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Abstract

Scene regression methods, such as VGGT [85], solve the
Structure-from-Motion (SfM) problem by directly regress-
ing camera poses and 3D scene structures from input im-
ages. They demonstrate impressive performance in han-
dling images under extreme viewpoint changes. However,
these methods struggle to handle a large number of input
images. To address this problem, we introduce SAIL-Recon,
a feed-forward Transformer for large scale SfM, by aug-
menting the scene regression network with visual localiza-
tion capabilities. Specifically, our method first computes
a neural scene representation from a subset of anchor im-
ages. The regression network is then fine-tuned to recon-
struct all input images conditioned on this neural scene
representation. Comprehensive experiments show that our
method not only scales efficiently to large-scale scenes, but
also achieves state-of-the-art results on both camera pose
estimation and novel view synthesis benchmarks, including
TUM-RGBD, CO3Dv2, and Tanks & Temples. We will pub-
lish our model and code. Code and models are publicly
available at: https://hkust—sail.github.io/
sail-recon/.

1. Introduction

Structure-from-Motion (SfM) algorithms simultaneously
estimate camera poses and scene structures from a collec-
tion of unordered images. This problem underlies many
computer vision applications, such as novel view synthesis
with NeRFs [3, 44], 3DGS [31], multi-view stereo (MVS)
reconstruction [94], and visual localization [7]. Tradi-
tional SfM methods work either in incremental [59, 64] or
global [13, 48] approaches, which rely on crucial compo-
nents such as feature detection [17], correspondence match-
ing [56], triangulation, and bundle adjustment [76] for
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joint camera pose and scene structure optimization. How-
ever, these individual components are fragile to low-texture,
blurred or repeated patterns, which could lead to catas-
trophic failures in the SfM process.

To overcome the limitation of conventional SfM meth-
ods, more recent works [45, 85, 87, 91] develop an end-
to-end learning-based SfM pipeline to directly regress
scene structures and camera poses from input images.
DUSt3R [87] pioneers this scene regression-based approach
by training a Transformer [79] to regress the scene coordi-
nate maps (SCM) of two unposed images, which can be
used to solve camera poses and correspondences. Some
following works [21, 45, 91] extend DUSt3R to multiple
input images with 3D constraints, such as scene graph op-
timization and global alignment. VGGT [85] develops the
first large Transformer model to regress almost all 3D re-
sults end-to-end with a large dataset and multiple supervi-
sions. Scene regression methods show impressive perfor-
mance and robustness in handling unposed images with ex-
treme viewpoint changes.

However, many scene regression methods, e.g.,
VGGT [85], cannot scale up to videos or a large number
of input images, as GPU memory usage increases quickly
with more images. Some methods [42, 81, 86] tackle video
inputs using iteratively updated global memory tokens to
fuse the features of each incoming frame, and regress scene
coordinate maps conditioned on these memory tokens.
Others [21, 43] divide the input video into segments, re-
construct each segment, and align different reconstructions
using Sim(3) or SL(4). Both approaches suffer from pose
drifting and are heavily dependent on subsequent global
alignment to mitigate pose errors.

On the other hand, existing scene regression methods
ignore visual localization, a fundamental 3D vision task
to solve the camera pose of a query image. Localiza-
tion can facilitate scaling up an SfM system, a principle
commonly employed in simultaneous localization and map-
ping (SLAM) systems, where mapping is only performed at
keyframes and localization is applied to non-keyframes for
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Figure 1. Regressed Camera Poses and Point Clouds. We visualize the camera poses and point clouds predicted by SAIL-Recon
across various datasets. COLMAP or ground-truth camera poses are shown as blue frustums, while regressed camera poses are shown in
yellow, with red indicating anchor images. As illustrated, SAIL-Recon estimates camera poses with accuracy comparable to COLMAP

and produces high-quality, geometrically consistent point clouds.

better memory and computation efficiency. Our work seeks
to augment scene regression with localization to scale it up
in a similar spirit.

Most existing learning-based visual localization
works [7-9, 30] require time-consuming per-scene opti-
mization and accurate camera pose annotations for the
reference frames. In contrast, we seek to fuse recon-
struction and localization into a unified, annotation-free
multitask framework for efficient scene regression. Specifi-
cally, given a large set of input images or video sequences,
we first select a subset of anchor images to generate a
global neural scene representation in a single forward pass,
thereby avoiding the per-scene training required by previ-
ous localization methods. The neural scene representation
serves as an implicit neural map of the scene, without
relying on explicit 3D points or meshes. Subsequently, the
neural scene representation, together with all remaining im-
ages, is fed into the same network to jointly recover scene
coordinate maps and camera poses for each image. This
approach allows for efficient reconstruction of thousands
of images in just a few minutes. Unlike the localization
process in SLAM systems, we regress map points for all
images to produce a more complete 3D map that facilitates
robust and dense reconstruction.

Our primary contributions are summarized as follows:
¢ We introduce SAIL-Recon, a novel feedforward SfM

method that generalizes neural scene regression to in-
clude localization, resulting in precise and robust recon-
struction for thousands of input images in a few minutes.
e We extract a neural scene representation from scene re-
gression network, which serves as a global implicit map
for localization.
* We demonstrate through extensive experiments that

SAIL-Recon outperforms both traditional and learning-
based baselines and achieves state-of-the-art results on
SfM and visual localization benchmarks, including TUM-
RGBD, CO3Dv2, and Tanks & Temples.

2. Related Works

Geometric Structure-from-Motion (SfM) is a classic
computer vision problem [25], which aims to estimate cam-
era poses and 3D scene structures from a collection of un-
posed images. Traditional SfM solutions are categorized
into two main approaches: Incremental StM [1, 22, 59, 64]
initiates the reconstruction with a pair of images and pro-
gressively grows it by including images one by one; Global
SfM methods [13, 29, 48, 89] determine the global pose of
all images simultaneously by motion averaging. Both ap-
proaches rely on feature matching, triangulation, and bun-
dle adjustment. Deep learning has significantly advanced
these various components, especially in keypoint detec-
tion [16, 20, 78, 97] and feature matching [12, 39, 56, 61].
Beyond individual modules, several methods [9, 63, 70, 74,
75, 84, 88] have explored end-to-end differentiable SfM by
explicitly enforcing geometric constraints and minimizing
reprojection or photometric errors.

Scene Regression-based SfM recovers 3D structures and
camera poses from uncalibrated images directly without ex-
plicitly enforcing geometric constraints. DUSt3R [87] first
employs a transformer model to predict the scene coordi-
nate maps for a pair of images. Subsequent methods employ
a global optimization step to expand its result to multiple
images [45, 86, 87]. Recent advances have adapted DUSt3R
to reconstruct multiple inputs directly [21, 73, 91, 98],
and to deal with video inputs with incremental reconstruc-



tion [42, 43, 45, 81, 86]. VGGT [85] takes this endeavor
further, which addresses nearly all 3D vision tasks in a com-
prehensive end-to-end fashion with minimum inductive bi-
ases while utilizing extensive training data. However, these
methods often face challenges when scaling to a large num-
ber of input images and may suffer from driftings, even
when equipped with additional global alignment.

