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Abstract

One of the major bottlenecks for deploying popular first-order differentially private
(DP) machine learning algorithms (e.g., DP-SGD) lies in their high computation
and memory cost, despite the existence of optimized implementations. Zeroth-
order methods have promise in mitigating the overhead, as they leverage function
evaluations to approximate the gradients, hence significantly easier to privatize.
While recent works have explored zeroth-order approaches in both private and
non-private settings, they still suffer from relatively low utilities compared with
DP-SGD, and have only been evaluated in limited application domains. In this
work, we propose to leverage public information to guide and improve gradient
approximation of private zeroth-order algorithms. We explore a suite of public-
data-assisted zeroth-order optimizers (PAZO) with minimal overhead. We provide
theoretical analyses of the PAZO framework under an assumption of the similarity
between public and private data. Empirically, we demonstrate that PAZO achieves
superior privacy/utility tradeoffs across vision and text tasks in both pre-training and
fine-tuning settings, outperforming the best first-order baselines (with public data)
especially in highly private regimes, while offering up to 16 x runtime speedup.

1 Introduction

Differentially private (DP) is a widely-used framework to protect sensitive information so that
adversaries cannot infer if any user or sample participates in the computation. When applied to
machine learning tasks, popular DP algorithms based on privatizing first-order gradients (such as
DP-SGD [1]]) fundamentally rely on per-sample gradient clipping, which can be computationally
expensive and impractical in large-scale settings. While there exist optimized implementations of
DP-SGD, they are limited in their generality to handle all model architectures and often incur other
overheads, such as trading extra memory for computation [2, |3].

To tackle this, zeroth-order optimization offers an attractive alternative for DP training, as it leverages
function queries (scalar values) to approximate the gradients and is hence inherently amenable to
privatization [4} 5]. However, randomly searching in a potentially high-dimensional space based
on function query feedback can be rather inefficient [4]. Prior work has demonstrated competitive
performance of (private) zeroth-order methods only in the limited context of language model fine-
tuning with prompts [6 (7} 8] 9, [10]] or models with extreme sparsity [[11]]. In addition, there is still a
utility gap between private zeroth-order and first-order approaches on challenging tasks [8]].

In this work, we aim to narrow the gap between zeroth-order and first-order methods in private training
leveraging public data. Zeroth-order outputs are high-variance estimators of the first-order gradients
and suffer from slow convergence in terms of the total number of iterations. However, there usually
exists non-sensitive public data, whose batch gradients provide informative guidance on perturbing
the parameter space. We thus introduce PAZO, a suite of zeroth-order DP algorithms that leverage
a small amount of public data with similar distributions as private data along with their first-order
gradients to guide or augment the zeroth-order outputs. In particular, we explore (1) PAZO-M, a mix
(convex combination) of private zeroth-order estimates and public first-order gradients, (2) PAZO-P,
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Figure 1: Results of CIFAR-10 with NFResNet18 trained from scratch under privacy budget e = 3. Left:
Zeroth-order methods demonstrate consistent accuracies under various privacy budgets compared with the best
first-order method with public data. Right: Proposed zeroth-order approaches (PAZO-*) are more accurate than
vanilla DPZero, and significantly more efficient than all the public data augmented first-order baselines.

constraining the sampling of random directions in the public gradient subspace, and (3) PAZO-S,
selecting the best public gradient based on function queries on private data. When designing PAZO,
we ensure that privatization only operates on top of function evaluations to preserve the efficiency of
zeroth-order approaches, while still satisfying desired privacy guarantees.

Unlike recent zeroth-order work that mostly focuses on language model tuning with prompts, we
investigate both image and text domains, and both pre-training and fine-tuning scenarios. We
show that without access to public data, DP zeroth-order methods may underperform DP first-order
approaches (e.g., DP-SGD [1]]), whereas even modest amounts of public data can significantly close
the gap, especially in highly private regimes. In particular, the best zeroth-order method with public
data can match or even outperform the best public-data-assisted first-order counterpart, while being
significantly faster to train. Our results highlight the broader potential of zeroth-order methods
for DP training with public data: enabling improved privacy/utility tradeoffs, applicability across
diverse domains, and achieving up to 16x speedup compared to traditional first-order methods. Our
contributions are summarized as follows:

1. Algorithm design. We propose the first set of private zeroth-order optimization algorithms
(PAZO-{M,P,S}) augmented with public data (gradients) to construct better gradient estimates in
a more constrained space. PAZO helps close the gap between zeroth- and first-order methods in
the settings where zeroth-order approaches underperform first-order ones.

2. Theoretical analysis. We present the privacy and utility guarantees for each method, all with
improved convergence rate in terms of model dimension d. PAZO-M improves the vanilla
zeroth-order method by a factor of log d, and PAZO-{P,S} obtain d-independent rates.

3. Empirical validation. We evaluate our methods on both image and text domains and in both
pre-training and fine-tuning scenarios. We find that zeroth-order methods are robust across various
privacy budgets whereas first-order methods are sensitive. Our methods consistently have superior
privacy/utility tradeoffs and outperform the best public-augmented first-order method in highly
privacy regimes, while achieving up to 16x speedup.

2 Related Work and Preliminaries

Differential privacy. In this work, we focus on the popular definition of sample-level DP [} [12]].
Definition 1 (Differential privacy [12]]). A randomized algorithm M is (g, 0)-differentially private if
for all neighboring datasets D, D’ differing by one element, and every possible subset of outputs O,

Pr(M(D)e0)<efPr(M(D")eO)+56.
We follow the classic DP model where the neighboring datasets D and D’ differ by adding/removing

one training sample. Typically, noise is added to ensure DP scales with the model dimensions,
resulting in degraded and unusable model utilities [[13]]. Extensive prior research has been proposed



to improve privacy/utility tradeoffs, including increasing the batch size [14} [15]], using public or
side information [16, 17, [18]], and reducing the dimensionality of gradients [[19]. Another bottleneck
of deploying DP algorithms at scale lies in the computation (or memory) cost [2]. For example,
vanilla DP-SGD computes and stores per-sample clipped gradients, leading to memory consumption
O(bd) where b is the private batch size and d is the model dimension. Existing methods, such as
ghost-clipping/bookkeeping [20]], reduce layer-wise gradient storage to min{2bp, bd}, where d is the
layer dimension and p is the feature dimension of this layer, i.e., sequence length for text data. In this
work, we propose to mix zeroth-order (on sensitive private data) and first-order oracles (on public
data) to mitigate these two challenges at once.

Zeroth-order optimization. Zeroth-order approaches use (stochastic) function queries to estimate
the true gradients. They are particularly suitable for applications where gradient information is
difficult to obtain, such as adversarial attacks and defenses [21} 22} 23], hyperparameter tuning [24],
and data-driven science workloads [25]]. One fundamental challenge of zeroth-order methods is the
need for a large number of function queries to reduce the variance of the estimate [4]. Existing work
has explored various techniques to improve the estimate, such as incorporating the previous estimated
gradient directions [26]] and sparsifying gradients [[11]. Our work focuses on private training, and the
proposed techniques can be combined with those prior methods. Given the current model parameter
2 € R?% and loss function f : R? — R, the widely used two-point zeroth-order gradient estimator [4],
involves two evaluations of function values:

f(@+ M €) — flo — s §)

gx(x;§) = 3\

u, ey

where ¢ is a randomly sampled training data point, u € R is uniformly sampled from the Euclidean
sphere v/dS?!, and A > 0 is the smoothing parameter. Let v be uniformly sampled from the
Euclidean ball vdB? = {z € RY|||z|| < v/d}. Define the smoothed version of f(-) as f(z) :=
E,[f(x + Av)]. We have that (1) fy(x) is differentiable and (2) E,[gx(x;&)] = Va(x) [4[8].
It indicates that by using the zeroth-order gradient estimator, we are asymptotically optimizing a
smoothed version of the original objective f(z), where the smoother is a ball with radius A\v/d.

Differentially private zeroth-order optimization. The desired private gradients are expensive
to obtain in DP training, because gradients have to be generated and privatized at a granularity of
samples as opposed to mini-batches. Therefore, recent work has considered privatizing zeroth-order
algorithms [8| [7} 27, 28] by first clipping the function queries and then adding proper Gaussian
noise. Specifically, based on the non-private two-point estimator on one sample (Eq. (I))), the private
zeroth-order gradient g, (x; B) is computed by

gz B) = % > clipc (f(x i A“;S)Q_Aﬂx = Mm) +2 ]|, @
£eB

where b = | B| is batch size, z ~ %N (0, 0202) is privacy noise, and u is a random direction, e.g.,
sampled uniformly from a sphere v/dS%—'. We can query the raw data multiple times per iteration by
sampling multiple u’s to improve the estimate (Section [3). Prior private zeroth-order work mostly
focuses on language model tuning with prompts, and additionally there still exists a big performance
gap between zeroth- and first-order methods [8, (7, 27]. In PAZO, we use public information to guide
the gradient estimate on private data, as discussed in the next section.

3 PAZO: Public-Data-Assisted Private Zeroth-Order Optimization

Given zeroth-order oracles on private data and first-order oracles on public data, we aim to blend
public gradients into the private zeroth-order framework to improve privacy/utility tradeoffs, while
retaining the efficiency benefits of vanilla zeroth-order updates. In this section, we propose three
approaches using this public prior that significantly outperform zeroth-order baselines without public
data and result in competitive/superior performance relative to DP-SGD with public data. We analyze
their convergence properties in Section



3.1 PAZO-M: Mixing Zeroth-Order Estimates and First-Order Gradients

PAZO-M linearly combines the public gradient with the private two-point estimator (Eq. (2)). At each
iteration ¢, we sample a public batch, obtain its batch gradient, and mix it with the private two-point
gradient estimate. We run private two-point estimation ¢ times to reduce its variance. Since we query
the same raw private mini-batch ¢ times, we need to add more privacy noise (g times more variance)
to ensure the same DP as if querying once. The updating rule is summarized in Algorithm [I]below.

