
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BAYESIAN POLICY DISTILLATION VIA OFFLINE RL
FOR LIGHTWEIGHT AND FAST INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

High-performance deep reinforcement learning faces tremendous challenges
when implemented on cost-effective low-end embedded systems due to its heavy
computational burden. To address this issue, we propose a policy distilla-
tion method called Bayesian Policy Distillation (BPD), which effectively re-
trains small-sized neural networks through an offline reinforcement learning ap-
proach. BPD exploits Bayesian neural networks to distill already designed high-
performance policy networks by adopting value optimizing, behavior cloning,
and sparsity-inducing strategies. Simulation results reveal that the proposed BPD
successfully compresses the policy networks, making them lighter and achieving
faster inference time. Furthermore, the proposed approach is demonstrated with a
real inverted pendulum system and reduced the inference time and memory size
by 78 % and 98 %, respectively.

1 INTRODUCTION

Recently, deep reinforcement learning (DRL) has achieved super-human performances in complex
games (Lample & Chaplot, 2017; Schrittwieser et al., 2020) and provided feasible solutions to chal-
lenging feedback control problems without the need for system modeling and parameter tuning
(Hwangbo et al., 2017; Gu et al., 2017). However, such unprecedented innovations require high
computational costs, large memory storage spaces, and long inference times, which limit their ap-
plicability to real systems. The realization of DRL that meets realistically acceptable specifications
while maintaining the expected high performance is crucial. Research on compressing deep neural
networks for practical applications has been actively pursued, particularly outside DRL. Network
pruning is the most basic and classical approach and involves removing uninfluential weight pa-
rameters based on certain criteria with minimal performance loss (Reed, 1993; LeCun et al., 1989;
Lebedev & Lempitsky, 2016; Molchanov et al., 2017; Zhao et al., 2019). Network quantization is
another approach to achieving lightweight compressed neural networks by representing traditional
32- or 64-bit floating point values with lower bit precision (Achterhold et al., 2018; Gil et al., 2021).
In addition, knowledge distillation (Gou et al., 2021) is widely used to compress deep neural net-
works. This method transfers knowledge from a large- to small-sized neural network, which has
proven effective across various domains such as computer vision and natural language processing
(Luo et al., 2017; Li et al., 2019; Deng et al., 2020).

The above methods have continued to evolve to handle large language models (Wang et al., 2020;
Ganesh et al., 2021) and embedded systems with limited computation capacity (Wofk et al., 2019;
Chen et al., 2020; Naik et al., 2021). Therefore, grafting the above network compression techniques
onto DRL would be meaningful and timely. Unlike open-loop-based supervised and unsupervised
learning, DRL operates in a closed-loop manner, making network compression challenging. Conse-
quently, network compression techniques have been relatively underexplored in DRL despite their
long-standing importance. A few attempts to compress the agent’s policy in DRL have been made
within an online reinforcement learning (RL) framework (Tan et al., 2023; Baek et al., 2023), which
inherently involves the agent interacting with its environment. Practically, without careful parame-
ter tuning, such a direct online approach may degrade performance or stability (Sokar et al., 2021)
because the agent’s policy is trained and compressed based on environmental interactions. To rem-
edy this issue, the Teacher–Student framework is commonly used in RL literature (Ross & Bagnell,
2010; Hinton et al., 2015; Rusu et al., 2015). This framework consists of the teacher and student
policies, with the teacher policy having a larger neural network size. The teacher policy facili-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tates knowledge transfer to the student policy through supervised learning by minimizing the mean
squared-error loss or the KullbackLeibler (KL) divergence between them (Rusu et al., 2015; Jang
et al., 2020). However, simply mimicking the “teacher policy” to train the “student policy” makes it
challenging to learn an effective policy beyond the teacher policy. In addition, most RL algorithms
using the Teacher–Student framework rely on online RL and inherently suffer from the aforemen-
tioned drawbacks. Thus, a naively and overly compressed student policy may lead to significantly
diminished performance compared to the teacher policy (Qu et al., 2022). This challenge under-
scores the need for leveraging an open-loop-based learning framework such as offline RL that aims
to learn an improved policy based on pre-collected data generated from the teacher policy.

To tackle these challenges, we propose an efficient offline policy compression algorithm, namely
Bayesian policy distillation (BPD). BPD integrates offline RL framework and Bayesian neural net-
work (Lampinen & Vehtari, 2001) to create an extremely sparse policy that is lightweight, fast,
and energy-efficient. This approach holds promise, particularly in scenarios where computational
performance is limited, such as on-board devices or a single cloud server needing to perform neu-
ral network computation for multiple client devices. Additionally, BPD is a fully offline learning
method, particularly suitable for domains such as healthcare or robotics, where data collection is
expensive and implementing online RL poses challenges.

We evaluated the proposed algorithm on the multi-joint dynamics with contact MUJOCO continuous
control benchmark (Todorov et al., 2012), widely used in RL. The results confirm that our proposed
algorithm can create an extremely sparse policy while preserving or improving the teacher policy
performance. Additionally, experiments on a real inverted pendulum demonstrated the practicality
of our proposed algorithm and highlighted its potential for real-world applications.

