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ABSTRACT

High-performance deep reinforcement learning faces tremendous challenges
when implemented on cost-effective low-end embedded systems due to its heavy
computational burden. To address this issue, we propose a policy distilla-
tion method called Bayesian Policy Distillation (BPD), which effectively re-
trains small-sized neural networks through an offline reinforcement learning ap-
proach. BPD exploits Bayesian neural networks to distill already designed high-
performance policy networks by adopting value optimizing, behavior cloning,
and sparsity-inducing strategies. Simulation results reveal that the proposed BPD
successfully compresses the policy networks, making them lighter and achieving
faster inference time. Furthermore, the proposed approach is demonstrated with a
real inverted pendulum system and reduced the inference time and memory size
by 78 % and 98 %, respectively.

1 INTRODUCTION

Recently, deep reinforcement learning (DRL) has achieved super-human performances in complex
games (Lample & Chaplot, 2017; Schrittwieser et al., 2020) and provided feasible solutions to chal-
lenging feedback control problems without the need for system modeling and parameter tuning
(Hwangbo et al., 2017; Gu et al., 2017). However, such unprecedented innovations require high
computational costs, large memory storage spaces, and long inference times, which limit their ap-
plicability to real systems. The realization of DRL that meets realistically acceptable specifications
while maintaining the expected high performance is crucial. Research on compressing deep neural
networks for practical applications has been actively pursued, particularly outside DRL. Network
pruning is the most basic and classical approach and involves removing uninfluential weight pa-
rameters based on certain criteria with minimal performance loss (Reed, 1993; LeCun et al., 1989;
Lebedev & Lempitsky, 2016; Molchanov et al., 2017; Zhao et al., 2019). Network quantization is
another approach to achieving lightweight compressed neural networks by representing traditional
32- or 64-bit floating point values with lower bit precision (Achterhold et al., 2018; Gil et al., 2021).
In addition, knowledge distillation (Gou et al., 2021) is widely used to compress deep neural net-
works. This method transfers knowledge from a large- to small-sized neural network, which has
proven effective across various domains such as computer vision and natural language processing
(Luo et al., 2017; Li et al., 2019; Deng et al., 2020).

The above methods have continued to evolve to handle large language models (Wang et al., 2020;
Ganesh et al., 2021) and embedded systems with limited computation capacity (Wofk et al., 2019;
Chen et al., 2020; Naik et al., 2021). Therefore, grafting the above network compression techniques
onto DRL would be meaningful and timely. Unlike open-loop-based supervised and unsupervised
learning, DRL operates in a closed-loop manner, making network compression challenging. Conse-
quently, network compression techniques have been relatively underexplored in DRL despite their
long-standing importance. A few attempts to compress the agent’s policy in DRL have been made
within an online reinforcement learning (RL) framework (Tan et al., 2023; Baek et al., 2023), which
inherently involves the agent interacting with its environment. Practically, without careful parame-
ter tuning, such a direct online approach may degrade performance or stability (Sokar et al., 2021)
because the agent’s policy is trained and compressed based on environmental interactions. To rem-
edy this issue, the Teacher–Student framework is commonly used in RL literature (Ross & Bagnell,
2010; Hinton et al., 2015; Rusu et al., 2015). This framework consists of the teacher and student
policies, with the teacher policy having a larger neural network size. The teacher policy facili-
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tates knowledge transfer to the student policy through supervised learning by minimizing the mean
squared-error loss or the KullbackLeibler (KL) divergence between them (Rusu et al., 2015; Jang
et al., 2020). However, simply mimicking the “teacher policy” to train the “student policy” makes it
challenging to learn an effective policy beyond the teacher policy. In addition, most RL algorithms
using the Teacher–Student framework rely on online RL and inherently suffer from the aforemen-
tioned drawbacks. Thus, a naively and overly compressed student policy may lead to significantly
diminished performance compared to the teacher policy (Qu et al., 2022). This challenge under-
scores the need for leveraging an open-loop-based learning framework such as offline RL that aims
to learn an improved policy based on pre-collected data generated from the teacher policy.

To tackle these challenges, we propose an efficient offline policy compression algorithm, namely
Bayesian policy distillation (BPD). BPD integrates offline RL framework and Bayesian neural net-
work (Lampinen & Vehtari, 2001) to create an extremely sparse policy that is lightweight, fast,
and energy-efficient. This approach holds promise, particularly in scenarios where computational
performance is limited, such as on-board devices or a single cloud server needing to perform neu-
ral network computation for multiple client devices. Additionally, BPD is a fully offline learning
method, particularly suitable for domains such as healthcare or robotics, where data collection is
expensive and implementing online RL poses challenges.

