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ABSTRACT

This work explores a novel approach to learning activation functions, moving be-
yond the current reliance on human-engineered designs like the ReLLU. Activation
functions are crucial for the performance of deep neural networks, yet selecting
an optimal one remains challenging. While recent efforts have focused on auto-
matically searching for these functions using a parametric approach, our research
does not assume any predefined functional form and lets the activation function
be approximated by a subnetwork within a larger network, following the Network
in Network (NIN) paradigm. We propose to train several networks on a range
of problems to generate a diverse set of effective activation functions, and sub-
sequently apply Principal Component Analysis (PCA) to this collection of func-
tions to uncover their underlying structure. Our experiments show that only a few
principal components are enough to explain most of the variance in the learned
functions, and that these components have in general a simple, identifiable analyt-
ical form. Experiments using the analytical function form achieve state of the art
performance, highlighting the potential of this data-driven approach to activation
function design.

1 INTRODUCTION

Deep learning, a powerful branch of machine learning, is the backbone of modern artificial in-
telligence. It has achieved remarkable success in various domains, from computer vision to drug
discovery and autonomous vehicles, by learning intricate patterns and representations from massive
datasets. This capability stems from the architecture of deep neural networks (DNNs), which are
built with multiple layers of interconnected nodes. At the root of each of these nodes lies a crucial
component: the activation function.

Activation functions introduce non-linearity into a neural network, which is essential for solving
complex, real-world problems. Without them, a neural network would simply be a linear model.
To provide a foundational basis for our work, we first review the essential properties and historical
context of these functions. The two most critical requirements are non-linearity and differentiability.
The primary and most indispensable purpose of an activation function, denoted as o, is to introduce
non-linearity. This fundamental requirement is formally justified by the Universal Approximation
Theorem. Pioneering work by Cybenko (Cybenkol [1989) and Hornik (Hornik et al., [1989; Hornik,
1991)) established that a feed-forward network with a single hidden layer can approximate any con-
tinuous function to a desired degree of precision, provided the activation function is non-linear. The
mere existence of a non-linear function is a sufficient condition to allow for powerful function ap-
proximation. Beyond non-linearity, differentiability is a crucial property that enables gradient-based
optimization. The standard backpropagation algorithm (Rumelhart et al., [1986) updates network
weights by computing the gradient of the loss function via the chain rule. The activation function
must therefore have a well-defined derivative to act as a backwards-traversable link in the network’s
computational graph. While strict differentiability is ideal, piecewise differentiability is sufficient in
practice. Furthermore, the smoothness of an activation function, related to its higher-order differen-
tiability, can significantly impact training dynamics by producing a smoother loss landscape, which
is generally easier for optimization algorithms to navigate (Santurkar et al.,|2018]; |Misra,, 2019).
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The history of activation functions reflects the evolution of deep learning itself. Early networks
like the Perceptron (Rosenblatt, [1958)) used a simple step function, which was non-differentiable
and thus incompatible with gradient-based learning. With the popularization of the backpropagation
algorithm (Rumelhart et al., |[1986} [Linnainmaal [1976} Werbos| [2005), smooth and differentiable
functions like the sigmoid and tanh became the standard. However, their saturating nature led to
the vanishing gradient problem, which severely hampered the training of very deep networks. The
Rectified Linear Unit (ReLU) (Nair & Hinton, [2010) solved this problem for positive activations
and was computationally inexpensive, becoming a key factor in the early successes of deep learn-
ing. Since then, numerous variants have been proposed to address ReLU’s dying neuron problem,
such as Leaky ReLU (LReLU) (Maas et al.,[2013)), which introduced a small non-zero slope to the
negative part of the function. This trend led to Parametric ReLU (PReLU) (He et al.,|2015)), which
generalized LReLU by making the slope a learnable parameter. More recently, functions like Swish
(Ramachandran et al.l2017)) and Mish (Misral 2019)) have demonstrated that non-monotonicity can
enhance model expressivity and improve gradient flow. A crucial aspect of these functions, which
were discovered using automated search techniques, is that they empirically outperform other func-
tions, showing that there could be better options than those designed by humans. The computa-
tional cost of activation functions is also a critical practical concern, as simple functions relying
on inexpensive hardware operations (e.g., ReL.U) are significantly faster than those involving costly
operations like exponentials (e.g., Sigmoid, Tanh) (Datta, 2020).

