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ABSTRACT

Adversarial training has played a pivotal role in the significant advancements of
multi-domain text classification (MDTC). Recent MDTC methods often adopt
the shared-private paradigm, wherein a shared feature extractor captures domain-
invariant knowledge, while private feature extractors per domain extract domain-
dependent knowledge. These approaches have demonstrated state-of-the-art perfor-
mance. However, a major challenge remains: the exponential increase in model
parameters as new domains emerge. To address this challenge, we propose the
Stochastic Adversarial Network (SAN), which models multiple domain-specific
feature extractors as a multivariate Gaussian distribution rather than weight vectors.
With SAN, we can sample as many domain-specific feature extractors as necessary
without drastically increasing the number of model parameters. Consequently,
the model size of SAN remains comparable to having a single domain-specific
feature extractor when data from multiple domains. Additionally, we incorporate
domain label smoothing and robust pseudo-label regularization techniques to en-
hance the stability of the adversarial training and improve feature discriminability,
respectively. The evaluations conducted on two prominent MDTC benchmarks
validate the competitiveness of our proposed SAN method against state-of-the-art
approaches.

1 INTRODUCTION

Text classification has garnered considerable attention within Natural Language Processing (NLP)
(Khurana et al., 2023). Over the past decade, deep learning has propelled text classification forward,
albeit at the expense of requiring extensive labeled data (Kowsari et al., 2019). However, it is widely
acknowledged that text classification is highly dependent on the specific domain. In other words,
the same word can convey different sentiments across different domains (Wu et al., 2022b). This
can easily result in a model trained in one domain easily performing poorly when applied to another
domain. Unfortunately, collecting a substantial amount of labeled data for each desired domain is
often prohibitively expensive and unrealistic. Thus, it becomes crucial to investigate approaches
for leveraging knowledge from related domains to enhance the classification accuracy in the target
domain.

Multi-domain text classification (MDTC) is proposed to address the problem stated above (Li & Zong,
2008). Earlier MDTC methods employed a per-domain training approach and utilized ensemble
learning strategies to generate final results (Li et al., 2012; Wu & Huang, 2015). The most recent
MDTC approaches can yield state-of-the-art performance by adopting adversarial training (Creswell
et al., 2018; Ganin et al., 2016) and the shared-private scheme (Bousmalis et al., 2016b). Adversarial
training aligns different domains to extract domain-invariant features, while the shared-private scheme
partitions the latent space into a shared component that captures common features across domains, and
multiple domain-specific feature spaces that capture domain-unique features. The domain-invariant
features are expected to be both discriminative and transferable, whereas the domain-specific features
enhance the discriminability of the domain-invariant features (Bousmalis et al., 2016a). However,
these approaches face a challenge: the shared-private paradigm requires training domain-specific
feature extractors for each domain, which often involves complex neural network architectures. As
new domains emerge, incorporating numerous domain-specific feature extractors not only increases
the number of model parameters (as depicted in Table 1), but also hampers training convergence.
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Table 1: The number of parameters of the shared feature extractor Fs, the domain-specific feature
extractors {F i

d}Mi=1, the classifier C, and the domain discriminator D in MAN (Chen & Cardie, 2018)
on different tasks. Obviously, the domain-specific feature extractor parameters take the majority part
in both tasks, demonstrating that tackling data from more domains in MDTC will drastically increase
the model size.

Task Amazon FDU-MTL

# Para. of Fs 5.57M 20.20M
# Para. of {F i

d}Mi=1 22.13M=4*5.57M 322.65M=16*20.20M
# Para. of C 0.04M 0.04M
# Para. of D 0.02M 0.02M
# Total Para. 27.76M 342.91M

To mitigate the aforementioned issue, we propose a novel approach called Stochastic Adversarial
Network (SAN) that introduces a stochastic feature extractor to replace multiple domain-specific
feature extractors. The stochastic feature extractor seamlessly integrates an infinite number of
domain-specific feature extractors into existing MDTC methods, while keeping the model parameters
unchanged. In SAN, instead of specific weight points used in previous MDTC approaches, the
domain-specific feature extractors are represented by a weight distribution. Specifically, we model
the domain-specific feature extractors using a Gaussian distribution, with the mean representing the
final domain-specific feature extractor weight and the variance capturing the discrepancy among
different domains. During training, the domain-specific feature extractor is sampled from the
current distribution estimation, and the Gaussian distribution is optimized throughout the training.
Consequently, the SAN model can extract domain-specific features across multiple domains using
only one domain-specific feature extractor. Notably, this is achieved without the need to consider
the number of required domain-specific feature extractors, while avoiding the negative impact of
increasing the model size. To further enhance model performance, we incorporate domain label
smoothing and robust pseudo-label regularization into the SAN method, ensuring stability in the
adversarial training and improving feature discriminability. Through experiments conducted on two
MDTC benchmarks, we demonstrate the effectiveness of our SAN approach, achieving competitive
performance compared to state-of-the-art methods.

Our contributions are summarized as follows:

• We propose the Stochastic Adversarial Network (SAN) for MDTC, introducing a stochastic
feature extractor mechanism. This enables MDTC models to learn domain-specific features
from multiple domains using a single domain-specific feature extractor, thereby substantially
reducing the number of model parameters. To the best of our knowledge, this study represents
the first exploration of this matter in MDTC.

• We incorporate domain label smoothing and robust pseudo-label regularization techniques
to stabilize the adversarial training and enhance the discriminability of the acquired features,
respectively.