We evaluated the proposed algorithm on the multi-joint dynamics with contact MUJOCO continuous
control benchmark (Todorov et al., 2012), widely used in RL. The results confirm that our proposed
algorithm can create an extremely sparse policy while preserving or improving the teacher policy
performance. Additionally, experiments on a real inverted pendulum demonstrated the practicality
of our proposed algorithm and highlighted its potential for real-world applications.

2 PRELIMINARY BACKGROUND

This section briefly introduces the background to facilitate understanding of the proposed algorithm.

2.1 STANDARD REINFORCEMENT LEARNING

In the standard RL framework, an environment is modeled as a Markov decision process defined as
a tuple (S,A, R, P, γ), where S andA are the state and action spaces, respectively; R : S ×A 7→ R
is the reward function; P : S ×A×S 7→ [0, 1] is the transition probability function; and γ ∈ (0, 1)
is the discount factor. A stochastic policy π : S ×A 7→ [0, 1] maps state-action pairs to probability
distributions over S. The objective of the standard RL framework is to find an optimal policy that
maximizes the discounted cumulative rewards.

The state and action at time t are denoted by st and at, respectively. For a given st and at, the
environment provides an immediate scalar reward R(st, at), and transitions to a new state st+1 ∈ S
with probability p(st+1|st, at). The objective is to find an optimal policy π∗ that maximizes the
discounted cumulative rewards as follows:

π∗ = argmax
π

Eτ0∼π[
∞∑
t=0

γtR(st, at)],

where τ0 = (s0, a0, s1, a1, · · · ) is the trajectory under policy π. The distribution of the trajectories
can be written as

p(τ0) = ρ(s0)

∞∏
t=0

p(st+1|st, at)π(at|st),

where ρ(·) is the distribution of the initial state s0.

The expected discounted cumulative reward is represented by the following Q-function:

Qπ(st, at) = Eτt∼π[
∞∑
k=0

γkR(st+k, at+k)|st, at],

where the trajectory τt is (st, at, st+1, at+1, · · · ). The Q-function values (Q-values) can be repre-
sented as the immediate reward plus the discounted future Q-values as follows (Bellman, 1957):

Qπ(st, at) = T (Qπ(st, at)) ≜ R(st, at) + γEst+1∼P (·|st,at),at+1∼π(·|st+1)[Q(st+1, at+1)],
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where T is the Bellman operator, whose contraction property ensures the convergence of the
Q-values with iterative methods. However, since not all of the transition probability functions
p(·|st, at) are known, or the state space S is too large in some cases, Q-values are often com-
puted using sample-based stochastic approximation methods such asQ-learning (Watkins & Dayan,
1992). Thus, an optimal policy is obtained by incrementing the Q-values for all state-action pairs.

2.2 BAYESIAN NEURAL NETWORK AND VARIATIONAL INFERENCE

Bayesian neural networks (BNNs) consider their weight parameters as random variables with
stochastic distribution. Such a nondeterministic approach offers advantages such as robustness
against overfitting and probabilistic interpretability (Gal et al., 2016). Through BNN learning, the
posteriors of its weights ω are approximated for given observations X Y . Let the posterior be
p(ω|X,Y ). Then, we can decompose the posterior using Bayes’ rule as follows:

p(ω|X,Y ) =
p(Y |X,ω)p(ω)

p(Y |X)
.

To approximate the posterior p(ω|X,Y ), the variational inference technique has been widely used,
which employs a proposal distribution named variational distribution qϕ(ω) parameterized by ϕ and
then makes it close to the posterior by minimizing the following KL divergence:

DKL(qϕ(ω)||p(ω|X,Y ))

= Eqϕ(ω)[log
qϕ(ω)

p(ω)
]− Eqϕ(ω)[log p(Y |ω,X)] + log p(Y |X)

= DKL(qϕ(ω)||p(ω))− Eqϕ(ω)[log p(Y |ω,X)] + C ≜ −LELBO + C

(1)

Since log p(Y |X) in (1), called log evidence, is independent of ϕ or is unlearnable, we maximize
LELBO to minimize the KL divergence between the variational distribution qϕ(ω) and posterior
p(ω|X,Y ). LELBO can be numerically computed as follows:

LELBO ≈ Σ(xn,yn)∈DEqϕ(ω)[log p(yn|fω(xn))]− DKL(qϕ(ω)||p(ω)), (2)

whereD = {(xn, yn)}|D|
n=1 is a reusable dataset collected earlier, fω(xn) is the BNN output for input

xn ∈ X , and yn ∈ Y is the corresponding groundtruth. Here, we replace xn and yn with a state
and an action for behavioral cloning (BC) in RL, respectively. To obtain a lightweight performance-
aware network model, LELBO is later reflected in learning processing.