A notable trend in recent years has been to move away from manually designed functions toward
learnable activation functions, whose shapes are optimized during training. This evolution mirrors
a broader trend in machine learning, reflecting a shift from manual engineering to automated dis-
covery. The central motivation of this work is to formulate and study the behavior of an adaptive
activation function whose parameters are learned dynamically during a neural network’s training
process. While traditional, static functions like ReLU and sigmoid have driven significant progress,
they operate under a fundamental limitation: their form is fixed before training begins. This static
nature can hinder the network’s ability to capture complex, non-linear relationships and may lead to
issues like vanishing gradients or slow convergence. To address these shortcomings, several strate-
gies have been proposed. One approach extends existing functions with learnable parameters, as
seen in PReL.U (He et al.l [2015) and the original trainable version of Swish (Ramachandran et al.,
2017). Another method uses a linear combination of basis functions to construct a more complex,
adaptable shape, a technique used in Adaptive Piecewise Linear (APL) Units (Agostinell1 et al.,
2014) and kernel-based approaches (Scardapane et al.,[2019). A third line of research has focused
on redesigning the network’s internal components to create implicitly learned activation mecha-
nisms. This includes the Network in Network (NIN) architecture (Lin et al., [2013)), where a small
multi-layer perceptron (MLP) replaces the standard activation, and Maxout networks (Goodfellow
et al.,[2013)), which learn a piecewise linear activation.

Motivated by this trend, we propose a new approach by exploring the concept of a Self-Learning
Activation Function (SLAF). Unlike parametric search methods that assume a predefined functional
form, we model the SLAF as a small neural network—specifically, a single-layer MLP. This ap-
proach, which closely resembles the one presented in NIN (Lin et al.| [2013)) and the APL units in
(Agostinelli et al., 2014])), allows the network to learn the optimal non-linearity in a less biased way,
as the function’s parameters are learned and adjusted dynamically alongside the network’s weights
and biases using backpropagation. However, the main contribution of this work is not the SLAF
itself, but a novel, straightforward method for discovering new activation functions from several
SLAFs trained on a variety of problems. We do not perform any parametric search like in similar
approaches (Ramachandran et al.,[2017). Instead, we train a diverse collection of networks to learn a
wide variety of SLAF instances. We then perform a Principal Component Analysis (PCA) on these
learned functions to identify their main functional modes. By fitting simple analytical functions to
these principal components, we are able to derive a new, powerful activation function, which we term
twish. This approach simplifies the search process and provides a more generalizable method for
discovering functional activation functions. Our results demonstrate that the twish function, which is
a generalization of the Swish, consistently outperforms other popular activations and leads to faster
convergence, particularly on more complex datasets. Our findings demonstrate that a data-driven
approach to function discovery provides a powerful foundation for developing more sophisticated
and robust activation functions for neural networks.
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2 LEARNING THE BASE ACTIVATION FUNCTIONS

In this section, we first define the form of our activation function as a small network within the main
network, and then we detail the procedure that is followed to obtain a diverse collection of basic
activation functions. This set of activations will be the basis for the subsequent principal component
analysis.

2.1 SLAF DEFINITION

The core of this research is a small feedforward network that implements a self-learnable activation
function (SLAF). Because activation functions are pointwise operations, the SLAF is designed to
take a single scalar input and produce a single scalar output. The SLAF is structured as a one-hidden-
layer network that maps its scalar input to a higher-dimensional latent space before collapsing it
back into a single output value. More specifically, the SLAF’s single scalar input is transformed by
a dense linear layer that maps it to N hidden units, using weights W; € R**" and bias b; € RV, A
ReLU activation function is then applied, and an output dense layer maps the N hidden units back
to a single output value, with weights W, € R¥*! and bias by € R. Figure [1| provides a visual
representation of the SLAF for N = 2,4, 8.
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Figure 1: A diagram of SLAF-2, SLAF-4 and SLAF-8.