2 PRELIMINARY BACKGROUND

This section briefly introduces the background to facilitate understanding of the proposed algorithm.

2.1 STANDARD REINFORCEMENT LEARNING

In the standard RL framework, an environment is modeled as a Markov decision process defined as
a tuple (S,A, R, P, γ), where S andA are the state and action spaces, respectively; R : S ×A 7→ R
is the reward function; P : S ×A×S 7→ [0, 1] is the transition probability function; and γ ∈ (0, 1)
is the discount factor. A stochastic policy π : S ×A 7→ [0, 1] maps state-action pairs to probability
distributions over S. The objective of the standard RL framework is to find an optimal policy that
maximizes the discounted cumulative rewards.

The state and action at time t are denoted by st and at, respectively. For a given st and at, the
environment provides an immediate scalar reward R(st, at), and transitions to a new state st+1 ∈ S
with probability p(st+1|st, at). The objective is to find an optimal policy π∗ that maximizes the
discounted cumulative rewards as follows:

π∗ = argmax
π

Eτ0∼π[
∞∑
t=0

γtR(st, at)],

where τ0 = (s0, a0, s1, a1, · · ·) is the trajectory under policy π. The distribution of the trajectories
can be written as

p(τ0) = ρ(s0)

∞∏
t=0

p(st+1|st, at)π(at|st),

where ρ(·) is the distribution of the initial state s0.

The expected discounted cumulative reward is represented by the following Q-function:

Qπ(st, at) = Eτt∼π[
∞∑
k=0

γkR(st+k, at+k)|st, at],

where the trajectory τt is (st, at, st+1, at+1, · · ·). The Q-function values (Q-values) can be repre-
sented as the immediate reward plus the discounted future Q-values as follows (Bellman, 1957):

Qπ(st, at) = T (Qπ(st, at)) ≜ R(st, at) + γEst+1∼P (·|st,at),at+1∼π(·|st+1)[Q(st+1, at+1)],

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where T is the Bellman operator, whose contraction property ensures the convergence of the
Q-values with iterative methods. However, since not all of the transition probability functions
p(·|st, at) are known, or the state space S is too large in some cases, Q-values are often com-
puted using sample-based stochastic approximation methods such asQ-learning (Watkins & Dayan,
1992). Thus, an optimal policy is obtained by incrementing the Q-values for all state-action pairs.

2.2 BAYESIAN NEURAL NETWORK AND VARIATIONAL INFERENCE

Bayesian neural networks (BNNs) consider their weight parameters as random variables with
stochastic distribution. Such a nondeterministic approach offers advantages such as robustness
against overfitting and probabilistic interpretability (Gal et al., 2016). Through BNN learning, the
posteriors of its weights ω are approximated for given observations X Y . Let the posterior be
p(ω|X,Y). Then, we can decompose the posterior using Bayes’ rule as follows:

p(ω|X,Y) =
p(Y |X,ω)p(ω)

p(Y |X)
.

To approximate the posterior p(ω|X,Y), the variational inference technique has been widely used,
which employs a proposal distribution named variational distribution qϕ(ω) parameterized by ϕ and
then makes it close to the posterior by minimizing the following KL divergence:

DKL(qϕ(ω)||p(ω|X,Y))

= Eqϕ(ω)[log
qϕ(ω)

p(ω)
]− Eqϕ(ω)[log p(Y |ω,X)] + log p(Y |X)

= DKL(qϕ(ω)||p(ω))− Eqϕ(ω)[log p(Y |ω,X)] + C ≜ −LELBO + C

(1)

Since log p(Y |X) in (1), called log evidence, is independent of ϕ or is unlearnable, we maximize
LELBO to minimize the KL divergence between the variational distribution qϕ(ω) and posterior
p(ω|X,Y). LELBO can be numerically computed as follows:

LELBO ≈ Σ(xn,yn)∈DEqϕ(ω)[log p(yn|fω(xn))]− DKL(qϕ(ω)||p(ω)), (2)

whereD = {(xn, yn)}|D|
n=1 is a reusable dataset collected earlier, fω(xn) is the BNN output for input

xn ∈ X , and yn ∈ Y is the corresponding groundtruth. Here, we replace xn and yn with a state
and an action for behavioral cloning (BC) in RL, respectively. To obtain a lightweight performance-
aware network model, LELBO is later reflected in learning processing.

2.3 SPARSE VARIATIONAL DROPOUT

Dropout is a common regularization method employed to prevent neural networks from overfitting.
Based on the Bernoulli distribution, each neuron in a neural network is assigned the deletion prob-
ability (Srivastava et al., 2014). Assigning Bernoulli distribution to each neuron is shown to be
equivalent to applying proper Gaussian noises to the random weights characterized by θij and αij
as follows (Wang & Manning, 2013):

ωij = θij(1 +
√
αijϵij), (3)

where ϵij ∼ N (0, 1) and subscript ij denotes the corresponding element in the weight matrix form.
The process (3) of generating noisy weights is called Gaussian dropout. In terms of θij and αij in
(3), the proposal distribution qϕ(ω) can be expressed element-wise as follows:

qϕij
= q(ωij |θij , αij) = N (θij , αijθ

2
ij), (4)

where ϕij = (θij , αij).

