
Relational Composition in Neural Networks:
A Survey and Call to Action

Martin Wattenberg 1 Fernanda B. Viégas 1

Abstract
Many neural nets appear to represent data as lin-
ear combinations of “feature vectors.” Algorithms
for discovering these vectors have seen impres-
sive recent success. However, we argue that this
success is incomplete without an understanding of
relational composition: how (or whether) neural
nets combine feature vectors to represent more
complicated relationships. To facilitate research
in this area, this paper offers a guided tour of
various relational mechanisms that have been pro-
posed, along with preliminary analysis of how
such mechanisms might affect the search for inter-
pretable features. We end with a series of promis-
ing areas for empirical research, which may help
determine how neural networks represent struc-
tured data.

1. Introduction
The linear representation hypothesis asserts that neural nets
encode information as a sum of “feature vectors” (Mikolov
et al., 2013b; Arora et al., 2016; Olah et al., 2020). That
is, a layer of a network represents a set of features2 as a
weighted sum of associated vectors. An increasing body of
evidence supports this idea, and one recent development is a
set of algorithms for automatically finding feature vectors at
scale (e.g., (Bricken et al., 2023; Cunningham et al., 2023;
Rajamanoharan et al., 2024; Templeton et al., 2024) among
others). These new techniques raise the possibility that we
can understand and even control neural networks using a
catalog of interpretable feature vectors.

The very simplicity of the linear representation hypothesis,
however, suggests that there may be more to the story. Af-
ter all, most computer programs contain data structures far

1Harvard University and Google. Work done at Har-
vard. Correspondence to: Martin Wattenberg <wat-
tenberg@seas.harvard.edu>, Fernanda Viégas <fer-
nanda@seas.harvard.edu>.

Workshop on Mechanistic Interpretability, Vienna, Austria. Copy-
right 2024 by the author(s).

2See Appendix for a definition of the word “feature.”

more intricate than mere sets or bags, reflecting the com-
plexity of the world. And programs that do treat memory as
just a set of bits or bytes, such as assembly language, are
notoriously hard to read and interpret. It’s natural to ask,
could there be structure in neural representations beyond
this “bag of features” model? Indeed, this basic question has
attracted notice since the founding of the field (Rosenblatt,
1961; Fodor & Pylyshyn, 1988). A wide array of mecha-
nisms have been proposed for relating and composing vector
representations—what we refer to here as relational com-
position.

This paper includes a summary of some of these mecha-
nisms, with a specific focus on ideas that seem relevant
to contemporary interpretability work3. A central goal is
to provide a gateway to a set of work that is spread over
multiple decades and disciplines. We also analyze how
these mechanisms might interact in subtle ways with fea-
ture identification algorithms, potentially causing problems
for techniques that “steer” behavior by intervening during
inference. In particular, we describe two potential problems
that might arise in applying non-compositional methods to
compositional representations:

• Feature multiplicity. This is a kind of false positive,
where combinatorial mechanisms might create multi-
ple distinct “echo” feature vectors that correspond to
the same concept. Furthermore, despite representing
the same concept, different echo vectors potentially
could have different effects on the system’s output—
leading to what we term a predict/control discrepancy.
As a result, using feature vectors to understand and
control behavior may be challenging.

• Dark matter. This possibility represents a false neg-
ative. Some combinatorial mechanisms might sys-
tematically hide important features or combinations
of features. Moreover, by looking for semantically
meaningful vectors, we might miss important relational
data. For example, binding mechanisms that involve
so-called “ID” vectors (Feng & Steinhardt, 2023) may

3See (Schlegel et al., 2022) for a more comprehensive histori-
cal review of vector compositionality, and (Feldman, 2013) for a
general survey of the “binding problem” in biological neural nets.

1



Relational Composition

encode information not by value, but by reference,
leading to “features” with no interpretation in terms of
system inputs, processing, or outputs.

We’re certainly not the first to point out the importance of
compositionality in this context. Similar issues are raised
in (Bricken et al., 2023) and (Olah, 2024), for example.
Our argument here is that the rich set of existing ideas for
compositional representations may hold important clues to
understanding recent advances in mechanistic interpretabil-
ity. Even if they don’t capture the full workings of neural
nets, these mechanisms might be useful human-interpretable
approximations. Examining the literature in this light may
help us understand the limitations and results of a linear
analysis of neural net representations. Given the potential
payoff for new results, our aim in this paper is to accelerate
research in this area.

2. Definitions, notation, and background
For simplicity, we’ll work in an idealized setting, meant
to be the bare minimum to explore ideas about composing
representations. The basic unit of representation in this
setting is a vector x ∈ Rn. We’ll assume that this vector
encodes a set of “features” using vector addition:

x =

m∑
i=1

aivi

where each vi is a unit vector representing an individual
feature, and the coefficient ai represents the weight—or
sometimes just presence or absence—of that feature in the
representation. (See appendix for more on the term “fea-
ture.”) Note that we may have m > n, that is, more features
than dimensions; this is called “superposition” in the liter-
ature ((Elhage et al., 2022) discusses some of the history
of this idea.) In this setting, one typically assumes that fea-
tures are “sparse”, meaning most values of ai are zero, and
that the vi are nearly mutually orthogonal. These assump-
tions make it possible to approximately reconstruct feature
coefficients via inner products, with

ai ≈ ⟨x, vi⟩

This mechanism is good way to represent unordered sets
of features. But how might we compose these vectors to
express structures more complicated than sets? One natural
way to combine two feature vectors x and y is simply to
add them up. The sum x+ y represents something like the
union of the features each individual vector encodes. From
a geometric point of view, the sum is a vector that is similar
to both x and y. This has obvious utility for representations:
for instance, one could describe a scene with a duck and a
capybara by adding a “duck vector” to a “capybara vector”.