Visual Localization often relies on a 3D map with refer-
ence images of known camera poses. Feature-based ap-
proaches extract 2D local features [17, 20, 57, 68] from
a query image and match [39, 56] them to 3D points
and estimate the query image pose using a perspective-n-
point (PnP) algorithm [23]. For large-scale scenes, fea-
ture matching focuses on a subset of database images most
relevant to the query, improving both accuracy and effi-
ciency [28, 52,55, 58]. Some learning-based approaches [2,
18, 30, 33, 72, 77, 93] encode the map into a neural net-
work that directly predicts the pose of the query image.
The scene coordinate regression approaches [6-8, 62] fit a
scene-specific network to predict the 3D coordinates of the
image pixels. Most of the localization methods require ex-
pensive per-scene training of the localization network. Only
a few methods [71, 77, 92] estimate camera pose utilizing
a network that simultaneously processes the 3D reconstruc-
tion and query image, thus bypassing the need for per-scene
fitting. Unlike previous methods, SAIL-Recon circumvents
expensive per-scene training by deriving a latent scene rep-
resentation through scene regression, which is subsequently
employed for visual localization.

3. Method

This section presents SAIL-Recon, a unified framework for
robust and efficient SfM with thousands of input images
from various indoor or outdoor scenes, as shown in Fig. 1.
To handle such scenes, we augment Neural Scene Regres-
sion with Visual Localization, which significantly reduces
computational costs. We first provide an overview of SAIL-
Recon in Sec. 3.1. We then introduce the scene regression
backbone in Sec. 3.2, which estimates camera parameters
and 3D structures from unordered input images. Building
upon neural scene regression, Sec. 3.3 details our approach
for constructing a neural scene representation. This repre-
sentation subsequently serves as the foundation for the vi-
sual localization introduced in Sec. 3.4. Sec. 3.5 presents
the training methodology, while Sec. 3.6 describes an op-
tional refinement stage.

3.1. Overview

The pipeline of our approach is illustrated in Fig. 2. The
core contribution of SAIL-Recon lies in the construction of
a neural scene representation from a sparse subset of input
images. Instead of relying on explicit geometric prior (e.g.,
point clouds, posed images), we leverage a neural represen-

tation that jointly encodes local visual features and global
scene geometry from unposed images. This compact rep-
resentation enables efficient visual localization across the
entire image collection.

Motivated by the impressive performance of VGGT [85],
we adopt it as our backbone and augment its scene regres-
sion capability by the Visual Localization block in Fig. 2, to
jointly compute a neural scene representation R as,

(RAT:, Ki, Dy, Si}ity) = To({Zi} i), ey

where {Z;}}, is the unordered input image set, M is the
total number of input images. 7y is a transformer-based
network with self-attention blocks parameterized by 6, and
‘R is the neural scene representation for visual localization.
The camera pose of Z; is specified by the extrinsic and in-
trinsic matrices T; € R*** and K; € R3*3. Furthermore,
D; € REXW and §; € RE*XWX3 represent the depth map
and the scene coordinate map (SCM) for Z;, respectively.

The formulation in Eq. 1 is memory and time consum-
ing. It typically cannot handle more than 100 input images
on consumer GPUs. To address this, we use a subset of im-
ages, called Anchor Images in Fig. 2, to compute the neural
scene representation R. Without losing generality, we uni-
formly sample N € [50, 100] anchor frames {Z;} ; from
the full set {Z;} ,, where M often exceeds 1,000 in large-
scale scenes. As illustrated by the Visual Localization block
in Fig. 2, once we have the scene representation R, we aug-
ment the scene regression network 7Ty to enable localization
of a query image 79 as,

{Tquququq}:%(IqaR)v (2)

where T'? and K7 are the extrinsics and intrinsics matrices,
and D? and S? are the depth and scene coordinate maps of
the query image Z9. Ty is the network for both scene regres-
sion and localization. We will provide details in Sec 3.4.
Note that we estimate camera parameters and 3D maps
of anchor frames during TRAINING ONLY, as indicated
by the Operation Flow in Fig. 2. During inference, we first
extract R from the anchor frames and then process all input
images conditioned on R. Although all input images could
be reconstructed in a single forward pass in principle, we
process them in batches due to GPU memory constraints.

3.2. Neural Scene Regression

The scene regression network takes a set of unposed an-
chor images {Z;}Y, as input. Each anchor image Z; is
fed into DINOv2 [47] to extract patchified feature tokens
tfi € REXC where K = (W/14) x (H/14). We fol-
low VGGT [85] to augment tZ: with an additional camera
token tfi € R and four register tokens tZ € R**C.
The tokens from all anchor frames {t%¢} are subsequently
processed through L = 24 layers of frame-wise and global
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Figure 2. Architecture Overview. From a large set of unposed images, we first select a subset as anchor images, which are patchified
by DINO [47] with appended camera tokens for scene regression. The Scene Regression block extracts a neural scene representation R,
which is then used by the Visual Localization block to compute the camera poses and 3D scene points for all images.

self-attention as,

{t7} = atm{™™e({51}), 3)
th ) = am® (D), @)

where j indexes the attention layers and {¢ in} is the output

of frame-wise attention for Z;. t 7 = [{t;I N ] is the con-
catenation of all image tokens in the j-th layer. The global
attention result t]I- 1 18 then split along the view dimension

into {t]IfH} for the frame-wise attention in the next layer.

The image tokens {t% } in the last layer are then fed into
DPT heads [51] to predict depth maps D; and scene coordi-
nate maps .S; for the input image Z; as follows,

{Di?OiD7 i Cf} = DPT({t%}), (5)
where CP and C7 are the confidence maps of depth and
scene coordinate maps, respectively.

The camera tokens tgi associated with Z; on the last layer
are processed by a camera head to estimate the intrinsic and
extrinsic camera parameters as follows,

{T;,K;} = PoseHead({tgi 1. (6)

3.3. Neural Scene Representation

Scene representation is essential for visual localization.
An effective scene representation should encode global 3D
scene structure and facilitate correspondences between 3D
map points and 2D image pixels. A straightforward choice
is to use tokens t% in the final attention layer as scene rep-
resentation, as these tokens can be used to recover camera
poses and dense 3D points map. In other words, we could
set R = t£ and then estimate the pose and 3D structure of a

query image 79 by Eq. 2. However, the significant discrep-
ancy between 2D and 3D feature tokens makes it difficult
for the network 7y to correlate these feature tokens, even 7y
contains a large number of parameters. We empirically find
that this design leads to suboptimal results.