If different weights are assumed to be independent, the posterior and prior are fully factorized, and
we have

DKL(qϕ(ω)||p(ω)) =
∑
ij

DKL(qϕ(ωij)||p(ωij)) =
∑
ij

DKL(q(ωij |θij , αij)||p(ωij)),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where qϕ(ω) and p(ω) are given by

qϕ(ω) =
∏
ij

qϕij
(ωij), p(ω) =

∏
ij

pij(ωij).

With the factorized form above and minibatch-based stochastic gradient descent method, LELBO in
(2) can be rewritten more specifically as follows:

LELBO ≈
|D|
M

ΣMm=1Eqϕ(ω)[log p(ỹm|fω(x̃m))]−
∑
ij

DKL(q(ωij |θij , αij)||p(ωij)), (5)

where |D| is the total number of the dataset, M is the mini-batch size, and {(x̃m, ỹm)}Mm=1 repre-
sent the observation in the selected mini-batch. To maximize LELBO (5) with random variable ωij ,
reparameterization methods such as local reparameterization (Kingma et al., 2015) or additive noise
reparameterization (Molchanov et al., 2017) can be applied.

Furthermore, evidence lower bound objective (ELBO) can induce sparsity in BNNs if the prior
p(wij) is set to log-uniform distribution that becomes large around zero as follow (Kingma et al.,
2015):

p(log(|ωij |)) = const.↔ p(|ωij |) ∝
1

|ωij |
. (6)

Consequently, by maximizing LELBO in (5) with the log-uniform prior, we can train a highly com-
pressed BNN. This Bayesian network pruning algorithm, called sparse variational dropout, trains
individual dropout rate αij in (4). The network pruning is achieved by removing weights with large
αij , as it does not affect the network output significantly. Typically, the threshold CThreshold = 3 is
widely used, which corresponds to a binary dropout rate higher than 0.95 (Molchanov et al., 2017).
In this case, when log(αij) exceeds 3, the corresponding weight ωij is pruned (i.e., set to zero).

2.4 OFFLINE REINFORCEMENT LEARNING

In standard RL, the agent collects data through numerous interactions with the environment, which
can be expensive in fields such as robotics and healthcare. This challenge brings attention to offline
RL, which allows agents to learn policies without direct interaction with the environment, relying on
the dataset collected by a behavioral policy in advance. Since the agent can train the policy without
engaging in potentially risky interactions, offline RL could be considerably safer and more cost-
effective for learning policy than online RL. However, despite its promising paradigm, challenges
still remain to overcome in the policy training domain. One main challenge is the undesirable
extrapolation error of out-of-distribution (OOD) actions (Fujimoto et al., 2019). The target policy
to train cannot explore state-action pairs that are not included in the static dataset collected by
the behavioral policy. Hence, the state-action visitation distribution of the target policy deviates
from that of the behavioral policies, leading to optimistic Q-values generating OOD actions. This
becomes problematic because if an agent is trained with these overly optimistic Q-values, it may
select poor actions based on the overestimated ones.

Explicit policy constraint approaches have been often employed to address the OOD problem (Ku-
mar et al., 2019; Fujimoto & Gu, 2021; Fakoor et al., 2021). These approaches include introducing
regularizing terms to minimize the difference between the visitation distributions of the target and
behavioral policies. These regularization terms are approximated as follows:

E(s,a)∈D[(π(s)− a)2], (7)
where π is the target policy and (s, a) is the state-action pair of the behavioral policy stored in the
pre-collected dataset D. Minimizing (7), the target policy is trained to inhibit the selection of poor
actions that the behavioral policy would not choose. The algorithm proposed in this study alleviates
the OOD issue by incorporating such a regularization term, which will be detailed in the next section.

3 BAYESIAN POLICY DISTILLATION

3.1 BAYESIAN POLICY CONSTRAINT

To incorporate the distillation method into the offline RL framework, we consider the conventional
BC approach that trains the target policy through supervised learning using state-action pairs gener-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ated from the behavior policy. Let the collected state-action pairs be D = {(s, a)n}|D|
n=1, where D is

the static dataset, n indexes the samples, and |D| is the total number of state-action pairs. Then, the
student policy is trained by solving the following minimization problem:

min
ω

E(s,a)∼D[(πω(s)− a)2], (8)

where πω is the target policy parameterized by ω. In conventional policy distillation methods, the
student policy network is reduced by naively reducing the hidden layer size, and is trained using
BC. However, when the student policy size is excessively small, maintaining the performance of the
teacher policy becomes challenging (Rusu et al., 2015).