There’s an essential limitation to summation, however,
which is that there is no sense of order or other structure.
A scene where a duck is perched on a capybara and one
where the capybara is perched on the duck would have the
same representation. Analyzing this issue leads to deep
waters. Indeed, Fodor and Pylyshyn famously argued that
neural nets are intrinsically limited in their ability to ex-
press more complex, directed relations (Fodor & Pylyshyn,
1988). There have been many, many responses to that argu-
ment. One particular type of counterargument is to suggest
a mechanism for composing or binding elements in a way
to preserves relationships.

Most of these relational composition mechanisms fall into
three broad classes, depending on whether they’re based on
binding vectors with matrices, tensors, or references across
tokens. This division doesn’t capture the full range of possi-
bilities, but it’s enough for our purposes. We now discuss
some of these mechanisms, and their potential implications
for finding and using features.

3. Additive matrix binding
One general class of composition mechanisms is based on
matrix transformations. Suppose x, y ∈ Rn are two vectors.
How might we represent the ordered pair (x, y) using a
single vector r ∈ Rn? As discussed, we can’t just use the
sum x+ y since this would destroy any sense of order: the
pairs (x, y) and (y, x) would have the same representation.

One method that does preserve order is to fix two distinct
n × n matrices A and B and define the representation of
(x, y) by

r = Ax+By

It’s clear that (x, y) and (y, x) will generically have different
representations. Moreover, with reasonable assumptions we
can generally recover the individual features of both x and y
from this representation. If A and B are random orthogonal
matrices, and we’ve assumed that the feature vectors {vi}
are mutually close to orthogonal, it follows that the feature
vectors {Av1, . . . , Avm, Bv1, . . . , Bvm} will also be close
to mutually orthogonal. The data for x and y can then
be “read back” selectively, for example by reconstruction
functions of the form

fA,i(r) = ⟨r,Avi⟩

fB,i(r) = ⟨r,Bvi⟩

Of course, there will be an increase in reconstruction error,
since we are working with twice as many features. This
issue may become significant if we move beyond pairs of
vectors to encoding much longer lists. Thus the addition
model of composition might put constraints on m, the num-
ber of individual feature vectors. On the positive side, the

2



Relational Composition

assumptions on A,B, and the {vi} can be relaxed in vari-
ous ways, and useful types of reconstruction may still be
possible. For random matrices and most choices of vi, these
reconstruction functions will also work. If A and B are ran-
dom but low-rank, full reconstruction won’t be possible for
all vi, however it will be possible when ∥Avi∥| ≈ ∥vi∥ = 1.

This technique has been proposed in many different contexts.
It is called an “additive model” in (Mitchell & Lapata, 2008;
2010), a “generic additive model” in (Zanzotto et al., 2010),
and a closely related method is called “matrix binding of
additive terms” in (Gallant & Okaywe, 2013). It is simple
and flexible, naturally generalizing to represent ordered lists
of size larger than two. It also has obvious parallels with the
output of an attention layer of a transformer.

3.1. Matrix binding as writing to “slots” in
superposition

There’s an alternative perspective which relates directly to
transformers. Consider an additive matrix binding model
that combines a vector x with a list of vectors (y1, . . . , yk)
via the representation:

r = x+A1y1 +A2y2 + . . .+Akyk

One way to view this equation is that each matrix Ai defines
a distinct “slot” where data can be written for later retrieval.
In other words, the matrix binding formula augments the
information in x with the information in the {yi}, such that
data in one slot can be distinguished from data in another.

By construction, attention layers perform something not
unlike matrix binding1. There’s a potentially fruitful con-
nection between this setup and the proposal that the trans-
former residual stream is a communication channel (Elhage
et al., 2021; Merullo et al., 2024) between different net-
work layers, which can augment it with new data or read
information from previous layers. It can be tempting to
imagine that the residual stream S is a sum of vector spaces
S = E1 ⊕ E2 ⊕ . . . ,⊕Ek where each Ei is a separate
information “channel.” However, the additive model is a re-
minder that channels themselves might be in superposition,
with no clear geometric separation between them2.

Finally, at a theoretical level, it’s worth noting that the for-
mula Ax+By uses a form of superposition to create com-
position. As pointed out by Olah (Olah, 2024), in reviewing
ideas of Thorpe (Thorpe, 1989), superposition and compo-
sition are typically in tension. In effect, the additive model

1This analogy is suggestive, but not exact. Three important
differences from classic matrix binding are nonlinearities (activa-
tion functions and layer norm), the low rank of individual attention
output matrices, and the lack of guarantee that different output
matrices are nearly orthogonal or far from the identity.

2Arguably, positional information in a transformer is encoded
in just this way.

is composing two dense codes by superposition. Of course,
the slot-based model represents a slightly different type of
“compositionality.” But in Thorpe’s terms one may view
this as akin to a dense code with compositional character-
istics, something in between a semi-distributed and highly
distributed code3.

3.2. Tree representations using matrices

Additive binding can be used to create data structures that
are more complex than a collection of slots. For example,
here’s one possible way to represent a binary tree. Fix two
random n × n matrices, M1 and M2. Consider a parent
node p with two children represented by vectors c1 and c2.
Then define the representation

rp = M1c1 +M2c2

Applying this recursively, we can find a vector representing
each node of the tree; and because generically M1M2 ̸=
M2M1, distinct nodes will be associated with a distinct
vectors. While we have not found this mechanism explicitly
mentioned in the literature, it can be viewed as a trivial
linear version of a Tree-RNN, a network that creates a vector
representation of a tree by operating recursively on its nodes
(Socher et al., 2013; 2014; Bowman et al., 2015).