We note that the norm of two-point gradient estimates is approximately d times that of the true
private gradient [6]], so it is important to align their norms so that tuning the mixing coefficient can be
easier. To achieve this, we sample u uniformly from the sphere rS%~! with radius r = d1 so that
Eu, [lgx(@)]|*] &~ ||V f(z)||*. The proof is detailed in Appendix The mixing coefficient v can be
adjusted to change the emphasis on the public gradient. Although « is an introduced hyperparameter,
as shown in experiments (Section [5), PAZO-M is robust to a wide range of « values in (0, 1) as well
as the public batch size b', as long as the Ly norms of gyus, and §/q are aligned.

Despite its simplicity, PAZO-M demonstrates competitive performance among all three PAZO variants
(Section[5). While prior work has explored mixing gradients and zeroth-order estimates for memory
efficiency in non-private settings [29], PAZO-M differs from this work in terms of the effective
optimization objectives, bias-variance tradeoffs, analyses, and application settings.

Algorithm 1 PAZO-M

1: Input: T, noise multiplier o, clipping threshold C, stepsize 1, smoothing parameter A, mixing
coefficient «, initialization xo € R?, number of queries ¢, private and public batch sizes b and b’

2: fort=0,---,T—1do

3: Sample a mini-batch B (|B| = b) of private training data {1, ..., &}

4: Sample a mini-batch B” (|B’| = V') of public data and obtain its gradient gpyp

50 g+ 04

6

7

8

for each of the ¢ queries do

Sample u uniformly from the sphere d i§d-1
G g+ (% Z?:l clip, (f(ﬂf’t-"-)\u;ﬁi);)\f(wz—)\u;fi)) + Z) u, where z ~ %N(O, q020_2)
9: end for

10: Tip1 < 2 — n(Qgpw + (1 — a)g/q)
11: end for

3.2 PAZO-P: Sampling in Public Gradient Subspace

Recall that the two-point estimator samples perturbations u in the sphere v/dS*~'. Such random
exploration along two directions Au and —Au can result in a loose estimation of the real gradients
in high-dimensional settings. In this section, we assume the true gradient on private data is close to
the space formed by public gradients. Based on this assumption, we constrain the private gradient
estimates to lie in the subspace spanned by the public gradients, and use function queries to learn the
coefficients associated with the components of the public gradient subspace (named PAZO-P). This
gives us a much lower-dimensional optimization problem.

Formally, suppose we have access to k (k < d) mini-batch stochastic gradients obtained on public
data. Denote a concatenation of them as a matrix G € R%**. Let u € R* be a random vector that is
uniformly sampled from the sphere v/kS¥~!. We propose the following update rule (sampling only
one u as an example) in the non-private case:

f(z + AGu; §) — f(x — AGu; §)

o\ Gu,

95 (x;€) =

which can be interpreted as learning the coefficient u € R¥ to linearly combine the public gradients.
Further, if we orthonormalize the columns of G, gf (z; €) estimates the orthogonal projection of the
true gradient onto the public gradient subspace when A — 0, i.e.,

E.[g5 (2:€)] = Eu[Vf(2) ' GuGu] = Projg(V f(x)).



We compare the visualization of sampling in the full-dimensional space and public gradient subspace
in Figure|/| For private training, we privatize each estimate (in the public gradient subspace) using
the standard subsampled Gaussian mechanism, described in Algorithm 2}

Algorithm 2 PAZO-P

1: Input: Same as Algorithm[I} and number of public batches k < d
2: fort=0,---,T—1do

3: Sample a mini-batch B(|B| = b) of private training data {&1, ..., &}

4: Sample k batches of public data and obtain their (ortho)normalized gradients {g1, ..., gx }
5: G<—[gla'-'agk‘]v§<_0d

6: for each of the g queries do

7: Sample u uniformly from the sphere v/AS*~!

8: g—g+ (%Zif:lclipc (f(g“+>‘G";§i)2_)\f(r‘_AG”;£i) ) +z> Gu, where z~3N(0,¢C?%c?)

9: end for

100 @1 2 —ng/q
11: end for

PAZO-P is conceptually related to the idea of model soup, where extensive research has shown that a
simple convex combination of the model parameters can result in a souped model that generalizes
well even in out-of-distribution tasks [30, [31]].

Previous work proposes constraining the random search to the principal components of surrogate
gradients [32]]. PAZO-P differs from theirs in allowing to use non-orthonormalized G. Section [3]
presents the performance of PAZO-P with orthonormalization, and the complete results in Tables [TH4]
demonstrate the competitive performance of PAZO-P without orthonormalization.

3.3 PAZO-S: Select the Best Public Gradient

PAZO-P offers ways to better combine public gradients via zeroth-order function evaluations, while
in this section, we take an alternative approach by optimizing an approximation of the problem. Note
that for a convex function f, for any probability distribution o € Ay, k public gradients {g1, ..., gx},
and model parameter x € R%, we have that

mip f|@=n) g | < min Zajf ~ng;) = min f(z —ng), 3)

where the upper bound min ¢z f(« — 7g;) can be easily optimized and privatized (as long as k
is small) with access to queries of f(+) evaluated on private data. Inspired by this observation, we
propose PAZO-S, a method that selects the best public gradients based on loss values on private data,
i.e., solving min;¢(y) f(z — ng;) (Line 5-8 in Algorithm . Considering the residual error between

Algorithm 3 PAZO-S

1: Input: Same as Algorithm 2] and perturbation scale e
2: fort=0,---, T —1do
3: Sample a mini-batch B(|B| = b) of private training data {&1, ..., & }
Sample k& mini-batches of public data and obtain their gradients {g, ..., g }
forj=1,...,kdo
fi e L300 clipe (f(ze — ngj;&)) + 2 where 2 ~ LN(0, (k + 1)C20?)
end for
J < argmingep f;
9: Gk+1 < g; + 2" where 2 ~ N(0,€%1,)

10: Tra1 < % Zle clipe (f(zt — ngr+1:&)) + 2 where z ~ tN(0, (k + 1)C%0?)

A A

11: 75— arg min e x41] fi
12: Tyl 4 Tg — NGj*
13: end for




the public and private subspace, we create an additional noise vector z’ (Line 9), add it to the best
public gradient (indexed with j), and perform another comparison between private f(z — 7]93) and
private f(z —n(g; + 2)) (Line 11). While PAZO-S is motivated by the arguments under a convex f
(Eq. (B)), we apply it to all the tasks and models that are non-convex.

3.4 Privacy Guarantees of PAZO

The privacy guarantees of all three methods can be analyzed in the same way. At each iteration, we
guarantee the Lo sensitivity of the sum of the function queries by C, and we add Gaussian noise
with variance ¢qC?0? where ¢ is the number of queries on the sampled data. Therefore, the privacy
bound per iteration is the same for any q, following the n-fold composition corollary of the Gaussian
mechanism [33]. Applying standard moments accountant method [[1] to compose across 7" rounds
with sampling ratio b/n, we have that there exist constants ¢; and ¢, such that for any € < ¢; b*T / n2,
by/TTo8(1/5)

ne

all three Algorithms are (g, 0)-differentially private for any § > 0if 0 > ¢

4 Convergence Analysis

In this section, we study the convergence properties of three PAZO algorithms. We first define the
similarity between public and private data through the distance between the full gradients as follows.

Definition 2 (v-similarity). Denote V f'(x;) and V f(x+) as the gradient for model x; at time step
t under the full public and private data, respectively. We call public and private data ~y-similar if
IV (@) = V()| < vy forallt.

We note that such similarity is defined on top of the full gradients, a weaker requirement than defining
on the stochastic gradients. There are previous similarity metrics based on coordinate-wise gradient
norm alignment [[16]. Together with their assumption on the bounded gradient norm, their similarity
condition implies ours and is thus a stronger assumption. Next, we present additional assumptions.

Assumption 1. f(z;&) is M-Lipschitz for any x € R? and any subset data &
Assumption 2. f(x;&) is L-smooth for any x € R? and any subset data €.

Assumption 3. The variance of private stochastic gradients is bounded, i.e., E[|V f(x;&;) —
Vf(x)||?] < o2 for any private sample &; and any t.

Assumption 4. The variance of public stochastic gradients is bounded, i.e., E[||V f'(x¢;&)) —
YV f'(z)||?] < 03 for any public sample &, and any t.

Theorem 4.1 (Convergence of PAZO-M). Assume public and private data are y-similar. Let
Assumptions 1-4 hold. For possibly non-convex f(-), running Algorithmunder a fixed learning rate
for T rounds gives

it 1 o2 o2
el -1, 72
T?OEfot 2] <T>+O<v + b+b,+b2> )

Additionally, let c1 and cq be the constants that make PAZO-M satisfy (e, 0)-differential privacy for
any e < c1 bQT/ n2,d > 0. Then PAZO-M obtains the error rate

1-a 5 a/d o% (1—a)Vd 0% o?Vd
O( a ‘/g)+0<7 2w tavd b (Q-avdta ¥ (1—a)2f+a(1_a)>

by choosing the parameters

2(1 —a) +avd A< 1

, _, C=1+V2d"M, and
4L((1 — a)2Vd + a(1 — ) Ldi

’[”:

7o Anel(l - a)Vd+a] [2L[f(x0) — f(z.)]
c2C[2(1 — @) 4+ aVd Vdlog(1/8)



We present several discussions on the results. First, we see that the first term in the error rate has
dependence O(lea \/ﬁ), which saves a factor of log d compared to DPZero, together with a constant
improvement if o > % Due to the usage of biased public gradients, we additionally have an error
O(y?aVd + 03a?V/d/V'), which decreases to 0 as a decreases to 0. Second, there is a term related
to the variance of the stochastic gradients o7 /b, which is standard when we assume constant learning
rates [34] and would reduce as the batch size b increases. Third, we provide a conservative upper
bound by choosing the clipping threshold C' larger than needed. We can also naturally extend our
current analysis to incorporate more advanced clipping analysis [].