To avoid the above priori size selection and facilitate BC as in (8), we designed a BNN-based student
policy, which makes the policy extremely sparse while preserving the teacher’s performance. First,
we consider the weights ω of the student policy as random variables drawn from the distribution
N (ωij |θij , α2

ijθij), where θij and αij are independent and learnable. If (x̃m, ỹm) in (5) is replaced
with a state-action pair (s, a), and the prior distribution of ω is set to be log-uniform as in (6), an RL
version of ELBO is constructed as follows:

LRL-ELBO(θ, α) = −
|D|
M

ΣMm=1Eω∼q(ω|θ,α)[(πω(sm)− am)2]︸ ︷︷ ︸
BC term

−DKL(q(ω|θ, α)||p(ω))︸ ︷︷ ︸
KL term

. (9)

LRL-ELBO in (9) includes a term for BC as in (8). The first BC term helps the target (student)
policy mimic the behavioral (teacher) policy by learning from state-action pairs generated by the
behavioral policy. The second KL term encourages making the target policy network sparse by
pushing the weight distribution mean closer to zero. Thus, minimizing LRL-ELBO in (9), the student
policy mimics the teacher policy and promotes network sparsity.

3.2 REFINING THE POLICY WITH VALUE FUNCTION

Thus far, we have focused on training the target policy to have a distribution similar to BC. While
this approach helps the target policy avoid selecting poor actions that could deteriorate performance,
training agents to perform well when visiting new states is challenging. Therefore, learning a general
behavior that makes good actions for states not included in the static dataset is considered when
training the Q-function.

The Q-function parameterized by ψ is trained by minimizing the following loss function:

LQ(ψi) = E(s,a,s′)∼D
[(
Qψi

(s, a)− y
)2]

, where y = R(s, a) + γ min
i∈{1,2}

Qtarget
ψ̄i

(s′, a′), (10)

where s′ is the next state from the dataset, a′ is the next action drawn from the target policy πω(·|s′),
and Qtarget

ψ̄i
are two target Q-functions (Mnih et al., 2015). The smaller of the two target Q-values

is chosen for updating to prevent overestimation of Q-values (Fujimoto et al., 2018; Haarnoja et al.,
2018). a′ can be viewed as a combination of the action from the deterministic policy π̄ω(s) and
a random perturbation, where π̄ω(s) represents the mean value of πω(·|s). Therefore, sampling a′
from πω(·|s′) can be interpreted as the implicit version of target policy smoothing regularization
technique introduced in the TD3 algorithm (Fujimoto et al., 2018).

As the Q-function is learned, the policy can be updated in the direction of increasing Q-value and
LRL-ELBO:

argmax
(θ,α)

E(s,a)∼D

[
Eω∼q(ω)

[
Qψ1

(s, πω(s))
]
+ LRL-ELBO(θ, α)

]
, (11)

where LRL-ELBO serves as the policy constraint term, preventing poor OOD action selection.

3.3 POLICY DISTILLATION

We can distill and optimize the policy’s weights (θ, α) by maximizing (11). However, if the influence
of the KL term in LRL-ELBO is too strong in the early stages, the policy may become excessively
sparse too quickly, hindering performance improvements. To achieve a balanced trade-off between

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Schematic of the Bayesian policy distillation framework. From a pre-collected dataset, the
control knowledge is distilled offline into a compact, small-sized neural network via the Bayesian
policy distillation algorithm.

Q-value improvement and policy sparsity, and thereby promote stable learning, we propose the
following practical loss function:

LBPD(θ, α) = −
1

M
ΣMm=1λQψ1(sm, πωm(sm))

+
|D|
M

ΣMm=1(πωm
(sm)− am)2 + ηDKL(q(ω|θ, α)||p(ω)).

(12)

The loss function LBPD (12) includes coefficients λ and η, which control the contributions of the
Q-value and KL divergence terms, respectively. By adjusting these coefficients, we can prevent the
instability in learning that arises from rapid policy sparsification. In addition, the expectation over
ω in (12) is approximated to a single sampled value of ωm for each mth tuple. Such a sample-
based approximation is useful in the RL framework, where the policy undergoes frequent updates.
Furthermore, the intractable KL term can be approximated as follows (Molchanov et al., 2017):

DKL(q(ωij |θij , αij)||p(ωij)) ≈ −k1σ(k2 + k3 logαij) + 0.5 log(1 +
1

αij
) + const., (13)

where k1 = 0.63576, k2 = 1.87320, k3 = 1.48695, and σ is a sigmoid function. We use this
approximation to calculate the KL term in LBPD. Lastly, to train the policy with random variables,
additive noise reparameterization (Molchanov et al., 2017) is employed.

Considering all the above, we propose a learning algorithm for BPD. The student policy is trained
by iteratively minimizing the objectives LQ in (10) and LBPD in (12). Next, we filter out weights
where logαij > CThreshold, considering them uninfluential. The filtered weights are set to zero,
compressing the student policy network. As seen in Fig. 1, the static dataset D for computing LBPD
(12) can be constructed by observing human expert actions or leveraging a previously trained policy
with a large-sized neural network.

3.4 ADJUSTING WEIGHT COEFFICIENTS

Here, we discuss how to determine λ and η in the loss function LBPD (12). Empirical experiments
show that the excessive impact of KL-regularization in the early stage of training causes instability.
Therefore, a coefficient η is multiplied by the KL term. More specifically, η is initially set to zero
and annealed linearly during training, thereby reducing its impact in the early stages and gradually
increasing its strength, contributing to the sparsity of the student policy through stable learning.