Tree-RNNs enjoyed a surge of interest in the years before
transformers were introduced: using Tree-RNNs to process
parse trees seemed to improve performance in multiple sys-
tems. Interestingly, for small fixed-depth trees there’s a
natural way for transformers to implement something like
a Tree-RNN, since attention heads can focus on—and thus
can read information from—syntactically dependent tokens
(Phang et al., 2019; Ravishankar et al., 2021). It might be
worthwhile to look for evidence of this type of representa-
tion in real-world networks.

3.3. Feature multiplicity in additive models

If neural networks use one of these matrix-based mecha-
nisms, how might that affect the search for features? In an
idealized case, there’s actually a clear answer: it will create
a series of duplicate features, which we call echo features.

To see this, consider a set of random unit feature vectors
{v1, . . . , vm}, and a model in which a representation vector
x is a random sparse linear combination of these vectors. To
be concrete, take x =

∑m
1 aivi where the ai are each inde-

pendent Bernoulli random variables with p = 1/m. Given
a large sample of vectors from this distribution, a capable

3One recent piece of empirical work is potentially related: (En-
gels et al., 2024) describe “feature manifolds,” placed in super-
position using linear transformations that satisfy a certain mutual
orthogonality condition. This suggests that neural networks are
capable of learning something like additive binding mechanisms.

3



Relational Composition

dictionary learning algorithm, such as a sparse autoencoder,
will recover the underlying feature vectors {vi}.

Now consider a simple version of the additive model de-
scribed above. Suppose we apply dictionary learning tech-
niques to representations of the form z = x+Ay, where x
and y are independently drawn from the same sparse ran-
dom distribution. If A is random, the vectors {Avi} will
probably be nearly orthogonal to the {vi}. That means we
can view z = x+Ay as a sparse sum of 2m random vectors,
where coefficients are independent Bernoulli with p = 1/m.
Therefore, applying a dictionary learning algorithm to a
large sample of z is likely to identify 2m feature vectors

{v1, . . . , vm, Av1, . . . , Avm}

The issue, of course, is that each pair of vectors (vi, Avi)
actually corresponds to the same underlying feature—the
only difference being its position in the ordered pair (x, y).
We refer to multiple distinct vectors for the same concept as
“echo” vectors since they echo each other’s representation.
Obviously, the problem is not just restricted to pairs: a
representation of a list of three vectors would yield triple
multiplicity. The tree representation described above could
yield even more.

It’s an open question whether this idealized setting reflects
the behavior or real-world networks. However, the general
structure of transformer attention suggests that something
like this phenomenon could easily occur. In fact, one recent
report describes how an SAE appears to uncover a large
set of “induction features” corresponding to predicted next
tokens (Kissane et al., 2024). A closely related issue is
also documented in a real-world setting in (Makelov et al.,
2023).

If this type of feature multiplicity does turn out to be a
common phenomenon, it could make interpretability work
more difficult. At the very least, it would greatly expand
the catalog of seemingly independent features found by
an SAE. Understanding the structure of this catalog would
require knowledge of the underlying matrices that lead to
echo vectors. Conversely, knowing these matrices would
greatly help us organize and analyze SAE-derived features.

3.3.1. FEATURE MULTIPLICITY AND PREDICT/CONTROL
DISCREPANCIES

Feature multiplicity might cause anomalies when using fea-
tures to steer a network’s behavior during inference. Indeed,
a number of recent reports have described systems where
the optimal vectors for predicting behavior and steering it
turn out to be different (Zou et al., 2023; Li et al., 2024;
Marks & Tegmark, 2023). We call this predict/control dis-
crepancy. On its face, this discrepancy is not necessarily
shocking—a linear probe can easily pick up on spurious
or redundant correlations, such as non-causal aspects of

the input data. In (Bricken et al., 2023), for example, the
authors perform experiments to check that features have
expected causal effects on the networks output. On the other
hand, it is conceivable that feature multiplicity may make
predict/control discrepancies especially likely4.

Here’s a hypothetical example that serves as a plausibility
argument for this idea. Consider a transformer layer that
does nothing but augment the residual stream for a given
token with information about the previous token. Imagine
it does so with additive matrix binding. In particular, if ti
and ti−1 are sequential tokens at layer N − 1, then after
layer N the residual stream at token i, which we denote by
t′i becomes

t′i = ti +Ati−1

where A is an orthogonal matrix far from the identity. Now
imagine that representations in the residual stream for layer
N − 1 involve a feature vector vtox for toxic content. It
follows that, for different tokens, the residual stream in layer
N could have multiple distinct vectors related to toxicity:
vtox, Avtox, or vtox + Avtox. A linear probe Ptox trained
to recognize toxic content, based on multiple tokens in the
residual stream at layer N , might look something like

Ptox(x) = ⟨x, vtox +Avtox⟩

On the other hand, if we trained on just one token (perhaps
the last token in a prompt, a non-toxic function word, in or-
der to predict subsequent behavior) we could easily produce
a probe such as:

Qtox(x) = ⟨x,Avtox⟩

Both of these probes might perform well, but this already
illustrates a problem: different tokens might easily produce
different probes for unimportant contextual reasons.

Now, suppose we wish to intervene during network
inference—for instance, we want to change the residual
stream to cause the network to produce less toxic text. Sim-
ply inspecting the second probe, we might hope to intervene
to “remove toxicity” by intervening during inference (Li
et al., 2024) to change each token t to have the new value

t̃ = t−Avtox

It’s entirely possible, however, that the values of inner prod-
ucts ⟨x, vtox⟩ and ⟨x,Avtox⟩ will play different roles in
computing the toxicity of the next word. It’s certainly con-
ceivable that the toxicity of the current word plays a greater
role than information about the previous word. Quite likely,
the most effective intervention will look more like the fol-
lowing equation, where c1 ̸= c2:

t̃ = t− c1vtox − c2Avtox

4See also (Marks, 2024) for a related discussion; we return to
ideas from that essay in a subsequent section.

4



Relational Composition

In other words, the right vector for controlling the network
might differ from the most effective probe vector for pre-
dicting its behavior.

