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Abstract
Despite their great practical successes, the understanding of neural network behavior is still
a topical research issue. In particular, the class of functions learnable in the context of a
finite precision configuration is an open question. In this paper, we propose to study the
limits of gradient descent when such a configuration is set for the class of Simple Recurrent
Networks (SRN). We exhibit conditions under which the gradient descend will provably fail.
We also design a class of SRN based on Deterministic finite State Automata (DFA) that
fulfills the failure requirements. The definition of this class is constructive: we propose an
algorithm that, from any DFA, constructs a SRN that computes exactly the same function,
a result of interest by its own.

1 Introduction
One of the main challenges Machine Learning is facing is the lack of theoretical understanding of the reasons
of the practical successes of deep learning. Indeed, whole research fields have been revolutionized by the boom
of deep neural networks, from signal (Mehrish et al., 2023) to image processing (Li et al., 2024) including
finance (Zhang et al., 2021), for instance, but much remains to be done to fully understand their capabilities
and limits.

In this paper, we propose to study this issue in the context of Recurrent Neural Networks (RNN). As with
neural networks in general, we can identify at least two ways of interpreting capabilities and limits. The first
one is to analyse the expressivity, that is, the class of functions a class of models can compute. Within this
direction of research a notorious theoretical result states that vanilla RNN, the Simple Recurrent Networks
(SRN) (Elman, 1990), are able to compute any Turing machine (Siegelmann & Sontag, 1992). Though
of great interest, this theorem says little about the models used nowadays: its proof relies on the use
of unbounded time and requires neurons of infinite precision. It has been shown (Chung & Siegelmann,
2021) that it is possible to maintain the Turing completeness for a SRN in finite precision if the algorithm
has access to a potentially unbounded amount of neurons. A similar result is proposed by Stogin et al.
(2024) with a particular emphasis on the provable stability of the proposed architecture. When it comes to
conventional RNN architectures, those with a fixed number of neurons, Weiss et al. (2018) practically shows
that the expressivity, that is, the class of functions a class of models can compute, drastically decreases for
all types of RNN, most of them falling in classes equivalent to the expressivity of finite state machines. In
the article Merrill et al. (2020) the authors theorize the phenomenon of saturation and derive a hierarchy
of RNN architectures. The saturation in RNN occurs when the bounded activation function composing the
RNN (the sigmoidal function of tanh) are pushed to their boundaries and thus produce binary outputs.
Despite the interest of such a result, the saturation theorised in Merrill et al. (2020) is unrealistic because it
is based on the notion of limit to be performed at every iteration.

Another way of establishing RNN limitations and capabilities is to investigate what can be achieved in the
context of statistical learning. In this area of research the most notorious phenomenon to be studied is the one
of vanishing gradient. Bengio et al. (1994) and Hochreiter (1998) demonstrate that long dependencies in the
SRN computations are very difficult to be learned by gradient decent. Issues with the vanishing/exploding
gradient were so common that Hochreiter & Schmidhuber proposed the LSTM, a new RNN architecture that
allows to bypass these issues. Algorithmic solutions like gradient clipping or smoothing were also considered
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in the literature Pascanu et al. (2013) as well as avoiding particular regions of the parameter space Ribeiro
et al..

Our work fills a theoretical gap at the intersection of the above-mentioned fields of research. We explore
the limitations of training RNNs by Gradient Descent (GD) in the context of finite precision. To the best
of our knowledge, this is the first study of its kind for RNNs. We built on the saturation assumption and
the finite precision arithmetic’s to explicitly delimit regions of parameter space that cannot be reached by
classical GD with bounded learning rate. We thus theoretically prove that it is impossible to learn saturated
SRNs. We also demonstrate that in finite precision the saturation in RNNs (based on sigmoidal or hyperbolic
tangent function) can be defined without any notion of limit, hence RNNs can exhibit binary behaviour with
bounded parameters. And finally, leveraging the saturation in finite precision we exhibit a way of accurately
defining SRN parameters, allowing the SRN to simulate a finite state machine. Therefore, in this way we
demonstrate that the non-learnable region by GD for SRNs contains an interesting and expressive class of
function, the one of Deterministic Finite State Automaton (DFA). More formally our contributions are:

• We prove a theorem stating that saturated SRNs cannot be learned by gradient descent. The
theorem shows that a subset of gradient parameters will be too small to have an effect during the
gradient descent and thus prevent the algorithm to reach the optimum.