In addition, a weight coefficient λ is employed to determine the weight to be given to the value-
optimizing role of LBPD. Here, λ is set to be proportional to |D|/Average(|Qψ1

(s, a)|), which is a
similar normalizing technique introduced in (Fujimoto & Gu, 2021). This adaptive law is crucial
as the Q-values and dataset size are highly task-dependent. If the dataset size is large, the impact
of the BC-term in (12) will be substantial. In contrast, if the dataset size is small, the BC-term
has a smaller weight coefficient according to the dataset size D and its effect is diminished. Thus,
the inclusion of the weight coefficient λ reflects the dataset size for more reliable Q-value updates,
ensuring applying a unified objective LBPD across various tasks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 2: Multi-joint dynamics with contact continuous control environments: (a) Walker2d-v3,
(b) Ant-v3, (c) Hopper-v3, (d) HalfCheetah-v3. The tasks aim to train a policy that encourages the
robots to move forward quickly.

In a more formal representation, the coefficients η and λ can be written as follows:

ηn = min(
ν

N
n, 2) (14)

λ =
h · |D|

1
|M |Σ(sm,am)∈M |Q(sm, am)|

, (15)

where h is a proportional gain, N denotes the total number of updates, n is the current count of
updates, ν is a hyperparameter for adjusting the annealing speed, and M is a mini-batch set in the
update stage. In the experiments, we set N to |D| for all tasks. The details of BPD are summarized
in Appendix A.

4 EXPERIMENTAL VALIDATION

We validate the proposed BPD through experiments with MuJoCo tasks from OpenAI Gym (Brock-
man et al., 2016), namely HalfCheetah-v3, Walker2d-v3, Hopper-v3, Ant-v3 (Fig. 2). Two teacher
policies were pretrained for each task: the expert-level policy with a high performance and medium-
level policy with moderate performance. This setting is to show that a medium-level policy can be
improved while being compressed.

The goal is to teach the robots to move forward quickly without falling. Hence, the moving speed at
each step is reflected in the immediate reward. The experiments illustrate how effectively BPD can
compress the student’s policy network while preserving or enhancing the teacher’s performance. To
quantify the network compression ability, we define a measure called sparsity as follows:

Sparsity (%) = 100 · |ωs ̸= 0|
|ωt|

,

where |ωs ̸= 0| is the number of non-zero weights in the student policy and |ωt| is the total number
of weights in the teacher policy. The teacher policy was trained with the soft-actor critic framework
(Haarnoja et al., 2018) with two hidden layers consisting of 400 units and 300 units, denoted as
(400, 300), which is one of the widely used common sizes in RL for MUJOCO tasks (Fujimoto
et al., 2018; Haarnoja et al., 2018). Under these conditions, we could train expert and general-level
teacher policies, from which two corresponding static datasets were constructed with one million
transition tuples.

The proposed BPD was compared with well-known network compression methods: deep com-
pression (DC) (Han et al., 2016), sparse variational dropout (SVD) (Molchanov et al., 2017), and
TD3+BC, a widely used offline RL algorithm (Fujimoto & Gu, 2021). Originally, the DC method
employed pruning, quantization, and Hoffman coding for network compression; however, for a fair
comparison, only the pruning step was performed, ignoring the performance degradation caused by
quantization and Hoffman coding.

In DC, SVD, and BPD, the student policies have a hidden layer size of (128, 128) for an expert-level
teacher policy and (64, 64) for a medium-level one; the distillation process attempts to increase their
zero-weights to the maximum. In the case of TD3+BC, the hidden layer size of the student policies
was chosen to be (32, 32) for all tasks except for HalfCheetah-v3 (40, 40). The size setting results in
a compression level comparable to that of other baselines, making it easy to compare performance
changes depending on compression levels.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Environment Teacher DC SVD TD3+BC BPD (ours)

Return

Ant (Expert) 5364±1773 5033±388 5598±131 1857±598 5455±201
Ant (Medium) 2642±493 2066±187 2309±97 3562±109 3136±81
Walker2d (Expert) 5357±21 4244±686 4937±213 4877±364 4817±545
Walker2d (Medium) 2256±1290 2815±350 3180±229 3737±44 3626±121
Hopper (Expert) 3583±13 2891±365 3565±3 2223±1019 3134±549
Hopper (Medium) 2066±1295 1384±239 2108±303 2861±307 3029±130
HalfCheetah (Expert) 11432±90 9884±754 10677±217 7973±1430 10355±318
HalfCheetah (Medium) 5938±53 5737±43 5844±19 5950±38 5850±45

Sparsity

Ant-v3 (Expert) N/A 14.20% 2.23% 2.93% 2.40%
Ant (Medium) N/A 8.05% 1.91% 2.93% 1.92%
Walker2d (Expert) N/A 27.19% 2.00% 1.42% 1.68%
Walker2d (Medium) N/A 30.78% 2.21% 1.42% 1.94%
Hopper (Expert) N/A 22.92% 1.70% 1.22% 1.35%
Hopper (Medium) N/A 23.73% 1.85% 1.22% 1.62%
HalfCheetah (Expert) N/A 52.43% 2.23% 2.02% 2.21%
HalfCheetah (Medium) N/A 12.76% 1.63% 2.02% 1.38%

Table 1: Performance (return) and sparsity benchmark for several continuous control tasks. The
figures in bold highlight the best and second-best performances across baselines.