This phenomenon would make it harder to exploit features
derived from dictionary learning. For example, if there are
many multiple features related to toxicity, one couldn’t au-
tomatically extract a steering vector from the dictionary, but
would need to do experiments to find the right linear combi-
nation of feature vectors. Of course, the analysis outlined
here is still speculative. On the other hand, we believe this
is a plausible picture, especially given transformer architec-
ture. A cynic might even say attention layers are machines
for producing spurious correlations.

4. Multi-token mechanisms
So far, we’ve discussed binding mechanisms that operate
wthin a single vector space. However, since the earliest
days of the field, there has been speculation that that some
notion of sequence—that is, representations across multiple
input observations—is necessary for representing complex
relationships (Rosenblatt, 1961). In this section, with the
transformer architecture in mind, we discuss a class of mech-
anisms that relate specifically to sequence models.

Mathematically, we consider a sequence of “token vectors”

t1, t2, . . . , tk ∈ Rn

where each ti contains feature information and, potentially,
information about its relation to other tokens. For instance,
each ti might represent the residual stream for the i-th el-
ement of a sequence at a particular layer in a transformer.
To extract the relational data, it might not be enough to
look at a single token ti but at pairs of tokens (ti, tj). This
perspective opens up a different set of possibilities. It’s
also a very plausible type of representation. For example,
when working with word embeddings, a variety of relation-
ships between words can famously be read by taking vector
differences (Mikolov et al., 2013a).

A generalization of using vector differences is “linear rela-
tional embedding” (Paccanaro & Hinton, 2001). The idea
here is that a relation between token vectors ti and tj is
present when

ti ≈ Atj + b

for a matrix A and vector b which depend only on the re-
lation. Recent work suggests that something like this rep-
resentation may be found in the way that language-model
transformers represent relationships between entities (Her-
nandez et al., 2023).

4.1. Syntactic relations and tree embeddings

One striking finding related to the BERT network (Devlin
et al., 2018) is that parse trees are represented geometri-

cally by relative positions of token vectors. In particular,
the “syntactic distance” between two words—as measured
in a dependency grammar parse tree—can be recovered
from their corresponding token vectors in a middle layer of
BERT (Hewitt & Manning, 2019; Manning et al., 2020). To
be precise, if two words wi, wj in the same sentence are rep-
resented by embedding vectors ti and tj , and if ds(wi, wj)
is the tree distance in the syntactic parse tree between wi

and w2, then

∥Mti −Mtj∥2 ≈ ds(wi, wj)

where M is a constant linear transformation, depending only
on the network. The fact that tree distance corresponds to
the square of the Euclidean distance may seem surprising
but, as described in (Reif et al., 2019), it’s actually natural in
the context of mapping a tree metric to a Euclidean metric.
As described in (Chi et al., 2020), one possible explanation
of this representation is that the differences between token
embeddings represent syntactic dependencies: that is, if ti
and tj have a specific syntactic relation (such as an adjective
modifying a noun) then the vector difference Mti −Mtj
encodes that relation.

This area seems like a promising direction for follow-up
work. For one thing, tree structures might naturally oc-
cur in many other situations. More generally, the idea that
differences between tokens encode specific, contextual re-
lationships seems powerful. A natural question is whether
applying dictionary learning to residual stream differences,
rather than the residual stream itself, might yield a set of
interpretable “relation features.”

4.2. Reference mechanisms: pointers and identifiers

Software engineers have invented many ways to tie different
data structures together. Is it possible that neural networks
use the same techniques? Some recent investigations hint
that they might.

One fundamental component of many software data struc-
tures is a pointer: a reference to a location in memory. The
analog of a pointer, for a transformer network, might be
a positional embedding that defines a reference to a spe-
cific token in a sequence. One might imagine using matrix
binding to augment a token with this positional information
rather than semantic data. For instance, if pj represents the
positional embedding for position j, and Ar is a binding
matrix, one might represent a relationship between tokens
ti and tj as:

r(ti, tj) = ti +Arpj

In fact, the study described in (Prakash et al., 2024) uncov-
ers a circuit that seems to use something like this kind of
“pointer” mechanism to relate an entity to information about
its state elsewhere in a sequence. The authors describe spe-

5



Relational Composition

cific attention heads that seem to move and read relevant
positional encodings in order to connect tokens in this way.

A second fundamental way to connect data comes from the
world of databases: using a shared identifier, or ID, to link
two pieces of information. Some transformers may actually
use a geometric form of this mechanism (Feng & Steinhardt,
2023; Feng et al., 2024). The idea is that there may be
a special subspace of the residual stream in which vector
similarity encodes binding information. To be precise, they
find a certain low-rank matrix Aid, with the property that for
a token vector t, the value Aidt acts like an ID. That is, two
token representations t1 and t2 are considered to be bound
to each other if

Aidti ≈ Aidtj

One interesting question is how and whether this idea re-
lates to the syntax tree representations described in (Man-
ning et al., 2020). For example, after applying the proper
structural probe, one could imagine projecting orthogonally
to an adjective-modifies-noun direction. This could pro-
duce something like an ID vector linking adjectives with the
nouns they modify.

A geometric ID mechanism may pose challenges for a pure
feature-vector-based analysis. In particular, there’s no rea-
son to assume that ID information clusters in any useful
way. The only structure that (Feng & Steinhardt, 2023)
note in the subspace S is metric: nearby vectors are more
likely to match as markers. Thus for any given sequence,
ID vectors conceivably could be effectively random—the
only constraint being that distinct ID vectors should be far
from each other. Thus dictionary learning or classic linear
probing may not encounter a useful signal.