Theorem 4.2 (Convergence of PAZO-P). Let assumptions in Theorem hold. For possibly
non-convex f(-), running Algorithmlz] under a fixed learning rate for T rounds gives
1=
T

1
1 02 o2 2
. 21 <« — 2 2 1 .
> ElIV/ (el ]_O<T>+0< 2+Z2 4204 b2> ®)

Additionally, let ¢y and co be the constants that make PAZO-P satisfy (e, 0)-differential privacy for
any € < c1b®°T/n?,6 > 0. Then PAZO-P obtains the error rate

2 2
O(k) + 0 <w/72+ 2+ ";)

_ _ ne [8Lk[f(xo) — f(x.)]
C=1+4V2kM, andT—CQ—C Tog(1/3) .

by choosing the parameters

1
A<
2LEk’ - Lk3’

’]7:

This shows that we have d-independent error rate O(k), with the dimension of the subspace & being
small a constant k < log d in practice. We additionally have the error term O(y? + o3 /') from the
biased stochastic public gradients and O(o? /b) from the stochastic private gradients.

Theorem 4.3 (Convergence of PAZO-S). Let assumptions in Theorem hold. For possibly
non-convex f(-), running AlgorithmE] under a fixed learning rate for T rounds gives

1= ) 1 o2
1 LEIvselt <o (g ) +o (v + Z+e). ©®
t=0

This allows us to take ' — oo, p = 1/(4L),and e < 1/ V/d to achieve a d-independent error bound
O(y? + 02/b'). When y approaches zero, the remaining term o3 /b’ is due to stochastic public data
sampling. We give complete statements and proofs in Appendix [B]

S Empirical Evaluation

In this section, we present the empirical performance of PAZO-{M,P,S} across both vision and
language domains, and pre-training, fine-tuning, and prompt tuning tasks. In Section[5.1] we introduce
experiment setups including datasets and models. In Section we present the privacy/utility
tradeoffs of PAZO, showing that PAZO performs comparably to public data augmented first-order
methods over a number of tasks in moderate privacy regimes and outperforms them in highly private
regimes. In Section [5.3] we highlight the time efficiency of PAZO. In Section [5.4] we present
the sensitivity study of the hyperparameters, showing that PAZO is non-sensitive to introduced
hyperparameters. Our code is publicly available at github.com/xuchengong/pazo.

5.1 Experimental Setups

The settings of our experiments cover and follow the experiments in the existing DP literature,
including (1) Training NFResNet18 on CIFAR-10 [35] from scratch, (2) fine-tuning Places365
pre-trained ViT-S on Tiny-ImageNet [36], (3) training LSTM on IMDB [37] from scratch, and (4)
fine-tuning RoOBERTa-base with prompts on MNLI [38]]. We introduce distribution shifts between
private and public data, such as class imbalance and semantic context shifts of various extents. The
details of public data generation and the impact of different public data distribution shifts on algorithm
performance and ~y-similarity values are presented in Appendix
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Figure 2: Performance of PAZO and the baselines in four settings. It shows that (1) all three PAZO
variants outperform DPZero across all datasets, (2) all of the first-order methods (DP-SGD, DPMD,
DOPE-SGD, and GEP), with or without public data, are more sensitive to smaller €’s than zeroth-
order ones, and (3) when ¢’s are small, PAZO is superior to first-order baselines. “Fail” indicates
failure to converge; the detailed accuracy numbers are in Tables El—ﬁ
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Figure 3: We compare the best private zeroth-order (ZO) methods with the best private first-order
(FO) methods, with public data (+PUB) or without. Note that ZO+PUB is PAZO. It shows that (1)
with or without public data, the performance gap between ZO and FO decreases as € decreases, (2)
using public data expands the range of ¢’s where ZO methods outperform FO ones, and (3) ZO+PUB
(PAZO) achieves better privacy/utility tradeoff than FO+PUB when ¢’s are small.

5.2 Improved Privacy/Utility Tradeoffs

First, we compare PAZO with vanilla zeroth-order methods and various strong first-order baselines
with public data under various privacy budgets ¢ = {0.1,0.5,1,2,3}. In Figure l, we compare
with (1) DP-SGD ([{I], the plain first-order method w1th0ut pubhc data (2) DPZero [8]], the plain
zeroth-order method without public data, and (3) the state-of-the-art first-order algorithms with public
data, including DPMD [39]], GEP [40], and DOPE-SGD [41].

We observe that all three PAZO variants outperform DPZero across the four datasets, though there is
not a single PAZO algorithm that dominates other PAZO instances in all settings. In addition, all
of the first-order methods (DP-SGD, DPMD, DOPE-SGD, and GEP), with or without public data,
are much more sensitive to more strict privacy requirements (smaller €’s) than zeroth-order ones.
This suggests that PAZO (and zeroth-order methods in general) possess more robust privacy/utility
tradeoffs than the first-order methods across model types, training types, and task domains. Under
small €’, PAZO is superior to first-order baselines by a large margin. We provide concrete accuracy
numbers in Tables [T-4]in the appendix.

Furthermore, we report performance of the best PAZO variant among three (denoted as “ZO+PUB’)
and performance of the best public-data-augmented first-order method (denoted as ‘FO+PUB’) under
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Figure 4: Convergence speed of private zeroth-order methods with (PAZO) or without (DPZero)
public data. We observe that PAZO variants have slightly different convergence speed, but they are all
consistently faster than the baseline. The reported are smoothed test accuracies under privacy € = 1.
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Figure 5: The utility/speed tradeoffs of different methods. It shows that PAZO is up to 16 faster
in each training iteration than FO and FO+PUB while being comparably performant. The reported
results are under privacy budget € = 1, and the detailed numbers are in Table

different ’s in Figure[3] It shows that although vanilla zeroth-order (ZO) may underperform first-order
(FO) methods, if we augment both with public data, PAZO performs comparably or even superior to
the best first-order approach with public data (FO+PUB), while being more memory-efficient.

5.3 Time Efficiency

In this section, we present the time efficiency of PAZO. It is faster than private first-order methods
(with or without public data) as it does not require per-sample gradient clipping, and it also converges
faster than private zeroth-order baselines.

#Iterations to converge. MeZO and DPZero present results with zeroth-order methods running
100x and 10x more steps than first-order ones [6} 8], but PAZO converges much faster due to
assistance from public data. Figure ] plots the convergence speed of DPZero and PAZO-{M, P,
S}, illustrating that public information significantly accelerates the convergence of (private) zeroth-
order methods. This property is particularly favorable to differentially private training as smaller
accumulative noise would be added due to fewer iterations needed to converge.

Runtime per iteration. Theoretically, we compare the number of different operations in each
method in Table[§] Since the number of forward and backward passes in first-order methods depends
on the private batch size, first-order methods can be dramatically slow since large-batch training is
favorable in DP [14}42]. Empirically, we compare the speed of each method in terms of training
time per iteration. Each experiment is conducted on one 48GB L40S GPU. For a fair comparison,
we adopt optimized implementations to speed up first-order DP algorithms, including vectorization,
just-in-time compilation, and static graph optimization [2]]. In practice, due to the memory burden
of parallelization and compilation overhead, a hybrid of vmap and sequential processing is often
faster. We choose the fastest implementation for each first- and zeroth-order method under memory
constraints. By comparing the utility/speed tradeoff (Figure[5), we observe that PAZO is comparable
to or more performant than the baselines, while being 2 ~ 16 faster in each training iteration.



5.4 Robustness to Hyperparameters CIFAR-10 M
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We have each method’s hyperparameters tuned via grid
search, and the detailed grid values are in Appendix [C.3]
Zeroth-order methods sample ¢ random directions to re-
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PAZO-M

32 66.8 68.4 67.2 32 67.5 67.1 67.5

duce variance in each iteration, so we perform preliminary s 6 10 s & 10
studies on ¢ € {1,5} for each setting and choose ¢ = 1if . 8679 682 677 8 698 703 709
the performance gap is negligible. As shown in Table [0} g Y16 67.8 681 681 16 69.2 68.8 69.7
DPZero benefits from increased ¢ for improved accuracy, =~ 32 686 680 677 32 697 703 68.9
while PAZO has reduced dependence on ¢’s due to the e Y m e 2 1
guidance from public information. le2 682 67.2 66.6 1le-2 69.0 67.5 68.8

¢le-3 69.7 685 689 .le-3 68.1 68.1 685
le-4 69.8 67.8 68.1 1le-4 66.6 67.3 68.1
0 69.5 68.2 69.0 0 66.9 67.3 66.5

PAZO-S

Furthermore, compared to vanilla zeroth-order methods,
PAZO has additional hyperparameters due to public data
sampling, including the public batch size ', the mixing Figure 6: PAZO is non-sensitive to their
coefficient o, number of public candidates k, and the per- introduced hyperparameters. Each num-
turbation scale e. However, as presented in Figure[6|and per represents the best accuracy after
Figure the performance of all PAZO variants is robust to the standard hyperparameters for zeroth-
the values of these hyperparameters. In fact, a wide range  order private optimization (C' and 1) are
of combinations of these hyperparameter values can yield tyned. Blue cells indicate PAZO-S per-
performance close to the best performance we report. formance w/o a noisy candidate.