2.3 SPARSE VARIATIONAL DROPOUT

Dropout is a common regularization method employed to prevent neural networks from overfitting.
Based on the Bernoulli distribution, each neuron in a neural network is assigned the deletion prob-
ability (Srivastava et al., 2014). Assigning Bernoulli distribution to each neuron is shown to be
equivalent to applying proper Gaussian noises to the random weights characterized by θij and αij
as follows (Wang & Manning, 2013):

ωij = θij(1 +
√
αijϵij), (3)

where ϵij ∼ N (0, 1) and subscript ij denotes the corresponding element in the weight matrix form.
The process (3) of generating noisy weights is called Gaussian dropout. In terms of θij and αij in
(3), the proposal distribution qϕ(ω) can be expressed element-wise as follows:

qϕij
= q(ωij |θij , αij) = N (θij , αijθ

2
ij), (4)

where ϕij = (θij , αij).

If different weights are assumed to be independent, the posterior and prior are fully factorized, and
we have

DKL(qϕ(ω)||p(ω)) =
∑
ij

DKL(qϕ(ωij)||p(ωij)) =
∑
ij

DKL(q(ωij |θij , αij)||p(ωij)),

3
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where qϕ(ω) and p(ω) are given by

qϕ(ω) =
∏
ij

qϕij
(ωij), p(ω) =

∏
ij

pij(ωij).

With the factorized form above and minibatch-based stochastic gradient descent method, LELBO in
(2) can be rewritten more specifically as follows:

LELBO ≈
|D|
M

ΣMm=1Eqϕ(ω)[log p(ỹm|fω(x̃m))]−
∑
ij

DKL(q(ωij |θij , αij)||p(ωij)), (5)

where |D| is the total number of the dataset, M is the mini-batch size, and {(x̃m, ỹm)}Mm=1 repre-
sent the observation in the selected mini-batch. To maximize LELBO (5) with random variable ωij ,
reparameterization methods such as local reparameterization (Kingma et al., 2015) or additive noise
reparameterization (Molchanov et al., 2017) can be applied.

Furthermore, evidence lower bound objective (ELBO) can induce sparsity in BNNs if the prior
p(wij) is set to log-uniform distribution that becomes large around zero as follow (Kingma et al.,
2015):

p(log(|ωij |)) = const.↔ p(|ωij |) ∝
1

|ωij |
. (6)

Consequently, by maximizing LELBO in (5) with the log-uniform prior, we can train a highly com-
pressed BNN. This Bayesian network pruning algorithm, called sparse variational dropout, trains
individual dropout rate αij in (4). The network pruning is achieved by removing weights with large
αij , as it does not affect the network output significantly. Typically, the threshold CThreshold = 3 is
widely used, which corresponds to a binary dropout rate higher than 0.95 (Molchanov et al., 2017).
In this case, when log(αij) exceeds 3, the corresponding weight ωij is pruned (i.e., set to zero).

2.4 OFFLINE REINFORCEMENT LEARNING

In standard RL, the agent collects data through numerous interactions with the environment, which
can be expensive in fields such as robotics and healthcare. This challenge brings attention to offline
RL, which allows agents to learn policies without direct interaction with the environment, relying on
the dataset collected by a behavioral policy in advance. Since the agent can train the policy without
engaging in potentially risky interactions, offline RL could be considerably safer and more cost-
effective for learning policy than online RL. However, despite its promising paradigm, challenges
still remain to overcome in the policy training domain. One main challenge is the undesirable
extrapolation error of out-of-distribution (OOD) actions (Fujimoto et al., 2019). The target policy
to train cannot explore state-action pairs that are not included in the static dataset collected by
the behavioral policy. Hence, the state-action visitation distribution of the target policy deviates
from that of the behavioral policies, leading to optimistic Q-values generating OOD actions. This
becomes problematic because if an agent is trained with these overly optimistic Q-values, it may
select poor actions based on the overestimated ones.