5. Vector symbolic architecture
Finally, we discuss a set of historical ideas for vector bind-
ing, collectively known as “vector symbolic architecture,” or
VSA (Smolensky, 1990; Plate, 1994; 1997; Kanerva, 2009;
Jones & Mewhort, 2007; Schlegel et al., 2022). A compre-
hensive survey and analysis of the zoo of techniques in this
area is far beyond the scope of this paper. Our goal is simply
to provide a gentle introduction to techniques that can po-
tentially seem arcane, unmotivated, and intimidating. To do
so, we focus on two foundational constructions, one in Rn

and one in {0, 1}n, which underlie much of the work in this
field. Both mechanisms have the potential to lead to feature
“dark matter.” That is, they might represent information in
a way that is out of reach of dictionary learning or probing
methods.

5.1. Tensor constructions

As described in (Schlegel et al., 2022), a technique intro-
duced in (Smolensky, 1990) forms the basis of a large set

of different VSA mechanisms. It is often referred to as a
“tensor” method, but we’ll describe it with the more down-
to-earth notation of outer products.

As before, suppose we wish to compose, or bind, two vectors
x and y. One way is to use an outer product to define a
representation:

r = xyT

This representation distinguishes order, since generally
xyT ̸= yxT ). It respects vector addition, since it is lin-
ear in each of x and y respectively. Moreover, one can
recover x and y, at least up to scalar multiples, with easy
vector algebra. For example, if you know y, you can recover
a scalar multiple of x via the product

ry = xyT y = ∥y∥2x

The alert reader will notice, however, that this outer product
representation is a cheat: it lives in Rn×n rather than Rn.
One may view much of the VSA literature as a bag of tricks
to get around this inconvenient fact. The most common trick
is to create an n-dimensional projection of the outer product,
which can still be used for approximate reconstruction. One
method, for instance, is projecting the outer product matrix
via circular convolution (Plate, 1997).

5.2. Binary vectors

A second category of VSA techniques relies on binary-
valued vectors (Kanerva et al., 1997; Kanerva, 2009). We
describe one simple proposal of this type. To bind two bi-
nary vectors x and y, we fix a permutation P that rearranges
the entries of a vector5, and then compute

r = x⊕ P (y)

Here ⊕ denotes modulo-2 addition. Like the outer prod-
uct, this distinguishes between the ordered pairs (x, y) and
(y, x). It respects the binary OR function, which can be
used to take unions of two sets of features. It also allows
for easy reconstruction of one vector in the pair if you know
the other:

x = r ⊕ P (y)

y = P−1(r ⊕ x)

This is a conceptually elegant method, although it requires
extremely large vectors for effective storage and decoding.

5We need the permutation P because mod-2 addition is com-
mutative, and otherwise we couldn’t distinguish the pairs (x, y)
and (y, x). The situation is similar to an additive matrix binding
formula x+Ay. Permuting one argument also allows us to bind a
vector to itself without leading to a zero representation.

6



Relational Composition

5.3. Is VSA a plausible mechanism for real neural nets?

Unlike additive binding models, the techniques proposed
for tensor-based VSA don’t obviously map to deep learning
architectures. Investigations of whether real-world networks
use VSA have yielded mixed conclusions. For example, a
study of whether CLIP might use these mechanisms pro-
duced largely negative results (Lewis et al., 2022), while
there are some indications RNNs may reproduce tensor-
related structures (McCoy et al., 2018).

Techniques based on binary vectors might seem even further
from modern language model architectures. Surprisingly,
some recent work suggests that for sparse vectors in super-
position, not only can neural nets compute XORs of features
in theory (Dmitry Vaintrob, 2024), they seem to do so in
practice (Marks, 2024). Traditional binary VSA is based on
dense vectors, of course, but this seems like an interesting
avenue for exploration. One might imagine combining ideas
from the tensor and binary VSA schemes—perhaps based
on outer products specifically of zero-one vectors, either
over R or Z2.

5.4. Implications for the search for features

As with matrix addition binding, we speculate that VSA
mechanisms may lead to feature multiplicity. For exam-
ple, outer product binding could plausibly produce a com-
binatorial proliferation of potential features6. To see the
issue, consider a setting where we have m feature vectors,
{v1, . . . , vm}, and we want to compose representation vec-
tors x and y:

x =

m∑
i=1

aivi

y =

m∑
i=1

bivi

where the sums are assumed to be sparse, and {ai} and
{bi} independently chosen. Suppose we have a composition
method of the form

r(x, y) = π(xyT )

where π : Rn×n → Rn is a projection operator. By linearity,
we have

r(x, y) =
∑
i,j

aibjπ(viv
T
j )

We have now moved from using m feature vectors {vi} to a
situation with m2 potential feature vectors {π(vivTj )}.

This is a problem. To begin with, even if we could use
dictionary learning to find all these features, there may be
a truly huge number of them. Even if not all combinations

6The essay (Marks, 2024) has a discussion of parallel concerns
in the case of binary codes.

are likely to occur, the potential number of new combina-
tons is vast. For a person interpreting a network, having
fine-grained versions of the same feature is confusing. For
example, one might see many different vectors reflecting
the same concept in different overall contexts. Something
like this actually appears repeatedly in a language model
analyzed in (Bricken et al., 2023). For example, they don’t
find a single pure “English preposition” feature, but they do
identify a feature corresponding to “prepositions in scien-
tific/statistical contexts”7 and a separate feature that fires
on “prepositions in contexts discussing poetry/poets”8. This
is just one of many examples from the feature catalog of
(Bricken et al., 2023). As the authors of that study discuss,
this seems to be part of a much larger story related to a
non-isotropic distribution of features—perhaps an analy-
sis of compositional mechanisms could shed light on this
phenomenon.

A second problem with the proliferation of fine-grained
features is that we might need far more data to discover each
one. For example, features for “inspiring” and ”architecture”
might be just common enough to find, but the combination
of “inspiring architecture” might, sadly, be too rare to appear
in the output of a dictionary learning algorithm. This may
lead to “dark matter”—feature representation that are out of
reach unless one tests with vast amounts of data.

