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Abstract— We present an early-stage investigation into gaze-
driven intention recognition for assistive robotics, with the goal
of overcoming persistent challenges in the Midas Touch Prob-
lem—distinguishing intention gaze from inspection gaze—and In-
tention Decoding—inferring the user’s goal from gaze. Our prior
work addressed these challenges separately using supervised
classifiers and action-grammars or LLMs, but limitations remain
in generalizability and ambiguity resolution. Here, we propose
a unified approach inspired by affordance grounding—the
visual identification of object regions responsible for specific
actions. We study whether humans fixate on affordance regions
prior to interaction and whether this signal can be used to
infer intention in real-world scenarios. Using large egocentric
datasets, we analyze gaze-object-action relationships across time.
We benchmark automated annotations against human-labeled
data, assess the applicability of existing affordance models
(e.g., LOCATE, OOAL) in egocentric settings, and explore
models’ capacity to resolve ambiguous intentions. Our work
offers insights into integrating gaze, affordance, and language
models for more robust human-in-the-wild intention decoding.

I. INTRODUCTION

Assistive robotic technologies, including exoskeletons [1]
and prosthetic devices [2], show considerable potential as
rehabilitation tools for individuals with motor impairments.
Motor dysfunction in the upper limbs is a prevalent condition
resulting from spinal cord injuries, amputations, neurodegen-
erative diseases, and stroke [3], [4]. Impairments in upper
limb function impose significant barriers to daily living and
profoundly reduce quality of life.

The utility and adoption of assistive robotic systems
critically depends on the development of safe and reliable
human-robot interfaces capable of accurately inferring user
intent given limited input modalities on disabled users. The
human gaze provides a high-bandwidth, information-rich
signal [5] that maintains goal-directed properties even in
the presence of motor impairments and is inherently aligned
with user intention. This supports the development of "Zero
UI" paradigms, wherein natural gaze behavior is directly
interpreted to control robotic systems [6], [7], eliminating the
need for deliberate gaze gestures or screen-based interactions.

Zero-UI gaze-based robotic control faces two principal
challenges. The first is the Midas Touch problem [8], wherein
not all objects or locations fixated by the user are intended
to prompt robotic actions. The second challenge concerns
Intention Decoding—the need to infer the user’s higher-level
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goals associated with a physical object [6]. For instance, when
a user fixates on a cup, it remains ambiguous whether the
intended action is to grasp the cup, pour a liquid into it, or
perform some other related task.

Current state-of-the-art approaches treat the Midas Touch
problem and Intention Decoding as distinct tasks. Typically,
models first classify gaze episodes as either intentional or
inspection and subsequently contextualize the user’s intent
based on the gazed object, user state, and action history [6].
For example, an intention versus inspection classifier based
on an LSTM-CNN architecture [8] categorizes natural eye
movements into "inspection" or action-related "interaction"
classes by learning patterns in gaze sequences and object
identities through supervised deep learning. While effective
in controlled laboratory environments, its generalization to
real-world, "in-the-wild" human behavior remains limited.

For Intention Decoding, methods such as action-grammars
[6] have been proposed. Analogous to linguistic structures
of nouns, adjectives, and verbs [9], action-grammars model
interactions by linking objects, their affordances, and possible
actions, thereby providing a structured representation of
user behavior[10]. In assistive robotic applications, action-
grammars encode the user’s current state and enumerate valid
potential future actions, enabling intention inference based
on gaze information [6], [11]. However, these frameworks
struggle when multiple plausible intentions coexist. For
instance, if a user holds a spoon and gazes at a cup, it
is equally plausible that they intend to place the spoon into
the cup or to stir its contents—an ambiguity that existing
models find difficult to resolve.

In this work, we propose a unified approach to address
both the Midas Touch and Intention Mapping challenges,
drawing inspiration from affordance grounding.

Affordance grounding [12] refers to the process of identi-
fying and localizing regions within an image that correspond
to specific affordances; for instance, the handle of a cup is
the region associated with a "grasp" action. In robotic control,
affordance grounding enables robots to localize appropriate
interaction points—such as determining where to grasp a cup
given the high-level command "grab cup." An object can have
multiple separate regions of affordances hence gaze tracking
on them can potentially reduce the ambiguity in both Midas
Touch and Intention Decoding problems. Machine learning
methods like Locate [13], WorldAfford [14], and OOAL
[15] perform affordance grounding by training on datasets
such as AGD20k [12], which contain images annotated with
affordance regions by human experts.