6 Conclusion and Future Work

We propose PAZO, a suite of public-data-assisted zeroth-order optimization methods for differentially
private training. By leveraging modest amounts of public data and their gradients to guide zeroth-order
updates, PAZO significantly improves the privacy/utility tradeoff over prior zeroth-order approaches
while preserving their computational efficiencies. Through theoretical analysis and experiments
across vision and language tasks, we demonstrate that PAZO closes the gap between zeroth- and
first-order methods in moderate privacy regimes and even surpasses the best first-order baselines with
public data under high privacy constraints. Our results position public-data-assisted zeroth-order
optimization as a practical and scalable alternative for private training, especially in settings where
private first-order methods are costly or infeasible. Future work could include sharpening the current
convergence bounds by considering other similarity metrics and exploring a broader set of public and
private dataset pairs in practical DP training applications.
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A Algorithm Details
A.1 PAZO-M Norm Alignment
To jusify sampling the perturbation v from the sphere with radius di, we present the following

analysis. For a random direction sampled uniformly from a sphere of radius r, the two-point estimator
gx () has the squared norm

lostel* =

f(@+ ) — flx Au))ﬁz
2\ '

The Taylor expansion of f with O(\?) terms ignored gives f(z + A\u) ~ f(z) & AV f(z) "u, hence
lgx(@)1* = (Vf(2) Tu)*r?.

Since E, [uu'] = %Id,

7'4 2
Eu(lgr(@)[I”] & P*Eu[(Vf(2) "w)*] = r*V f(2) "By [uu |V f (2) = Z IV@I”.
We thus have E, [||lgx (z)||?] = |V f(2)||* if r = d.

A.2 PAZO-P Perturbation Sampling

We visualize the sampled perturbation set of the vanilla zeroth-order methods and PAZO-P as follows.
We set d = 3,k = 2 and generate G € R3*? with normalized columns to represent the public
gradients. The vanilla zeroth-order method samples the perturbations w in the full-dimensional sphere
(R?), while PAZO-P samples in the column space of G. When G is orthonormal, we sample fairly in
every direction in the public gradient subspace; when G is not orthonormal, we have larger effective
learning rates in the directions in which the public gradients agree.

Vast! Gror(VESF1) Gon(VESF1)

Uz

3 0 P 0 P
7 2 7 2 2 2

Figure 7: Comparison of the sampled perturbations in full-dimensional space and the public gradient
subspace. u1 and us denote the top-2 left singular vectors of normalized G. Left: Vanilla zeroth-order

perturbation sampling from v/dS%~'. Middle: Sampling from G(v/kS*~1) where G has normalized
columns, which is functionally the border of a sphere elongated in the directions of top public gradient

singular vectors. Right: Sampling from G (\/ESk_l) where G is orthonormal.

B Detailed Convergence Analysis

B.1 Lemmas

Lemma B.1. Let the private and public data be ~y-similar and Assumption[3|and || hold. Denote
b:= |B| and b/ = |B’| as the private and public batch sizes, respectively. Denote g, = V f(x4)
and g, = Vf'(x;) as the gradient under full private and public data, respectively. Due to the
stochasticity of sampling, the private and public batch gradients are

Vi B) =5 (o0 + ) and V@B = 5 3 (6 + L)

1€ By i1€DB]
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where (; ; is independently sampled from some noise distribution D with zero mean and variance o3,
¢} ,; is independently sampled from some noise distribution D' with zero mean and variance o3; By

and Bj are private and public batch at step t, respectively. So we have

E[|Vf(xe; Br) = Vf'(wes BYI? < ElVf (w5 Be) = V(23 B')IIZ}

Z<tz

1€Bf

2
1
+E M ZCt/z

i1€B]

= E[||lg: — g/]|”]

2

<”+?+F

where the first inequality is due to Jensen’s inequality.

Lemma B.2 (Zhang et al. [§], Lemma C.1 and C.2). Let u be uniformly sampled from the Euclidean
sphere \/dS*=" and v be uniformly sampled from the Euclidean ball v/dB® = {x € R? | ||z| < V/d}.
Let a € R? be some fixed vector independent of u. We have

1. BEy[u] = 0and B, Juu’] = I,
2. E jua] =0, E,[(u"a)?] = ||a||? and E,[(u"a)u] = a.

3. For any function f(z) : R? — R and \ > 0, we define its zeroth-order gradient estimator as

gr(x) = M)Mu and the smoothed function as fx(x) = E,[f(z + Au)]. Then
the following properties hold

(a) fx(x) is differentiable and E, [gx(x)] = V fa ().
(b) If f(x) is L-smooth, then we have

IV5(@) = V@) < 5ra,
2
Eullor@)I?) < 24 V(@) + 2N

B.2 Convergence of PAZO-M

Theorem B.3 (Full statement of Theorem [.1). Let the private and public data be ~y-similar and
Assumptlonl EI l 3} and 4| I hold. For possibly non-convex f(-), running Algorithm lfor T rounds gives

fz_:wf 7 16\/&L[f(xo)—f(w*)](1—a) Vid+a(l-a) : l-a

+2LAd* M

T T 2(1—a)+aV/d)? 2(1—a)+a/d
Loy? avd L L*X\2d?  o3Vd  do*C? 1-a
T Y(1—a)tavd | 4 b 22 | (1a)dta

+‘L§ a2Vd N L)\d%y+ WJFLAd% " o .
2V (1-a)2Vd+a(l-a) 2 2 (1—a)Vd+a

Additionally, let ¢y and cq be the constants that make PAZO-M satisfy (g, 0)-differential privacy for
any e < ¢1b°T/n?,8 > 0. Then PAZO-M obtains the error rate

l1-«a 9 av/d a% (1—a)Vd O’% a?Vd
O( a ﬁ)“)(” 20— tavd b (-apdta ¥ (1-a)? f+a(1_a>>
by choosing the parameters

2(1 —a) +avd 1
AL((1— )2Vd+a(l —a)) ~ ~ Ldi’

7o Anel(l - a)Vd+a] [2L[f(x0) — f(z.)]
c2C[2(1 — @) 4+ aVd Vdlog(1/8)

C=1+V2diM, and

’[7:
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Proof. We choose the clipping threshold C' large enough such that clipping does not happen, then the
update rule is x141 — 2 = =1 (1 — @) (A(@4; ue, Be) + 2¢)ur + ag’ (x4 B})) where

Z flay + dug; &) — f(xt_AUtQEi).

A(ﬂjt,Ut,Bt 2A

57 €B;

At astep t, let z; be a fixed parameter. We apply the update to the property of L-smooth objectives
and take expectation over all the randomness at this iteration, i.e., E; := E,, ., p, p;. We have

E¢[f(2441)]
< f(@e) +(V (@), Et[ripn — 2e]) + g]Et[”le — a||’]

= f(ﬂﬂt) - (1 - a)ntV f(a:t)TIEt[A(:vt; Ut, Bt)ut} +w Et[A(UCt;Uu Bt)Q]

Tl T2

o2 Ln?
i Eilllg' (xe; BO|® — aneV f(20) T g) + a(l — @) Ly?E, [A(ze;ue, Bu/ g/ (w; By)]

T3
(1 — a)?Ln?do?C?
2b2

For T}, note that B, [A (245 ut, By )us] = EiJugu, Vf(24)] = ﬁVf(xt) for u; ~ diS%1. We thus
apply Lemma [B.2] (iii)(b) to obtain

=V [ (1) "By [A(wiug, Br)ud)
:—Vf(xt)TEut[ (xtaut)ut}

—(Vf (@) " V(@) 4B, [Aziu)u] =V f (1))
<V F @) HIV £ (@) B, [A(@eue)u =V f (20) |

E,, [A(:ct;ut)ut]—%wmt)

+(1-5 )Iwsean| @

< IV ) P+IV Fa)] ]

Ts

where T3 satisfies

flzy — /\ut)> »

i

vf If Eut [A@t, Ut)uf]

<E, H‘ < Fly) Ty — flzy + )\Ut);)\

I

Z—;\]Et [| (f(ft + dug) — fz — Aug) — ZAvf(xt)Tut) ”
< %]Et [| (f(xt + Aug) — f(ze) — AVf(:ct)Tut) H
+ %Et [| (F(ze) = Fze — Aug) — AV f (@) Tue) |]
LA\d1
<
-2

due to L-smoothness apphed to the last inequality. Therefore, —V f(x;) TE¢[A(z¢; us, By )ug] <
T IVF(@oll + L”“ M.

For Tg, note that per-sample L-smoothness implies batch L-smoothness. Therefore, we follow Zhang
et al. [8] by noting that
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. _ _ . _ T . T . 2
A(xt;ut,Bt)2: (f(irt‘f')\uhBt) f(xt )\ut»Bt) 42:‘21% Vf(xt,Bt)+2)\ut Vf(l"tth))
(i) (f(ze+Mug; By) — f(ze —Mug; B) — 22w, V f (243 B)) 2+ (20, V f (745 By))?
- 2)\2
(? (f($t+)\ut§Bt)—f(ﬂﬁt;Bt)_)\U;er(xﬁBt))Z
< 2z

. _ _ . — T ;
i (f(w4;Br)— f (w4 )‘ut;\QBt) Auy VS (2i:Br))* +2(U:vf(xt§Bt))2

+2(u) Vf(2;By))?