From an optimistic viewpoint, this phenomenon can also
be seen as a cause for hope. As discussed earlier, many
features in the catalog of (Bricken et al., 2023) seem to have
combinatorial interpretations. If we had a principled way of
“factoring” these features, extracting an outer-product struc-
ture automatically, that could be a huge help in identifying
primitive features. It could also help simplify and organize
feature catalogs.

6. Conclusion and future work
We’ve described a series of proposals—some historical,
some very recent—for how neural nets might represent
relationships between features. Along the way, we’ve given
conceptual arguments that these mechanisms might present
problems when finding and using linear feature represen-
tations. One challenge is that of “dark matter”: feature
representations that are difficult to find using standard meth-
ods. Another potential problem is feature multiplicity, or
the presence of multiple “echo vectors” that correspond
to the same feature. An issue of special concern, related
to multiplicity, is whether feature vectors discovered by
probing or dictionary-learning methods will be as useful
for interventions as they are for predicting the state of the
network.

7Feature A/1/3533 in the study’s notation
8Feature A/1/3977 in the study’s notation

7



Relational Composition

The arguments here are conjectural and often involve ideal-
ized settings. A great deal of work would be necessary to
resolve the questions we’ve raised—calling for that work is
the point of this note. Here are some directions that might
shed light on the key issues:

• Toy models that learn composition. One way to
gather data would be to experiment with minimal mod-
els. It would be useful to find toy models of learned
composition. If we give an autoencoder a task that
requires learning relational composition, what mech-
anisms are found via gradient descent? Some work
in this area dates back decades (Pollack, 1988; Blank
et al., 2014) and it would be interesting to analyze these
same systems with modern methods, and to extend this
line of research further.

• Apply feature extraction methods to synthetic com-
position mechanisms. We provided a conceptual out-
line of how feature discovery techniques might run into
trouble on compositional representations. A natural
next step would be to test these arguments empirically,
by creating synthetic versions of VSA, matrix bind-
ing, and other mechanisms, and applying dictionary
learning to the results.

• Apply dictionary learning to token differences. Syn-
tactic relations appear to be encoded in differences
between token vectors. Are other relations encoded
this way as well? It could be worth applying dictio-
nary learning techniques to token differences to find
additional “relational features.”

• Investigate marker mechanisms. The “ID vector”
mechanism suggested by (Feng & Steinhardt, 2023) is
extremely interesting. It also presents a clear problem
for feature-based interpretability methods. It would
be helpful to understand just how widely the mecha-
nism might apply. How does it relate to the syntax
representations of (Manning et al., 2020)? Experimen-
tation with small synthetic models might advance our
understanding of the basic process. It would also be
helpful to find lightweight ways to identify ID vector
subspaces.

• Look for feature multiplicity. If feature multiplicity
is a real problem, it may not be hard to identify. One
sign would be the discovery of redundant or contextu-
ally dependent feature vectors. The features found in
(Bricken et al., 2023; Templeton et al., 2024; Kissane
et al., 2024) sometimes exhibit this type of behavior,
for instance. If one could pair up a sufficiently large
number of redundant features via a single linear trans-
formation, that would provide strong evidence for the
multiplicity hypothesis, and also help organize feature
catalogs.

• Understand predict/control discrepancy. Feature
multiplicity might cause a problem that we have termed
“predict/control discrepancy.” That is, an effective vec-
tor for predicting a particular network behavior might
be different from the best “steering vector” for induc-
ing that same behavior. Given the obvious practical
implications, and that there are multiple examples of
this phenomenon in the literature, it seems important
to investigate further.

• Measure real models for relational composition.
One alternative to explicitly identifying relational rep-
resentations is to look for behavioral evidence that they
exist. That can at least alert us to “dark matter” that
isn’t observed by feature identification methods. A
review of this type of work is beyond the scope of this
paper, but several studies suggest promising directions
(Andreas, 2019; Lovering & Pavlick, 2022; Akyürek
& Andreas, 2023).

• Investigate VSA-based binding in real networks.
The findings in (Dmitry Vaintrob, 2024; Marks, 2024)
suggest some natural mechanisms by which binary
VSA codes might be implemented in realistic networks.
It may be worth systematically working out the sim-
plest implementations of these mechanisms, and inves-
tigating whether real networks make use of them.

To sum up, there are major practical and theoretical ques-
tions around how the linear representation hypothesis might
interact with mechanisms for relational composition. We
strongly advocate for continued research in this area. Iden-
tifying mechanisms for relational composition would be
a step forward for useful interpretability work. Even if it
turns out that neural nets show no evidence of relational
composition, that would be an important theoretical result.

7. Acknowledgments
We thank Kenneth Li, Oam Patel, Nikola Jurkovic, Chris
Olah, Yonatan Belinkov, Asma Ghandeharioun, Ann Yuan,
and Lucas Dixon for helpful comments on this manuscript.
We’re indebted to the anonymous reviewers for their careful
reading and excellent suggestions. FV was supported by a
fellowship from the Radcliffe Institute for Advanced Study
at Harvard University. Additional support came from Effec-
tive Ventures Foundation, Effektiv Spenden Schweiz, and
the Open Philanthropy Project.

References
Akyürek, E. and Andreas, J. Lexsym: Compositionality

as lexical symmetry. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 639–657, 2023.

8



Relational Composition

Andreas, J. Measuring compositionality in representation
learning. arXiv preprint arXiv:1902.07181, 2019.

Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A. A latent
variable model approach to pmi-based word embeddings.
Transactions of the Association for Computational Lin-
guistics, 4:385–399, 2016.

Blank, D. S., Meeden, L. A., and Marshall, J. B. Exploring
the symbolic/subsymbolic continuum: A case study of
raam. In The Symbolic and Connectionist Paradigms, pp.
113–148. Psychology Press, 2014.