• We provide an algorithm that, given a Deterministic Finite State Automaton (DFA), constructs a
saturated SRN that will simulate the DFA. The algorithm is an extension of the algorithm provided
by Minsky (1967) to SRN in finite precision.

The article is structured as follows: Section 2 of this paper is devoted for notations and the introduction
of different necessary notions for the proofs. Section 3 contains the secondary but necessary result on the
stability to noise in saturated SRNs. In Section 4, we develop the arguments towards the gradient descent
failure in finite precision, as well as a detailed example of application of the theorem on a small SRN.
Section 5 details the algorithm that for a given DFA outputs a saturated SRN capable of simulating the
DFA. Section 6 is the experimental section where we provide empirical evidence that our theory is valid.
And the final Section 7 contains the conclusive discussion with possible extensions of our result, future work
and related work on the limitation of gradient descent in finite precision.

2 Preliminaries
In this section are enumerated all the notations and elementary operations that are used in this paper.

2.1 Elements of Linear Algebra
Numbers, besides properly defined constants, are noted by a lowercase italic letter, e.g., x ∈ R, the vectors
of dimension higher than 1 by a bold lowercase letter, e.g., x ∈ Rd for d > 1, and the matrices by a bold
uppercase letter, e.g., M ∈ Rd1×d2 . For x ∈ Rd, x[j] represents the jth coordinate of the the vector x, and
we extend this notation to x[J ] being the subset of coordinates in x where J unambiguously refers to a set
of indices. Id = Diag(1, . . . , 1) ∈ Rd×d is the identity matrix of dimension d. Given x ∈ R and M ∈ Rd1×d2 ,
x · M denotes multiplication of all values of M by x.

Given two vectors u,v ∈ Rd we note [u v] the matrix of Rd×2 whose columns are the original vectors. We
extend this definition to matrices in an obvious way.

For a matrix M ∈ Rd1×d2 we will denote the row vectors of M by mi for 1 ≤ i ≤ d1, and we denote the
column vectors of M by mj for 1 ≤ j ≤ d2.

For x,y ∈ Rd, ⟨x,y⟩ is the usual scalar product in Rd. If we fix m ∈ Rd the function ⟨m, ·⟩ : Rd ∋ x 7→
⟨m,x⟩ ∈ R is a linear form.

For M ∈ Rd1×d2 we define the transposition operation by MT ∈ Rd2×d1 where the rows of M are columns
of MT . For x ∈ Rd, in this paper ∥x∥ =

√∑d
s=1 x[s]2.

⊙ is the Hadamard product between vectors: if x ∈ Rd and y ∈ Rd we have x ⊙ y = z, with z[j] = x[j] · y[j]
for 1 ≤ j ≤ d.
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⊕ is the concatenation operation on vectors. For x ∈ Rd1 and y ∈ Rd2 we have x ⊕ y ∈ Rd1+d2 (where d1
and d2 might be different): if x = (x1, . . . , xd1) and y = (y1, . . . , yd2) then x ⊕ y = (x1, . . . , xd1 , y1, . . . , yd2).

2.2 Elements of arithmetic
In this part, we introduce the definitions considered for modeling the finite precision configuration. We begin
with the concept of centered integer representation related to a finite basis representation.

Definition 1 (Centered integer representation)
Let B,E > 1 two positive integers. We define

EB = {λ1 · · ·λE : λj ∈ {0, . . . , B − 1}} ,

the set of integers in basis B encoded on E digits. We define a centered integer representation as the image
of the set EB, by a bijective function shift defined as follows:

EB ∋ x 7→ shift(x) = x−
⌊
BE

2

⌋
where ⌊·⌋ is the floor function. We represent a centered integer representation by the couple of integers
(B,E).

The definition above will help us to define in a rigorous way the floating numbers and a finite precision
configuration.