This definition can be understood as a piecewise linear function with as many pieces as hidden units.
The intuition is that the final unit is a weighted sum of a finite number of ReLU-like functions. In
the end the expression is

flz) = Z Wo;ReLU (W1, + by;) + ba. (1)

This is very similar to the piecewise linear function definition of the APL activation function in
Agostinelli et al.| (2014)).

2.2 TRAINING

The parameters of the SLAF are trained jointly with those of the main network in which it is em-
bedded. Our initial experiments use feed-forward neural networks trained on the MNIST, Fashion-
MNIST, and CIFAR-10 datasets. The networks consist of two densely connected layers. They first
reduce the input dimensions from H x W x C' to a 64-dimensional hidden state before finally gener-
ating a 10-dimensional vector of logits for classification. Given the varying input shapes (28 x 28 x 1
for MNIST and FashionMNIST, and 32 x 32 x 3 for CIFAR-10), the networks have approximately
51K trainable parameters for MNIST-like images and 66K for CIFAR-10 images.

For each dataset and for each number of SLAF units, N € {2,4,8,16,32,64}, we trained 256
different networks. Each network was trained for a fixed number of 10 epochs using the Adam
optimizer (Kingma & Ba, |[2014) to minimize a cross-entropy loss between the output probabilities
and the expected targets. To ensure comparable input scales, pre-activations were batch-normalized
before applying the SLAF activations. A random sample of the learned activation functions for
N = 16 is shown in Figure 2| The y-axis scale varies for each plot to facilitate easier comparison of
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the function shapes. We observe that the learned shapes are similar, though diverse, across different
problems. This is also true for different values of N (not shown).
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Figure 2: Sample SLAFs obtained for N = 16 for the datasets MNIST (top), FashionMNIST
(middle) and CIFAR-10 (bottom).

3 ACTIVATION FUNCTION DISCOVERY THROUGH PCA

The main idea of this work is to use the set of trained activation functions as the basis for a Principal
Component Analysis (PCA) that allows to identify the main functional modes. Therefore, our next
step is to perform PCA to identify the functional shapes that account for the most variance in the
SLAF functions. For this analysis, we used all 4608 trained activation functions (3 datasets x 6
SLAF functions x 256 networks). To perform the PCA, each SLAF was evaluated at 1600 equally
spaced points in the range [—4,4]. The analysis yielded a series of eigenfunctions that represent
the primary modes of variation in the function shapes. The first two principal components, which
jointly explain more than 99.5% of the total variance, are shown in Figure[3] Interestingly, these two
components can be approximated by simple analytical functions.
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Figure 3: First two eigenfunctions obtained with PCA on the trained SLAFs.

The first principal component (PC1) is symmetric with respect to the y-axis, and consists of two
linear branches with a smooth transition around z = 0. Up to a multiplicative constant, this shape
can be understood as a soft absolute value function. Ignoring this scale factor and an additive bias,
it can be formally approximated by
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fi(z) = ztanh(Bx). 2)

The original eigenfunction (blue, dotted) as well the approximation (red, solid), are shown in figure
(left panel). The second principal component (PC2), on the other hand, is essentially a linear
function of x with no bias:

fa(z) =y 3)

The right panel of figure 3]shows both the experimental eigenfuntion (blue, dotted) and its analytical
approximation (red, solid).

3.1 THE TWISH ACTIVATION FUNCTION

As previously noted, more than 99.5% of the variance in the shape of the SLAFs is explained with
just the first two eigenfunctions. Even more, these two principal components can be well approx-
imated by the expressions in equations [2]and [3] This suggests that the general functional shape of
the learned activations can be characterized as a parametric function of the form:

f(z; B,v) = x tanh(Bz) + v, (@))

where 5 and ~y are learnable parameters. It is interesting to note that, for v = 1, the function
resembles the Swish activation function (Ramachandran et al., 2017):

f(@; 8,7y =1) = 220(20x). (5)

However, our learned function, which we term trwish, generalizes this form. Unlike Swish, the
twish function incorporates a wider variety of shapes for v # 1 (see figure ), effectively having
the Swish as a particular case. We named it twish because the functional form of its first principal
component is similar to the Swish function, but uses a hyperbolic tangent instead of a sigmoid.
In the following section, we describe additional experiments where we apply the twish function to
the previous datasets using convolutional neural networks, comparing its performance against other
state-of-the art activations.
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Figure 4: The twish function.

