. Alternatively, the language vari-
ants for each object label could be stored in the index, which could result in many
entries for each object (i.e., one for each language). This is similar to synonym
expansion only across languages instead of across synonyms within a language. An
alternative is to map into language-independent concepts, either to concepts in a tax-
onomy or knowledge graph or to an embedding representation [11]. If the concept
approach is chosen, the image autotagger has to map into these concepts so that
they can be stored in the index. Then the query processing maps the object words
identified by the dependency parser into the concepts.

Finally, the relationship between the color and object has to be represented and
associated with the image in which they occur. This can comprise a dedicated index
field for the objects in the image. Each object is then associated with at least one
structured attribute, namely its color.

Color-Object Example Consider the image in Fig. 6. Two objects are detected
in the image: the cup and the pastry. The remainder of the image is considered the
background. The objects are labeled by an image autotagger, shown in Fig. 6 as
concepts associated with English words to make them readable. Each object and
the background are then associated with a color embedding that is derived from the
object image, shown in the figure as a color swatch but in fact represented as a vector.
The object concept and its associated color embedding are in turn associated with
the document id. A list of words from tags or a caption is also associated with the
image.9

Consider the query pastry and red cup. Color NER detects the color word red. The
query dependency parser determines that the color modifies the object cup. The text-
to-color multi-modal model maps the word red to an embedding. This embedding is
not an exact match to the one for the coffee cup in Fig. 6 because the word redmaps to
the most canonical representation of the color, while the coffee cup has shadowing

9 These are shown as English words in Fig. 6 but could be concepts similar to the ones used for the
color-object representation. The same holds for the word pastry in the query in Fig. 7.
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Structured Color-object Field Image Data
Doc. Id Object (Concept) Color (Embedding)

1 Concept 123 cup :

1 Concept 456 pastry :

1 Concept 789 background :

Words Associated with the Image
Doc. Id Words
1 cup, saucer, pastry, croissant, coffee, yellow, red, tasty, breakfast

Fig. 6 Image with two objects (a red cup and a brown pastry) on a yellow background. The
index information is shown in the table below the image. The objects are represented as concepts
(represented as Concept_num_word for exposition) and an associated color (represented as a color
swatch corresponding to a color embedding). Image licensed from Adobe Stock

Fig. 7 Mapping of the query
pastry and red cup for
retrieval with color-object
structured data and an
inverted index

User query: pastry and red cup

Color-object Field: Concept 123 cup :
Words: pastry

on it. The object word cup is mapped to a concept and associated with the color
embedding. Theword and is dropped as a stopword. Theword pastry is treated as any
other word for search since it is not part of a color-object relationship. The resulting
query is shown inFig. 7.When the query ismatched against the index, theword pastry
matches against the words in document 1. The concept Concept_123_cup matches
with the object concept in document 1. The color embeddings for Concept_123_cup
in the query and image are then compared. These are not an exact match since the
shades of red are different. However, since they are within a pre-defined similarity
threshold, they are considered a match and document 1 will be returned for the query.

The treatment of color-object queries for image search shows the power behind
using structured data in conjunctionwith embeddings and inverted indices for search.
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However, it also demonstrates the complexity of creating such structured data and
integrating it into the search matching and ranking.

4.4 Towards Negation

Section3.3 discussed why negation is complex for search, using the example query
snacks without nuts illustrated in Fig. 2. Here, we discuss potential approaches to
handling negation in search.

Negation in Queries To handle queries with negation like snacks without nuts,
search has to determine that the query contains a negation (e.g., without) and the
scope of that negation (e.g., nuts). Most queries are relatively short and there are a
limited number of ways to indicate negation, which makes the detection and scope
of negation easier to determine than with standard long text such as that found in
documents.10 However, once the negation and its scope is determined, search then
has to correctly and efficiently retrieve documents, e.g., ones which are snacks but
which do not contain nuts.

An overly simplistic approach is to retrieve all documents matching snacks and
then exclude documents which contain the word nut or to rank documents with the
word nut lower than documents without it. Unfortunately, this approach still includes
many results with nuts, i.e., documents which refer to specific instances of nuts (e.g.,
almonds, walnuts). Conversely, relevant documents are excluded or ranked unduly
lowly if they contain the word nut in phrases like nut free, no nuts, or kids are nuts
about this snack.