Definition 2 (Finite precision configuration) A finite precision configuration is defined by a tuple of
positive integers (B,M,Ex), B being the basis, M and Ex representing the number of digits allocated for
the "mantissa" and the "exponent", respectively. We define two sets:

MB := {x1 · · ·xM : xi ∈ {0, . . . , B − 1}}
ExB := {λ1 · · ·λEx : λi ∈ {0, . . . , B − 1}}

In this configuration a float number x is represented as a triplet:

floatx = (sign,mantissa, exponent)

where sign ∈ {−1, 1}, mantissa ∈ MB and exponent ∈ ExB. In order to go from the representation to the
number itself, one needs to:

x = (sign) × (mantissa) ×Bshift(exponent)

where shift is the function of Definition 1.

For example in the configuration (B,M,Ex) = (10, 5, 4) the number x := −12.35 is represented by the
triplet (−1, 12350, 4997) and when we switch to the actual number we get

x = −1 × 12350 × 10shift(4997)

= −1 × 12350 × 10−3

where in this case the function shift is defined by shift(n) = n− 104

2 = n− 5000.

One can remark that this notation allows multiple representations for the same number, indeed both repre-
sentations (−1, 12350, 4997) and (−1, 01235, 4998) will produce the same float number −12.35 in the finite
precision configuration (10, 5, 4). Therefore to avoid all ambiguities, we say that a non zero float number is
in its normal form (sign,mantissa, exponent) if the mantissa = x1 · · ·xM is such that x1 ̸= 0.

The setting (B,M,Ex) generates the set G(B,M,Ex) composed of all numbers representable following these
restrictions. We will abusively use the notation G instead of G(B,M,Ex) for the sake of simplicity when there
is no ambiguity.
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As an example, in the IEEE 754 norm1, the simple floats are encoded in base B = 2 on 32 bits, with 1 bit
for the sign, M = 23 for the mantissa and Ex = 8 for the exponent.

Arithmetic’s operations in a finite precision configuration might sometimes be counter intuitive. For instance,
suppose one wants to compute the addition of two numbers x and s. Let x = (signx)×x1 · · ·xM ×Bexponentx
and s = (signs) × s1 · · · sM ×Bexponents such that exponents < exponentx. In order to compute x+ s, one
first needs to match the exponents of x and s. Without lost of generality, we can fix the highest exponent and
modify the magnitude of the other number, however since we can represent the mantissa of s with only M
digits we have to compromise and replace the s mantissa s1 · · · sM by an approximation 0 · · · 0︸ ︷︷ ︸

D zeros

s1 · · · sM−D

and Therefore obtaining an approximation of s

s̃ = 0 · · · 0︸ ︷︷ ︸
D zeros

s1 · · · sM−D ×Bexponentx

with D = exponentx − exponents. We obtain that the operation x+ s is in fact x+ s̃.

This illustrates the consequences of rounding in finite precision, since the D last digits of s are not taken
into account in the addition. Worse, if D ≥ M , the operation x + s will output x. In the following
Lemma (proved in Appendix 31) we discuss another phenomenon, the saturation of the bounded activation
function. In infinite precision, functions as the sigmoidal function and the hyperbolic tangent, never reach
their boundaries when evaluated on real numbers. However in finite precision they do reach the boundaries,
and the following lemma characterises the smallest float number to saturate the sigmoidal function.

Lemma 3 (Underflow boundary) Let (B,M,Ex) the finite precision configuration and let σ : x 7→ 1
1+e−x

be the sigmoidal function. We define u := ⌊B
Ex

2 ⌋ and l := BEx − u. If M < min{u, l} then there exists
J ∈ G(B,M,Ex) such that σ(J) = 1 and σ(−J) = 0 and for all positive float numbers s such that J − s < J
we have σ(−(J − s)) ̸= 0

The proof of this result is in Appendix 31

2.3 Elements of Deep Learning
In the following we focus on a single Recurrent Neural Network architecture, and therefore we set the
activation function to be σ.

In deep learning the same notation is usually used for the activation function as a one variable scalar function
and for a whole activation layer. To avoid any confusion, in this paper σ′ will refer to the derivative of the
function σ : R → R and σ∇ : Rd → Rd its element-wise counterpart defined by:

σ∇(x1, . . . , xd) = (σ′(x1), . . . , σ′(xd)).

In this work we focus on just one RNN: the Simple Recurrent Networks (SRN) Elman (1990). However,
we would like to emphasize that we are studying SRNs in finite precision, so to formalize this point, we
introduce the definition FP-SRNs where FP stands for Finite Precision.