() L2)\2d
2L
-2

where (a) and (b) follow (a+b)? < 2(a? +b%) and (c) follows | f(z + Au) — f(x) — MV f(z)| <
LX2d/2 and |f(x) — f(z — Au) — MV f(x)] < LA2d/2 due to L-smoothness. Therefore,

L?\%d 2

B (Ao ue, B) € 554 2 VG B
L2X2d 2 202
<

S+ IVl + oL ®)

where (a) follows Lemma [B.2] (i7).
For T3, applying the equalities

2
Ep;[llg' (ze: B = I9'l1° + = W

V1) gh = 5l + 19 £ @I~ llgh —~ V0 I),

Eu,, 5,5 [A (e u, B g' (v BY)] = va(xt) 9t
2
= §(H9£H HIV A @) = llgi = V(o))
gives us

Ln? 1
7= S5 | (1 2 ) I+ (L= @) IV A = (L ) gt~ TAGI’] + T, ©

where

272
ang 2 o?Ln?o?  any
Ty = S gt = V()| + o2~ S ()|
o a’Ln?os  «
< P+ T - V@) (10)

We take o and 7, so that oLy < 1, which implies 1 — L%ﬁ < 1 — a. We thus have

a(l — a)Ln? 2 2
7, < QDI [ 4 1@ — f - VA I?] + T4

2

= a(l —a)(g, Vir(zr)) + Ta
< a(l=a)llgill IV fa(zo)ll + Ta
<a(l=a)(lg = Vi) + IV @)l) V() = V@)l + V(@) + Ty
< a(l — a)(yLAdT /2 + (v/Vd+ LA /2)M + ||V f(z,)||* /Vd) + Ty (11)
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Combining 71 (7). T> ). T3 (TI)), and T (I0) yields

n(l—o)  no > Lnfa(l - 0‘)} 2
M e - a)? - 2 Y V(e
= I - a2 - ZEE 0 (|
1—a)LpAdiM (1 —a)2Ly2o?
< Flo0) ~ Bl f(ze) + I (L ol Loy
(1 —a)2L32X\2d32 n (1 —a)’LntoC?Vd n angy?
4 202 2
29202 1 — a)L22yAdi LAd3
Choosing 1, = 4L((12(;2“\}T$£ oy e have aln, < lifa < 1 — %. Denote E; =
Eu_y zer,B, B, Where ucy is the set {uwo, ..., u4—1} and similarly for z.;, B<;, and B ,. We sum

up from ¢ = 0 to T-1, telescope terms, and d1V1de both sides by 7" to obtain

1 T—-1
= SV
t=0

16VALLf (o) — ()] (1 @)V +a(l—a) 5 1-a
= T (2(1 — @) + a/d)? 2lAd M2(1 —a)+aVd
, o L2Xd o3 doC? 1-a
t2/dy 2(1—a)+a\/a+ 4 b 202 | (1 - a)Vd+a

Vol o?

o (1-a)2Vd+a(l —a)

(12)

LAdivy LA\d1 a
+ v+ == | M| —F.
2 (” 2 > 1(104)\/§+04

By privacy analysis in Section 3} we take o = ¢3b4/T log(1/6)/(ne) and then there exist constants
c1 and ¢y such that PAZO-M is (e, 6)-differentially private for any & < ¢;b*T/n?,§ > 0. We apply
1 and o to Eq. (I2) and obtain

= Z IV £ (o))

16fL[ f(wo) = fz)] (1 = a)*Vd + a(1 - ) l-a
T 2(1 — ) + aVd)? 2k M2(1 —a)+avd
) o L*X2d?>  o3Vd  c3C?dTlog(1/6) j—
+2\/g’}/ 2(1—0&)+Oz\/g+ 1 b + In2e2 ](1—&)\/&4—0&

+

do2 2 LA\d3 LA\d3
Vdo} 2 [ T, <7+ —— (13)

200 (1 —a)2Vd+a(l —a) 2 2 )M] (1-a)Vd+a

To choose the optlmal T, we organize the terms involving T', which are of the form £ + ¢7'. We
solve ming~o % + ¢I' = 2,/pq by taking T* = \/p/q, which yields

e Anel(1—a)Vd +af \/QL[f(J;O) — f(@)]
cC12(1 — a) + a/d] Vdlog(1/6)

By A(mg;u, &) < % + 2(u/ V f(24;€;))? and per-sample M-Lipschitz, we have

Az ug, &) < \/d 3/242VdM2 < 1+V2di M
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dueto /p+¢q < /p+./qforp,q > 0. We choose C' =

1 T-1
7 anf(xt)lﬁ

< Ae(l 4 V2di M)(1 — a)di
nel2(1 — a) + a/d]
avd n 1 n o2\/d l-—«a
2l —a)+avd |4V/d b (1—a)Vd+a
2 2 1
St (o) s
20 (1 —a)2Vd+ a(l —a) 2 2 (1-—a)Vd+a
which indicates that the error depends on d, o1, 02, and -y by
O(l_a\/&)+0 ~? ovd o (-a)vd +U—,§ o?Vd .
e’ 20—a)+avd b (1—a)Vd+a V (1-a)2Vd+a(l—a)

Therefore, we have error dependence O( fTO‘ \/d), which saves a factor of log d compared to DPZero’s
O(v/dlog d), together with constant improvement if o > % We additionally have the error term
O(y? + 03 /1) that reduces as o decreases due to using biased public gradients.

11—«
V2L (o) = o ToB(1/8) + 20 55— 2

+ 277

O

B.3 Convergence of PAZO-P

Theorem B.4 (Full statement of Theorem[d.2). Let the private and public data be y-similar and
Assumpttonl [Z] l 3| andH| I hold. For possibly non-convex f(-), running Algorithm lfor T rounds gives

T—-1
ZE« IV f 0 IP) < o ip(a0) - £(e)] +2M,/2( o)

L2)\2)2 n o2 L a2C?
b 22

Additionally, let ¢1 and co be the constants that make PAZO-M satisfy (e, §)-differential privacy for

any ¢ < c1b°T/n?,8 > 0. Then PAZO-P obtains the error rate

Ok)+0 <\W +§+ ;)

T IMKEM +

by choosing the parameters

1 1 o 8LE[f(w0) — f(x+)]
= A< C=1 2kM dT = — .
"Tomk S Ry + o an czc log(1/9)
Proof. We choose the clipping threshold C' large enough such that clipping does not happen, then the
update rule is x4 1 — x; = —m(A(sct; ug, Bt) + 2¢)Grus where
Ty + AGug; &) — f(oy — ANGrug; &
A(xt7ut7Bt gezB f i A £)2>\f( t £ 6)

At astep ¢, let z; be a fixed parameter. We apply the update to the property of L-smooth objectives
and take expectation over all the randomness at this iteration, i.e., E; :== E,, ., p, p;. We have

Bt [f(2441)]

<f(w) H(V (@), Eq [$t+1—$t]>+gEt[||33t+1—50t\|2]
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Zt
—Guy

Ln? Ln?
f(m)m<Vf<xt>,Et[A(zt;ut,BnGtut]H;“Et[||A<xt;ut,Bt>Gtut||21+;”Et[ ;

@ @)=V @) P+ (V f (), (20) — B [A (g0, By) o))
T

]

Ln?k Ln?02C?%k

Eo[|A(zeue,By) ]+ 22

T

+

(14)

where (a) is due to the orthonormality of G; and ||u;|| = v/%.
For T}, we proceed by
(V (1), Vf(xs) — Ee[A(we; ue, Be)Grug])
< IVI@)I V(@) — Ee[Aze; ue, By)Grul ||
<V @) |V (o) = BGeGY V f(o)]|| + [[Ee[ GGV f ()] = B[ Ay ur, By)Grug] ||].

T3 T4

For a G4, we denote its un-orthonormalized columns as {g'(z¢; By 1), - - ., ¢'(24; B ;) }. Note that
for any public candidate index ¢ € [k], we have

(i) ¢'(x4; Bi ;) € Col(Gy)

i) Edl|lg(xe; By ;) = Vf(@n)||*) = Bel||g(xe: BL,) — g + gh — V()]
€ om gt BL) — il + gt~ T F0I?
< 2021/ + %)

where (a) holds due to (a + b)? < 2(a® + b?) and (b) follows the ~-similar assumption. Therefore,

EAIV @) — GETVI ) € Bl V) - COTV ()|

() ;o2
< E[||Vf(xe) = glae B[]
< 2(03/V +7%),
where (a) follows Jensen’s inequality and (b) is due to the fact that ||V f(z;) — G:G| V f(zy)|| <
IV f(z;) — z|| for any = € Col(G,).
For T3, we thus have
||Vf(xt) - Et[Gthva(It)]H < Et[va(xt) - Gthva(It)]H

< \J2(02/1 1 42). (15)
For T, we have

||]Et [GtG:Vf(ZEt)] — ]Et [A(I’t, U, Bt)Gtut] ||
_E, [ ‘ (Vf(xt)TGtut _ f(@e + AGyug; By) — f(@e — AGrug; Bt)) Gus ]

2\
\/EIE T
= o [| (f (¢ + AGyug; By) — f(@ — AGyug; Br) — 22XV f(20) ' Gyuy) |]

< gEt [| (f(zt + AGrug; By) — f (245 By) — Avf(xt)TGtut) 1]

+ Z%E [ (f (s Be) = f(we — AGyug; By) = AV f (1) T Gyue) []
LAk3

<

- 2
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where the last inequality is due to L-smoothness. Therefore,

L\k3
T <M ( 2A03/b +97) + =5 ) . (16)
For 75, note that

A(xt;uhBt)z

_ (f(mt + AGruyg; By) — f(ﬂft — AGyuy; By) — QAU;I—G:VJC(%:; By) + 2)‘UIG;|—Vf(33t; Bt))2

42
(@) (f(xe + AGrug; By) — f(xr — AGyug; By) — 2Mu, GTVf(act, Bt)) (2)\U2—G:vf($t§ Bt))2
- 2)2
(2) (f(l”t + AGug; Bt) - f($t§ Bt) - AU:G;VJC(JU:&; Bt))2
< \2
. _ _ . oy, T . 2
+ (f(aant) [l )\Gt'l;t; Bt) Aty Vf(xtaBt)) —|—2(u;rG;er(act;Bt))2
(c) L2)\2k2
< +2(uf G V(s B))?,

- 2
where (a) and (b) are implied by (a + b)? < 2(a? + b?) and (c) uses the facts | f(z + u) — f(z) —
M Vf(z)| < LA%d/2 and |f(x) — f(x — du) — A Vf(z)| < LA2d/2 due to L-smoothness.
Therefore, applying Lemma [B.2](iii) gives us
L2)\2k.2

2
L2\2k?
= 2 + 2EB¢,B£[
= 2 + QEBt,Bé [Vf(xt,Bt) Gth Vf(l‘t,Bt)]

L2\%K? o
=3 + 2Ep, B[V f(x; Bt) Projg(V f(xs; B))]

L2)\2k2 2

E[| A(ze; s, Bo)|*) = +2E g, 5B, [(uf G/ V f(xe; Br))?]