Ideally, the scene representation should effectively
bridge the gap between 2D and 3D features. Inspired by the
fact that the network Ty takes a set of 2D images as input
and progressively enhances them to compute 3D structures,
we extract intermediate feature tokens from each attention
layer of 7y to form the scene representation R. In this way,
our scene representation R captures the gradual evolution
from 2D appearance features to 3D coordinate descriptors.
Specifically, we compute our scene representation as,

R = {0}, (7)
where © denotes a downsampling operation applied to in-
termediate feature tokens t;I to keep the scene represen-
tation compact. Specifically, for the anchor frame fea-
ture token t;z € RN*EXC we randomly select a ratio
r € [0.2,1.0] to sample a subset of tokens in each anchor
frame to control the total size of ©(t ) € RV rxK])xC
in a reasonable range during training. At testing time, we
could choose an appropriate r based on the numer of the
anchor frames to balance between accuracy and efficency.

3.4. Neural Visual Localization

As described in Eq. 4, the global attention block in Ty aggre-
gates tokens among all anchor frames via self-attention. For
visual localization, given a query image 79, we introduce an
attention mask in the global attention blocks, which essen-
tially allows us to compute the cross attention between the



query image 79 and the scene representation R; = @(t;z ):
td,, = atmE({t], R, }). ®)

Specifically, tokens from query frames cannot attend to to-
kens from other query frames; they can only attend to to-
kens within the same frame and to the scene representation.
More details are provided in the Supplementary.

During inference of visual localization, one choice is to
compute the camera parameters by applying the PnP algo-
rithm [23] with the scene coordinate map S¢ from the DPT
head. However, it takes a long time for DPT to up-sample
tokens to a high-resolution scene coordinate map. To ac-
celerate pose estimation, we leverage the pose head, which
takes only a few camera tokens tgi as input and directly re-
gresses the camera pose.

{1, K7} = PoseHead(t], {t?’}), )

where 7 and {tg } are the camera tokens of the query image
and the anchor images, respectively. The attention mask is
also applied in the pose head. Thus, we can formulate our
visual localization for all images as follows,

{TMKMDHSZ}f\il :%({Il}i\ih,]?’) (10)

Note that the anchor images are also processed by this lo-
calization block. The scene regression block only extracts
the neural scene representation from anchor images.

3.5. Training

Training Losses. During training, we split the input im-
ages into the anchor image set and the query image set. We
could forward all images in the anchor and query set in a
single pass. To this end, we train the SAIL-Recon model 7
end-to-end using a multitask loss on each frame similar to
VGGT [85] as,

L= ﬁcamera + ‘Cdepth + Escm~ (11)

The camera pose 10ss Leamera cOmpares the predicted
camera parameters §; with the ground truth g; as

N
Ecamera = Z H?]z - gi”l ) (12)
i=1
where g; = [q,t,f] includes the camera orientation en-

coded in a quaternion g, the translation vector t, and the
field of view f. We assume that the principal point is at the
image center. The depth loss Lgepm follows DUSt3R [87]
to measure the discrepancy between the predicted depth D;
and the ground truth depth D; with a predicted uncertainty
map C’P . We follow [85] to add a gradient-based smooth
term on the depth loss,
N
Laeptn = Z HC'iDG)(ﬁi —

i=1

Di)||+I(VD; —VD;)|| —alog C,

Method Align. RRA@51 RTA@57 ATE| Reg. T Time[s]]
COLMAP [60] OPT GT GT GT GT -
GLOMAP [48] OPT 75.8 76.7 0.010  100.0 1977
ACEO [9] OPT 56.9 57.9 0.015 | 100.0 5499
DF-SfM [26] OPT 69.6 69.3 0.014 76.2 -
FlowMap [63] OPT 31.7 35.7 0.017 66.7 -
VGGSIM [84] OPT - - - 0.0 2134
MASt3R-SfM [19] OPT 49.2 54.0 0.011 = 100.0 2723
DROID-SLAM [75] OPT 31.3 40.3 0.021 = 100.0 240
SAIL-Recon-OPT OPT 71.5 71.7 0.008  100.0 233
Cut3R' [86] FFD 18.8 25.8 0.017 = 100.0 42
Spann3R [82] FFD 22.1 30.7 0.016 = 100.0 116
SLAM3RT [42] FFD 20.3 24.7 0.015 = 100.0 70
Light3R-SfM [21] FFD 52.0 52.8 0.011  100.0 63
VGGT-SLAM*% [43]  FFD 57.3 67.9 0.008  100.0 238
SAIL-Recon FFD 70.4 74.7 0.008  100.0 81

Table 1. Pose Estimation on Tanks & Temples. [32]. This dataset
contains on average over 300 images per scene. We visualize the
results using three colors: Best, Second, and Third. A ‘-’ indi-
cates cases where all scenes failed to converge or the running time
is unavailable; T denotes that sequential input is required; * indi-
cates evaluation on keyframes; and A denotes that some sequences
fail. ‘OPT’ stands for optimization-based and ‘FFD’ stands for
feedforward-based.

where © is an element-wise product. The loss of the scene
coordinate map is defined similarly as,

N
Lim =Y IC7 © (8i = Si)l| +[(VSi = VSi)|| — alog C.
i=1

Coordinate Normalization. During training, we randomly
select an image Z,, among the anchor images as the refer-
ence frame. We then compute the average Euclidean dis-
tance from the camera center of Z, to the 3D points of all
anchor frames. We use this scale to normalize the 3D scene
and the associated depth and scene coordinate maps.

3.6. Post Refinement

Employing a post-refinement step, such as bundle adjust-
ment (BA) [76], can enhance reconstruction accuracy, par-
ticularly when the reconstruction is inferred directly from
the network. Previous methods rely on global alignment us-
ing depth maps via gradient descent [45, 86, 87], while oth-
ers use bundle adjustment with pixel correspondences [85].
Both methods are time-consuming and scale poorly to a
large number of input images. Since our method pro-
vides accurate camera poses in a global coordinate system,
we adopt BARF-like methods [37, 69] to optimize camera
poses by minimizing a rendering loss. Although this opti-
mization is weaker than bundle adjustment or global align-
ment, it scales to more than 10K frames and takes only 2-10
minutes. Note that this post-optimization is optional, since
the camera poses and scene structures regressed by SAIL-
Recon yield strong results for many applications. Further
details are provided in Sec. 4.