Definition 4 (FP-SRN) Let (B,M,Ex) be a finite precision configuration, we set G = G(B,M,Ex). A
Finite Precision Simple Recurrent Network (FP-SRN) R is a triplet (h0, E ,D) where h0 ∈ Gh is the initial
hidden state vector, and E, D are functions called encoder, decoder respectively and are defined by:

E : Gu × Gh ∋ (x,h) 7→ σ (Mh(x ⊕ h ⊕ 1)) ∈ Gh

D : Gh ∋ h 7→ σ (Mo(h ⊕ 1)) ∈ Go.

The values u, h and o are positive integers representing the input dimension, the hidden dimension and the
output dimension respectively. Mh ∈ Gh × Gu+h+1 and Mo ∈ Go × Gh+1 are matrices. And σ is the
sigmoidal activation function.

1The current version are defined according to the following reference: IEEE Computer Society (2019-07-22). IEEE Standard
for Floating-Point Arithmetic. IEEE STD 754-2019. IEEE. pp. 1–84. doi:10.1109/IEEESTD.2019.8766229. ISBN 978-1-5044-
5924-2. IEEE Std 754-2019.
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For a finite sequence {xk}Tk=1 ⊂ Gu with T ≥ 1 an integer, the execution of R on the sequence {xk}Tk=1 is
given by the sequence {(hk,yk)}Tk=1 where hk and yk are defined recursively following the rule:

hk := E(xk,hk−1) ; yk := D(hk).

In this definition, we have chosen to group the parameters together in a single matrix as far as possible.
However, in this work it will also be useful to have a definition that makes a clear distinction between
parameters of different types, so we give the following definition, perfectly equivalent to the one above.

Definition 5 (FP-SRN version 2) A Finite Precision Simple Recurrent Network (FP-SRN) R is a triplet
(h0, E ,D) where h0 ∈ Gh is the initial hidden state vector, and E, D are functions called encoder, decoder
respectively and are defined by:

E : Gu × Gh ∋ (x,h) 7→ σ (Ux + Wh + b) ∈ Gh

D : Gh ∋ h 7→ σ (Vh + c) ∈ Go

where σ is the activation function, U is a matrix with h rows and u columns, W is a matrix with h rows and
h columns, V is a matrix with o rows and h columns, and b, c are vectors of dimension h and o respectively.

Execution on a sequence is defined exactly as in Definition 4

We call the matrix W the transition kernel, U the input kernel and V the output kernel. Clearly, the two
definitions are equivalent, because

Mh = [U W b] Mo = [V c] .

Another handy notation is the one of the parameter vector. Indeed, when we need to consider a parameters
in a FP-SRN R independently of their function, it is convenient to group all the parameters together in
a vector of parameters denoted p. So to underline the distinction between two FP-SRN which differ by
their parameters we will note them respectively Rp and Rp̃. Leveraging the notation p[J ] introduced in the
notations section, we will denote p[Encoder] when we will refer to the Encoder′s parameters.

Depending on the context and the problem we are treating, we will prefer one to the other definition. Notably
Definition 4 will be handy to define a neuron:

Definition 6 (Neuron) Let m ∈ Gd be a vector and σ the sigmoidal function. A neuron is a function
defined as:

σm : Gd ∋ x 7→ σ(⟨m,x⟩) ∈ G.

In this work for the definition of gradient we will need the notion of a differentiated neuron.

Definition 7 (Differentiated Neuron) Let m ∈ Gd be a vector and σ the sigmoidal function. We define
a differentiated neuron as:

σ′
m : Gd ∋ x 7→ σ′(⟨m,x⟩) ∈ G.

We intentionally defined a neuron as composition of a linear form and a non linear activation function (in our
case the sigmoidal function). If we refer to Definition 4, then by looking at the encoder or decoder coordinate
by coordinate we find the definition of a neuron. If we take an FP-SRN R and a decoder coordinate 1 ≤ j ≤ h,
we have that:

σ
(

Mh(x ⊕ h ⊕ 1)
)

[j] = σ
(
⟨mj ,x ⊕ h ⊕ 1⟩

)
In the following the integer u, h and o will represent the input dimension, the hidden dimension and the
output dimension respectively.