Explicit policy constraint approaches have been often employed to address the OOD problem (Ku-
mar et al., 2019; Fujimoto & Gu, 2021; Fakoor et al., 2021). These approaches include introducing
regularizing terms to minimize the difference between the visitation distributions of the target and
behavioral policies. These regularization terms are approximated as follows:

E(s,a)∈D[(π(s)− a)2], (7)
where π is the target policy and (s, a) is the state-action pair of the behavioral policy stored in the
pre-collected dataset D. Minimizing (7), the target policy is trained to inhibit the selection of poor
actions that the behavioral policy would not choose. The algorithm proposed in this study alleviates
the OOD issue by incorporating such a regularization term, which will be detailed in the next section.

3 BAYESIAN POLICY DISTILLATION

3.1 BAYESIAN POLICY CONSTRAINT

To incorporate the distillation method into the offline RL framework, we consider the conventional
BC approach that trains the target policy through supervised learning using state-action pairs gener-
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ated from the behavior policy. Let the collected state-action pairs be D = {(s, a)n}|D|
n=1, where D is

the static dataset, n indexes the samples, and |D| is the total number of state-action pairs. Then, the
student policy is trained by solving the following minimization problem:

min
ω

E(s,a)∼D[(πω(s)− a)2], (8)

where πω is the target policy parameterized by ω. In conventional policy distillation methods, the
student policy network is reduced by naively reducing the hidden layer size, and is trained using
BC. However, when the student policy size is excessively small, maintaining the performance of the
teacher policy becomes challenging (Rusu et al., 2015).

To avoid the above priori size selection and facilitate BC as in (8), we designed a BNN-based student
policy, which makes the policy extremely sparse while preserving the teacher’s performance. First,
we consider the weights ω of the student policy as random variables drawn from the distribution
N (ωij |θij , α2

ijθij), where θij and αij are independent and learnable. If (x̃m, ỹm) in (5) is replaced
with a state-action pair (s, a), and the prior distribution of ω is set to be log-uniform as in (6), an RL
version of ELBO is constructed as follows:

LRL-ELBO(θ, α) = −
|D|
M

ΣMm=1Eω∼q(ω|θ,α)[(πω(sm)− am)2]︸ ︷︷ ︸
BC term

−DKL(q(ω|θ, α)||p(ω))︸ ︷︷ ︸
KL term

. (9)

LRL-ELBO in (9) includes a term for BC as in (8). The first BC term helps the target (student)
policy mimic the behavioral (teacher) policy by learning from state-action pairs generated by the
behavioral policy. The second KL term encourages making the target policy network sparse by
pushing the weight distribution mean closer to zero. Thus, minimizing LRL-ELBO in (9), the student
policy mimics the teacher policy and promotes network sparsity.

3.2 REFINING THE POLICY WITH VALUE FUNCTION

Thus far, we have focused on training the target policy to have a distribution similar to BC. While
this approach helps the target policy avoid selecting poor actions that could deteriorate performance,
training agents to perform well when visiting new states is challenging. Therefore, learning a general
behavior that makes good actions for states not included in the static dataset is considered when
training the Q-function.

The Q-function parameterized by ψ is trained by minimizing the following loss function:

LQ(ψi) = E(s,a,s′)∼D
[(
Qψi

(s, a)− y
)2]

, where y = R(s, a) + γ min
i∈{1,2}

Qtarget
ψ̄i

(s′, a′), (10)

where s′ is the next state from the dataset, a′ is the next action drawn from the target policy πω(·|s′),
and Qtarget

ψ̄i
are two target Q-functions (Mnih et al., 2015). The smaller of the two target Q-values

is chosen for updating to prevent overestimation of Q-values (Fujimoto et al., 2018; Haarnoja et al.,
2018). a′ can be viewed as a combination of the action from the deterministic policy π̄ω(s) and
a random perturbation, where π̄ω(s) represents the mean value of πω(·|s). Therefore, sampling a′
from πω(·|s′) can be interpreted as the implicit version of target policy smoothing regularization
technique introduced in the TD3 algorithm (Fujimoto et al., 2018).

As the Q-function is learned, the policy can be updated in the direction of increasing Q-value and
LRL-ELBO:

argmax
(θ,α)

E(s,a)∼D

[
Eω∼q(ω)

[
Qψ1

(s, πω(s))
]
+ LRL-ELBO(θ, α)

]
, (11)

where LRL-ELBO serves as the policy constraint term, preventing poor OOD action selection.