4. Experiment

In this section, we present a comprehensive evaluation
across diverse datasets, covering a wide range of scenar-
ios. We also perform detailed ablation studies to identify
the key factors determining the performance of our model.
Additional implementation details for both training and in-
ference are provided in the supplementary material.
Training Details. Our training is similar to the setup
of VGGT [85]. We train our model by fine-tuning
VGGT [85] pre-trained checkpoints. For each batch, we
sample 4-48 images, randomly designating 2-24 as an-
chor frames and treating the remaining images as query
frames. We train 30K iterations on 16 NVIDIA A800
GPUs, which takes about four days. We use a di-
verse mixture of synthetic and real-world datasets, in-
cluding Co3Dv2 [53], BlendMVS [95], DL3DV [40],
MegaDepth [35], WildRGB [90], ScanNet++ [96], Hyper-
Sim [54], Mapillary [46], Replica [67], MVS-Synth [27],
Virtual KITTI [10], Aria Synthetic Environments, and Aria
Digital Twin [49]. These datasets, which represent a sub-
set of those in VGGT [85], are weighted according to their
relative sizes to ensure that each dataset contributes propor-
tionally to the overall training process. Please refer to the
Supplemental Material for more training details.

4.1. Pose Accuracy Benchmark

We follow [9, 21, 43] to evaluate camera pose accu-
racy on three benchmarks: Tanks & Temples [32], TUM-
RGBD [66], and 7-Scenes [62]. These datasets cover in-
door and outdoor environments with image sets and video
sequences ranging from 300 to 20k images per scene. We
exclude comparisons with methods such as [45, 85, 87, 91]
that cannot operate on datasets of this size within a reason-
able resource budget. We compute our neural scene repre-
sentation with 300 tokens from each anchor frame, with a
downsample ratio r ~ 0.2. All runtime comparisons are
conducted under similar GPU throughput conditions, using
the Nvidia V100 as the reference hardware.

Tanks & Temples is a dataset includes 21 large-scale
indoor and outdoor scenes, with 150-1,100 images per
scene. We follow [19, 21] to compare our method with
optimization-based (OPT) and feedforward-based (FFD)
approaches, defined by whether they utilize an explicit
optimization on the 3D structure and camera poses. In
the OPT category, we compare against DF-SfM [26],
GLOMAP [48], PixelStM [38], VGGStfM [84], ACE-
Zero [9], FlowMap [63], and MASt3R-SfM [19]. In the
FFD category, we compare with Spann3R [82], Cut3R [86],
SLAM3R [42], and Light3R-SfM [21]. We follow [21, 45]
to report the proportion of camera pairs with relative rota-
tion error (RRA@5) and relative translation error (RTA@5)
below 5°. The mean value of average translation error
(ATE) is calculated between the estimated camera poses and

the normalized ground truth poses after Procrustes align-
ment [24]. As shown in Tab. 1, our method (FFD), sig-
nificantly outperforms all feedforward-based baselines, in-
cluding Cut3R [86], Spann3R [82], and SLAM3R [42].
These methods suffer from pose drift due to their incre-
mental reconstruction manner on sequential input. VGGT-
SLAM [43] achieves the second best results in average,
but only recovers keyframe camera poses and fails to re-
construct Church, Courtroom and Palace due to unstable
numerical optimization in the SL(4) manifold. Light3R-
StM [21] is more robust by minimizing pose error on the
spanning-tree based scene graph, but with much lower ac-
curacy. Our method achieves SOTA performance while
incurring only a marginal computational overhead com-
pared to Light3R-SfM. Furthermore, ours (OPT), which
utilized 10K iterations of post-refinement, delivers supe-
rior performance in all metrics and is competitive with
GLOMAP [48], with only a marginal increase in runtime.

TUM-RGBD is a widely used SLAM benchmark, where
each video sequence contains 500-3,000 images. We uni-
formly select 50 frames as anchor images. Note that our
method is an offline SfM method. Here, we show that our
method achieves performance similar to that of some SOTA
SLAM systems following the standard split in [15, 75]. We
exclude Cut3R [86] and SLAM3R [42] from the evaluation
because they fail on this benchmark. We evaluate the root
mean square error (RMSE) of the absolute trajectory error
(ATE) using the evo toolkit [24]. As shown in Tab. 2, our
method achieves the best results in the uncalibrated setting,
without any post-optimization. Results for the calibrated
setting are provided in the Supplementary Files. In partic-
ular, compared to VGGT-SLAM [43], which employs non-
linear factor graph optimization to fuse multiple submaps,
our approach achieves higher accuracy without optimiza-
tion, demonstrating the effectiveness of augmenting scene
regression by localization.

7 Scenes is a widely used localization benchmark that pro-
vides training and testing split with 2,000-12,000 images
per scene. We follow ACEOQ [9] to evaluate the local-
ization accuracy. The visual localization methods [8, 9]
will train a scene specific localization network with 1, 000-
4,000 training images, which takes about 10 minutes to 2
hours depending on whether the ground truth camera poses
are given. We report the total time of per scene training and
localizing all images. We uniformly sample 50 images in
the testing split as anchor frames and localize all images
in the same split. As shown in Tab. 3, ACE+COLMAP
achieves the best performance since it uses ground truth
camera poses in training. Without knowing ground truth
camera poses, ACEO and our method achieve the same av-
erage localization accuracy. However, ACEQ takes 2 hours
to optimize a scene with 4, 000 frames, while SAIL-Recon
uses only 8 minutes. We provide more results on 7-Scenes



Method ‘

Sequence

Avg.

‘ 360 desk desk2 floor plant room rpy teddy Xyz
DROID-SLAM* [75] 0.202 0.032 0.091 0.064 0.045 0.918 0.056 0.045 0.012 0.158
MASt3R-SLAM* [45] 0.070 0.035 0.055 0.056 0.035 0.118 0.041 0.114 0.020 0.060
VGGT-SLAM (Sim(3)) [43] 0.123 0.040 0.055 0.254 0.022 0.088 0.041 0.032 0.016  0.074
VGGT-SLAM (SL(4)) [43] 0.071 0.025 0.040 0.141 0.023 0.102 0.030 0.034 0.014 0.053
SAIL-Recon (Offline) 0.070 0.024 0.042 0.107 0.031 0.113 0.020 0.037 0.012 0.051

Table 2. Root Mean Square Error (RMSE) of Absolute Trajectory Error (ATE) on the TUM RGB-D [66] dataset (unit: m). We
evaluate methods under an uncalibrated configration following VGGT-SLAM [43], while methods marked with * indicate the intrinsic
matrics are provided by GeoCalib [80]. We color result in: Best, Second, and Third .