Definition 8 (β-saturated SRN) Let R be a FP-SRN and X =
{

{xk}Tk=1 : T ≥ 1, xk ∈ Ru
}

a set of
input sequences, we say that R is β-saturated for 0 ≥ β ≥ 1, if for all input sequence {xk}Tk=1, we have:

min
1≤i≤h

∣∣∣(Uxk + Whk−1 + b
)

[i]
∣∣∣ > β ∀ k ∈ {1, . . . , T}.
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In other words a β-saturated FP-SRN linear part of the encoder will always produce a vector that is in
Rh \ [−β, β]h, i.e. whose coordinates are always at a distance β from zero. An interesting fact about
β-saturated SRNs is that for all input sequence {xk}Tk=1, for all 1 ≤ k ≤ T , we have:∥∥∥σ∇

(
Uxk + Whk−1 + b

)∥∥∥
∞

≤ σ′(β) .

This inequality derives from the properties of σ, and the β-saturation hypothesis. Indeed, by hypothesis
we are sure to have (Uxk + Whk−1 + b) [j] ≥ β for all coordinates 1 ≤ j ≤ h, on the other side σ′ is a
decreasing functions on the interval [0,+∞[ and symmetric. Hence for all 1 ≤ j ≤ h we have:∣∣∣σ∇

(
Uxk + Whk−1 + b

)
[j]
∣∣∣ ≤ σ′(β)

This inequality is discussed more in detail in the beginning of Appendix A. In supervised machine learning,
the training of a neural network requires the use of a loss function defined as follows.

Definition 9 A loss function is a function L : Go × Go → G that compares computationally the output of
a model on a given training data and the expected target value. The Binary Cross entropy is an example
for p, q ∈]0, 1[:

L(p, q) = −q · ln(p) − (1 − q) · ln(1 − p).

In a practical context of deep learning one could, during early phases of the training, encounter a situation
where the prediction of a neural network is the opposite of the target label i.e. p ≈ 0 and q = 1. In this kind
of situation we obtain L(p, q) = −q · ln(p) = − ln(p), a value unstable and potentially undefined. Moreover,
the gradient of such a calculation is 1

p >> 1 in the case of p ≈ 0. Therefore in order to prevent instability a
common practice is to add a small constant ϵ and define a numerically stable loss function:

Lϵ(p, q) = −q ln(p+ ϵ) − (1 − q) ln(1 − p+ ϵ).

We will assume ϵ = 10−7, corresponding to usual practice in the tensorflow/keras platform2. This small
change has a profound impact in this work when we will discuss the back propagation of the gradient, because
the function ∂

∂pLϵ(p, q) becomes bounded on [0, 1] × {0, 1}.

Definition 10 (Fixed step Gradient Descent) Let f : Rd → R be a differentiable function, u0 ∈ Rd an
initial point and α > 0 a positive real number. The fixed step gradient descent of f starting at x0 is the
sequence {gl}l≥0 ⊂ Rd defined as follows:

g0 = x0

gl = gl−1 − α∇f(gl−1) for l > 0

where ∇f(gl−1) is vector of partial derivatives of f at the point gl−1.

This definition naturally extends to a variable learning rate αl.

2.4 Elements of Language Theory
Let Σ be a finite set of symbols called an alphabet. Σ∗ represents all the finite sequences on Σ and ϵ is the
empty sequence. Any subset L of Σ∗ is called a language.

For ω ∈ Σ∗, |ω| represents its length, that is, its number of symbols. The concatenation of two sequences is
denoted by: ω · ω′.

Definition 11 (DFA) A Deterministic Finite State Automata (DFA) is entirely defined by (Σ, Q, q1, δ, F )
where: Σ is a finite alphabet; Q is the finite set of states; q1 is the initial state; δ : Q × Σ → Q is the
transition function; F ⊆ Q is the set of accepting states.

The language represented by a DFA is the set L = {ω ∈ Σ∗ : δ∗(q1, ω) ∈ F}, where δ∗ is the transitive
extension of the transition function: δ∗(q, ϵ) = q, δ∗(q, a · ω) = δ∗(δ(q, a), ω) for q ∈ Q, a ∈ Σ, ω ∈ Σ∗.