Bowman, S., Potts, C., and Manning, C. D. Recursive neural
networks can learn logical semantics. In Proceedings of
the 3rd workshop on continuous vector space models and
their compositionality, pp. 12–21, 2015.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
et al. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits
Thread, pp. 2, 2023.

Chi, E. A., Hewitt, J., and Manning, C. D. Finding universal
grammatical relations in multilingual bert. arXiv preprint
arXiv:2005.04511, 2020.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly inter-
pretable features in language models. arXiv preprint
arXiv:2309.08600, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dmitry Vaintrob, Jake Mendel, K. Toward a mathematical
framework for computation in superposition. Less-
Wrong, 2024. URL https://www.lesswrong.
com/posts/2roZtSr5TGmLjXMnT/
toward-a-mathematical-framework-for-computation-in.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
et al. A mathematical framework for transformer circuits.
Transformer Circuits Thread, 1:1, 2021.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., et al. Toy models of superposition. arXiv
preprint arXiv:2209.10652, 2022.

Engels, J., Liao, I., Michaud, E. J., Gurnee, W., and
Tegmark, M. Not all language model features are lin-
ear. arXiv preprint arXiv:2405.14860, 2024.

Feldman, J. The neural binding problem (s). Cognitive
neurodynamics, 7:1–11, 2013.

Feng, J. and Steinhardt, J. How do language models bind
entities in context? arXiv preprint arXiv:2310.17191,
2023.

Feng, J., Russell, S., and Steinhardt, J. Monitoring latent
world states in language models with propositional probes.
arXiv preprint arXiv:2406.19501, 2024.

Fodor, J. A. and Pylyshyn, Z. W. Connectionism and cogni-
tive architecture: A critical analysis. Cognition, 28(1-2):
3–71, 1988.

Gallant, S. I. and Okaywe, T. W. Representing objects,
relations, and sequences. Neural computation, 25(8):
2038–2078, 2013.

Hernandez, E., Sharma, A. S., Haklay, T., Meng, K., Watten-
berg, M., Andreas, J., Belinkov, Y., and Bau, D. Linear-
ity of relation decoding in transformer language models.
arXiv preprint arXiv:2308.09124, 2023.

Hewitt, J. and Manning, C. D. A structural probe for finding
syntax in word representations. In Proceedings of the
2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers),
pp. 4129–4138, 2019.

Jones, M. N. and Mewhort, D. J. Representing word mean-
ing and order information in a composite holographic
lexicon. Psychological review, 114(1):1, 2007.

Kanerva, P. Hyperdimensional computing: An introduc-
tion to computing in distributed representation with high-
dimensional random vectors. Cognitive computation, 1:
139–159, 2009.

Kanerva, P. et al. Fully distributed representation. PAT, 1
(5):10000, 1997.

Kissane, C., Robertzk, Conmy, A., and Nanda,
N. Sparse autoencoders work on attention
layer outputs. https://www.lesswrong.
com/posts/DtdzGwFh9dCfsekZZ/
sparse-autoencoders-work-on-attention-layer-outputs,
2024. Accessed: 2024-07-13.

Lewis, M., Nayak, N. V., Yu, P., Yu, Q., Merullo, J., Bach,
S. H., and Pavlick, E. Does clip bind concepts? probing
compositionality in large image models. arXiv preprint
arXiv:2212.10537, 2022.

Li, K., Patel, O., Viégas, F., Pfister, H., and Wattenberg, M.
Inference-time intervention: Eliciting truthful answers
from a language model. Advances in Neural Information
Processing Systems, 36, 2024.

9

https://www.lesswrong.com/posts/2roZtSr5TGmLjXMnT/toward-a-mathematical-framework-for-computation-in
https://www.lesswrong.com/posts/2roZtSr5TGmLjXMnT/toward-a-mathematical-framework-for-computation-in
https://www.lesswrong.com/posts/2roZtSr5TGmLjXMnT/toward-a-mathematical-framework-for-computation-in
https://www.lesswrong.com/posts/DtdzGwFh9dCfsekZZ/sparse-autoencoders-work-on-attention-layer-outputs
https://www.lesswrong.com/posts/DtdzGwFh9dCfsekZZ/sparse-autoencoders-work-on-attention-layer-outputs
https://www.lesswrong.com/posts/DtdzGwFh9dCfsekZZ/sparse-autoencoders-work-on-attention-layer-outputs


Relational Composition

Lovering, C. and Pavlick, E. Unit testing for concepts in
neural networks. Transactions of the Association for
Computational Linguistics, 10:1193–1208, 2022.

Makelov, A., Lange, G., Geiger, A., and Nanda, N. Is
this the subspace you are looking for? an interpretability
illusion for subspace activation patching. In The Twelfth
International Conference on Learning Representations,
2023.

Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U., and
Levy, O. Emergent linguistic structure in artificial neural
networks trained by self-supervision. Proceedings of the
National Academy of Sciences, 117(48):30046–30054,
2020.

Marks, S. What’s up with llms represent-
ing xors of arbitrary features? LessWrong,
2024. URL https://www.lesswrong.
com/posts/hjJXCn9GsskysDceS/
what-s-up-with-llms-representing-xors-of-arbitrary-features.

Marks, S. and Tegmark, M. The geometry of truth:
Emergent linear structure in large language model
representations of true/false datasets. arXiv preprint
arXiv:2310.06824, 2023.

McCoy, R. T., Linzen, T., Dunbar, E., and Smolensky, P.
Rnns implicitly implement tensor product representations.
arXiv preprint arXiv:1812.08718, 2018.

Merullo, J., Eickhoff, C., and Pavlick, E. Talking heads: Un-
derstanding inter-layer communication in transformer lan-
guage models. arXiv preprint arXiv:2406.09519, 2024.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases
and their compositionality. Advances in neural informa-
tion processing systems, 26, 2013a.