ACE ACE ACEQO Ours

Prior KinectFusion COLMAP  OPT. FFD.
Chess 96.0% 100.0% 100.0% 98.8%
Fire 98.4% 99.5% 98.8% 100.0%
Heads 100.0% 100.0% 100.0% 100.0%
Office 36.9% 100.0%  99.1% 87.4%
Pumpkin 47.3% 100.0%  99.9% 92.8%
Redkitchen 47.8% 98.9% 98.1% 89.9%
Stairs 74.1% 85.0% 61.0% 87.9%
Average 74.1% 97.6% 93.8% 93.8%

Average Time 14min 14min 2h 8min

Table 3. Localization on 7-Scenes. Percentage of pose error
under (5cm, 5°), compared to pseudo ground truth computed by
COLMAP. ACE requires known camera poses during training.
Our method achieves comparable localization accuracy to ACEQ,
where neither approach relies on camera poses in the training set.
However, our method is significantly faster than ACEQ, which per-
forms self-supervised optimization.

in Supplemantary Files.

4.2. Novel View Synthesis Benchmark

As observed in ACEQ [9], the evaluation of camera poses
is sometimes unreliable, as the pseudo ground-truth from
COLMAP is only an estimation. Thus, we follow ACEOQ [9]
to further evaluate camera pose quality through novel view
synthesis. Specifically, for each method, we first estimate
camera poses for all images of a scene. We then split
these images into training and testing sets, and train a Ner-
facto [69] model on the training set and render images in
the testing view. The rendered images at the testing views
are then compared with the ground truth testing images us-
ing the Peak Signal-to-Noise Ratio (PSNR) as an indica-
tor of pose accuracy. This evaluation is carried out on the
Mip-NeRF 360 [4] and Tanks & Temples [32] datasets. For
this evaluation, we enable the post-refinement mentioned in
Sec 3.6, since even slight pose noise can prevent the Ne-
facto model from converging, resulting in poor PSNR. Note
that ALL baselines in this benchmark are optimization-
based methods. Similarly to Sec 4.1, we exclude compar-
isons with methods [45, 85, 87, 91] that cannot operate on
datasets of this size within a reasonable resource budget.
We exclude [42, 81] due to poor performance.

Tanks & Temples has two sub-datasets: images and video

2 DROID-
E CMP |Reality SLAM! ACEO[9] Ours
i3 (D) |Capture [75]
Barn 410 24.0 21.2 19.0 16.5 23.5
Catpr. 383 17.1 15.9 16.6 16.9 16.8
oy Church 507 183 17.6 14.3 17.2 17.0
E Ignatius 264  20.1 17.7 17.8 19.8 19.5
'S MtgRm. 371 18.6 18.1 15.6 18.0 19.5
& Truck 251 211 | 190 183  20.1 20.9
Average 364 199 18.2 16.9 181 1195
Time 1h 3min  Smin 1.1h 3.5min
Family 152 19.5 18.8 17.6 190 1206
Francis 302 21.6 20.7 20.7 20.1 21.8
£ Horse 151 192 19.0 16.3 19.5 20.1
§ LightH. 309 16.6 16.5 13.6 17.5 18.2
§ PlayGd. 307 19.1 19.2 114 18.7 20.3
S Train 301 168 | 154 138 162 162
—  Average 254 18.8 18.3 15.6 18.5 19.5
Time 32min | 2min 3min 1.3h 3min
Audtrm. 302 19.6 12.2 167 187 1203
BallRm. 324 16.3 18.3 13.1 17.9 14.8
T CorRm.301 182 | 172 123 171  [174
S Palace 509 14.2 11.7 10.8 10.7 14.3
3 Temple 302 18.1 15.7 11.8 9.7 17.8
< Average 348 17.3 15.0 12.9 148 1169
Time 1h 2min  4min 1h 3.5min

Table 4. Tanks & Temples. Pose accuracy via view synthesis
with Nerfacto [69]. We report the PSNR in dB and the average
reconstruction time. We color code in: Best, Second, and Third .
T indicates methods needing sequential inputs.

sequences. For the image set, each scene contains 150—
600 images. The video sequence contains 4, 000-20, 000
frames. We use 100 anchor frames at each scene and eval-
uate our method in both subsets following ACEO [9]. We
report the results on the image set and leave the comparison
on the video sequences in the Supplemantary. Results of
compared methods are quoted from ACEO [9].

We use COLMAP with the default setting CMP (D) as
a reference in Tab. 4. We enable post-refinement with 10K
iterations. Our approach achieves the highest PSNR among
all baselines, achieving COLMAP-level accuracy while re-
covering all camera poses in 3-4 minutes. This is signifi-
cantly faster than COLMAP and ACEQ, and is comparable
to SLAM systems such as DROID-SLAM, which suffers
from pose drifting and produces the lowest PSNR.



Pseudo GT DROID- BARF  Nope- ACE0 Ours

COLMAP || SLAM'[75] [37] NeRF[5] [9]
Bicycle 21.5 10.9 11.9 12.2 18.7  20.50
Bonsai 27.6 10.9 12.5 14.8 258  26.76
Counter 25.5 12.9 11.9 11.6 245 2551
Garden 26.3 16.7 13.3 13.8 25.0 24.92
Kitchen 27.4 13.9 13.3 14.4 26.1 2743
Room 28.0 11.3 11.9 14.3 19.8  27.46
Stump 16.8 13.9 15.0 13.9 205 20.83
Average 24.7 129 12.8 13.5 229 2477
Average Time 1h 2min 4h >24h 8h Smin

Table 5. Mip-NeRF 360. Pose accuracy via view synthesis PSNR.
Higher is better. We color code in: Best, Second, and Third.

in tentaRptts—————
obal Co3Dv21
Method Align. [ RRA@IT5 | RTA@I5 | mAA@30
Colmap [59] OPT | 316 273 253
Glomap [48] OPT | 459 403 373
PixSfM [38] OPT | 337 329 30.1
VGGSIM [84] OPT | 921 88.3 74.0
DUSB3R-GA[87] | OPT | 962 86.8 76.7
MASGR-SIM[19] | OPT |  96.0 93.1 88.0
PoseDiff [83] FFD | 805 798 66.5
RelPose++ [36] FFD | 823 772 65.1
Spann3R [82] FFD | 895 83.2 703
MASGR * [34] FFD | 945 80.9 68.7
Ligh3R-SM[21] | FFD | 947 85.8 72.8
VGGT [85] FFD | 984 94.8 88.2
SAIL-Recon N =10 | FFD 98.3 94.0 88.1
SAIL-Recon N =8 FFD 98.2 93.6 873
SAIL-Recon N =5 | FFD | 977 922 85.0
SAIL-Recon N =2 | FFD | 964 89.7 785

Table 6. Ablation on the number of anchor views for pose es-
timation performance on CO3Dv2 [53]. We evaluate pose esti-
mation accuracy by varying the number of anchor views from 10
input images, randomly sampled from each sequence.