• The experimental results on two benchmarks illustrate the efficacy of the SAN method in
comparison to state-of-the-art approaches. Additionally, we perform extensive experiments
on multi-source unsupervised domain adaptation to highlight the generalization ability of
our proposed SAN approach.

2 RELATED WORK

Adversarial Training (AT). AT, initially introduced by the Generative Adversarial Network (GAN)
(Creswell et al., 2018) for image generation, involves a generator synthesizing images and a dis-
criminator distinguishing between generated and real images. Domain-Adversarial Neural Networks
(DANN) (Ganin et al., 2016) apply AT to domain adaptation by training a feature extractor against a
domain discriminator. The domain discriminator aims to distinguish source and target features, while
the feature extractor aims to deceive the domain discriminator, generating domain-invariant features
when the discriminator cannot discern the feature source. Conditional Adversarial Neural Networks

2



Under review as a conference paper at ICLR 2024

(CDANs) (Long et al., 2018) employ multilinear conditioning to align conditional distributions
and incorporate entropy conditioning to facilitate transfer learning. However, AT often exhibits
oscillatory gradients during training, resulting in instability, slow convergence, and mode collapse
(Arjovsky & Bottou, 2017; Mescheder et al., 2018). To overcome these limitations, Wasserstein GAN
(Arjovsky et al., 2017) employs the earth mover distance to measure domain divergence. Additionally,
Environment Label Smoothing (ELS) (Zhang et al., 2023) encourages the domain discriminator to
output soft probabilities, enhancing the stability of AT.

Stochastic Neural Network (SNN). The weight parameters of a neural network are typically treated
as point estimates, limiting their ability to capture uncertainty and often resulting in overconfident
predictions (Blundell et al., 2015). To address this limitation, SNNs are proposed, which consider
weight parameters as random variables sampled from specific distributions. For example, Bayesian
Neural Networks (BNNs) (Hernández-Lobato & Adams, 2015; Wang & Yeung, 2020) are widely
used to represent intermediate outputs and final predictions as stochastic variables, providing richer
representations. The Auto-Encoding Variational Bayes (AEVB) (Kingma & Welling, 2013) employs a
Gaussian distribution to model latent variables in image inputs, serving as a form of data augmentation.
Uncertainty-aware multi-modal BNNs (Subedar et al., 2019) combine deterministic and variational
layers for activity recognition, while DistributionNet (Yu et al., 2019) models feature uncertainty
in person re-identification using distributions. In unsupervised domain adaptation, the Stochastic
Classifier (Lu et al., 2020) leverages a Gaussian distribution to model classifier parameters.

Multi-domain text classifications (MDTC). MDTC aims to enhance overall classification accuracy
by harnessing available resources from multiple domains (Li & Zong, 2008). Early MDTC methods
employ transfer learning techniques to drive progress. The structural correspondence learning
(SCL) (Blitzer et al., 2006) method computes relationships between different pivot features to learn
correspondences among them. The collaborative multi-domain sentiment classification (CMSC)
(Wu & Huang, 2015) method trains two types of classifiers: a shared classifier for all domains
and a set of domain-specific classifiers for each domain, combining their outputs for final results.
Recent MDTC approaches commonly adopt the adversarial training and shared-private paradigm,
leading to significant advancements. The domain separation network (DSN) (Bousmalis et al.,
2016a) first introduces the shared-private paradigm for adversarial domain adaptation and empirically
demonstrates that domain-unique features can enhance the discriminability of domain-invariant
features. The adversarial multi-task learning (ASP-MTL) method (Liu et al., 2017) applies adversarial
training and the shared-private paradigm to MDTC. The multinomial adversarial networks (MANs)
(Chen & Cardie, 2018) utilize the least square loss and negative log-likelihood loss to train the domain
discriminator. The mixup regularized adversarial networks (MRANs) (Wu et al., 2021b) propose
domain and category mixup regularizers for MDTC. The maximum batch Frobenius norm (MBF)
(Wu et al., 2022b) method improves feature discriminability by maximizing the Frobenius norm of
the intermediate feature matrix.

In contrast to previous MDTC approaches that utilize separate domain-specific feature extractors for
each domain, our proposed SAN method employs parameter sampling from a Gaussian distribution
to model the domain-specific feature extractor. This approach enables the SAN method to acquire
domain-specific knowledge through a single feature extractor, resulting in a significant reduction in
the number of model parameters needed.

3 METHOD

The MDTC task can be formulated as follows: given M domains {Di}Mi=1, each domain contains a
small amount of labeled data Li = {xj , yj}lij=1 and a large amount of unlabeled data Ui = {xj}ui

j=1.
The primary objective of MDTC is to leverage these resources to enhance the average classification
accuracy across all domains.

3.1 ADVERSARIAL MULTI-DOMAIN TEXT CLASSIFICATION

Adversarial training has proven to be effective in mitigating domain discrepancies and has found
widespread application in MDTC (Chen & Cardie, 2018; Wu & Guo, 2020; Wu et al., 2022b).
Traditional adversarial MDTC models typically comprise four components: (1) a shared feature
extractor Fs, (2) a collection of domain-specific feature extractors {F i

d}Mi=1, (3) a classifier C, and
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Figure 1: The architecture of the SAN method.