Mikolov, T., Yih, W.-t., and Zweig, G. Linguistic regularities
in continuous space word representations. In Proceedings
of the 2013 conference of the north american chapter
of the association for computational linguistics: Human
language technologies, pp. 746–751, 2013b.

Mitchell, J. and Lapata, M. Vector-based models of semantic
composition. In proceedings of ACL-08: HLT, pp. 236–
244, 2008.

Mitchell, J. and Lapata, M. Composition in distributional
models of semantics. Cognitive science, 34(8):1388–
1429, 2010.

Olah, C. Distributed representations: Composi-
tion superposition. Transformer Circuits, 2024.
URL https://transformer-circuits.pub/
2023/superposition-composition.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to circuits.
Distill, 5(3):e00024–001, 2020.

Paccanaro, A. and Hinton, G. E. Learning distributed repre-
sentations of concepts using linear relational embedding.
IEEE Transactions on Knowledge and Data Engineering,
13(2):232–244, 2001.

Phang, J., Bordia, S., Bowman, S. R., et al. Do atten-
tion heads in bert track syntactic dependencies? In NY
Academy of Sciences NLP, Dialog, and Speech Workshop,
2019.

Plate, T. A common framework for distributed representa-
tion schemes for compositional structure. Connectionist
systems for knowledge representation and deduction, pp.
15–34, 1997.

Plate, T. A. Distributed representations and nested compo-
sitional structure. Citeseer, 1994.

Pollack, J. Implications of recursive distributed representa-
tions. Advances in neural information processing systems,
1, 1988.

Prakash, N., Shaham, T. R., Haklay, T., Belinkov, Y.,
and Bau, D. Fine-tuning enhances existing mecha-
nisms: A case study on entity tracking. arXiv preprint
arXiv:2402.14811, 2024.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Improving
dictionary learning with gated sparse autoencoders. arXiv
preprint arXiv:2404.16014, 2024.

Ravishankar, V., Kulmizev, A., Abdou, M., Søgaard, A., and
Nivre, J. Attention can reflect syntactic structure (if you
let it). arXiv preprint arXiv:2101.10927, 2021.

Reif, E., Yuan, A., Wattenberg, M., Viegas, F. B., Coenen,
A., Pearce, A., and Kim, B. Visualizing and measuring
the geometry of bert. Advances in Neural Information
Processing Systems, 32, 2019.

Rosenblatt, F. Principles of neurodynamics. perceptrons
and the theory of brain mechanisms. Technical report,
Cornell Aeronautical Lab Inc Buffalo NY, 1961.

Schlegel, K., Neubert, P., and Protzel, P. A comparison
of vector symbolic architectures. Artificial Intelligence
Review, 55(6):4523–4555, 2022.

Smolensky, P. Tensor product variable binding and the
representation of symbolic structures in connectionist
systems. Artificial intelligence, 46(1-2):159–216, 1990.

10

https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://www.lesswrong.com/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://transformer-circuits.pub/2023/superposition-composition
https://transformer-circuits.pub/2023/superposition-composition


Relational Composition

Socher, R., Bauer, J., Manning, C. D., and Ng, A. Y. Parsing
with compositional vector grammars. In Proceedings of
the 51st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 455–465,
2013.

Socher, R., Karpathy, A., Le, Q. V., Manning, C. D., and Ng,
A. Y. Grounded compositional semantics for finding and
describing images with sentences. Transactions of the
Association for Computational Linguistics, 2:207–218,
2014.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken,
T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones,
A., Cunningham, H., Turner, N. L., McDougall, C.,
MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Thorpe, S. Local vs. distributed coding. Intellectica, 8(2):
3–40, 1989.

Zanzotto, F., Korkontzelos, I., Fallucchi, F., Manandhar, S.,
et al. Estimating linear models for compositional distribu-
tional semantics. In Proceedings of the 23rd international
conference on computational linguistics (COLING)(GGS
Conference Rating 2 A), 2010.

Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren, R.,
Pan, A., Yin, X., Mazeika, M., Dombrowski, A.-K., et al.
Representation engineering: A top-down approach to ai
transparency. arXiv preprint arXiv:2310.01405, 2023.

A. Appendix: Features
In this paper we use the word “feature” formally, as a kind
of mathematical abstraction, since that’s all that’s needed
for our arguments. However, it’s worth talking about some
of the intuition behind the word. To begin with, there’s not
a consensus definition in the literature, which is too large to
survey in an appendix. See (Elhage et al., 2022), for exam-
ple, which discusses three approaches: features as arbitrary
functions of the input, features as interpretable properties,
and—most abstractly—features as what an infinitely large
neural net might devote a single neuron to.

The general intuition we’ve found most helpful, however,
is simply that a feature represents a unit of data that is
useful for future computations. We also believe it’s helpful
to divide these representations into three broad categories.
Some features relate to the input—that is, they represent
a useful property of the data seen by the network. (“Red
area on green background” or “apple.”) Other features,
like data structures in a traditional algorithm, are related to
intermediate processing. (“Food and hunger”.) Finally, a
third set of features will relate to the result of the network’s
computations: they will represent properties of the output,
rather than input (“Reach arm” or “open mouth”).

The analogy is obviously with biological nervous systems,
which can be broken into areas for sensory, motor, and inter-
nal processing. Of course, there’s no guarantee that a neural
network maintains a strict division between these different
aspects. It’s conceivable that within a given layer, all three
types of features may be found. That may be another reason
why interpreting features can be hard. Frequently people
try to understand features in terms of input data, when those
features may really be aspects of hidden computation or
output. It may also explain some predict/control discrepan-
cies: linear probes may be effectively trained in a way that
emphasizes features of the input, which are only roughly
correlated with output features.

11

https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