3.3 POLICY DISTILLATION

We can distill and optimize the policy’s weights (θ, α) by maximizing (11). However, if the influence
of the KL term in LRL-ELBO is too strong in the early stages, the policy may become excessively
sparse too quickly, hindering performance improvements. To achieve a balanced trade-off between

5
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Figure 1: Schematic of the Bayesian policy distillation framework. From a pre-collected dataset, the
control knowledge is distilled offline into a compact, small-sized neural network via the Bayesian
policy distillation algorithm.

Q-value improvement and policy sparsity, and thereby promote stable learning, we propose the
following practical loss function:

LBPD(θ, α) = −
1

M
ΣMm=1λQψ1(sm, πωm(sm))

+
|D|
M

ΣMm=1(πωm
(sm)− am)2 + ηDKL(q(ω|θ, α)||p(ω)).

(12)

The loss function LBPD (12) includes coefficients λ and η, which control the contributions of the
Q-value and KL divergence terms, respectively. By adjusting these coefficients, we can prevent the
instability in learning that arises from rapid policy sparsification. In addition, the expectation over
ω in (12) is approximated to a single sampled value of ωm for each mth tuple. Such a sample-
based approximation is useful in the RL framework, where the policy undergoes frequent updates.
Furthermore, the intractable KL term can be approximated as follows (Molchanov et al., 2017):

DKL(q(ωij |θij , αij)||p(ωij)) ≈ −k1σ(k2 + k3 logαij) + 0.5 log(1 +
1

αij
) + const., (13)

where k1 = 0.63576, k2 = 1.87320, k3 = 1.48695, and σ is a sigmoid function. We use this
approximation to calculate the KL term in LBPD. Lastly, to train the policy with random variables,
additive noise reparameterization (Molchanov et al., 2017) is employed.

Considering all the above, we propose a learning algorithm for BPD. The student policy is trained
by iteratively minimizing the objectives LQ in (10) and LBPD in (12). Next, we filter out weights
where logαij > CThreshold, considering them uninfluential. The filtered weights are set to zero,
compressing the student policy network. As seen in Fig. 1, the static dataset D for computing LBPD
(12) can be constructed by observing human expert actions or leveraging a previously trained policy
with a large-sized neural network.

3.4 ADJUSTING WEIGHT COEFFICIENTS

Here, we discuss how to determine λ and η in the loss function LBPD (12). Empirical experiments
show that the excessive impact of KL-regularization in the early stage of training causes instability.
Therefore, a coefficient η is multiplied by the KL term. More specifically, η is initially set to zero
and annealed linearly during training, thereby reducing its impact in the early stages and gradually
increasing its strength, contributing to the sparsity of the student policy through stable learning.

In addition, a weight coefficient λ is employed to determine the weight to be given to the value-
optimizing role of LBPD. Here, λ is set to be proportional to |D|/Average(|Qψ1

(s, a)|), which is a
similar normalizing technique introduced in (Fujimoto & Gu, 2021). This adaptive law is crucial
as the Q-values and dataset size are highly task-dependent. If the dataset size is large, the impact
of the BC-term in (12) will be substantial. In contrast, if the dataset size is small, the BC-term
has a smaller weight coefficient according to the dataset size D and its effect is diminished. Thus,
the inclusion of the weight coefficient λ reflects the dataset size for more reliable Q-value updates,
ensuring applying a unified objective LBPD across various tasks.
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(a) (b) (c) (d)

Figure 2: Multi-joint dynamics with contact continuous control environments: (a) Walker2d-v3,
(b) Ant-v3, (c) Hopper-v3, (d) HalfCheetah-v3. The tasks aim to train a policy that encourages the
robots to move forward quickly.

In a more formal representation, the coefficients η and λ can be written as follows:

ηn = min(
ν

N
n, 2) (14)

λ =
h · |D|

1
|M |Σ(sm,am)∈M |Q(sm, am)|

, (15)

where h is a proportional gain, N denotes the total number of updates, n is the current count of
updates, ν is a hyperparameter for adjusting the annealing speed, and M is a mini-batch set in the
update stage. In the experiments, we set N to |D| for all tasks. The details of BPD are summarized
in Appendix A.

4 EXPERIMENTAL VALIDATION

We validate the proposed BPD through experiments with MuJoCo tasks from OpenAI Gym (Brock-
man et al., 2016), namely HalfCheetah-v3, Walker2d-v3, Hopper-v3, Ant-v3 (Fig. 2). Two teacher
policies were pretrained for each task: the expert-level policy with a high performance and medium-
level policy with moderate performance. This setting is to show that a medium-level policy can be
improved while being compressed.