Given the importance of ingredients in food items, a specialized solution can
be implemented, as was done for color-object search for photos (Sect. 4.3). The
ingredient lists of food items can be enhanced offline with relevant hypernyms (e.g.,
nut for pecan, dairy for milk). These hypernyms can be treated as keywords or as
part of the structured data for the ingredients, which would also enable filters for or
against specific ingredients. If search correctly identifies the query snacks without
nuts as a food query with negation, it can match all snack documents that do not
contain the word nut in the ingredient field or structured data. If it does not identify
the query as a food query, search can back off to the approach of returning snack
documents which do not contain the word nut in any of the text fields.

The specialized solution approach requires anticipatingwhich classes of attributes
will occur with negation. However, users can apply negation to many types of
attributes (e.g., lamp without shade, cup no handle, cities without rent control, plas-
tic free restaurants). Handling negation more broadly requires a more systematic
approach. Once the negation and its scope are detected in the query, the documents

10 Negated phrases add an extra layer of complexity in determining the scope of negation and
matching that against the documents. For example dresses without red stripes should match dresses
with blue stripes or with red polka dots since the negation applies to the concept denoted by the
phrase red stripes. See [5, 6] for more discussion with a particular focus on question answering and
textual inference.
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matching the non-negated parts of the query can be retrieved. Documents mention-
ing the negated words can then be excluded or demoted. The remaining documents
can then be checked for hyponyms of the negated word (e.g., almonds, walnuts etc.
for nuts) and documents containing these hyponyms can be excluded or demoted.
Special care has to be taken to allow for phrases like nut free which capture the
negation within the document and hence are excellent matches for the corresponding
negative query. The above approach requires more calculation at query time because
a potentially large list of hyponyms has to be checked against a potentially large
number of documents. To avoid this, hypernyms can instead be added to the index.
This is similar to the specialized ingredient solution but on a larger scale for all of the
non-stop words in the document. This has the downside of adding to the size of the
index, especially to the number of document ids associated with the more abstract
hypernyms. A similar trade-off was discussed in Sect. 3.1 for synonyms and other
vocabulary mismatches.

Negation in Documents The above discussion outlined some methods for
addressing negation in queries. However, negation also exists in documents. The
search document processing and indexing must handle negation in documents when
providing results for queries, whether negated or not. A simple example of this is
the query nut snacks which should not match documents that have phrases like a nut
free snack, contains no nuts, or does not contain nuts. A more subtle example is the
query leather jacket which often matches faux leather jackets, where the word faux
indicates that the jacket is not made of leather. If the user is looking for jackets in
the style of leather jackets, these non-leather results are fine, but if they want a jacket
made of leather, these results are irrelevant and it is difficult to construct a query to
eliminate them. Often the only way to exclude these non-leather results is to use a
filter for material=leather, if available.

Inverted indices are not well designed for encoding words as negated concepts
since they are optimized to provide word-document lists (Sect. 2.1). Deciding not to
index negated terms runs two risks. First, these can be perfect matches for negated
queries since they are explicit about not involving the negated attribute. Second, if the
processing incorrectly identifies the word as being negated, then that document will
never be returned for that concept since the word is not indexed. Instead, the negated
concept or words need to be associated with the information that they are negated.
This takes the form of a basic structured representation. This representation allows
negated queries to match directly against similarly negated document information. It
also allows non-negated queries (e.g., nut snacks, leather jacket) to avoid matching
against documents which negate words that should be matched (e.g., nut in nut
free, leather in faux leather). This information is more costly to compute, store,
and match against, but is necessary to effectively handle negation in documents and
corresponding queries. Once such information is available, search can then use it
for matching or, more conservatively, for ranking documents with the negated words
lower than ones with the non-negated words.

This section briefly explored the complexity of handling negated queries and
documents in search and some potential solutions. There is no single, simple solution,
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especially when large numbers of documents have to be searched over quickly. So,
handling negation remains an unsolved, but crucial research problem in search.

5 Conclusion

Search historically depends on inverted indices for matching user queries to relevant
documents. User behavioral data provides additional signals for query-independent
and query-dependent relevance of documents. These inverted indices enable rapid
search over large document collections. Optimizations in text processing, normal-
ization, and expansion have improved search’s ability to return relevant documents.
However, these approaches have issues around robustnesswhen there aremismatches
between users’ queries and the documents, something which is highlighted when
using textual queries to search for images. Moving to representations like embed-
dings fromDLmodels improves robustness for some types of data and are particularly
useful for image data (Sects. 4.2 and 4.3).