2https://www.tensorflow.org/api_docs/python/tf/keras/backend/epsilon
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Definition 12 (One-hot encoding) Let Σ = {a1, a2, . . . , au} be a finite and ordered alphabet of size u.
Let {e1, e2, . . . eu} be the canonical basis of the vector space Ru, defined by: ei[j] = 1 if i = j and 0 otherwise.
We define a one-hot encoding as a bijective map:

ϕ : Σ ∋ ai 7→ ei ∈ {e1, e2, . . . eu}.

The definition of a one-hot encoding is naturally extended to the elements of Σ∗ by the bijective map ϕ∗ :
Σ∗ → {e1, e2, . . . , em}∗ with ϕ∗(a1a2 · · · aκ) 7→ (ϕ(a1), ϕ(a2), · · · , ϕ(aκ)).

One-hot encoding is a bijective correspondence between an ordered set of symbols Σ = {a1, . . . , au} and the
canonical basis of Ru, {e1, e2, . . . , eu}. In order to simplify notations, we take advantage of the bijective
correspondence and from now we consider that Σ = {e1, e2, . . . , eu}.

3 Stability to Noise in Parameters
Our main goal is to prove that there are regions of the parameter space that are not accessible by gradient
descent. Our strategy is to exhibit points in the parameter space such that FP-SRNs with those parameters
will experience a stationary gradient. The notion of stationary gradient is formally defined later on in the
paper, in Definition 15. Nevertheless, intuitively a FP-SRN Rp will experience a stationary gradient when
there is a non empty set of coordinates in the parameter vector p such that for any element of the training
set the gradient for these parameters is negligible with respect to the parameters. We will demonstrate that
some β-saturated FP-SRNs experience a stationary gradient, but in this section we exhibit another particular
feature of β-saturated FP-SRNs, the one of stability to noise. Indeed, Mitarchuk et al. (2024) prove that it
is possible to disturb the parameter of a β-saturated SRN (and thus FP-SRNs) and have guarantees that
the disturbed FP-SRN is β̃-saturated, for β̃ proportional to β and to the perturbation. We will build on
this perturbation property of β-saturated SRNs to expand the stationary gradient experience around the
saturated FP-SRN, and hence obtain a region of parameter space where FP-SRNs experience a stationary
gradient. In our work we have slightly reformulated their result and their definition of β-saturation, but the
theorem stated below and the definition remain perfectly equivalent. Before stating the result we introduce
the notion of perturbed SRN.

Definition 13 (FP-SRN version 2) Let Rp be a FP-SRN and ϑ ∈ Rdim(p), we define a perturbed FP-
SRN Rp+ϑ as follows:

E̊ : Gu × Gh ∋ (x,h) 7→ σ ((U + ϑU)x + (W + ϑW)h + (b + ϑb)) ∈ Gh

D̊ : Gh ∋ h 7→ σ ((VϑV)h + (cϑc)) ∈ Go

The hidden and the output vectors produced by the perturbed SRN Rp+ϑ are denoted by h̊ and ẙ.

The following theorem makes it possible, under certain conditions, to limit the deviation between an SRN
and its perturbed version.

Theorem 14 Let Rp be a ζ̃ + η̃-saturated FP-SRN, with z = 1
∥W∥ and ζ̃ = ln

(
1+

√
1−4z

1−
√

1−4z

)
, for some η̃ > 0.

We assume that Rp is operating on one-hot encoded data. We select any real number t such that 0 < t < 1,
then for all ϑ := vec(ϑU, ϑW, ϑV, ϑb, ϑc) ∈ Rdim(p) such that ∥ϑ∥ ≤ (1− t)η̃ · (1−∆̃∥W∥)

(2+
√
h) , with ∆̃ = σ′(ζ̃+ tη̃)

and for all ω ∈ Σ∗ with |ω| = T we have:

1. ∥h̊k − hk∥∞ ≤ (2+
√
h)

1−∆∥W∥ ∥ϑ∥ where 1 ≤ k ≤ T.

2. Rp+ϑ is (ζ̃ + tη̃)-saturated.

The sequence of hidden state vectors h̊k is produced by the perturbed FP-SRN Rp+ϑ.