The goal is to teach the robots to move forward quickly without falling. Hence, the moving speed at
each step is reflected in the immediate reward. The experiments illustrate how effectively BPD can
compress the student’s policy network while preserving or enhancing the teacher’s performance. To
quantify the network compression ability, we define a measure called sparsity as follows:

Sparsity (%) = 100 · |ωs ̸= 0|
|ωt|

,

where |ωs ̸= 0| is the number of non-zero weights in the student policy and |ωt| is the total number
of weights in the teacher policy. The teacher policy was trained with the soft-actor critic framework
(Haarnoja et al., 2018) with two hidden layers consisting of 400 units and 300 units, denoted as
(400, 300), which is one of the widely used common sizes in RL for MUJOCO tasks (Fujimoto
et al., 2018; Haarnoja et al., 2018). Under these conditions, we could train expert and general-level
teacher policies, from which two corresponding static datasets were constructed with one million
transition tuples.

The proposed BPD was compared with well-known network compression methods: deep com-
pression (DC) (Han et al., 2016), sparse variational dropout (SVD) (Molchanov et al., 2017), and
TD3+BC, a widely used offline RL algorithm (Fujimoto & Gu, 2021). Originally, the DC method
employed pruning, quantization, and Hoffman coding for network compression; however, for a fair
comparison, only the pruning step was performed, ignoring the performance degradation caused by
quantization and Hoffman coding.

In DC, SVD, and BPD, the student policies have a hidden layer size of (128, 128) for an expert-level
teacher policy and (64, 64) for a medium-level one; the distillation process attempts to increase their
zero-weights to the maximum. In the case of TD3+BC, the hidden layer size of the student policies
was chosen to be (32, 32) for all tasks except for HalfCheetah-v3 (40, 40). The size setting results in
a compression level comparable to that of other baselines, making it easy to compare performance
changes depending on compression levels.
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Environment Teacher DC SVD TD3+BC BPD (ours)

Return

Ant (Expert) 5364±1773 5033±388 5598±131 1857±598 5455±201
Ant (Medium) 2642±493 2066±187 2309±97 3562±109 3136±81
Walker2d (Expert) 5357±21 4244±686 4937±213 4877±364 4817±545
Walker2d (Medium) 2256±1290 2815±350 3180±229 3737±44 3626±121
Hopper (Expert) 3583±13 2891±365 3565±3 2223±1019 3134±549
Hopper (Medium) 2066±1295 1384±239 2108±303 2861±307 3029±130
HalfCheetah (Expert) 11432±90 9884±754 10677±217 7973±1430 10355±318
HalfCheetah (Medium) 5938±53 5737±43 5844±19 5950±38 5850±45

Sparsity

Ant-v3 (Expert) N/A 14.20% 2.23% 2.93% 2.40%
Ant (Medium) N/A 8.05% 1.91% 2.93% 1.92%
Walker2d (Expert) N/A 27.19% 2.00% 1.42% 1.68%
Walker2d (Medium) N/A 30.78% 2.21% 1.42% 1.94%
Hopper (Expert) N/A 22.92% 1.70% 1.22% 1.35%
Hopper (Medium) N/A 23.73% 1.85% 1.22% 1.62%
HalfCheetah (Expert) N/A 52.43% 2.23% 2.02% 2.21%
HalfCheetah (Medium) N/A 12.76% 1.63% 2.02% 1.38%

Table 1: Performance (return) and sparsity benchmark for several continuous control tasks. The
figures in bold highlight the best and second-best performances across baselines.

(a) (b)

Figure 3: (a) Overall scores and sparsities across the baselines. The overall score is calculated
by summing up the normalized performance of all tasks, and the overall sparsity is obtained by
averaging the sparsity of all tasks. (b) Normalized performances of small-sized policies trained with
online soft-actor critic. The results show that training with a naively and overly compressed policy
reduces sample efficiency or fails to enhance performance.

To evaluate network sparsity and performance, all algorithms were run with ten different random
seeds on each task. The student policies were trained for one million time steps, and their perfor-
mance was evaluated every 5,000 time steps. For each seed, the final performance was determined
by averaging the last ten measured performances. The results from ten random seeds are averaged
and summarized in Table 4.