(4) a domain discriminator D. The objective of Fs is to learn domain-invariant features capable of
generalizing across diverse domains, while {F i

d}Mi=1 are designed to capture domain-unique features
advantageous within their respective domains. C serves as a binary classifier for sentiment prediction,
while D acts as an M-way classifier for domain identification. The feature extractors can adopt various
neural network architectures, such as convolutional neural networks (CNNs) (Zhang et al., 2015),
multi-layer perceptrons (MLPs) (Chen & Cardie, 2018), and transformers (Vaswani et al., 2017), to
generate fixed-length feature representations. D takes the shared feature vector as input, while C takes
the concatenation of the shared feature vector and the domain-specific feature vector. In conventional
MDTC approaches, two primary objectives must be achieved: (1) minimizing the classification loss
on labeled data, and (2) optimizing the adversarial loss on both labeled and unlabeled data. These
objectives can be formulated as follows:

min
Fs,{F i

d}
M
i=1,C

max
D

JC(Fs, {F i
d}Mi=1, C) + λJD(Fs, D) (1)

JC(Fs, {F i
d}Mi=1, C) =

M∑
i=1

E(x,y)∼Li
[L(C[Fs(x), F i

d(x)], y)] (2)

JD(Fs, D) =

M∑
i=1

Ex∼Li∪Ui
[L(D(Fs(x)), d)] (3)

Where L(·, ·) is the canonical classification loss, [·, ·] represents the concatenation of two vectors,
and d is the ground-truth domain label of the corresponding instance x.

3.2 STOCHASTIC ADVERSARIAL NETWORK

Given that feature extractors typically employ intricate neural network architectures to capture
valuable information from input data, and MDTC models necessitate training domain-specific feature
extractors for each domain, this approach leads to a significant increase in model parameter count and
a slowdown in convergence speed. To overcome this problem, we propose the stochastic adversarial
network (SAN) for MDTC, which introduces a stochastic feature extractor to replace multiple
domain-specific feature extractors without compromising model performance. The architecture of
our proposed SAN method is depicted in Figure 1. The fundamental concept behind our approach
is to model a distribution of domain-specific feature extractors, where the domain-specific feature
extractors utilized to learn domain-unique features are simply random samples drawn from this
distribution. This design permits access to an infinite number of domain-specific feature extractors, as
we can sample any desired quantity of them. Furthermore, it decouples the number of domain-specific
feature extractors from the model parameter count, ensuring that the model size remains unchanged
as new domains emerge.

More specifically, we employ a multivariate Gaussian distribution N (µ,Σ), where µ represents the
mean vector and Σ corresponds to the diagonal covariance matrix. The parameters of the domain-
specific feature extractors for each domain can be randomly drawn from N (µ,Σ). The resulting
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Figure 2: An example of DLS with three domains on the FDU-MTL dataset.

loss is then back-propagated to update the learnable parameters µ and Σ. It is important to note that
inferring and training a neural network that models the domain-specific feature extractor as a weight
distribution pose significant challenges. The random sampling process impedes conventional end-
to-end training. To overcome this, we utilize the reparameterization technique (Kingma & Welling,
2013) to train the multivariate Gaussian representing the domain-specific feature extractor distribution.
This enables the SAN model to be trained effectively using backpropagation. Specifically, we express
the last fully connected layer of the domain-specific feature extractor as ϕd, which is obtained as
ϕd = µ + σ ⊙ ϵ, where ϵ is an independent sample drawn from a standard Gaussian, ⊙ denotes
element-wise multiplication, and σ represents the diagonal elements of Σ.

By adopting the stochastic domain-specific feature extractor, we can update Eq. 2 as:

JC(Fs, Fd, C) =

M∑
i=1

E(x,y)∼Li
[L(C[Fs(x), Fd(x)], y)] (4)

Utilizing the stochastic feature extractor in our SAN method enables us to achieve competitive
outcomes when compared to multinomial adversarial networks (Chen & Cardie, 2018) (As shown
in Sec. D.2), while also significantly reducing the number of model parameters (As shown in Sec.
D.5). In our study, we represent the stochastic domain-specific feature extractor as Fd. To enhance
the performance of our model further, we integrate domain label smoothing (Zhang et al., 2023) and
robust pseudo-label regularization (Gu et al., 2020). These additions serve to stabilize the adversarial
training and enhance the discriminability of features, respectively.

3.3 ENHANCEMENT VIA DOMAIN LABEL SMOOTHING

Despite AT has been empirically proven effective in minimizing domain divergence and capturing
domain-invariant features (Ganin et al., 2016; Chen & Cardie, 2018), it is widely acknowledged that
AT is challenging to train and converge (Roth et al., 2017; Jenni & Favaro, 2019; Arjovsky & Bottou,
2017). This difficulty arises from the use of one-hot domain labels in AT, which leads to highly
over-confident output probabilities. Consequently, the over-confidence of the domain discriminator
can result in significant oscillatory gradients (Arjovsky & Bottou, 2017; Mescheder et al., 2018),
negatively impacting training stability. To address this issue, we incorporate the domain label
smoothing (DLS) technique, which encourages the domain discriminator to estimate soft probabilities
instead of relying on confident classifications (Zhang et al., 2023). DLS achieves this by employing
a weighted soft-encoding approach to represent domain labels (as depicted in Figure 2). The DLS
formulation is as follows:

J dls
D (Fs, D) =

M∑
i=1

Ex∼Li∪Ui
[γlog(Di(Fs(x))) +

1− γ

M − 1

M∑
j=1,j ̸=i

log(Dj(Fs(x)))] (5)

Where Di gives the i-th dimension of the domain discriminator’s output vector and γ (γ ∈ (0, 1)) is
a hyperparameter. The DLS is theoretically and empirically demonstrated to be capable of improving
robustness to noisy domain labels, converging faster, attaining more stable training, and better

5



Under review as a conference paper at ICLR 2024

generalization performance without extra parameters and optimization steps. With Eq. 4 and Eq. 5,
the overall training objective can be updated as:

min
Fs,Fd,C

max
D

JC(Fs, Fd, C) + λJ dls
D (Fs, D) (6)