However, there remain classes of queries which require information beyond the
representation of words and multi-word expressions stored in an inverted index or
as an embedding. These are the structured representations referred to in the title
of this paper. They involve searching over structured information about the content
and relationships among the entities. These structured representations in turn must
support reasoning (e.g., snacks without nuts).

Given the specialized knowledge and models needed to create and search over
this structure and given the increased cost in latency and space to search and reason
over the structured data, these approaches are reserved for high-value queries which
have low quality results with traditional techniques. A simple example of this is
identifying brands in eCommerce queries, canonicalizing them, and then matching
them against the structured brand data on the products. More complex structured
data is required for representing document-internal relationships. The color-object
image search queries are an example of this, where the images have to have color data
associated with the objects in order to avoid cross-talk bag-of-words results where
the color is present in the image but on the wrong object (e.g., for the query white
rose red background showing red roses on a white background). The step beyond
the matching to structured data and relations across entities is to be able to reason
about the documents in order to provide relevant results and even answers to the
users’ queries. Price queries in eCommerce search (e.g., dresses over $100) are an
example of these. For price queries, not only does the price in the query have to be
identified and matched to the product price, but the word over (or under or around or
from . . . to) has to be identified and associated with the correct reasoning (arithmetic
operation).

The future of search is going to be hybrid, involving techniques from classic
information retrieval, embedding-based search, and reasoning. These hybrid search
techniques will be increasingly powered by improved query and document under-
standing via the integration of structured data into search matching, ranking, and
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reasoning itself. Enabling such hybrid systems will require a deep understanding of
linguistic representations of meaning, of information retrieval optimization, and of
the types of information encoded in the queries and documents. It is my hope that
this paper inspires further collaboration across disciplines to improve search.

For readers interested in learning more about search, there are several excellent
textbooks available. References [2, 3, 17] focus on the fundamentals of search,
especially inverted indices and text processing (e.g., normalization, expansion, stop
words, stemming). Balog [3] examines entity-based search and how deeper under-
standing of entities can be used to improve all aspects of search. Baeza-Yates
[1] focuses on semantic query understanding. SIGIR (Special Interest Group—
Information Retrieval) is the annual conference focused on search with a published
proceedings and the ACM SIGIR Forum (https://sigir.org/forum/) publishes addi-
tional papers on search. There are two annual workshops focused on eCommerce
search: ECOM [13] and ECNLP [16], both of which publish proceedings. Tsagkias
et al. [27] provides an overview of search issues as pertain to eCommerce.

Acknowledgement I would like to thank Roussanka Loukanova for inviting me to present at Logic
and Algorithms in Computational Linguistics 2021 (LACompLing2021) and to contribute to this
volume. I would also like to thank the audience of LACompLing2021, four anonymous reviewers,
and Annie Zaenen for insightful questions and comments.

I would like to thank the Adobe Sensei and Search team who developed the color-object search
techniques discussed in Sect. 4.3: Baldo Faieta, Ajinkya Kale, Benjamin Leviant, Judy Massuda,
Chirag Arora, and Venkat Barakam.

References

1. Baeza-Yates, R.: Semantic query understanding. In: Proceedings of SIGIR. ACM (2017)
2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and Technol-

ogy Behind Search, 2nd edn. Addison-Wesley (2011)
3. Balog, K.: Entity-Oriented Search. The Information Retrieval Series, vol. 39. Springer (2018)
4. Bianchi, F., Tagliabue, J., Yu, B.: Query2Prod2Vec: grounded word embeddings for eCom-

merce. In: Proceedings of the 2021 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies: Industry Papers, pp.
154–162. Association for Computational Linguistics (2021)

5. Bobrow, D., Condoravdi, C., Crouch, R., Kaplan, R., Karttunen, L., King, T.H., de Paiva, V.,
Zaenen, A.: A basic logic for textual inference. In: Proceedings of the AAAI Workshop on
Inference for Textual Question Answering, pp. 47–51 (2005)

6. Bobrow, D., Crouch, D., King, T.H., Condoravdi, C., Karttunen, L., Nairn, R., de Paiva, V., Zae-
nen, A.: Precision-focused textual inference. In: Proceedings of the ACL-PASCAL Workshop
on Textual Entailment and Paraphrasing, pp. 16–21 (2007)

7. Buttcher, S., Clarke, C.L.A., Cormack, G.V.: Information Retrieval: Implementing and Evalu-
ating Search Engines. The MIT Press (2016)

8. Cai, F., de Rijke,M.: A survey of query auto completion in information retrieval. Found. Trends
Inf. Retr. 10, 1–92 (2016)