GV (i By)|’]

< = 2B,V (@ By
L2>\2k2 0'2
< (IVf )l + ;) (an

Applying Ty (16) and T3 (I7) to (T4) yields

(e — L2k) |V f (@) ||? < F(xe) — Eo[f (@41)] + neM

/\

2 LAk
27

L322k N Ln?ko? N Ln?02C%k
4 b 2b2 ’

We choose 7, = 57 so that 1, — Liik = . Denote E<; := E,_, ._, 5., 5., Where u, is the set

{uo, ..., us—1} and similarly for z;, B<;, and BZ,. Then we have

2
Bt |Vf(z)lI* < ALKE <o [f () — fzia1)] + 2M,y |2 ((;,2 + 72> + LAkEM

L2\%k2 ﬁ o2C?

4 + b + 22
Summing up from ¢ = 0 to 7' — 1 and dividing both sides by T yields

fZEq IV GIP) < S5 o) - (o ””MW

L2N2K? n aj . a2C?
4 b 202

+IMEM + (18)
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By privacy analysis in Section we take o = coby/T log(1/0)/(ne) and then there exist constants
c1 and ¢y such that PAZO-P is (e, §)-differentially private for any ¢ < ;62T /n?,6 > 0. We apply
7 and o to Eq. (I8) and obtain the RHS of Eq. (I8) as

ALk[f(zo) — f(zs)] o3 L2Nk2 o2 3C%log(1/6)T
2M 4|2 | —= 2 L \kz M Ly 2y oM /)
T + b +72 ) + LAk + 1 + b + 222

Choosing the optimal 7" again requires solving arg minr~o % + ¢T' = +/p/q, which yields

po_ e [SLH{fe0) ()]
coC log(1/4) ’

By A(ws;u, &) < % +2(u) G V f(4;&;))? and per-sample M-Lipschitz, we have
Az ug, &) < V=124 2kM? <1+ V2kM.

We take C' = 1 + v2kM and choose A < 3 , and thus we have the RHS of Eq. 1) as

1 2
— f(z)]log(1/6) + 2M] 2(1)’ + ) +M+E+ .

204 VM S e

which indicates that the error depends on k, o1, 02, and y by

Therefore, we have d-independent error rate O(k), which is an improvement due to k being a small
constant < log d in practice. We additionally have the error term O(y? + o3 /b') from the biased
public gradients and O(c?/b) from the stochastic private gradients.

B.4 Convergence of PAZO-S

Theorem B.5 (Full statement of Theorem[d.3). Let the private and public data be ~y-similar and
Assumption . . . Bl and 4] I hold For possibly non-convex f(-), running Algorithm . for T rounds

using a fixed step size n = 4L and e < 1/\[ gives

T— _ 2
T; LIV < 8L]E<t+1[f(;fo) f(x.)] YoM (74_\/(7) 4o 2+2;’/2 _}_%.

Additionally, let ¢ and cq be the constants that make PAZO-S satisfy (e, 0)-differential privacy for
any e < ¢1b*T/n?,6 > 0. Then by taking T — 0o, PAZO-S obtains the error rate O (v* + a3 /).

Proof. Our public data sampling process is equivalent to first sampling B; and then dividing it
into k£ non-overlapping partitions. We choose the clipping threshold C' large enough such that
clipping does not happen, then the update rule is z¢y1 — z¢ = —n:(g'(ws; Bf ;) + 1(2')2") where
I = argmine{f(zt — neg(ze; By ;); Bt) + 2¢.i} is the index of public batch that yields the best
public gradients among and 1(z’) is an indicator variable denoting whether the proposal of adding
2" ~ N(0,€21,) is adopted.

At a step t, let z; be a fixed parameter. We apply the update to the property of L-smooth objectives
and take expectation over all the randomness at this iteration, i.e., E; == E,, g, Bl
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E¢[f(2441)]
=E[f(z¢ — m(g’(xt; Bé,f) + ]l(zl)zl))]

2
< flae) = ne (V (@), Eelg' (o3 By p) + 1(2")2]) + % Ee[llg'(ze; By ) + 1(2')2'||’]
T

~ fle0) = i (@) Balg o B + 2 7y

= flxe) = el Vf (@) II* + e (VI (@), Vf(we) = Eelg' (we; By )]) + LntTl

< fze) = nellVF @)1+ ne [ VF (@) BV F (22) — g/ (s By )H]+L;7t 1

Ts

For T}, we have
Elllg'(ze; Bt 1) + 1(2)2'[1P] < 2B4[llg’ (e By 1)II°] + 2E, [ 1(2")2"]%]
< 2By[l|g" (wes By p) — Vf(e) + Vf(x)||°] + 2de?
<AE([|lg'(ze; B ) = Vf(@o)IP] + 4V f () [|* + 2de?

= 4B [llgr —9: + 5 Z G P+ 4V £ ()| + 2de?
JEB’

8
<8y + 7

For Ty, we note that for a sampled public batch i € [k], its gradientis ¢'(z¢; B} ;) = g;+4 Z =1 Ct, J

2 44|V f(a)|? + 2de2.

where Ct(zj), is the stochastic gradient noise for the public sample j in the z-th batch. We denote the
selected best batch as I and thus

’ 1 2
Egl|g; — o' (s B D)) = Esy ||| Zd” = Eg; [ ] .
2
By assumption, Ep/ [ Ct(z) ’ ] < 02 for any batch i. Therefore,
!’ 2 7 2
Ep; [Hé}(” H ] =E; [EB; [ ¢ H ] 1= Z} < o3

Therefore, (E;| ||gt xt,Bgl H < Ky Hgt xt,Bél || ] < 02/b and
B[V f (1) — ¢ (x5 B )] < Eo[IIVf (1) — gill] + Eal]|gf — o' (5 By 1) ]
<y 4o /VY.

Denote E<; .= E,_, p_, ., Where z<; is the set {20,..., 21} and similarly for B, and B,.
We have

2
= 2LE <V ) P SB sl o)~ s o (-2 Yt (24 2420 ).

We set € < 1/+/d and choose 7, = ﬁ so that 2Ln? = 1,/2. We sum up fromt = 0 to T — 1, and
dividing both sides by 1" yields

— 8LE — (. 22 1
TZE<t IV Fn) 7] < <t+1[f(;70) [z )}+2M<”Y+\(;Z—,)+2’72+ ;2+§'

We take T' — oo and achieve a d-independent error bound O(+2 + o2 /b'). When  approaches zero,
the remaining term o3 /b’ is due to stochastic public data sampling. O
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C Experiment Details

C.1 Datasets

The four datasets and model pairs closely follow the experiments in the existing DP literature. We
provide the details of public data generation as follows.

CIFAR-10. We follow previous work [41]] that uses 4% of the training samples as public data and
warm-start on the public data by training on it for a small number of epochs. Additionally, we create
class imbalances among the 10 classes for public data. We treat this imbalance as a mild distribution
shift from the private data. To avoid information leakage from the batchnorm layer, we start from a
randomly initialized NFResNet18 [43]].

Tiny-ImageNet. We follow Kurakin et al. [44], which first pre-trains a ResNet18 on Places365 [435]
and then fine-tunes the model on Tiny-ImageNet with differential privacy. We randomly sample 4%
of the Tiny-ImageNet training samples as public data, which thus comprises 20 samples per class.
We use a small ViT model (10M) [46] with random initialization.

IMDB. We follow Li et al. [16], which uses Amazon Polarity [47] samples as out-of-distribution
(OOD) public data to guide the private learning on IMDB. We build the vocabulary based on the top
10K tokens in the IMDB training set and construct the Amazon Polarity public dataset with a size 4%
of the IMDB training size, which gives us 2,000 public samples.

MNLI. We follow the few-shot setting in the past work [6} 8] and sample 512 MNLI training examples
per class. We adopt the same prompt template and start from a pre-trained RoBERTa-base model. We
randomly sample 100 training examples per class from SNLI [48] as the OOD public data.

C.2 Experiment Results

We present the detailed evaluation results on the four datasets in Table[[|-H4] We report the performance
under multiple privacy budgets (&, § = 1/#train samples) as well as the non-private performance,
which corresponds to the accuracies of SGD and MeZO. All results are obtained under the same
random seed 0. Entries with ‘—’ indicate failure to converge. The best accuracies are in bold and the
second places are underlined.

Implementation details. For each first-order methods with public data, we vectorize the per-sample
gradient computation and privatization using vmap. For the method with open-sourced code (GEP
[40]), we adopt their provided implementation and privacy accounting.

The experiment on MNLI utilizes the codebase from Malladi et al. [[6] and Zhang et al. [8]], including
their dataset processing and prompt tuning workflow. Following MeZO and DPZero, we sample the
zeroth-order direction u; from the Gaussian distribution A/(0, 1) in the experiments since previous
work verifies that it produces very similar performance [§]] to sampling from v/dS?~!. Similar to the
first-order methods, we apply vmap for speedup by vectoring the ¢ forward calls. However, given
that PAZO needs smaller ¢’s than the vanilla zeroth-order methods, we do not need to employ this
memory-inefficient implementation in most settings.