We recall all the proof of this theorem in Appendix B. The idea is that it is possible to express h̊k as a sum
of hk and G(ϑ, k), where G(ϑ, k) is a function of the perturbation ϑ and the iteration k and takes the form
of a sum of k elements. Mitarchuk et al. (2024) exploit the saturation assumption to upper-bound G(ϑ, k)
with a convergent series and hence show that the perturbation injected at every step cannot be endlessly
amplified. This proves the first claim, after what the second claim is deduced from the first one.
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4 Finite Precision SRN and Learnability
In this section, we discuss gradient failure for RNNs training. First, we describe the algorithm of gradient
propagation in RNNs called Back Propagation Trough Time (BPTT) and derive a representation of the
gradient as a sum of products. Then, we formally define the stationary gradient, after what we state our
central result. Finally we apply this theorem to a concrete case and discuss the different variables involved
in the theorem.

x
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Figure 1: Illustration of the Encoder Decoder architecture.
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Figure 2: Illustration of the unrolling of the RNN for the BPTT.

4.1 Back Propagation Trough Time
To train neural networks the usual approach is the one of Gradient Descent (GD). Its classical implementation
for RNN is called Back Propagation Trough Time (BPTT) that we detail in this section. There are many
ways from which one can consider neural networks and BPTT. Switching from one representation to another
provides an in-depth and intuitive understanding of the mechanics of BPTT. We start by setting out the
machine learning framework within which we will develop our arguments, and then use the various neural
network representations to obtain a gradient representation that will enable us to prove our assertion.

We place ourselves in the context of binary classification on sequences. Let Rp be a FP-SRN and S =
{(ω1, y1), . . . (ωN , yN )} a labeled training set with N samples and where ωl = {xk}Tk=1 ⊂ Gu is a finite
sequence of vectors (the vectors xk can represent vector embedding of words) with 1 ≤ l ≤ N and T ≥ 1 an
integer representing the length of the word ωl. We set L : G × G → G to be a differentiable loss function.
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For a (ω, y) ∈ S we update the parameters of Rp using (ω, y), by computing ∇pL(R(ω), y) as stated in
Definition 10. In order to obtain the output of the FP-SRN on ω, Rp(ω), we have to compute recursively
hT and then D(hT ), with hk+1 = E(xk+1,hk) for 1 ≤ k < T . A way of seeing the recursive computation
of the RNN is to unroll the calculation so that we obtain a pseudo feed-forward neural network Rω derived
from the evaluation of Rp on ω with (T + 1) + 1 layers, which include the decoder layer and the loss
function layer L (D(hT ), y). Every parameter of this pseudo feed-forward network Rω is then updated by
back propagating the gradient. The difference between Rω and a real feed-forward network is that the
parameters do not change from one layer to the other. To give a more formal definition of what we mean by
pseudo feed forward network Rω, let us consider the notations of Definition 13, allowing us to write hT as
the output of a T layer feed-forward neural network:

hT = σ

(
Wσ

(
Wσ

(
...σ
(
Wh0 + Ux1 + b

)
...
)

+ UxT−1 + b
)

+ UxT + b
)

= σ

(
Wσ

(
Wσ

(
...σ
(
Wh0 + b1

)
...
)

+ bT−1

)
+ bT

)
.

The second equality has the form of a regular architecture of feed-forward neural network where we alternate
between an affine function and the activation function. In this representation we have encoded the sequential
input ω = {x1,x2, . . . ,xT }, in the vectors bk which are defined by bk = Uxk + b. Obviously, during the
training the parameters of the matrix U and those of the bias vector b will be taken into account by the
algorithm.

In Figure 1 we have made a distinction between the parameters of the transition kernel, which are
represented by full arrows, and the parameters of the input kernel, which are represented by dotted arrows.
We also represented the embedding of the sentence "One small step for man ... humanity" with a color
code representing the order of the words in the sentence. Thus in Figure 2 we have represented the
integration of the input kernel evaluated on the words in the pseudo feed-forward network parameters by
representing the neurons by full and dotted concentric circles with the coloration of the embedding of the
words. Figure 2 illustrates the unrolling procedure of an SRN of hidden dimension 4 evaluated on a sentence.