9. Chang,W.C., Jiang,D.,Yu,H.F., Teo,C.H., Zhong, J., Zhong,K.,Kolluri,K.,Hu,Q., Shandilya,
N., Ievgrafov, V., Singh, J., Dhillon, I.S.: Extreme multi-label learning for semantic matching
in product search. In: Proceedings of KDD2021 (2021)

https://sigir.org/forum/


White Roses, Red Backgrounds: Bringing Structured Representations to Search 215

10. Chen, Q., Li, M., Zhou, M.: Improving query spelling correction using web search results.
In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pp. 181–189 (2007)

11. Chen, X., Cardie, C.: Unsupervisedmultilingual word embeddings. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 261–270 (2018)

12. Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q.V., Sung, Y., Li, Z., Duerig,
T.: Scaling up visual and vision-language representation learning with noisy text supervision.
In: Proceedings of the 38th International Conference on Machine Learning PMLR (2021)

13. Kallumadi, S., King, T.H., Malmasi, S., de Rijke, M. (eds.): Proceedings of the SIGIR 2021
Workshop on eCommerce. CEUR-WS (2021)

14. Kalouli, A.L., Crouch, R., de Paiva, V.: Hy-NLI: a hybrid system for natural language inference.
In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 5235–
5249. International Committee on Computational Linguistics (2020)

15. Kutiyanawala, A., Verma, P., Yan, Z.: Towards a simplified ontology for better e-commerce
search. In: Proceedings of ECOM2018. CEUR-WS (2018)

16. Malmasi, S., Kallumadi, S., Ueffing, N., Rokhlenko, O., Agichtein, E., Guy, I. (eds.): Proceed-
ings of The 4thWorkshop on e-Commerce andNLP.Association for Computational Linguistics
(2021)

17. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge
University Press (2008)

18. Mohan, V., Song, Y., Nigam, P., Teo, C.H., Ding, W., Lakshman, V., Shingavi, A., Gu, H., Yin,
B.: Semantic product search. In: Proceedings of KDD2019 (2019)

19. Peters, C., Braschler, M., Clough, P.: Multilingual Information Retrieval: From Research to
Practice. Springer (2012)

20. Porter, M.F.: An algorithm for suffix stripping. Program 14, 130–137 (1980)
21. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,

A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable visual models from
natural language supervision (2021). ArXiv:2103.00020

22. Senthil Kumar, P., Salaka,V., King, T.H., Johnson, B.:MickeyMouse is not a phrase: improving
relevance in E-commercewithmultiword expressions. In: Proceedings of the 10thWorkshop on
Multiword Expressions (MWE), pp. 62–66. Association for Computational Linguistics (2014)

23. Skinner,M.,Kallumadi, S.: E-commerce query classification using product taxonomymapping:
a transfer learning approach. In: ECOM SIGIR Workshop. CEUR-WS (2019)

24. Sorokina, D., Cantú-Paz, E.: Amazon search: the joy of ranking products. In: Perego, R., Sebas-
tiani, F., Aslam, J.A., Ruthven, I., Zobel, J. (eds.) Proceedings of the 39th International ACM
SIGIR conference on Research and Development in Information Retrieval, SIGIR 2016, pp.
459–460. ACM (2016)

25. Sun, X., Wang, H., Xiao, Y., Wang, Z.: Syntactic parsing of web queries. In: Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1787–1796
(2016)

26. Trotman, A., Degenhardt, J., Kallumadi, S.: The architecture of eBay search. In: Degenhardt,
J., Kallumadi, S., de Rijke, M., Si, L., Trotman, A., Xu, Y. (eds.) Proceedings of the SIGIR
2017 eCom workshop. CEUR-WS (2017)

27. Tsagkias, M., King, T.H., Kallumadi, S., Murdock, V., de Rijke, M.: Challenges and research
opportunities in eCommerce search and recommendations.ACMSIGIRForum 54, 1–23 (2020)

28. Wang, Z., Wang, H., Hu, Z.: Head, modifier, and constraint detection in short texts. In: Pro-
ceedings of the International Conference on Data Engineering, pp. 280–291 (2014)

29. Wang, Z., Zhao, K., Wang, H., Meng, X., Wen, J.R.: Query understanding through knowledge-
based conceptualization. In: Proceedings of IJCAI, pp. 3264–3270 (2015)

http://arxiv.org/abs/2103.00020

	Preface
	Contents
	 Complexity of the Lambek Calculus and Its Extensions
	1 Introduction
	2 The Lambek Calculus and Its Limitations
	2.1 The Lambek Calculus
	2.2 Language Models
	2.3 The Unit Constant
	2.4 Lambek Grammars
	2.5 Lambek Grammars and Context-Free Grammars