3.4 ENHANCEMENT VIA ROBUST PSEUDO-LABEL REGULARIZATION

In MDTC, a considerable portion of each domain consists of unlabeled data, making it intuitive to
leverage pseudo-labels, i.e., estimated labels of unlabeled data, to enhance feature discriminability.
Nevertheless, since unlabeled data lack supervision, their pseudo-labels inevitably contain noise. To
effectively select unlabeled data capable of generating reliable pseudo-labels and thereby improving
feature discriminability, we integrate the robust pseudo-label regularization (RPLR) technique (Gu
et al., 2020) into our proposed SAN method. The RPLR approach assesses the correctness of pseudo-
labels for unlabeled data based on the feature distance to the corresponding class center in a spherical
feature space. It treats incorrectly labeled data as outliers and models the conditional probability of
outliers/inliers using a Gaussian-uniform mixture model. Specifically, ŷuj represents the generated
pseudo-label for the input instance xuj : ŷuj = argmax

k
[C[Fs(xu

j ), Fd(xuj )]]k, where [·]k denotes the

k-th element. To model the fidelity of the generated pseudo-label, a random variable zj ∈ {0, 1}
is introduced, indicating whether the data is correctly or incorrectly labeled with values of 1 and 0,
respectively. Consequently, RPLR is formulated as follows:

J rplr
C (Fs, Fd, C, ϕ) =

M∑
i=1

Exuj ∼Ui
[w(xuj )L(C[Fs(xu

j ), Fd(xuj )], ŷ
u
j )] (7)

w(xuj ) =
{
βj if βj > 0.5

0 otherwise
(8)

Where βj represents the probability of correctly labeled data, i.e., βj = Pr(zj = 1|xuj , ŷuj ). In this
manner, unlabeled data with a probability of correct labeling below 0.5 are discarded. The posterior
probability of correct labeling, i.e., Pr(zj = 1|xuj , ŷuj ), is modeled by the feature distance between
the data and the class center to which it belongs, using a Gaussian-uniform mixture model based
on pseudo-labels. Given a feature vector fu

j = [Fs(xuj ), Fd(xu
j )] of an unlabeled instance xuj , its

distance to the corresponding class center Cŷu
j

for category ŷuj is calculated as:

duj =
fu
j · Cŷu

j∥∥fu
j

∥∥ ∥∥∥Cŷu
j

∥∥∥ (9)

The class center Cŷu
j

is defined in a spherical space as presented in (Gu et al., 2020), the details of
computing Cŷu

j
are available in the Appendix. The distribution of feature distance duj is modeled by

the Gaussian-uniform mixture model, a statistical distribution considering outliers (Coretto & Hennig,
2016; Lathuilière et al., 2018),

p(duj |ŷuj ) = πŷu
j
N+(duj |0, σŷu

j
) + (1− πŷu

j
)U(0, δŷu

j
) (10)

Where N+(duj |0, σ) denotes a density function that is proportional to Gaussian distribution when
duj ≥ 0, otherwise the density is zero. U(0, δŷu

j
) is uniform distribution defined on [0, δŷu

j
]. Specifi-

cally, the Gaussian component captures the underlying probability distribution of correctly labeled
data, while the uniform component provides a robust representation of the distribution for incorrectly
labeled data. With equation 10, the posterior probability of correct labeling for unlabeled data xuj is
defined:
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βj =
πŷu

j
N+(duj |0, σŷu

j
)

p(duj |ŷuj )
(11)

The parameters of Gaussian-uniform mixture models are ϕ = {πk, σk, δk}Kk=1 where K is the number
of classes. The details of approximating these parameters will be given in Sec. 3.5.

In summary, the ultimate optimization objective is defined as:

min
Fs,Fd,C

max
D

JC(Fs, Fd, C) + λJ dls
D (Fs, D) + λrplrJ rplr

C (Fs, Fd, C, ϕ) (12)

3.5 TRAINING PROCEDURE

In this section, we present how to optimize each component in the SAN model and estimate the
parameters ϕ of Gaussian-uniform mixture models. To optimize the ultimate object in Eq. 12, we
alternatively optimize the networks and estimate parameters ϕ by fixing other components following
(Gu et al., 2020). We first initialize Fs, Fd, C, D with Eq. 6 via training strategies as in (Chen &
Cardie, 2018), then we take the following two steps to make the optimization.

(1) Estimating ϕ with fixed Fs, Fd, C, D. Fixing the parameters of Fs, Fd, C, D, we generate the
pseudo-label ŷuj and calculate the distance duj for all unlabeled data, then ϕ is estimated using EM
algorithm as below. Let d̃uj = (−1)mj duj , where mj is sampled from Bernoulli distribution B(1, 0.5),
and Nu denotes the number of unlabeled data, then ϕ can be estimated as follows:

βl+1
j =

πl
ŷu
j
N (d̃uj |0, σl

ŷu
l
)

πl
ŷu
j
N (d̃uj |0, σl

ŷu
j
) + (1− πl

ŷu
j
)U(−δlŷu

j
, δlŷu

j
)

πl+1
k =

1∑Nu

j=1 I{ŷu
j =k}

Nu∑
j=1

I{ŷu
j =k}β

l+1
j

σl+1
j =

∑Nu

j=1 I{ŷu
j =k}β

l+1
j (d̃uj )

2∑Nu

j=1 I{ŷu
j =k}β

l+1
j

, δl+1
k =

√
3(q2 − q21)

Where

q1 =
1∑Nu

j=1 I{ŷu
j =k}β

l+1
j

Nu∑
j=1

1− βl+1
j

1− πl+1
k

I{ŷu
j =k}d̃

u
j

q2 =
1∑Nu

j=1 I{ŷu
j =k}β

l+1
j

Nu∑
j=1

1− βl+1
j

1− πl+1
k

I{ŷu
j =k}(d̃

u
j )

2

We refer our readers to Gu et al. (2020) for the deduction details of the parameters ϕ.