Prior studies in human vision and action [16]–[18] suggest



Fig. 1: An example gaze affordance grounding. The red dot indicates the human’s gaze fixation. OOAL and LOCATE "pick"
affordance heatmaps are overlaid over the original image. At time t the human reaches to "pick" the bottle but the gaze is
fixated on the cap (responsible for the following "open" manipulation). However, the latest prior fixation on the bottle at
time t −dtGT was on the area responsible for the "pick" affordance.

that humans tend to fixate on the target object or region
immediately before initiating an action to complete the hand-
eye coordination loop. This raises an important question: do
humans specifically fixate on the affordance-related regions
of objects that correspond to their intended actions (e.g.,
gazing at a cup’s handle before grasping it)? If so, affordance
grounding could serve as a powerful tool to simultaneously
address the Midas Touch and Intention Mapping problems. In
this paper, we present our methodology for evaluating whether
existing affordance grounding techniques can be leveraged
to infer human intention from gaze behavior.

We investigate the relationship between object affordances
and human gaze using natural human behavior data from
large-scale datasets. Specifically, we utilize samples from our
internal Deep Omelette dataset, which comprises egocentric
recordings with gaze tracking of participants engaged in
omelette preparation. Additionally, publicly available re-
sources such as Meta’s Aria Everyday Activities Dataset
[19] offer complementary data for analysis.

Analyzing human gaze in such settings presents several
technical challenges. Accurate annotation of object-action
pairs is difficult, as interactions may occur outside the
egocentric camera’s field of view or may be occluded.
Segmenting unstructured environments for automated gaze
detection is also problematic; conventional label-based models
like Mask R-CNN [20] are limited by their label sets and
struggle to generalize to complex, natural scenes, while
vision-language model-based approaches (e.g., GSAM2 [21],
GPT-4o) are susceptible to hallucinations. Moreover, existing
affordance grounding methods, typically trained on datasets

like AGD20k featuring isolated objects in single images,
may perform poorly on egocentric video data characterized
by multiple objects, motion blur, and dynamic environments.
Addressing these technical challenges is crucial for advancing
our research objectives.

In addition to technical challenges, certain characteristics
of human behavior further complicate the analysis. Notably,
humans are capable of interacting with objects without directly
fixating on them [16]; for example, opening a door without
looking at the handle. Such interactions rely on internal
models of the environment and proprioceptive feedback,
allowing individuals to reach toward objects based on memory
from prior fixations and tactile cues. Consequently, learning
from human-in-the-wild gaze and behavior may require
analyzing not only the frames corresponding to the moment
of interaction but also preceding frames to model the human’s
spatial representation and memory of the environment.

Accordingly, this paper presents our preliminary approach,
addressing the relationship between gaze and affordances at
the moment of interaction, the relationship between gaze and
affordances prior to interaction, and a comparison between
human and automated annotation of action-object pairs and
gaze fixations in large-scale egocentric datasets of natural
human behavior.

II. METHODS

The first objective of our study is to determine whether
humans fixate on the area of an object corresponding to their
intended action affordance at the moment of interaction. If
not, we investigate whether fixation on the relevant affordance
area occurred during preceding gazes—suggesting that the



Fig. 2: Automated annotation with GPT-4o in "action-gazed object" format as well as segmentation and gaze detection using
Grounded-SAM2 and MRCNN.

information was memorized into the individual’s internal
spatial representation for later use. To this end, we employ
two established affordance grounding methods: LOCATE [13]
and OOAL [15], both trained on the AGD20K dataset [12].

To conduct this study, we utilize our internal Deep Omelette
dataset, which contains egocentric video, gaze tracking,
and full-body motion capture recordings of 20 participants
preparing an omelette in a kitchen environment. The dataset
includes 24 fps egocentric video recordings with gaze data
captured at 120 fps, allowing for accurate identification of
fixations and saccades. As an alternative, we considered
Meta’s Aria Everyday Activities dataset [19], which provides
egocentric recordings at 30 fps with gaze tracking at 20 fps.
However, the lower gaze sampling rate in Aria may be
insufficient to reliably distinguish saccades from fixations.

First, we manually annotate the user’s actions follow-
ing a methodology similar to [6], breaking down each
human interaction with the environment into "grasp object"-
"manipulate object"-"release object" sequences. For example,
the sequence might include "grasp spatula", "stir omelette",
and "place spatula". Each action sequence begins with the
human hand making contact with the object, followed by
the interaction, and ending with the release. Participants
naturally perform a variety of manipulations during omelette
preparation, some more discrete (e.g., "crack an egg") and
others more continuous (e.g., "stir omelette"). These different
actions are associated with distinct gaze patterns, such as
fixation on the area of interaction or a guiding gaze [16].
However, not every annotated manipulation has corresponding
samples in AGD20K [12]. Therefore, for simplicity, we

initially focus the gaze-affordance grounding only on the
"pick" action — a discrete, common action that has different
affordance regions across various objects, with corresponding
samples available in the AGD20K dataset.