	3 Complexity of the Lambek Calculus and Its Fragments
	3.1 NP-Completeness of the Lambek Calculus
	3.2 Polynomial and Pseudo-polynomial Algorithms

	4 Additive Operations
	5 ``Harmless'' and ``Dangerous'' Extensions
	5.1 Classifying Extensions of the Lambek Calculus
	5.2 The Displacement Calculus
	5.3 The Lambek Calculus with Brackets
	5.4 ``Harmless'' Extensions as ``Linear'' Ones

	6 (Sub)exponentials
	7 Kleene Star
	8 Conclusion
	References

	 Categorial Dependency Grammars: Analysis and Learning
	1 Introduction to CDG
	1.1 Surface Dependency Structures
	1.2 CDG Types Express Dependency Valencies
	1.3 Projective Dependencies and Anchors
	1.4 Non-projective Dependencies
	1.5 Non-projective Dependencies with Anchors

	2 CDG Definitions
	2.1 From Rules to Dependency Structures
	2.2 Generated Languages

	3 CDG Analysis
	3.1 CDGAnalyst
	3.2 CDGLab with Filtering
	3.3 Greedy Parser

	4 Grammatical Inference
	4.1 Learnability Properties
	4.2 Learnability of K-valued CDG

	5 K-star CDG
	5.1 Learning Approaches with Iterated Types
	5.2 TGE-Algorithm
	5.3 Criteria and Readings of the ``Repetition Principle''
	5.4 Experiments on Corpora and Prospective Work

	6 Open Problems
	6.1 CDG-Types and Learning from Structures
	6.2 Membership Properties and Hierarchies
	6.3 Abstract Family of Languages

	7 Conclusion
	References

	 Diamonds Are Forever
	1 Introduction
	1.1 The Lambek Hierarchy
	1.2 Modalities for Structural Control

	2 Dependency-Enhanced Types
	2.1 Rethinking Constituency
	2.2 Case Study: Dutch Verb Clusters

	3 Dependencies and Neural Language Models
	3.1 Experimental Design
	3.2 Results and Analysis

	4 Conclusion
	References

	 A Hybrid Approach of Distributional Semantics and Event Semantics  for Telicity
	1 Introduction
	2 Background and Related Work
	2.1 Eventuality
	2.2 Logic-Based Computational Linguistics
	2.3 Corpus-Based Computational Linguistics

	3 System Overview
	3.1 Syntactic Analysis
	3.2 Semantic Analysis
	3.3 Aspect Analysis
	3.4 Theorem Proving

	4 System Demonstration
	5 Discussion and Conclusion
	References

	 Generalized Computable Models and Montague Semantics
	1 Introduction
	2 Basic Notions of Generalized Computability
	3 Montague Intensional Logic
	4 Ershov-Scott Functional Spaces
	5 Rank and Vector Models of Intensional Logic
	5.1 Isomorphism Between Rank and Vector Models

	6 Interpreting the Semantics of Possible Worlds
	6.1 Interpretation of Possible Worlds Semantics for Simplest Model
	6.2 Interpretation of Semantics of Possible Worlds for Vector Model
	6.3 Analysis of Past Simple, Future Simple and Present Continuous in English

	References

	 Multilingual Text Generation for Abstract Wikipedia in Grammatical Framework: Prospects and Challenges
	1 Introduction
	2 From Templates to Rendering Functions
	3 Rendering Functions in Grammatical Framework
	4 Abstraction Levels in GF
	5 Smart Paradigms and the Lexicon
	6 More Abstraction Levels
	7 Improving the Style
	8 Selecting Content
	9 Authoring
	10 Roles and Skills
	11 First Results
	12 Conclusion
	References

	 Decomposing Events into GOLOG
	1 Introduction
	2 Data and Background
	2.1 Events in Philosophy
	2.2 Events in AI
	2.3 Data

	3 The Situation Calculus
	3.1 The Language of the Situation Calculus
	3.2 Domain Dependent and Independent Axioms
	3.3 Aspect in GOLOG

	4 Grammar to GOLOG
	5 Future Work
	6 Conclusion
	References

	 Generating Pragmatically Appropriate Sentences from Logic: The Case of the Conditional and Biconditional
	1 Introduction
	1.1 Conditional Perfection
	1.2 Generating Natural Language from Logical Formulas
	1.3 Focus of the Paper