(2) Optimizing Fs, Fd, C, D with fixed ϕ. Given current pseudo-labels and estimated ϕ, we follow
the standard MDTC training protocol (Chen & Cardie, 2018) to train Fs, Fd, C, D with Eq. 12.

4 EXPERIMENT

4.1 SETUP

Datasets. We conducted experiments on two benchmark datasets for MDTC: the Amazon review
dataset (Blitzer et al., 2007) and the FDU-MTL dataset (Liu et al., 2017). The Amazon review
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dataset comprises four domains: books, DVDs, electronics, and kitchen. Each domain consists of
2000 labeled data instances, with 1000 positive and 1000 negative examples. The data has been
pre-processed into a bag-of-features representation, which includes unigrams and bigrams, without
preserving word order information. The FDU-MTL dataset reflects real-world scenarios and contains
raw text data. It encompasses 14 product review domains, including books, electronics, DVDs,
kitchen, apparel, camera, health, music, toys, video, baby, magazine, software, sport, as well as two
movie review domains: IMDB and MR. Each domain includes a validation set of 200 samples and a
test set of 400 samples. The training and unlabeled sets vary in size across domains, but generally
consist of approximately 1400 and 2000 instances, respectively.

Implementation details. To ensure a fair comparison, we adopt identical network architectures as
presented in MAN (Chen & Cardie, 2018). It is worth noting that we only replace the last fully
connected layer of the domain-specific feature extractor with a stochastic layer. For the Amazon
review dataset, we select the 5000 most frequent features and represent each review as a 5000-
dimensional vector, where the feature values represent raw counts. Our feature extractors employ
multi-layer perceptrons (MLPs) with an input size of 5000. Each feature extractor consists of two
hidden layers with sizes of 1000 and 500, respectively. In the case of the FDU-MTL dataset, we
employ a single-layer convolutional neural network (CNN) as the feature extractor. The CNN utilizes
different kernel sizes (3, 4, 5) with a total of 200 kernels. The input to the CNN is a 100-dimensional
embedding obtained by processing each word of the input sequence using word2vec (Mikolov et al.,
2013). For all experiments, we set the batch size to 8, the dropout rate for each component to 0.4,
and the learning rate of the Adam optimizer (Kingma & Ba, 2014) to 0.0001. The size of the shared
features is set to 128, and the size of the domain-specific features is set to 64. Both the classifier
and discriminator are MLPs with hidden layer sizes matching their respective inputs (128+64 for
the classifier and 128 for the domain discriminator). Furthermore, we set the hyperparameters λ to
0.0001, γ to 0.9, and λrplr to 1.

Comparison methods. In the MDTC tasks, we evaluate the SAN method against several state-of-the-
art methods: The multi-task convolutional neural network (MT-CNN) (Collobert & Weston, 2008).
The muti-task deep neural network (MT-DNN) (Liu et al., 2015). The collaborative multi-domain
sentiment classification method (CMSC) trained with the least square loss (CMSC-LS), the hinge
loss (CMSC-SVM), and the log loss (CMSC-Log) (Wu & Huang, 2015). The pre-trained BERT-base
model fine-tuned on each domain (BERT) (Devlin et al., 2018). The adversarial multi-task learning
for text classification method (ASP-MTL) (Liu et al., 2017). The multinomial adversarial network
(MAN) trained with the least square loss (MAN-L2) and the negative log-likelihood loss (MAN-NLL)
(Chen & Cardie, 2018). The dynamic attentive sentence encoding method (DA-MTL) (Zheng et al.,
2018). The global and local shared representation-based dual-channel multi-task learning method
(GLR-MTL) (Su et al., 2020). The conditional adversarial network (CAN) (Wu et al., 2021a). The co-
regularized adversarial learning method (Wu et al., 2022a). For MS-UDA experiments, the baselines
involve the marginalized denoising autoencoder (mSDA) (Chen et al., 2012), the domain adversarial
neural network (Ganin et al., 2016), the multi-source domain adaptation network (MDAN) (Wu et al.,
2021b), the MAN (MAN-L2 and MAN-NLL) (Chen & Cardie, 2018), the CAN (Wu et al., 2021a)
and CRAL (Wu et al., 2022a).

Table 2: MDTC results on the Amazon review dataset
Domain CMSC-LS CMSC-SVM CMSC-Log MAN-L2 MAN-NLL CAN CRAL SAN(ours)

Books 82.10 82.26 81.81 82.46 82.98 83.76 85.26 86.29± 0.26
DVD 82.40 83.48 83.73 83.98 84.03 84.68 85.83 86.43± 0.38
Electr. 86.12 86.76 86.67 87.22 87.06 88.34 89.32 89.78± 0.12
Kit. 87.56 88.20 88.23 88.53 88.57 90.03 91.60 91.31±0.15