(a) (b)

Figure 3: (a) Overall scores and sparsities across the baselines. The overall score is calculated
by summing up the normalized performance of all tasks, and the overall sparsity is obtained by
averaging the sparsity of all tasks. (b) Normalized performances of small-sized policies trained with
online soft-actor critic. The results show that training with a naively and overly compressed policy
reduces sample efficiency or fails to enhance performance.

To evaluate network sparsity and performance, all algorithms were run with ten different random
seeds on each task. The student policies were trained for one million time steps, and their perfor-
mance was evaluated every 5,000 time steps. For each seed, the final performance was determined
by averaging the last ten measured performances. The results from ten random seeds are averaged
and summarized in Table 4.

4.1 IMPLEMENTATION DETAILS

For the proposed BPD, a nonlinear rectified linear unit activation function was adopted between
hidden layers. The action space was constrained as [0, 1] to ensure appropriate action selection for
given environments. Furthermore, we consistently set CThreshold to 2 and ν to 4 for all experimental
tasks. Since CThreshold and ν are consistently set without careful selection, room for improvement
exists by choosing values suitable for each task. The hyperparameters adopted are listed in Appendix
A.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: The real inverted pendulum system. The goal of the task is to swing up and balance
the pole. The policy distilled through BPD successfully completed the task using only 1.5% of the
original total number of parameters.

Figure 5: Normalized performance and sparsity comparison for different values of the thresholds:
CThreshold ∈ {0.5, 1, 2, 3, 4}.

4.2 SIMULATION RESULTS

The proposed BPD showed remarkable compression capability (approximately 1.8%) for expert- and
medium-level teacher policies. The compressed student policies demonstrated minimal performance
degradation and, in some cases, even improved performance. Table 4 shows that BPD outperforms
other baselines at similar sparsity levels and has performance scores in the top two for almost all
tasks.

We also compared the overall scores and sparsities of all the baselines. The performance scores
were normalized to the teacher’s (= 100 · E[Student Performance]/E[Teacher Performance]) for
each task and then averaged across all ones. The averaged overall performance scores and sparsities
are illustrated in Fig. 3(a). Notably, DC showed significantly low compression capability compared
to other baselines. This suggests that commonly used deep learning compression techniques may
not be effective for BC in reinforcement learning despite high performance in tasks such as image
classification.

4.3 ABLATION STUDY

BPD filters out uninfluential weights based on a prescribed CThreshold value. Therefore, we explored
how variations in theCThreshold ∈ {0.5, 1, 2, 3, 4} affect the performance of the agent and the sparsity
of the neural network. When CThreshold is small, e.g., 0.5, excessive network compression occurs,
considerably degrading network performance. However, increasing the CThreshold did not result in
a proportional improvement in performance, as shown in Fig. 5. This implies that once a certain
network connectivity level is established, additional connections will not necessarily contribute to
performance improvement.

Furthermore, another experiment was conducted to investigate whether a student policy with a small-
sized neural network could achieve expert-level performance without a teacher one. Here, small-
sized student policies were trained with a soft-actor critic algorithm under an online RL framework.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Metric Teacher Policy Distilled Policy

Mean Normalized Score (10 trials) 100.0 100.3
Mean Inference Time (ms) 1.36 0.30
of parameters 72705 1108
Memory (KB) 290.82 4.43

Table 2: Policy distillation results in the real inverted pendulum task.

The hidden layer size of the student policies was chosen to be (32, 32) for all tasks except for
HalfCheetah-v3 (40, 40). As shown in Fig. 3(b), the resulting performance does not reach an expert
level, indicating that naively and overly compressed policy significantly lowers the sample efficiency
or fails to enhance the performance.

4.4 REAL EXPERIMENT

For real-system validation, BPD was applied to an inverted pendulum system, where the goal is to
swing and balance the pendulum (see Fig. 4). The state variable is constructed by stacking five
consecutive observations, which includes position, velocity, sin θ, cos θ, and θ̇, where θ is the angle
between cart and pole (Fig. 6 in App. B). Thus, the total dimension of the state space becomes
25 (5×5 observation). The action generated by the policy determines the reference velocity for the
motor actuator. The teacher policy was pretrained using the real inverted pendulum system and
DDPG algorithm (Lillicrap et al., 2016) with a hidden layer size of (256, 256). Then, we collected
300,000 transition data from the teacher, which took approximately 2.5 h. The teacher policy was
then distilled through the proposed BPD to obtain a lighter and faster student policy. Sparse hidden
layers in the student policy enabled efficient sparse matrix-vector operations, reducing inference
time by representing the matrices in compressed sparse row format.