PAZO-P vs. PAZO-P'. Table shows the performance of PAZO-P with orthonormalized public
gradients (row ‘PAZO-P’) and with normalized public gradients (row ‘PAZO-P’"). PAZO-P and
PAZO-P’ have similar performance, with the deviation being 0.1% ~ 2.5%.

Performance of public only. We demonstrate that the improvements of using public data are not
due to overfitting to public data. We train on public data alone using SGD with batch size, learning
rate, and weight-decay tuned, and the optimal hyperparameter for each setting gives us accuracies
equal to 66.1% for CIFAR-10, 27.1% for Tiny-ImageNet, 68.4% for IMDB, and 60.8% for MNLI.
We denote these results as ‘public only’ and pick the best first-order with public data (FO+PUB)
and zeroth-order with public data (PAZO) algorithm for each dataset. In Table 5] we present the
performance gain when private data is included (i.e., ‘FO+PUB/PAZO’ minus ‘public only’ across
€ =0.1,0.5,1,2, 3). Note that ‘public only’ accuracies come with severe overfitting due to the small
number of public samples, while the DP accuracies are not overfit.
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Table 1: Training NFResNet18 on CIFAR-10 from scratch.

Type Method e=01 =05 e=1 =2 =3 Non-private
FO DP-SGD 46.7 49.7 50.8 542 545 86.3
DPMD 64.3 66.6 67.8 685 69.8
FO+PUB DOPE-SGD 64.8 69.3 709 73.0 729
GEP - 49.9 507 529 538
Z0 DPZero 47.0 48.1 482 482 481 49.0
PAZO-M 70.9 71.3 71.3 712 705
ZO+PUB PAZO-P 69.5 69.6 69.0 687 681
(ours) PAZO-P' 69.6 69.2 692 689 68.0
PAZO-S 70.3 70.3 702 69.8  69.7

Table 2: Fine-tuning Places365 pre-trained ViT-small on Tiny-ImageNet.

Type Method e=01 =05 =1 =2 Non-private
FO DP-SGD 248 29.2 314 38.0 52.9
DPMD 30.5 31.4 342 355
FO+PUB DOPE-SGD 30.7 31.8 325 344
GEP — 30.9 305 314
Z0 DPZero 25.1 27.6 275 279 28.6
PAZO-M 30.8 30.8 30.7 308
ZO+PUB PAZO-P 30.9 31.0 31.0 312
(ours) PAZO-P 30.7 30.8 30.8 309
PAZO-S 30.6 30.6 30.6  30.7

Table 3: Training LSTM on IMDB from scratch.

Type Method e=01 =05 =1 =2 =3 Non-private
FO DP-SGD 50.0 66.4 699 735 755 89.5
DPMD 71.0 72.1 734 76.6 76.6
FO+PUB DOPE-SGD 70.2 73.2 750 759 779
GEP 60.0 71.0 740 772 78.6
Z0 DPZero 59.0 62.4 62.6 632 638 63.8
PAZO-M 734 73.2 745 732 736
ZO+PUB PAZO-P 71.0 73.7 732 73.0 727
(ours) PAZO-P' 69.4 69.8 70.7  70.0 705
PAZO-S 74.6 74.2 73.8 739 742

Table 4: Prompt-tuning RoOBERTa-base on MNLI.

Type Method e=01 =05 =1 e£=2 =3 Non-private

FO DP-SGD 52.6 59.3 635 684 720 78.9
DPMD 56.5 67.0 68.1 715 728

FO+PUB DOPE-SGD 59.7 67.2 680 70.1 725
GEP — — — — —

Z0 DPZero — 552 582 604 626 68.4
PAZO-M 67.1 67.3 67.8 677 675

ZO+PUB PAZO-P 63.5 68.3 698 697 703

(ours) PAZO-P' 61.0 68.1 68.8 69.0 694

PAZO-S 68.2 68.6 689 68,6 690
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Table 5: Performance of training with public data only and the improvements from using private data
via first-order (FO+PUB) and zeroth-order (PAZO) methods. We observe that (1) FO enjoys up to
12.0% performance gain and ZO enjoys up to 8.2% when private data is included; (2) ZO consistently
enjoys performance gain when private data is included, while FO does not, since private first-order
gradients can be too noisy under tight privacy.

CIFAR-10  Tiny-ImageNet IMDB MNLI
Public only 66.1 27.1 68.4 60.8
FO+PUB improvement —1.3 ~ 6.8 3.6~84 26~102 —-11~120
PAZO improvement 44~52 38~4.1 53~6.2 74~95

Table 6: Performance under different public data with v under privacy € = 1.0. We observe that
though the range of ~-similarity depends on specific methods, the values are consistently bounded
and small. For a fixed PAZO variant, as the public data becomes more in-distribution, performance
improves and v decreases (i.e., gradients for public and private data become more similar).

Private Data  Public Data PAZO-M PAZO-P PAZO-S
Slight imbalance 713 (y=4.3) 69.0(y=3.4) 70.2(y=1.6)

CIFAR-10 Half-half 699 (y=4.8) 673(y=4.1) 67.3(y=1.38)
Big imbalance 66.7(y=06.2) 63.8(y=4.8) 63.0(y=2.1)
MNLI only 757(y=39) 7T41(y=41) 740(y=49)

MNLI Half-half 732 (y=050) 73.8(y=43) 7T3.1(y=067)
SNLI only 67.8(y="71) 69.8(y=65 68.9(y=_81)

Performance under various 7. We demonstrate that PAZO performs better when public data is
closer to the private data in two settings: pre-training on CIFAR-10 and fine-tuning with prompts
on MNLI. To create public data of different extents of distribution shifts (different v’s), we mix ID
public data and OOD public data with different proportions. For CIFAR-10, we use non-overlapped
training samples with small class imbalance as ID public data and those with big class imbalance
as OOD public data. The slight class imbalance has class-size ratios [1 : ... : 0.85] and big class
imbalance has class-size ratios [1.0: 0.9 : 0.8 : ... : 0.2 : 0.1]. For MNLI, we use non-overlapped
MNLI training samples as ID public data and SNLI training samples as OOD public data. We present
the performance and -y of PAZO under these scenarios in Table [6] We observe that (1) the range of ~y
is method-dependent and (2) for any fixed PAZO variant, the accuracy increases as the data become
more similar (smaller v’s).

Runetime efficiency. Theoretically, we list the number of different types of operations involved in
each algorithm in Table[8] Since the first-order methods require per-sample gradient computation
and clipping, the number of “gradient backward”, the slowest operation, is dependent on the private
batch size. This is a discouraging feature since large batch sizes offer better utility/privacy tradeoffs
[[14] 42]), creating an additional tradeoff between utility and efficiency. In contrast, the number of
gradient backward steps is either 1 or k(k < b) in zeroth-order methods. Together with the fact that
the forward calls are more memory-efficient than the backward ones when vectorized, zeroth-order
methods are principally more scalable.

Empirically, we evaluate the runtime in each training iteration for all the settings (Table [7). We
vectorize the three settings other than the IMDB-LSTM experiment due to incompatibility between
the model architecture and vmap. Although the MNLI experiments enjoys only 2x of speedup by
using PAZO, Malladi et al. [6] shows that zeroth-order methods will be significantly faster as the
model scales up.

Memory efficiency. Table 8| presents the number of different operations needed per iteration of
each method, showing that PAZO-{M,P,S} has memory overhead to store public gradients compared
to DPZero. PAZO-M requires one batch of public gradient, so the memory overhead is O(d), where
d is the number of model parameters. PAZO-S is also O(d) since we can compute the k public batch
gradients sequentially. Though PAZO-P has an O(kd) memory overhead than DPZero, it is still
more memory- and computation-efficient than the first-order DP methods since the latter generally
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Table 7: Speed of each method on different datasets (in s/iter). It shows that PAZO offers up to
16 x runtime speedup per training iteration compared to the baselines. All numbers are averaged
over 20 iterations. Note that we report the speed of each method under optimal (k, ', ¢). DPZero is
occasionally slower than PAZO because we try ¢ = {1, 5} for each method and observe that DPZero
needs ¢ = 5 while PAZO can take ¢ = 1 to achieve competitive accuracies.

CIFAR-10 Tiny-ImageNet IMDB MNLI

DP-SGD 0.420 0.366 0.173  1.697
DPMD 0.462 0.404 0.183 1.761
DOPE-SGD 0.424 0.365 0.172  2.187
GEP 0.830 0.548 0.252 —

DPZero 0.081 0.132 0.016 1.934
PAZO-M 0.051 0.073 0.019  0.852
PAZO-P 0.149 0.168 0.042 1.244
PAZO-S 0.102 0.142 0.019 1.118
Speedup 16 % Tx 15x% 2x

Table 8: Number of different operations per iteration of each method.

# Private # Public # Private

forward for+backward backward
DP-SGD b — b
DPMD b 1 b
DOPE-SGD b 1 b
GEP b b b
DPZero 2q — —
PAZO-M 2q 1 —
PAZO-P 2q k —
PAZO-S k+1 k —

requires O(bd) memory to maintain per-sample gradients. Our experimental results are obtained
using k = {3,6} while b = 64. Such entangled dependence on b and d is also restrictive since larger
batch sizes improve performance [14,49].

C.3 Hyperparameter tuning

This section presents our hyperparameter search grid and the results of our methods under different
hyperparameter values.

Hyperparameter selection. For all the first-order methods and PAZO, we set the number of epochs
to 100. Since the vanilla zeroth-order methods benefit from training for more iterations [8l 6], we try
training for 100, 200, and 300 epochs with their corresponding correct noise multiplier o applied.
Due to increased noise added when more epochs are allowed, we observe that the epoch number
of 200 produces the best performance across settings. We thus train for 200 epochs in all DPZero
experiments. The values of the smoothing parameter \ are presented in Table[9] We also report the
hyperparameter search grid for each method in Table where the batch size b is only tuned for
non-private methods (SGD and MeZO); We fix the private batch size to 64 for all private methods,
including zeroth-order and first-order, with and without public data.