AVG 84.55 85.18 85.11 85.55 85.66 86.70 88.00 88.45± 0.08

4.2 RESULT

Multi-Domain Text Classification. The experimental results on the Amazon review dataset and
FDU-MTL dataset are reported in Table 2 and Table 3, respectively. We report the classification
results of mean ± variance over five random runs. From Table 2, it can be noted that the SAN method
obtains the best classification accuracy on 3 out of 4 domains, and yield state-of-the-art results for the
average classification accuracy. For the experimental results on FDU-MTL, shown in Table 3, the
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Table 3: MDTC results on the FDU-MTL dataset
Domain MT-CNN MT-DNN ASP-MTL BERT MAN-L2 MAN-NLL DA-MTL GLR-MTL SAN(ours)

books 84.5 82.2 84.0 87.0 87.6 86.8 88.5 88.3 90.5± 0.3
electronics 83.2 88.3 86.8 88.3 87.4 88.8 89.0 90.3 87.7±0.6
dvd 84.0 84.2 85.5 85.6 88.1 88.6 88.0 87.3 89.7± 0.5
kitchen 83.2 80.7 86.2 91.0 89.8 89.9 89.0 89.8 90.4±0.9
apparel 83.7 85.0 87.0 90.0 87.6 87.6 88.8 88.2 87.4±0.7
camera 86.0 86.2 89.2 90.0 91.4 90.7 91.8 89.5 91.1±0.6
health 87.2 85.7 88.2 88.3 89.8 89.4 90.3 90.5 90.3±0.3
music 83.7 84.7 82.5 86.8 85.9 85.5 85.0 87.5 85.9±0.8
toys 89.2 87.7 88.0 91.3 90.0 90.4 89.5 89.8 90.3±0.7
video 81.5 85.0 84.5 88.0 89.5 89.6 89.5 90.8 90.0±0.5
baby 87.7 88.0 88.2 91.5 90.0 90.2 90.5 92.3 90.7±0.8
magazine 87.7 89.5 92.2 92.8 92.5 92.9 92.0 92.3 92.3±0.1
software 86.5 85.7 87.2 89.3 90.4 90.9 90.8 91.8 89.5±0.4
sports 84.0 83.2 85.7 90.8 89.0 89.0 89.8 87.8 90.0± 0.2
IMDb 86.2 83.2 85.5 85.8 86.6 87.0 89.8 87.5 89.3±0.7
MR 74.5 75.5 76.7 74.0 76.1 76.7 75.5 72.7 76.5±0.9

AVG 84.5 84.3 86.1 88.1 88.2 88.4 88.2 88.5 88.8± 0.1

Table 4: Multi-source unsupervised domain adaptation results on the Amazon review dataset

Domain mSDA DANN MDAN(H) MDAN(S) MAN-L2 MAN-NLL CAN CRAL SAN(Ours)

Books 76.98 77.89 78.45 78.63 78.45 77.78 78.91 82.49 81.48
DVD 78.61 78.86 77.97 80.65 81.57 82.74 83.37 84.30 85.53
Electr. 81.98 84.91 84.83 85.34 83.37 83.75 84.76 86.82 87.12
Kit. 84.26 86.39 85.80 86.26 85.57 86.41 86.75 89.08 89.00

AVG 80.46 82.01 81.76 82.72 82.24 82.67 83.45 85.67 85.78

proposed SAN method outperforms MT-CNN and MT-DNN consistently across all domains with
notable large performance gains. When compared with the state-of-the-art MAN-L2, MAN-NLL,
DA-MTL, and GLR-MTL, SAN achieves competitive results in terms of average classification
accuracy. The experimental results on both benchmarks validate the efficacy of our proposed method.

Multi-Source Unsupervised Domain Adaptation. In real application scenarios, it is not uncommon
for the target domain to lack annotated data. Evaluating MDTC models under such circumstances is
of utmost significance. In the multi-source unsupervised domain adaptation (MS-UDA) setting, we
have multiple source domains, each containing both labeled and unlabeled data, and a target domain
with only unlabeled data. Our MS-UDA experiments are conducted on the Amazon review dataset,
following the same protocol as outlined in Chen & Cardie (2018). Specifically, in each experiment,
three out of four domains were treated as source domains, while the remaining domain was treated
as the target domain. As shown in Table 4, the proposed SAN method outperforms other baselines
on two out of four domains as well as the average accuracy. It reveals that our SAN method has a
good capacity for transferring knowledge to unseen domains. Further experimental results, including
parameter sensitivity analysis, ablation study, convergence analysis, model runtime comparison and
model parameter comparison, can be found in the Appendix.

5 CONCLUSION

In this paper, we propose stochastic adversarial networks (SANs) for multi-domain text classification.
In contrast to previous MDTC models that rely on multiple domain-specific feature extractors to
capture domain-unique features, we introduce a multivariate Gaussian distribution N (µ,Σ) over the
weights of the domain-specific feature extractor. This allows for the sampling of an arbitrary number
of diverse domain-specific feature extractors, providing the ability to leverage an infinite number of
such extractors without increasing the model size. Furthermore, we integrate domain label smoothing
and robust pseudo-label regularization techniques to stabilize the adversarial training process and
enhance feature discriminability. Experimental results on two MDTC benchmarks demonstrate the
effectiveness of our SAN model in improving system performance on these benchmarks and its
generalization ability to unseen domains.
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A DATASET

The experiments are conducted on two benchmarks: The Amazon review dataset (Blitzer et al., 2007)
and the FDU-MTL dataset (Liu et al., 2017). The statistical details of these two datasets are presented
in Table 5 and 6, respectively.

Table 5: Details of the Amazon review dataset

Domain Labeled Unlabeled Class.