Mip-NeRF 360. Mip-NeRF 360 [4] is a small-scale dataset
containing indoor and outdoor scenes with around 150-500
images per scene. We select 50 anchor images per scene
and enable post-refinement with 10K iterations. The results
are reported in Tab. 5. Again, results of all baseline meth-
ods are quoted from ACEOQ [9]. Our approach surpasses
all baselines, matching PSNR scores with pseudo ground-
truth poses from COLMAP. NoPe-NeRF[5] and DROID-
SLAM [75] struggle due to wide baselines between im-
ages, with NoPe-NeRF[5] needing two days of training.
BARF [37] has difficulty starting from scratch. ACEO [9]
is inferior to SAIL-Recon in both accuracy and runtime.

4.3. Ablations

Number of Anchor Images. We evaluate the effect of the
number of anchor images on the CO3Dv2 dataset [53]. For
each 10 input images, we randomly select N € 2,5, 8,10
anchor images to compute the neural scene representation
and localize all 10 images. As shown in Tab. 6, our method
maintains pose accuracy close to the original VGGT. Its per-
formance drops slowly as the number of anchor images de-
creases. Remarkably, even with as few as two anchor im-
ages, our method still delivers strong performance, under-

50 150 300 500 800 full
Number of tokens per image

Figure 3. Pose Accuracy & Runtime vs. Tokens per Image. We
choose 300 tokens per image to balance accuracy and efficiency.

Co3Dv271
Method mAA@30 | mAA@5 | RRA@I5S | RTA@IS
SAIL-Recon 87.3 57.6 98.3 93.6
Fixed token 86.5 53.6 98.2 93.6
Avg. Pooling 86.5 535 982 935

Table 7. Ablation on Training Strategy. We investigate the dif-
ferent training strategies on pose estimation accuracy.

scoring its robustness to sparse anchor images.

Number of Tokens/Downsample Ratio . We investigate
the impact of the number of downsampled tokens per an-
chor image on both pose accuracy and runtime with the
number of anchor images fixed at N = 5, as shown in
Fig. 3. Increasing the number of tokens improves pose ac-
curacy, but also leads to a steady growth in processing time.
We selected 300 tokens per image as a trade-off, since it
achieves reasonable accuracy with low computation cost.
Training Strategy. We further evaluate the effect of our
training strategy. Specifically, during training, our method
selects a random number of tokens per image. We com-
pare it with two alternatives: (i) using a fixed number of
tokens (300 per image) and (ii) applying average pooling
over image tokens to achieve a 4x downsampling (result-
ing in approximately 340 tokens per image). As shown in
Tab. 7, our variant token strategy yields more accurate pose
estimation. In particular, our method outperforms the aver-
age pooling baseline. We attribute it to dropout [65], where
our random selection acts as a regularization mechanism,
which improves generalization. Moreover, the variant to-
ken strategy offers greater flexibility than pooling, enabling
an explicit trade-off between accuracy and efficiency.

5. Conclusion

We introduced SAIL-Recon, a feedforward SfM method
that can scale up to thousands of input images. It is achieved
by augmenting the scene regression Transformer with lo-
calization capabilities. By computing a neural scene rep-
resentation from a subset of anchor images, we fine-tune
the Transformer for localization conditioned on the neu-
ral scene representation. In this way, the fine-tuned Trans-
former can quickly reconstruct camera poses and scene



points for all the input images. Experiments on various
benchmarks show state-of-the-art results in both pose esti-
mation and novel view synthesis, surpassing traditional and
learning-based baselines in accuracy and efficiency.

Future Work & Limitation. While our model demon-
strates strong performance, two key limitations remain.
First, global pose estimation in a pre-fixed reference coor-
dinate system might lead to a performance drop on some

sequences.

A Dbetter view selection criterion could im-

prove results. Second, uniform anchor image sampling risks
missing large or diverse scene regions. We could explore
coverage-aware selection that maximizes visibility.
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SAIL-Recon: Large SfM by Augmenting Scene Regression with Localization

Supplementary Material

In this supplementary material, we provide additional
implementation details and experimental setups in Sec.6.
We also present further experiments and discussions in
Sec.7. More visualization result will be posted in Sec. 8.

6. More Implementation Details

Training Details. As described, we follow the training set
of VGGT [85], which we use a cosine learning rate sched-
uler with a maximum learning rate of 2 x 10~ and a warm-
up of 2K iterations. The input images are resized to a max-
imum of 518 pixels while preserving the aspect ratios be-
tween [0.33, 1.0]. Data augmentation includes random color
jittering, Gaussian blur, and grayscale conversion. Training
is performed with bfloat16 precision, gradient checkpoint-
ing, and a mixed anchor—query frame strategy.

Implementation of attn9"®Y., We apply an attention mask

to realize a cross-attention—like operation between tokens

from the query image 77 and the scene representation R ; =

@(t;z ) from layer j. Specifically, during training, the mask

enforces two types of interaction:

e Anchor interaction: tokens from anchor frames are al-
lowed to attend to each other, enabling mutual informa-
tion exchange across different anchor views

e Query restriction: tokens from query frames cannot at-
tend to tokens from other query frames; they can only
attend to tokens within the same frame and to the scene
representation R ;.

This design ensures that query tokens extract information

primarily from the global scene representation and their

own local context, while anchor tokens remain fully con-
nected to maximize cross-view aggregation. The same at-
tention mask is also applied to the attention layer in the pose
head.We also develop an alternative version that employs
two distinct blocks for the anchor and query, respectively.

The query block is initialized from the anchor block and

fine-tuned during training. We observe that both versions

perform similarly.

Inference Details. As stated in Sec.3.1, we first extract the

scene representation R from the anchor frames and then

process query images sequentially. Specifically, we employ

a KV-cache[50] to store R as the keys and values in each

global attention layer, which effectively accelerates com-

putation and reduces memory usage. For each subsequent
query image, its tokens serve as the queries in the atten-
tion mechanism, while the keys/values are formed by con-
catenating the query tokens with the cached scene tokens.

Through the attention operation, the query image tokens are

updated by aggregating information from the global scene

representation. After passing through all attention layers,

we obtain tokens enriched with localization information.

These tokens are then fed into the camera head and depth

head to predict the corresponding camera parameters, depth

and scene coordinate maps, yielding the reconstructed scene
from the query viewpoint.

Post Refinement Details We adopt Nerfacto [69] within

NeRF Studio, applying its camera pose optimizer for post

refinement. For scenes with < 2,000 images, models un-

dergo 10,000 training iterations with a regularization weight

A = 0.001 on both camera translation and rotation. The op-

timizer uses an initial learning rate of 102, which decays to

10~* after 1, 000 iterations via cosine annealing. All other
parameters follow the defaults of NeRF Studio. For scenes
with > 2,000 images, we perform two separate optimiza-
tions with 10000 and 30000 iterations, respectively. The
second round uses the poses from the end of the first round
as initialization, and the camera optimizer’s learning rate
begins at 0.0005 and reduces to 0.00001. Other parameters
remain constant. Optimizations typically take 2.5 minutes
for every 10k iterations, regardless of the number of images.