The teacher and distilled student policies are compared in terms of performance score, inference
time, number of parameters, and memory storage size. The inference time was measured on an
ARMV8-based processor, utilizing the SCIPY library that is one of PYTHON’s computing algo-
rithm libraries. The inference time was averaged over a total of 10,000 runs. The overall results are
listed in Table 2. The inference time of the distilled student policy is 4.5 times faster than that of the
teacher policy. Such a difference in the inference speed could be dramatically bigger on cheaper and
highly resource-constrained devices that do not support Single Instruction Multiple Data (SIMD) or
parallel programming. The required memory size was measured based on the number of non-zero
weight parameters. The distilled policy uses only approximately 1.5% (4.43 / 290.82) of memory
storage compared with the teacher policy. However, despite the significant memory savings, no
notable performance degradation is observed but rather a slight performance improvement.

5 CONCLUSION AND LIMITATIONS

Deep reinforcement learning is becoming increasingly important in industries such as robotics,
where practical applications require models to run on affordable, energy-efficient devices with lim-
ited computational resources. To meet this need, we introduce an efficient offline policy compression
method called Bayesian Policy Distillation (BPD), which retrains a compact student policy network
from a larger teacher network in an offline reinforcement learning setting. Our results demonstrate
that BPD successfully reduces the size of the teacher policy network by 1%-2%, while achieving
minimal performance loss. Notably, in some environments, we were able to achieve even higher
performance than the teacher. Moreover, in a real inverted pendulum system, we confirmed that
BPD can dramatically increase inference speed on devices with limited computational resources.

A drawback of BPD is its lack of real-time adaptability due to its offline nature. However, it is highly
effective in situations where ongoing system interaction is too risky or costly. Additionally, when
no pre-existing dataset is available, a teacher policy must first be trained, and expert data collected,
which may lead to some sample inefficiency. That said, when a dataset exists, BPD allows for
reuse, making it a cost-effective solution. Overall, we believe BPD offers a promising approach for
advancing deep reinforcement learning across various industries, given the benefits of offline RL, its
impressive compression performance, and significant improvements in inference speed.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jan Achterhold, Jan Mathias Koehler, Anke Schmeink, and Tim Genewein. Variational network
quantization. In International Conference on Learning Representations, 2018.

Jongchan Baek, Seungmin Baek, and Soohee Han. Efficient multitask reinforcement learning with-
out performance loss. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679–
684, 1957.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym, 2016.

Yanjiao Chen, Baolin Zheng, Zihan Zhang, Qian Wang, Chao Shen, and Qian Zhang. Deep learn-
ing on mobile and embedded devices: State-of-the-art, challenges, and future directions. ACM
Computing Surveys (CSUR), 53(4):1–37, 2020.

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):
485–532, 2020. doi: 10.1109/JPROC.2020.2976475.

Rasool Fakoor, Jonas W Mueller, Kavosh Asadi, Pratik Chaudhari, and Alexander J Smola. Continu-
ous doubly constrained batch reinforcement learning. Advances in Neural Information Processing
Systems, 34:11260–11273, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR,
2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Yarin Gal et al. Uncertainty in deep learning, 2016.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan Sajjad, Preslav
Nakov, Deming Chen, and Marianne Winslett. Compressing large-scale transformer-based mod-
els: A case study on bert. Transactions of the Association for Computational Linguistics, 9:
1061–1080, 2021.

Yoonhee Gil, Jong-Hyeok Park, Jongchan Baek, and Soohee Han. Quantization-aware pruning
criterion for industrial applications. IEEE Transactions on Industrial Electronics, 69(3):3203–
3213, 2021.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129:1789–1819, 2021.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In IEEE International Conference
on Robotics and Automation, pp. 3389–3396, 2017.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. arXiv preprint arXiv:1812.05905, 2018.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. Control of a quadrotor with
reinforcement learning. IEEE Robotics and Automation Letters, 2(4):2096–2103, 2017. doi:
10.1109/LRA.2017.2720851.

Ingook Jang, Hyunseok Kim, Donghun Lee, Young-Sung Son, and Seonghyun Kim. Knowledge
transfer for on-device deep reinforcement learning in resource constrained edge computing sys-
tems. IEEE Access, 8:146588–146597, 2020.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameteri-
zation trick. 28, 2015.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy Q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Jouko Lampinen and Aki Vehtari. Bayesian approach for neural networks-review and case studies.
Neural networks, 14(3):257–274, 2001.

Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with deep reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Vadim Lebedev and Victor Lempitsky. Fast Convnets using group-wise brain damage. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2554–2564,
2016.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In Advances in Neural Informa-
tion Processing Systems, volume 2, 1989.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for convolutional
neural network compression. In Proceedings of the IEEE International Conference on Computer
Vision, October 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE International Conference on Computer Vision,
Oct 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Peterson,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015. doi: 10.1038/nature14236.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, pp. 2498–2507. PMLR, 2017.