Books 2000 4465 2
DVD 2000 5681 2
Electronics 2000 3586 2
Kitchen 2000 5945 2

B CENTER OF SAMPLES ON SPHERE

This section computes the class center of spherical samples used for robust pseudo-label regularization.
Before computing the class centers on sphere, we begin by normalizing the concatenations of the
shared features and domain-specific features. Let f(x) = [Fs(x), Fd(x)], where [·, ·] represents the
concatenation of two vectors. We then normalize features with f ′ = r f(x)

f(x) to obtain features in the
spherical space Sn−1

r = {f ′ ∈ Rn : ||f ′|| = r}. Let f ′
1, f

′
2, · · · , f ′

m be samples on the sphere Sn−1
r ,
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Table 6: Details of the FDU-MTL dataset

Domain Train Dev. Test Unlabeled Avg. L Vocab. Class.

Books 1400 200 400 2000 159 62K 2
Electronics 1398 200 400 2000 101 30K 2
DVD 1400 200 400 2000 173 69K 2
Kitchen 1400 200 400 2000 89 28K 2
Apparel 1400 200 400 2000 57 21K 2
Camera 1397 200 400 2000 130 26K 2
Health 1400 200 400 2000 81 26K 2
Music 1400 200 400 2000 136 60K 2
Toys 1400 200 400 2000 90 28K 2
Video 1400 200 400 2000 156 57K 2
Baby 1300 200 400 2000 104 26K 2
Magazine 1370 200 400 2000 117 30K 2
Software 1315 200 400 475 129 26K 2
Sports 1400 200 400 2000 94 30K 2
IMDB 1400 200 400 2000 269 44K 2
MR 1400 200 400 2000 21 12K 2

the center C of the samples on the sphere corresponds to the point closest to all samples, i.e., the
solution of the following optimization problem:

min
f ′∈Sn−1

r

1

m

m∑
i=1

dist(f ′, f ′
i) (13)

Where dist(u, v) = 1− uT v
||u||||v|| is the cosine distance. Since ||f ′|| = r, ∀f ′ ∈ Sn−1

r , Eq. 13 can be
rewritten as:

max
f ′

f ′T (

m∑
i=1

f ′
i) s.t.||f ′|| = r. (14)

With the method of Lagrange multipliers, the center can be obtained by:

C =
r

||f̃ ′||
f̃ ′ (15)

Where f̃ ′ =
∑m

i=1 f
′
i .

C HOW STOCHASTIC FEATURE EXTRACTOR WORKS

The variance of the distribution Σ elucidates the functioning of the stochastic feature extractor. As
depicted in Figure 3, the initial values of Σ follow a uniform distribution, whereas they exhibit more
structured patterns after training. Notably, we can observe that the domain-specific feature extractor
distribution tends to exhibit larger variances for distinct domains. As the SAN model converges, these
significant variances ensure the distinct domain-unique features across domains.

D EXPERIMENTS

D.1 PARAMETER SENSITIVITY ANALYSIS

In this section, we examine the sensitivity of our SAN method to the values of hyperparame-
ters λ, γ and λrplr. The λ and λrplr are evaluated in the range {0.0001, 0.05, 0.1, 0.5, 1, 10} and
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Figure 3: The distribution of the flattened Σ values for (a) Initialization (b) after convergence of SAN
on the Amazon Review dataset.

{0.00001, 0.0001, 0.001, 0.01, 0.1, 1}, respectively. The valid range of values for γ is (0, 1], there-
fore we assess its impacts in the range of {0.5, 0.6, 0.7, 0.8, 0.9, 0.95}. We conduct the parameter
sensitivity analysis on both the Amazon review dataset and FDU-MTL dataset. The experimental
results are displayed in Figure 4 and Figure 5, respectively. We report the average classification
accuracy.

In Figure 4, we observe a parameter sensitivity analysis performed on the Amazon review dataset.
The results reveal that the impact of γ on system performance can be negligible. Although the impact
of λ on system performance is relatively weak, increasing its value leads to a decline in classification
accuracy. The most influential parameter is λrplr, with an increase in its value first leading to a
rise in classification accuracy, followed by a decline. Figure 5 shows the results of the parameter
sensitivity analysis conducted on the FDU-MTL dataset. In this case, we observe that no parameter
has a significant effect on system performance, highlighting the stable training of our SAN method.
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Figure 4: Parameter sensitivity analysis on Amazon review dataset.
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Figure 5: Parameter sensitivity analysis on FDU-MTL dataset.
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D.2 ABLATION STUDY

To assess the impact of each component of the SAN method on performance, we conduct an ablation
study on the Amazon review dataset and FDU-MTL dataset. The experimental results are displayed
in Figure 7 and Figure 8, respectively. Specifically, we examine three variants: (1) SAN w/o dls, a
variant without the enhancement of domain label smoothing; (2) SAN w/o rplr, a variant without the
enhancement of robust pseudo-label regularization; (3) plain SAN, a variant utilizing a stochastic
feature extractor instead of the domain-specific feature extractors of MAN (Chen & Cardie, 2018).
All three variants yield inferior results, while the full model achieves the best performance. The
ablation study confirms the contributions of both components to the performance improvement of our
model.