4 FURTHER EXPERIMENTS

To evaluate the potential benefits of the newly described twish activation function, we compare it
against other commonly used functions: ReLU, its parametric version pReLU, and Swish. We chose
Swish because it has been shown to outperform several other functions, including ELU, SELU,
and GELU (Ramachandran et al., [2017), which are thus excluded from our analysis. However,
ReLU is included due to its widespread use and simplicity. For this comparison, we use the same
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Table 1: Test accuracy at the end of the 30 training epochs.
AF MNIST FashionMNIST CIFAR-10

relu 0.989 £ 0.001 0.905 £ 0.003 0.693 £ 0.008
prelu  0.989 £ 0.002 0.905 + 0.004 0.702 £ 0.007
swish  0.990+£0.001  0.905 £ 0.003 0.695 £ 0.006
twish  0.990 £0.002 0.906 +0.004 0.705 + 0.007

three datasets, namely MNIST, FashionMNIST, and CIFAR-10, with a custom convolutional neural
network (CNN).

This CNN has a simple architecture consisting of two convolutional layers with 3 x 3 kernels, each
followed by a max-pooling layer to halve the image resolution. The number of channels increases
from 1 (for grayscale images) or 3 (for RGB images) to 16, and then to 32. After the two con-
volutional and pooling layers, the output is flattened before the final linear transformation to a 10-
dimensional vector for classification. The size of this final fully connected layer differs between the
datasets (MNIST/FashionMNIST vs. CIFAR-10) due to their varying initial image dimensions. The
networks have approximately 20K and 25K trainable parameters for MNIST-like and CIFAR-10 im-
ages, respectively. As before, batch normalization is applied to all pre-activations. For each dataset
and activation function, we train 64 networks for 30 epochs using the Adam optimizer (Kingma &
Bal 2014), and then average the results.

Figure [5]shows the test set accuracy as a function of the training epoch for CNNs trained on MNIST
(left panel) and CIFAR-10 (right panel). The curves represent the average accuracy over the 64
networks trained for each activation function. We observe that the twish function clearly dominates
in both cases, outperforming the other activations by a wide margin throughout the entire training
period. This superiority is consistent across both datasets, despite the overall difference in accuracy
between the two problems. For a more detailed analysis, we refer the reader to Tables [I|and [2]

MNIST CIFAR-10

0.990

0.988

0.986

accuracy
accuracy
o
o
<

0.984

0.982

— twish 0.58

epoch epoch

Figure 5: Test accuracy vs. training epoch for MNIST (left) and CIFAR-10 (right).

Table [T] displays the average test accuracy obtained after 30 training epochs for each of the three
datasets. We observe that the twish function yields the best results in all cases. The performance
difference is especially significant for the CIFAR-10 dataset, while the improvements on the simpler
MNIST and FashionMNIST problems are less pronounced. For the simpler problems, the twish
function likely implements a Swish-like solution. In contrast, for the more complex CIFAR-10
dataset, it appears to exploit its greater expressive power to outperform the other activation functions.

Next, Table [2| analyzes the convergence time. We measure the average number of epochs required
to reach 90% of the total accuracy span achieved during the entire training procesﬂ Consistent

!The convergence point is defined as the epoch where the test accuracy first exceeds accomin +0.9(acCmaz —
accmin), where accmin and accmaz are the minimum and maximum accuracy values observed during training.
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Table 2: Average number of epochs required to reach 90% of the total accuracy span achieved during
the entire training process.

AF MNIST  FashionMNIST CIFAR-10

relu 9.5+4.0 45+1.2 8.0+ 1.7
prelu  9.7+5.0 5.1+1.3 75+1.7
swish 7.0+ 3.0 44+1.0 72£1.5
twish 58=+1.7 48+14 64+1.1

with our previous results, the twish function generally shows faster convergence times. The only
exception is FashionMNIST, where Swish reaches the convergence point slightly earlier. However,
the differences among all four activations are not statistically significant for this dataset, with twish
closely following Swish.