	2 A Pragmatic Algorithm for Expressing Propositional Logic Formulas in English
	2.1 Key Ideas Underlying the Algorithm
	2.2 The Pragmatic Algorithm and the Baseline
	2.3 Example of Input and Output

	3 Evaluating the Algorithm
	3.1 Design and Materials
	3.2 Participants and Procedure
	3.3 Results and Discussion

	4 Conclusion and Future Work
	References

	 White Roses, Red Backgrounds: Bringing Structured Representations to Search
	1 Introduction
	2 How Search Works
	2.1 Inverted Indices
	2.2 Beyond Inverted Indices
	2.3 Ranking Features
	2.4 An Example: Milk Chocolate Versus Chocolate Milk

	3 Why Inverted Indices Are Not Enough
	3.1 Vocabulary Mismatches
	3.2 Mapping to Structured Data
	3.3 Negation and Syntactic Structure
	3.4 Robustness Through Embeddings

	4 Towards a Solution: Incorporating Structure
	4.1 Structure Where It Matters
	4.2 Robustness Where Needed
	4.3 Color-Object Queries
	4.4 Towards Negation

	5 Conclusion
	References

	 Rules Are Rules: Rhetorical Figures and Algorithms
	1 Introduction
	2 Rhetorical Figures, a Primer
	3 Figurative Functions
	4 Figure Detection
	5 Subtotal
	6 Epanalepsis, Argument Foreclosure, and Semantic-Feature Promotion
	7 Detecting `Chiasmus'
	8 Antimetabole, Mesodiplosis, and Parison; AMP Constructions
	8.1 Irrelevance of Order or Rank
	8.2 Reciprocality
	8.3 Comprehensiveness

	9 Antithesis, Antimetabole, Mesodiplosis, and Parison; AAMP Constructions
	9.1 Subclassification
	9.2 Reject-Replace

	10 Conclusion
	References

	 Integrating Deep Neural Networks with Dependent Type Semantics
	1 Introduction
	1.1 Symbolic and Soft Reasoning
	1.2 Criteria for a Soft Reasoning System
	1.3 Names and Predicates in DTS
	1.4 Are Symbolic and Soft Reasoning Incompatible?

	2 Neural DTS
	2.1 Real Numbers and Quotient Types
	2.2 Setoids in DTS
	2.3 Setoids of Natural Numbers, Integers, Rationals, and Reals
	2.4 Embedding of an Entity into a Vector Space
	2.5 Neural Classifiers as Predicates

	3 Does Neural DTS Provide Soft Reasoning?
	3.1 Continuous Truth Values
	3.2 Comparable Representations
	3.3 Learnable Representations

	4 Verification Conditions for Predicates
	5 Related Work
	5.1 Logic and DNN
	5.2 Natural Language and DNN
	5.3 Programming Languages and DNN

	6 Conclusion and Future Work
	References

	 Meaning-Driven Selectional Restrictions in Remember Versus Imagine Whether
	1 Introduction
	2 Non-explanations
	2.1 Anti-rogativity
	2.2 Neg-Raising
	2.3 Veridicality

	3 Experiential Parasitism
	3.1 Experientially Parasitic Attitudes
	3.2 Experientially Parasitic Remembering

	4 Veridicality Inferences in Remember-Reports
	4.1 Semantics for Declarative Remember
	4.2 Capturing Factivity Variation
	4.3 Semantics for Interrogative Remember

	5 Remembering and Imagining Whether
	5.1 Remembering Whether
	5.2 Imagining Whether

	6 Outlook
	References

	 A Unified Cluster of Valence Resources
	1 Introduction
	2 The Norwegian Valence Catalogue NorVal and the Computational Grammars NorSource and TypeGram
	2.1 Basic Constructs of a Valence Catalogue: Lexvals and Valpods
	2.2 Frame Types and Their Notation
	2.3 Frame Types Represented in AVM Format, Combining Grammatical Functions and Logical Form
	2.4 Grammars
	2.5 Summary of a Unified Cluster of Valence Resources for Norwegian

	3 Valence Catalogue for Ga (GaVal)
	3.1 Overall Design of GaVal
	3.2 Lexvals and Valpods in GaVal
	3.3 Interacting CL Labels, AVMs and Semantic Specification
	3.4 Summary: A Unified Cluster of Valence Resources for Ga

	4 Final Remarks
	References