More experimental setup.

* We denote DROID-SLAM* as the variant that first cali-
brates intrinsics using GeoCalib [80] on the first image of
each sequence and then uses the calibrated parameters in
DROID-SLAM.

* All experiments are conducted on an NVIDIA RTX 4090
GPU; To align with V100-based results, runtimes are
scaled by a factor of 1.5, reflecting the measured FP16
inference speed gap. For anchor frame selection, we use
50 frames per scene in 7 scenes, with PSNR reported in
the combined training and test sets, and the relocaliza-
tion accuracy evaluated on the test set after ACEO [9].
For mip-NeRF 360, 50 anchors are selected per sequence.
For Tanks and Temples, we select an average of 100
keyframes per sequence to relocalize all remaining im-
ages and video frames. For TUM RGB-D, we use 50-100
anchors depending on sequence length: floor, plant, and
teddy use 100 frames, and others use 50.

* In cases where the first frame contains limited seman-
tic information, it is replaced with a semantically richer
frame as the first anchor.

* For visualization in Fig. 1, we remove points in the low-
est 50% confidence on the depth confidence map, corre-
sponding to sky, glass, and other ambiguous surfaces, and
apply moderate point cloud downsampling to enhance vi-
sual clarity.

* We cite the results in Tabs. 3, 4, 5, 9, 10 from ACEO [9].
Details on default parameters and configurations for base-



lines such as COLMAP (default), COLMAP (Sparse +
Reloc + BA) and Nope-NeRF are available in the supple-
mentary material of ACEO [9].

7. Additional Results
7.1. Pose Estimation

TUM RGBD. We report the root mean square error
(RMSE) of the absolute trajectory error (ATE), compar-
ing our method with a broader set of state-of-the-art ap-
proaches [11, 14, 41, 45, 74, 75, 99] under calibrated set-
tings, as summarized in Tab. 8. Our method achieves accu-
racy on par with the most advanced SLAM systems while
remaining robust across diverse sequences without requir-
ing camera calibration. Compared with geometry-based
pipelines, such as ORB-SLAM3, our approach exhibits
stronger robustness and achieves comparable or superior
accuracy to learning-based baselines. The main weakness
appears in the floor sequence, where images contain lim-
ited visual cues dominated by textureless floor regions. In
this case, reference view selection becomes critical: large
viewpoint gaps between the query and reference views sig-
nificantly degrade localization. We further visualize these
effects in the trajectory results (Sec. 8).

7.2. Novel View Synthesis

Tanks & Temples. To further evaluate our scalability
for large-scale reconstruction, we apply our method to the
Tanks & Temples [32] video sequences. For each sequence,
we uniformly sample 100 images as anchors and perform
localization on all frames.

For clarity, Table 9 reports the results on both the image
set and the full video sequences, with the latter shown on
the right. As a reference, we include Sparse COLMAP +
Reloc + BA (CMP (SRB)), which initializes from a sparse
COLMAP reconstruction using 150-500 images, registers
the remaining frames and performs global bundle adjust-
ment. Our approach consistently outperforms RealityCap-
ture, DROID-SLAM [75], and ACEOQ [9] across all splits,
with only ACEQ initialized from sparse COLMAP poses
(CMP + ACEQ) achieving comparable performance. In
particular, on the most challenging ‘advanced’ split, our
method achieves the highest PSNR of all methods. Despite
each sequence containing more than 10k images on average,
our feedforward approach maintains competitive efficiency
- only slightly slower than SLAM-based pipelines - while
delivering strong reconstruction quality.

7 Scenes. We quote the table from ACEO [9] and report
our results in Tab. 10. For each 7-Scenes sequence, we uni-
formly sample 50 frames from the train/test splits and esti-
mate poses for all images in the scene. We compare against
COLMAP since bundle-adjusted COLMAP poses provide
a more accurate reference. Our method attains PSNR com-

parable to the COLMAP reference and exceeds ACEO. In
terms of runtime, even under “fast” settings COLMAP still
requires around 13 h per scene; DROID-SLAM returns re-
sults quickly but performs poorly on 7-Scenes; ACEOQ takes
1 h. In contrast, our approach finishes in 25 min without any
pose initialization, achieves higher PSNR than ACEOQ, and
matches the PSNR of ACEO when initialized from Kinect-
Fusion (KF-Init., 7 min).

To further compare against learning-based approaches
under constrained memory budgets, we follows [9] to down-
sample each sequence to 200 frames. Sequential-dependent
scene regression models (e.g., Cut3R [86], SLAM3R [42])
require dense temporal input, and VGGT [85] still exceeds
memory limits on 200 images. We therefore compare to
BARF [37] and NoPe-NeRF [5]: Both BARF [37] and
Nope-NeRF [5] fail to recover the scene after a long fitting
time. Using our localization of all frames, we consistently
obtain the highest PSNR in this 200-frame setting. while
remaining faster than these baselines.

8. Visualization

As shown in Fig. 4, 5 and 6, we show the render images
of test view in the three different splits of Tank & Temple
dataset. We illustrate the test view of 7-Scenes and Mip-
NeRF 360 dataset in Fig. 7 and 8, respectively. We aslo
supplement in Fig. 9 our regressed camera poses and point
clouds.



| Method Sequence

Avg
‘ 360 desk desk2 floor plant room rpy teddy XyzZ

ORB-SLAM3 [11] X 0.017 0.210 X 0.034 X X X 0.009 N/A
DeepV2D [74] 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064  0.375
DeepFactors [14] 0.159 0.170 0.253 0.169 0.305 0.364 0.043 0.601 0.035 0.233

g DPV-SLAM [41] 0.112 0.018 0.029 0.057 0.021 0.330 0.030 0.084 0.010  0.076
S | DPV-SLAM++ [41] 0.132 0.018 0.029 0.050 0.022 0.096 0.032 0.098 0.010  0.054
GO-SLAM [99] 0.089 0.016 0.028 0.025 0.026 0.052 0.019 0.048 0.010  0.035
DROID-SLAM [75] 0.111 0.018 0.042 0.021 0.016 0.049 0.026 0.048 0.012  0.038
MASt3R-SLAM [45] 0.049 0.016 0.024 0.025 0.020 0.061 0.027 0.041 0.009  0.030

= DROID-SLAM* [75] 0.202 0.032 0.091 0.064 0.045 0.918 0.056 0.045 0.012  0.158
= | MASGR-SLAM* [45] 0.070 0.035 0.055 0.056 0.035 0.118 0.041 0.114 0.020  0.060
2 | VGGT-SLAM (Sim(3)) [43] 0.123 0.040 0.055 0.254 0.022 0.088 0.041 0.032 0.016  0.074
= | VGGT-SLAM (SL(4)) [43] 0.071 0.025 0.040 0.141 0.023 0.102 0.030 0.034 0.014  0.053
SAIL-Recon (Offline) 0.070 0.024 0.042 0.107 0.031 0.113 0.020 0.037 0.012  0.051

Table 8. Root mean square error (RMSE) of absolute trajectory error (ATE) on TUM RGB-D [66] (unit: m). Gray rows denote
results obtained with calibrated camera intrinsics, while entries marked with * indicate evaluation in the uncalibrated setting. We color
result in: Best, Second, and Third. Note that our method is actually a offline StM method.