4.1 IMPLEMENTATION DETAILS

For the proposed BPD, a nonlinear rectified linear unit activation function was adopted between
hidden layers. The action space was constrained as [0, 1] to ensure appropriate action selection for
given environments. Furthermore, we consistently set CThreshold to 2 and ν to 4 for all experimental
tasks. Since CThreshold and ν are consistently set without careful selection, room for improvement
exists by choosing values suitable for each task. The hyperparameters adopted are listed in Appendix
A.
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Figure 4: The real inverted pendulum system. The goal of the task is to swing up and balance
the pole. The policy distilled through BPD successfully completed the task using only 1.5% of the
original total number of parameters.

Figure 5: Normalized performance and sparsity comparison for different values of the thresholds:
CThreshold ∈ {0.5, 1, 2, 3, 4}.

4.2 SIMULATION RESULTS

The proposed BPD showed remarkable compression capability (approximately 1.8%) for expert- and
medium-level teacher policies. The compressed student policies demonstrated minimal performance
degradation and, in some cases, even improved performance. Table 4 shows that BPD outperforms
other baselines at similar sparsity levels and has performance scores in the top two for almost all
tasks.

We also compared the overall scores and sparsities of all the baselines. The performance scores
were normalized to the teacher’s (= 100 · E[Student Performance]/E[Teacher Performance]) for
each task and then averaged across all ones. The averaged overall performance scores and sparsities
are illustrated in Fig. 3(a). Notably, DC showed significantly low compression capability compared
to other baselines. This suggests that commonly used deep learning compression techniques may
not be effective for BC in reinforcement learning despite high performance in tasks such as image
classification.

4.3 ABLATION STUDY

BPD filters out uninfluential weights based on a prescribed CThreshold value. Therefore, we explored
how variations in theCThreshold ∈ {0.5, 1, 2, 3, 4} affect the performance of the agent and the sparsity
of the neural network. When CThreshold is small, e.g., 0.5, excessive network compression occurs,
considerably degrading network performance. However, increasing the CThreshold did not result in
a proportional improvement in performance, as shown in Fig. 5. This implies that once a certain
network connectivity level is established, additional connections will not necessarily contribute to
performance improvement.

Furthermore, another experiment was conducted to investigate whether a student policy with a small-
sized neural network could achieve expert-level performance without a teacher one. Here, small-
sized student policies were trained with a soft-actor critic algorithm under an online RL framework.

9
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Metric Teacher Policy Distilled Policy

Mean Normalized Score (10 trials) 100.0 100.3
Mean Inference Time (ms) 1.36 0.30
# of parameters 72705 1108
Memory (KB) 290.82 4.43

Table 2: Policy distillation results in the real inverted pendulum task.

The hidden layer size of the student policies was chosen to be (32, 32) for all tasks except for
HalfCheetah-v3 (40, 40). As shown in Fig. 3(b), the resulting performance does not reach an expert
level, indicating that naively and overly compressed policy significantly lowers the sample efficiency
or fails to enhance the performance.

4.4 REAL EXPERIMENT

For real-system validation, BPD was applied to an inverted pendulum system, where the goal is to
swing and balance the pendulum (see Fig. 4). The state variable is constructed by stacking five
consecutive observations, which includes position, velocity, sin θ, cos θ, and θ̇, where θ is the angle
between cart and pole (Fig. 6 in App. B). Thus, the total dimension of the state space becomes
25 (5×5 observation). The action generated by the policy determines the reference velocity for the
motor actuator. The teacher policy was pretrained using the real inverted pendulum system and
DDPG algorithm (Lillicrap et al., 2016) with a hidden layer size of (256, 256). Then, we collected
300,000 transition data from the teacher, which took approximately 2.5 h. The teacher policy was
then distilled through the proposed BPD to obtain a lighter and faster student policy. Sparse hidden
layers in the student policy enabled efficient sparse matrix-vector operations, reducing inference
time by representing the matrices in compressed sparse row format.

The teacher and distilled student policies are compared in terms of performance score, inference
time, number of parameters, and memory storage size. The inference time was measured on an
ARMV8-based processor, utilizing the SCIPY library that is one of PYTHON’s computing algo-
rithm libraries. The inference time was averaged over a total of 10,000 runs. The overall results are
listed in Table 2. The inference time of the distilled student policy is 4.5 times faster than that of the
teacher policy. Such a difference in the inference speed could be dramatically bigger on cheaper and
highly resource-constrained devices that do not support Single Instruction Multiple Data (SIMD) or
parallel programming. The required memory size was measured based on the number of non-zero
weight parameters. The distilled policy uses only approximately 1.5% (4.43 / 290.82) of memory
storage compared with the teacher policy. However, despite the significant memory savings, no
notable performance degradation is observed but rather a slight performance improvement.