Given the action-object annotations during the interaction,
we can assess whether human gaze indeed fixates on the
areas considered appropriate by the affordance grounding.
However, we are also interested in prior fixations on objects to
explore whether humans possess internal affordance maps of
their environment. Therefore, in addition to annotating action-
object interactions, we also manually annotate the latest prior
fixations on the object.

To further enhance data annotation for future research, we
supplement manual annotations with automated annotations of
human action-object interactions using the vision capabilities
of GPT-4o ("low" detail, no-shot instructions, with no prior
history). For prior gaze fixations on interacted objects, we
employ automated image segmentation and gaze detection on
segmented areas using MRCNN — a conventional label-based
segmenter (similar to one used in gaze-driven assistive robotic
setup in [6]) and Grounded-SAM2, a Vision Transformer-
based segmenter that combines Grounded Dino [22] and
Segment Anything 2 (SAM2) [23]. The MRCNN used
the COCO90 dataset labels, and the Grounded-SAM2 was
provided with the list of interacted objects from manual
annotations to guide the segmentation. Thus, in addition to
investigating the relationship between gaze and affordances,
we provide insights into the challenges of automated annota-
tion and fixation detection, which will be valuable for future
studies in this domain.



III. PRELIMINARY RESULTS

An example of gaze and affordance maps for grasp is
shown in Fig. 1. In this case, we present two egocentric
frames. At time t, the human reached for and grasped the
bottle. At time t −dtGT (GT - human-experimenter annotated
ground truth), the most recent prior fixation on the bottle
occurred. Notably, the human fixated on the area marked as
the "grasp" affordance by OOAL at t −dtGT (we focus on
OOAL for reporting, as it generally outperforms LOCATE).
However, during the actual action at time t, the human’s
gaze was fixated on the bottle’s cap, corresponding to a
future "open" manipulation. This may reflect the human’s
internal affordance memory of the environment — suggesting
that the human did not necessarily fixate on the affordance
region during the interaction but instead relied on prior
observations. While we are still processing the entire dataset,
this observation is noteworthy. It implies that in human-robot
interaction, robots may need to consider the extended history
of human gaze to estimate the human’s internal model of
the space, enabling more accurate deduction of the human’s
intention.

The results of automated annotation, segmentation, and
gaze detection are demonstrated in Fig. 2. GPT-4o demon-
strates some ability to annotate human activity from egocentric
video, although instruction refinement and fine-tuning are
costly. As a result, local vision transformers such as Llama-
11B are considered for future work. Meanwhile, automated
gaze detection with MRCNN proves impractical, as many
objects in the human natural environment are not present in
the COCO90 dataset. Grounded-SAM2 performs better, as it
can leverage the language transformer component to generate
previously unseen object labels, albeit not always accurately.

The fixation detection prior to and during interaction is
shown in Fig. 3, where we present the dt between times
of fixations on an object and interaction time (similar to
what was demonstrated in Fig. 1). The critical aspect is
whether the automated annotation detected the same fixations
as the ground truth. GPT-4o was provided with the frame
containing the gaze represented as a dot and was asked to
identify the object the user was looking at. However, GPT-4o
often suggested that the gaze was on an object, even when the
gaze did not directly fall on it. Meanwhile, Grounded-SAM2
frequently mislabelled objects and/or struggled to differentiate
between different instances of the same type of object (e.g.,
detecting fixations on different eggs in a carton).

Overall, while modern Vision Transformers show promise
in automated annotation and fixation detection, there remain
significant technical hurdles to be overcome before they can
be reliably used.

IV. CONCLUSION

Our work demonstrates the promising potential of gaze-
affordance grounding for enhancing our understanding of
natural human intent for human-robot interaction. Unlike
traditional black-box machine learning methods, such as [8]
that lack interpretability, gaze-affordance grounding is more
explainable and generalizable. By linking gaze patterns to
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Fig. 3: Samples of the time difference dt between the human
interacting with an object and prior gaze fixations on the
object - ground truth annotated manually by human; GPT-4o
used both for annotation and fixation detection; GSAM2 used
for prior fixations detection given interacted object at t.

object affordances, it provides a more intuitive approach to
understanding human behavior, making it a powerful tool for
robotic systems.

However, several methodological and technical challenges
remain. The complexity of natural human behaviour datasets
and recording limitations (actions happening out-of-view, oc-
clusions, gaze-tracking inaccuracies) make manual annotation
arduous. Meanwhile automated annotation and segmentation
methods require refinement as their accuracy is currently too
low to be used reliably.

A potential insight emerging from this work is that
perhaps the affordance grounding should be learned from
human natural interactions - both gaze and manipulation with
objects rather than manual annotations such as AGD20K [12].
This shift in perspective could significantly accelerate the
affordance grounding research and improve the alignment
between robotic systems and human behaviors in real-world
environments.
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