Overall, our experiments demonstrate that the twish activation function consistently outperforms
other popular activations like ReLU, pReLU, and Swish across several datasets. We have shown that
twish not only achieves higher final accuracy, especially on the more complex CIFAR-10 dataset, but
also leads to faster convergence during training. These results suggest that the enhanced expressive
power of the twish function, derived from its learned parametric form, allows it to adapt more
effectively to the complexities of different problems, offering a clear advantage over conventional
activation functions.

5 CONCLUSIONS

This study has introduced a novel, data-driven methodology for discovering new activation func-
tions, challenging the traditional reliance on manually designed functions or simple parametric
searches. By modeling the activation function as a small neural network—a Self-Learning Acti-
vation Function (SLAF)—we were able to train a diverse collection of functional shapes. Our core
contribution lies in this unique discovery process: using Principal Component Analysis (PCA) on
these learned functions to identify their main functional modes. This approach allowed us to derive
a new, powerful activation function, which we termed twish, by fitting simple analytical forms to the
principal components. This methodology offers a more streamlined and less biased alternative to
extensive parametric searches, simplifying the process of finding new and effective non-linearities
for neural networks.

The experimental results presented here provide strong evidence for the effectiveness of the twish
function. Our comparative analysis showed that twish consistently outperformed other widely-used
activation functions, including ReLU, pReLU, and Swish, in terms of both final accuracy and con-
vergence speed. This was particularly evident on the more complex CIFAR-10 dataset, where twish
demonstrated a significant advantage. The superior performance of twish suggests that the expres-
sive power of its learned form allows it to adapt more effectively to the complexities of a given
problem, offering a clear advantage over conventional, fixed-form functions. The fact that twish gen-
eralizes the Swish function—which was itself the result of a complex automated search—highlights
the strength and potential of our discovery method.

While our findings are promising, it is important to acknowledge the limitations of this initial study.
Our experiments were conducted on a restricted set of relatively small-scale datasets (MNIST, Fash-
ionMNIST, and CIFAR-10) and using simple feedforward and convolutional neural network archi-
tectures. Consequently, the results presented here are not directly comparable to the state-of-the-art
performance on these benchmarks, which often rely on much deeper and more complex models.
The primary goal of this work was not to set new performance records, but rather to validate our
novel method for activation function discovery and to introduce the twish function.

Despite these limitations, our work serves as a proof of concept for a new and promising approach to
functional discovery in deep learning. We believe this methodology can be a valuable tool for future
research. We encourage the broader scientific community to experiment with the twish function on
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a wider range of architectures and datasets. Further experimentation will be crucial to fully validate
its effectiveness and to explore its potential in more advanced deep learning applications.
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A AUTHORS STATEMENT ON THE USE OF LARGE LANGUAGE MODELS
(LLMS)

This work was conducted with the assistance of a large language model (LLM), specifically Gemini,
used as a general-purpose writing and ideation tool. The role of the LLM was significant enough to
warrant disclosure.

The LLM was used primarily to enhance the clarity, structure, and flow of the manuscript. Its
contributions include:

* Refining and organizing the text: The model was used to improve sentence structure, gram-
mar, and overall coherence across various sections, including the introduction and conclu-
sions. It helped restructure disorganized ideas into a logical narrative that is easier for
readers to follow.

* Improving academic tone: The LLM was prompted to formalize the language and termi-
nology to align with the standards of scientific writing, ensuring that the manuscript’s tone
is professional and precise.

* Reviewing and editing: The model was used to review text sections, identify redundancies,
and propose alternative phrasing for conciseness and impact. It also helped to rephrase
specific sentences to more accurately reflect the authors’ intended meaning.

It is important to note that the LLM did not perform any original research, data analysis, or interpret
experimental results. All core ideas, experimental designs, and data interpretations are exclusively
the intellectual property of the authors. The LLM acted just as a sophisticated writing and editing
assistant, similar to how a human co-author might provide feedback on prose and structure.
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