DROID- DROID-
CMP |Reality SLAMT ACE0  Ours CMP CMP+ |Reality SLAMT ACE0  Ours

(D) |Capture [75] (SRB) ACEQ |Capture [75]

Barn 410 24.0 21.2 19.0 16.5 23.5 19.3k 26.3 25.1 16.9 13.5 17.7 25.1
Catpr. 383 17.1 159 16.6 16.9 16.8 11.4k 18.7 18.8 17.9 18.9 18.6 17.5
Church 507 18.3 17.6 14.3 17.2 17.0 19.3k 18.5 17.3 - 11.5 16.5 15.8
Ignatius 264  20.1 17.7 17.8 19.8 19.5 7.8k 20.9 20.7 18.6 19.1 20.7 20.7
MtgRm. 371 18.6 18.1 15.6 18.0 19.5 11.1k 20.8 20.3 18.2 17.1 16.6 20.4
Truck 251 21.1 19.0 18.3 20.1 20.9 7.5k 234 23.1 19.1 20.6 23.0 23.5
Average 364 19.9 18.2 16.9 18.1 — 195 14.6k 21.4 20.9 18.2 16.8 189  20.5
Time 1h 3min  Smin 1.1h  3.5min 8h 1.8h 14h 18min  2.2h  58min

Frames
Frames

Training

Family 152 19.5 188 17.6 19.0 1206 [[44k 213 (213 [ 198 198 180 [213
Francis 302 21.6 | 20.7 207 20.1 218 |78k 225 227 | 204 218 217 228

£ Horse 151 19.2 19.0 163 195 20.1 6.0k 226 223 | 207 192 217 219
S LightH. 309 16.6 16.5 13.6 175 18.2 83k 195 1205 | 16.6 18.9 18.6 19.7
E PlayGd. 307 19.1 19.2 114 187 20.3 77k 212 210 | 16.5 113 204 217
2 Train 301 168 154 138 162 162 |[12.6k 19.8 185 | 144 15.6 185 185
= Average 254 18.8 18.3 156 185 19.5 78k 2I.1 |21.0 | 18.1 178 19.8 210
Time 32min | 2min 3min 1.3h 3min 5h 1h 11h 14min  2.2h  30min
Audtrm. 302 19.6 122 167 187 1203 [[13.6k 21.4 198 - 166 200 [21.0
BallRm. 324 16.3 18.3 131 179 148 ||10.8k 18.0 15.6 - 10.4 18.9 16.9
@ CortRm. 301  18.2 17.2 123 17.1 174 ||12.6k 18.7 [17.8 - 10.2 16.3 17.4
S Palace 509 142 11.7 108  10.7 143 ||21.9k 153 123 - 18.6 11.0 133
5 Temple 302 18.1 15.7 11.8 9.7 17.8 |[[17.5k 19.6  16.1 - 11.9 14.8 18.3
< Average 348 173 150 129 148 1169 [[156k 18.6 163 - 11.5 162 174
Time 1h 2min 4min 1h 3.5min 10h 2.1h 27min 2.8h 59min

Table 9. Tanks & Temples. We show the pose accuracy via view synthesis with Nerfacto [69] as PSNR in dB, and the reconstruction time.
We color code in: Best, Second, and Third. TMethod needs sequential inputs.



2 Pseudo GT All Frames 200 Frames
E Kinect = COLMAP COLMAP || DROID- ACEQ ACEQ Ours BARF  NoPE- ACEO Ours
3 Fusion (default) (fast) SLAMT  (defaulty (KFInit.) (50F) [37] NeRF  (default) (50F)
Chess 6k 19.6 23.6 23.5 19.3 23.3 23.0 234 12.8 12.6 22.7 21.8
Fire 4k 19.2 22.6 22.6 13.0 22.3 22.3 22.8 12.7 11.8 22.1 24.4
Heads 2k 17.0 18.8 18.9 17.6 18.8 19.1 18.5 10.7 11.8 19.9 20.2
Office 10k 18.9 21.4 21.6 failed 21.1 21.5 20.9 11.9 10.9 19.8 19.4
Pumkin 6k 19.9 24.1 23.8 18.3 24.1 23.8 24.5 19.6 14.2 24.7 25.0
RedKitchen 12k 17.6 21.4 214 10.9 20.8 20.9 19.9 11.6 11.2 18.9 20.0
Stairs 3k 19.0 16.7 21.0 13 17.7 19.9 20.6 15.8 15.9 18.8 20.8
Average 6.5k 18.7 21.2 21.8 N/A 21.2 21.5 21.5 13.6 12.6 21.0 21.8
Avg. Time realtime 38h 13h 18min 1h 7min 25min 8.5h 47h 27min  3min

Table 10. 7-Scenes. We show the pose accuracy via view synthesis with Nerfacto [69] as PSNR in dB, and the reconstruction time. We
color code in: Best, Second, and Third. Our method takes 50 frames as anchor images only, achieves SOTA performance. For some
competitors, we had to sub-sample the images due to their computational complexity (right side). TMethod needs sequential inputs.
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Figure 4. Visualization on Tank & Temple training split.



Figure 5. Visualization on Tank & Temple intermediate split.
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Figure 6. Visualization on Tank & Temple advanced split.



Figure 7. Visualization on Mip-NeRF 360 dataset.
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Figure 8. Visualization on 7-Scenes dataset.



j

m 1 E X o g L (l E.2, ¢ W g
i : ; < ' L\ L
TUM RGBD - 3 TUM RGBD - Plant TUM RGBD - Floor Mip. 360 - Counter Mip. 360 - Kitchen Mip. 360 - Treehill

Figure 9. Regressed Camera Poses and Point Clouds. We visualize the camera poses and point clouds predicted by SAIL-Recon across
various datasets. COLMAP or ground-truth camera poses are shown as blue frustums, while regressed camera poses are shown in yellow,
with red indicating anchor images.
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