Table 7: Ablation study analysis on the Amazon review dataset

Domain SAN(full) SAN w/o dls SAN w/o rplr plain SAN

Books 86.29 84.70 83.05 82.25
DVD 86.43 85.10 83.35 83.05
Electr. 89.78 89.75 87.75 86.90
Kit. 91.31 90.85 88.15 88.25
AVG 88.45 87.60 85.53 85.11

Table 8: Ablation Study on the FDU-MTL dataset

Domain SAN(full) SAN w/o dls SAN w/o rplr plain SAN

books 90.5 89.0 87.0 87.8
electronics 87.7 86.5 88.5 88.8
dvd 89.7 90.0 90.8 88.3
kitchen 90.4 90.3 90.5 89.8
apparel 87.4 86.0 87.5 87.3
camera 91.1 90.8 91.3 89.8
health 90.3 90.5 90.0 91.3
music 85.9 86.5 85.3 85.8
toys 90.3 91.3 90.8 89.5
video 90.0 90.3 88.3 89.5
baby 90.7 90.8 90.0 90.0
magazine 92.3 91.8 93.0 92.3
software 89.5 89.0 90.5 89.0
sports 90.0 88.0 88.8 90.3
IMDb 89.3 89.8 88.8 86.5
MR 76.5 76.3 74.3 72.0

AVG 88.8 88.5 88.4 88.0

D.3 CONVERGENCE ANALYSIS

We compare the convergence speed between our proposed SAN model and traditional MDTC methods
employing the shared-private paradigm, such as MAN (Chen & Cardie, 2018). Figure 6 illustrates that
our SAN approach exhibits a faster convergence rate compared to MAN, showcasing the accelerated
speed achieved by the stochastic feature extractor.

D.4 MODEL RUNTIME COMPARISON

We also compared the runtime of our proposed SAN model and traditional MDTC methods employing
the shared-private paradigm (taking MAN as an example) on the Amazon review and FDU-MTL
datasets, using the average training time per epoch as the indicator. The results, which are summarized
in Table 9, are as follows: it is easy to observe that SAN requires less time, saving nearly 10%
compared to MAN on the Amazon dataset and nearly 15% compared to MAN on the FDU-MTL
dataset.
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Figure 6: Convergence analysis between MAN and SAN.

Table 9: Model runtime comparison between MAN and SAN
Task Amazon FDU-MTL

MAN 7.07s 70.88s
SAN(ours) 6.39s 60.72s

D.5 MODEL PARAMETER COMPARISON

We compare the conventional MDTC methods that employ the shared-private paradigm, such as
MAN (Chen & Cardie, 2018), with our SAN approach in terms of the parameter counts of the
shared feature extractor Fs, domain-specific feature extractors {F i

d}Mi=1, classifier C, and domain
discriminator D. The results are presented in Table 10. The comparison reveals that in MAN, the
domain-specific feature extractors contribute the most to the overall model parameters. In contrast,
our proposed SAN method significantly reduces the parameter count of the domain-specific feature
extractor while maintaining system performance. This further validates the effectiveness of our SAN
approach. Moreover, the stochastic feature extractor we propose can seamlessly integrate into existing
MDTC methods that adopt the shared-private paradigm.

Table 10: Model parameter comparison between MAN and SAN

Dataset Amazon FDU-MTL

Model MAN SAN(ours) MAN SAN(ours)

# Para. of Fs 5.57M 5.57M 20.20M 20.20M
# Para. of {F i

d}Mi=1 22.13M 5.57M 322.65M 20.20M
# Para. of C 0.04M 0.04M 0.04M 0.4M
# Para. of D 0.02M 0.02M 0.02M 0.02M
# Total Para. 27.76M 12.00M 342.91M 40.46M

E LIMITATIONS

While our proposed SAN model demonstrates improved performance on the Amazon review dataset,
its effectiveness on the FDU-MTL dataset falls short compared to state-of-the-art methods. In Table
11, we compare our SAN model with some most recent MDTC methods: the conditional adversarial
network (CAN) (Wu et al., 2021a), the mixup regularized adversarial network (MRAN) (Wu et al.,
2021b), the co-regularized adversarial network (CRAL) (Wu et al., 2022a), the robust contrastive
alignment (RCA) (Li et al., 2022), and the maximum batch Frobenius norm (MBF) (Wu et al., 2022b).
One of the main limitations of our work lies in the suboptimal accuracy of the pseudo-labels used for
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robust pseudo-label regularization. In the SAN method, a pseudo-labeled data point xu
j is considered

valid when w(xuj ) exceeds 0.5. The accuracy of valid pseudo-labels on unlabeled data in the Amazon
review dataset is presented in Table 12. Additionally, Table 13 showcases the accuracy of valid
pseudo-labels on the validation and test sets of the FDU-MTL dataset. Notably, the accuracy of
pseudo-labels across different domains in the FDU-MTL dataset exhibits a significant variation, with
the ′MR′ domain achieving a mere 82.87% accuracy. It is worth mentioning that the integration of
poor-quality pseudo-labels can substantially impair system performance. Therefore, we believe that
enhancing the quality of pseudo-labels assigned to unlabeled data is crucial for improving our SAN
approach.

Table 11: Comparisons of SAN with several state-of-the-art methods

Method CAN MRAN CRAL MBF RCA SAN(ours)

Amazon 87.70 87.64 88.00 87.71 86.88 88.45
FDU-MTL 89.4 89.0 90.2 90.1 89.0 88.8

Table 12: Accuracy of valid pseudo-labels on the Amazon review dataset

Domain Books DVD Elec. Kit. AVG

Acc. 90.27 88.91 94.52 94.66 92.09± 2.10

Table 13: Accuracy of valid pseudo-labels on the FDU-MTL dataset

Domain Books Elec. DVD Kit. Apparel Camera Health Music Toys Video Baby Magaz. Softw. Sports IMDb MR AVG

Acc. 89.67 94.63 90.69 95.21 96.05 94.84 93.98 87.76 93.12 90.25 93.99 95.82 92.17 95.88 89.33 82.87 92.27± 3.52
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