Shiva V Naik, Sneha K Majjigudda, Soujanya Naik, Suraj M Dandin, Uday Kulkarni, SM Meena,
Sunil V Gurlahosur, and Pratiksha Benagi. Survey on comparative study of pruning mechanism
on MobileNetV3 model. In International Conference on Intelligent Technologies (CONIT), pp.
1–8. IEEE, 2021.

Xinghua Qu, Yew Soon Ong, Abhishek Gupta, Pengfei Wei, Zhu Sun, and Zejun Ma. Importance
prioritized policy distillation. In Proceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pp. 1420–1429, 2022.

Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks, 4(5):740–747,
1993.

Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye Teh
and Mike Titterington (eds.), Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pp. 661–668,
Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distil-
lation. arXiv preprint arXiv:1511.06295, 2015.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari,
Go, Chess and Shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.
Dynamic sparse training for deep reinforcement learning. In International Joint Conference on
Artificial Intelligence, 2021.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014.

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. RLx2: Training a sparse deep
reinforcement learning model from scratch. In International Conference on Learning Represen-
tations, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based con-
trol. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
Vilamoura-Algarve, Portugal, 2012. doi: 10.1109/IROS.2012.6386109.

Sida Wang and Christopher Manning. Fast dropout training. In International Conference on Ma-
chine Learning, pp. 118–126. PMLR, 2013.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6151–6162. Association for Computational Linguistics, November 2020.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze. Fastdepth: Fast
monocular depth estimation on embedded systems. In IEEE International Conference on Robotics
and Automation, pp. 6101–6108, 2019.

Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. Variational
convolutional neural network pruning. In Proceedings of the IEEE Cternational Conference on
Computer Vision, June 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILS OF BPD

A.1 PSEUDO CODE OF BPD

Algorithm 1 Bayesian Policy Distillation
1: initialize a static dataset D, variational distribution q(ω|θ, α), policy πω(a|s), critics
Qψi∈{1,2}(s, a), target critics Qtarget

ψ̄i∈{1,2}
(s, a), learning rate for the critic ζQ, learning rate for

the policy ζπ , soft update ratio τ , annealing speed parameter ν, filter threshold CThreshold, and
total number of iterations N

2: for n = 1 to N do
3: ηn = min(νN n, 2) ▷Update the coefficient η
4: M = {(sm, am, rm, s′m)}|M |

m=1 ∼ D
5: ▷Randomly sample a mini-batch M from the dataset D
6: a′ ∼ πω∼q(ω|θ,α)(·|s′)
7: y = R(s, a) + γmini∈{1,2}Q

target
ψ̄i

(s′, a′)

8: LQ(ψi) = E(s,a,s′)∼M
[(
Qψi

(s, a)− y
)2]

9: for i = 1 to 2 do
10: ψnew

i ← ψi − ζQ∇ψLQ(ψi)
11: ▷Update the critic
12: end for
13: if n mod policy update frequency == 0 then
14: θnew ← θ − ζπ∇θLBPD(θ, α)
15: αnew ← α− ζπ∇αLBPD(θ, α)
16: ▷Update the policy
17: end if
18: ψi∈{1,2} ← ψnew

i∈{1,2}
19: θ ← θnew

20: α← αnew

21: ψ̄i∈{1,2} ← τψi∈{1,2} + (1− τ)ψ̄i∈{1,2}
22: ▷Update the parameters
23: end for
24: Set weights ω zero where logα > CThreshold ▷Sparsify the policy
25: Return the sparsified policy π

A.2 HYPERPARAMETER DETAILS

Hyperparameters Values

Policy update frequency 2
Total number of updates 1 million
Static dataset size 1 million
Mini-batch size 256
Optimizer Adam
CThreshold 2
ζQ, ζπ 0.0003
γ 0.99
ν 4
h 0.5
τ 0.005

Table 3: Hyperparameters for Bayesian Policy Distillation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B REWARD DETAILS OF THE REAL EXPERIMENT

In this section, we provide details of the reward function used in the real inverted pendulum task.
Let θ be the angle between the cart and pole, θ̇ be the angular velocity, ||a||2 be the norm of the
action, and px be the cart’s position with respect to the horizontal axis. Then, the reward r in the
real-world inverted pendulum task is determined as:

r = rθ · rθ̇ · rpos. · ract.,

where

rθ =
1 + cos θ

2
,

rθ̇ =
1 + exp (−θ̇2 · log 10

25)

2
,

rpos. =
1 + exp (−p2x ·

log 10
4)

2
,

ract. =
4 +max (||a||2, 0)

5
.

Figure 6: Schema of the real inverted pendulum system.

15

	Introduction
	Preliminary Background
	Standard Reinforcement Learning
	Bayesian Neural Network and Variational Inference
	Sparse Variational Dropout
	Offline Reinforcement Learning

	Bayesian Policy Distillation
	Bayesian Policy Constraint
	Refining the Policy with Value Function
	Policy Distillation
	Adjusting Weight Coefficients

	Experimental Validation
	Implementation Details
	Simulation Results
	Ablation Study
	Real Experiment

	Conclusion and Limitations
	Details of BPD
	Pseudo Code of BPD
	hyperparameter Details

	Reward details of the real experiment