Sensitivity to g. Table[I0[shows that the performance of the vanilla private zeroth-order method
relies on setting ¢ > 1, which slows down the training and harms utility due to increased noise added
for privatization. In contrast, PAZO is less dependent on increased g due to the assistance from public
data. This implies that PAZO has approximately the same workload of hyperparameter tuning as
DPZero: Under a reasonable or intuitive choice of the hyperparameters for public data sampling, one
only needs to find a good combination of clipping norm C' and learning rate 7.
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Table 9: Values of the smoothing parameter \ in each experiment.
CIFAR-10 Tiny-ImageNet IMDB MNLI

MeZO 102 102 10=2 1073
DPZero 10~2 10~2 1072 1073
PAZO-M 102 102 10=2 1073
PAZO-P 102 102 101 1072

Table 10: Performance vs. ¢ in different settings. In each cell, the first row represents the accuracy
under ¢ = 1 and the second represents that under ¢ = 5. We observe that DPZero benefits from
increased ¢ in accuracies by 1.0%, 2.4%, 4.8%, and 7.2% on four datasets. In contrast, PAZO has
stable performance under different q.

% CIFAR-10 Tiny-ImageNet IMDB MNLI
DPZeo 40 75 38 e
PAZOM 03 w08 T 683
PAZOP g Wo 17 109

Sensitivity to introduced hyperparameters. Apart from Figure[6} we also present the hyperparam-
eter sensitivity study on the other two datasets Tiny-ImageNet and IMDB in Figure[§] The conclusion
is the same as in the main text: PAZO is not sensitive to the values of the introduced hyperparameters.

Influence of ¢ in PAZO-S. Figure[6and Figure [§|show that the performance of PAZO-S is robust
to different e values. Since having no noisy candidate is equivalent to setting e = 0, we compare the
best performance of having a noisy candidate (purple cells) with none (blue cells). The conclusion is
consistent: Having e # 0 offers the opportunity to improve performance in general, but it does not
harm significantly to leave it less tuned.

Tiny-ImageNet IMDB
(o3 (e}
025 05 0.75 025 05 0.75
= 8307 306 308 8 73.0 736 73.2
o b b’
N
£ 32307 307 307 32 735 73.4 733
k k
3 6 10 3 6 10
. 8306 308 305 32 69.8 70.7 70.3
9 P16 311 308 309 Y 64 711 725 725
<
a

32 131%21{F31:08 F30:9 128 71.4 715 72.7

b’ b’
8 16 32 4 8 32
le-3 30.7 30.6 30.7 1le-2 72.0 72.1 714

¢le-4 30.6 30.6 30.7 .le-3 74.2 732 7238
le-5 30.7 30.6 30.6 le-4 73.2 72.8 72.9
0 30.7 30.6 30.7 0 73.6 74.5 71.8

PAZO-S

Figure 8: All PAZO methods are robust to different values of their introduced hyperparameters. Each
number represents the best accuracy with standard hyperparameters for zeroth-order private methods
(C and n) tuned. Blue cells indicate PAZO-S performance without having a noisy candidate.
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Table 11: The hyperparameter search grid for CIFAR-10 and Tiny-ImageNet.

Algorithm CIFAR-10 Tiny-ImageNet
SGD n {0.01,0.02,005,0.1,02 05} {0.001, 0.005, 0.01, 0.05, 0.1}
b (832,64} {64)
opsGp 7 (001,002,005.01,02) {0.01, 0.02,0.05, 0.1, 0.2, 0.5, 1.0, 2.0}
C  {0.1,05,1.0,2.0} {0.01.0.1,0.5, 1.0, 2.0}
w {0.01,0.02,005,0.1,02} {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2}
DOPE-SGD I {8, 32, 128} (8,32, 128}
C  {01,05,1.0,2.0) {0.1,0.5, 1.0, 2.0, 4.0}
7 {0.02,005,0.1,02,05) {0.005, 0.01, 0.02, 0.05, 0.1, 0.2}
DPMD ¥ (8,32, 128) (8,32, 128)
C  {01,05,1.0,2.0} {0.01,0.1,0.5, 1.0, 2.0}
n {0.005,0.01,002,0.05,0.1,0.2,0.5) {0.01,0.02,0.05, 0.1,0.2, 0.5}
GEP ¥ (8.32,128) (8,32, 128)
C, {01,05,1.0,2.0} {0.1,0.5, 1.0, 1.5, 2.0}
MeZO n {0.001,0.002,0.005, 0.01,0.02, 0.05,0.1} {lo-4, 2c-4, 5e-4, 1e-3, 26-3)
b {64) {64}
n {0.01,0.02,005,0.1,02, 05, 1.0} {le-4, 20-4, Se-4, 16-3, 2¢-3
DPZero C {10} (1.0}
n {0.1,02,05) {1e-5, 2¢-5, Se-5, le-4, 2e-4, Se-4)
¥oo(8,32) (8, 32)
PAZO-M | {025,0.5,0.75) {0.25. 0.5, 0.75)
c {10} {1.0)
7 102,05, 10, 1.5,2.0} {0.2,0.5, 1.0, 1.5, 2.0}
¥ (8, 16,32) (8, 16, 32}
PAZO-P 1 1306, 10) (3.6, 10}
C  {05,1.0,20) {0.5, 1.0, 2.0}
n {0.01,0.02,005,0.1,0.2} {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2}
¥ (8, 16,32) (8,32, 128)
PAZO-S Eoo{3) 3)
e {0.01,0.001) {0.001, 0.0001}
C  {05,1.0,20,4.0) {0.5, 1.0, 2.0, 4.0}
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Table 12: The hyperparameter search grid for IMDB and MNLI.

Algorithm IMDB MNLI
SGD 7 {0.1,02,05, 1.0, 1.5) (1e-6, 1e-5, le-4, 1e-3, 5¢-3, 1e-2)
b {64} {8, 32, 64}
bpsGp 7 (001,002,005.01,02,01) {26-6, 56-6, 16-5, 26-5, 5¢-5, le-4)
C  {0.1,05,1.0,2.0, 4.0} {10, 20, 50, 100, 150, 200, 250}
n {0.005,0.01,0.02,0.05,0.1} {56-6, 16-5, 2¢-5, 5¢-5, lo-4}
DOPE-SGD I/ {8, 32,128} (8. 32)
C  {01,05,1.0,2.0,4.0) {10, 20, 50, 100, 150, 200, 250}
n {0.005, 0.01, 0.02, 0.05, 0.1} {2e-6, 5e-6, le-5, 2e-5, S5e-5, le-4, 2e-4}
DPMD ¥ (8,32, 128) (8, 32}
C  {01,05, 1.0,2.0,4.0) {10, 20, 50, 100, 150, 200, 250}
n {0.01,002,005,0.1} {26-6, 5¢-6, 1¢-5, 2.5, 5¢-5, lo-4, 20-4)
GEP ¥ (8,32) (8,32)
C, {01,05,1.0,2.0} {10, 20, 50, 100, 150, 200, 250}
MeZO n 10.002,0.005,0.01,0.02,0.05,0.1} {167, 16-6, 26-6, 5¢-6, 1e-5, lo-4)
b {64) (64}
DPZer n {0.002,0.005,0.01,0.02,0.05,0.1} {1e-6, 26-6, 5¢-6, -5, 2¢-5, 5¢-5)
C  {0.1,05, 1.0, 2.0} {10, 20, 50, 100, 150, 200, 250}
n {1.0,15,20,25,3.0,3.5,40) (le-4, 20-4, Se-4, 16-3, 2¢-3}
¥oo(8,32) (8,32)
PAZO-M | {025,0.5,0.75) {0.25.0.5,0.75)
C  {01,05,1.0,2.0,40) {10, 20, 50, 100, 150, 200, 250}
7 {0.1,02,05, 1.0, 1.4,2.0) (5¢-5, lo-4, 20-4, Se-4, 1¢-3, 2¢-3)
¥ (32,64, 128) (8, 16, 32}
PAZO-P 1 (376, 10) (3.6, 10}
C {05, 1.0,2.0,4.0} {10, 20, 50, 100, 150, 200, 250}
7 {0.1,02,0.5, 1.0, 15,20,25,3.0,35,40} {le-d 2e-4, 5e-4, le-3, 2¢-3, 5¢-3}
¥ (8,32, 128) (8, 32}
PAZO-S ko {3) {3}
e {0.01,0.001) {0.01,0.001}
C  {0.1,05, 1.0} {0.1,0.5, 1.0}
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We summarize the contributions in the abstract and introduction, with our
proposed algorithm described in Section [3] theoretical analyses made in Section 4 and
experiments detailed in Section 5]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section [6l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We list the assumptions and summarize the results in Section[d] We provide
the complete proofs in Appendix [B]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the experimental setup in Section [5|and hyperparameter tuning in
the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Datasets are publicly accessible and code is released on GitHub.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the algorithm details in Section [3| experimental setup in Section 5}
the full experiment results in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper does not report error bars in experimental evaluation. However, all
the experiments use the random seed 0, so the results are not biased. Importantly, we report
the results under multiple hyperparameters in Section [5|and Appendix [C.3] Results show
that the performance of our methods is consistent across different hyperparameter values,
which illustrates the statistical significance of the experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the compute type we use and the runtime of both our methods and
the baselines in Section[5]and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed Code and Ethics, and confirm that our submission conforms
with it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader social impacts in abstract and Section [T}
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited the data and models we use in the paper.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We use open-sourced data and models in our work and they are properly
referred.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper uses LLM only for grammar editing and formatting improvement,
so declaration is not made.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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