5 CONCLUSION AND LIMITATIONS

Deep reinforcement learning is becoming increasingly important in industries such as robotics,
where practical applications require models to run on affordable, energy-efficient devices with lim-
ited computational resources. To meet this need, we introduce an efficient offline policy compression
method called Bayesian Policy Distillation (BPD), which retrains a compact student policy network
from a larger teacher network in an offline reinforcement learning setting. Our results demonstrate
that BPD successfully reduces the size of the teacher policy network by 1%-2%, while achieving
minimal performance loss. Notably, in some environments, we were able to achieve even higher
performance than the teacher. Moreover, in a real inverted pendulum system, we confirmed that
BPD can dramatically increase inference speed on devices with limited computational resources.

A drawback of BPD is its lack of real-time adaptability due to its offline nature. However, it is highly
effective in situations where ongoing system interaction is too risky or costly. Additionally, when
no pre-existing dataset is available, a teacher policy must first be trained, and expert data collected,
which may lead to some sample inefficiency. That said, when a dataset exists, BPD allows for
reuse, making it a cost-effective solution. Overall, we believe BPD offers a promising approach for
advancing deep reinforcement learning across various industries, given the benefits of offline RL, its
impressive compression performance, and significant improvements in inference speed.
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A DETAILS OF BPD

A.1 PSEUDO CODE OF BPD

Algorithm 1 Bayesian Policy Distillation
1: initialize a static dataset D, variational distribution q(ω|θ, α), policy πω(a|s), critics
Qψi∈{1,2}(s, a), target critics Qtarget

ψ̄i∈{1,2}
(s, a), learning rate for the critic ζQ, learning rate for

the policy ζπ , soft update ratio τ , annealing speed parameter ν, filter threshold CThreshold, and
total number of iterations N

2: for n = 1 to N do
3: ηn = min( νN n, 2) ▷Update the coefficient η
4: M = {(sm, am, rm, s′m)}|M |

m=1 ∼ D
5: ▷Randomly sample a mini-batch M from the dataset D
6: a′ ∼ πω∼q(ω|θ,α)(·|s′)
7: y = R(s, a) + γmini∈{1,2}Q

target
ψ̄i

(s′, a′)

8: LQ(ψi) = E(s,a,s′)∼M
[(
Qψi

(s, a)− y
)2]

9: for i = 1 to 2 do
10: ψnew

i ← ψi − ζQ∇ψLQ(ψi)
11: ▷Update the critic
12: end for
13: if n mod policy update frequency == 0 then
14: θnew ← θ − ζπ∇θLBPD(θ, α)
15: αnew ← α− ζπ∇αLBPD(θ, α)
16: ▷Update the policy
17: end if
18: ψi∈{1,2} ← ψnew

i∈{1,2}
19: θ ← θnew

20: α← αnew

21: ψ̄i∈{1,2} ← τψi∈{1,2} + (1− τ)ψ̄i∈{1,2}
22: ▷Update the parameters
23: end for
24: Set weights ω zero where logα > CThreshold ▷Sparsify the policy
25: Return the sparsified policy π

A.2 HYPERPARAMETER DETAILS

Hyperparameters Values

Policy update frequency 2
Total number of updates 1 million
Static dataset size 1 million
Mini-batch size 256
Optimizer Adam
CThreshold 2
ζQ, ζπ 0.0003
γ 0.99
ν 4
h 0.5
τ 0.005

Table 3: Hyperparameters for Bayesian Policy Distillation.
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B REWARD DETAILS OF THE REAL EXPERIMENT

In this section, we provide details of the reward function used in the real inverted pendulum task.
Let θ be the angle between the cart and pole, θ̇ be the angular velocity, ||a||2 be the norm of the
action, and px be the cart’s position with respect to the horizontal axis. Then, the reward r in the
real-world inverted pendulum task is determined as:

r = rθ · rθ̇ · rpos. · ract.,

where

rθ =
1 + cos θ

2
,

rθ̇ =
1 + exp (−θ̇2 · log 10

25 )

2
,

rpos. =
1 + exp (−p2x ·

log 10
4 )

2
,

ract. =
4 +max (||a||2, 0)

5
.

Figure 6: Schema of the real inverted pendulum system.
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