Figures 1 and 2 represent the neural network as a graph where the circles are the activation function σ
and the arrows represent the weighted connections realised by the matrix Mh. Rojas & Rojas explain the
backpropagation for deep neural networks with sigmoidal activation. They build on the graph representation
of the neural network to construct the backpropagation algorithm. The first phase is the forward pass, i.e.
the computation of L(Rω, y). Secondly we compute, recursively, the gradient for the parameters involved
in every layer of the network. The gradient propagation can be seen as tracking the impact of a parameter
on the final result L(Rω, y). In the context of gradient calculation in a directed graph, tracing the impact
of a parameter is achieved by observing all the paths in the graph that link the loss to the parameter in
question and assessing the impact of the parameter on each of these paths. We emphasize that every layer,
except the last one, of the network Rω uses the same set of parameters, what we called the pseudo feed-
forward network. This implies that every parameter of Mh will produce a partial derivative composed of a
variety of different impacts that the parameter may have had on the computation of L(Rω, y). Our goal is
to derive a convenient representation of the gradient that leads us to consider the fact that the network is
composed of weighted sums and differentiable scalar function (building block of the neuron in Definition 6).
One can deduce from the chain rule, that the partial derivative of L(Rω, y) with respect to a parameter mi,j

can be represented as a sum of products, where we sum over the set of paths linking the result L(Rω, y)
and the parameter mi,j within the network, and the products are composed of the weighted differentiated
activation on a path. More formally for a parameter mi,j we define a path γ = (γ1, . . . , γk) of length k for
1 ≤ k ≤ T as a finite sequence such that for k = 1 we have γ1 = Mo[i], for k = 2 we have γ1 = Mo[v] and
γ2 = mv,i for some 1 ≤ v ≤ h. For the case k ≥ 3 we define γ such that γk = mv,i for some 1 ≤ v ≤ h,
for all 1 < s < k γs−1 = ml,t, γs = mt,r and γs+1 = mr,w. In other words γ is an ordered sequence that
contains the information about a path followed within the network Rω from the loss to the neuron hosting

9
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the parameter mi,j . We can gather all such path γ for the parameter mi,j in the set Γi,j , what allows us to
define a partial derivative ∂L(Rω,y)

∂mi,j
as follows:

∂L(Rω, y)
∂mi,j

= ∂L(Rω, y)
∂x

· σ′
Mo

(hT )
∑
γ∈Γi,j

k∏
s=1

γs · σ′
γs

(xT−s ⊕ hT−s−1 ⊕ 1). (1)

where ∂L(Rω,y)
∂x represents the partial derivative of L with respect to the first variable. We abuse a little

bit the notation of the neuron here because γs refers to a parameter in the matrix Mh and not a row
vector, but since a unique row vector contains the parameter γs we allow ourselves to denote a neurons in
this manner. The identity 1 is not new, in fact it can be deduced from the back propagation algorithm of
Rojas & Rojas. We recall that our goal is to show that some regions of the parameter space of FP-SRN
cannot be reached by gradient descent. The idea is to exhibit regions of the parameter space where some
coordinates of the gradient ∇L(R(ω), y) will have a negligible value with respect to the parameters leading
to p − α · ∇L(R(ω), y) = p in finite precision. To achieve this we will use Equation 1 to prove an upper
bound on

∣∣∣∂L(Rω,y)
∂mi,j

∣∣∣ that we can exploit in finite precision arithmetic’s. We have used a lot of formalism for
the definition of the gradient, which is necessary for the rigor of our work but will not really be used in the
proofs, because we will state hypotheses on Rp that will allow us to derive a bound that does not depend
on T , vectors xT−s ⊕ hT−s−1 ⊕ 1 and parameters ml,t.

We define the notion of stationary gradient in finite precision. A condition characterized by the fact that for
some parameters adding the gradient will not change the parameter due to rounding in finite precision.

Definition 15 (Stationary Gradient) Let (B,M,Ex) be a finite precision configuration, Rp be a RNN
with parameter vector p, a loss function L, a training set S = {(ω1, y1), . . . , (ωN , yN )} with N ≥ 1 training
samples and α > 0 a positive real number called the learning rate. We say that Rp experiences a stationary
gradient if there is a non empty subset P of coordinates in p such that for all mi,j ∈ P and for all (ω, y) ∈ S
we have in finite precision arithmetic:

mi,j − α
∂L
∂mi,j

(R(ω), y) = mi,j .

4.2 A Condition for BPTT Failure
In this subsection we develop our argument of BPTT failure in a finite precision framework. The idea of this
theorem is: if the parameter that we try to reach by GD have the properties stated by the theorem (we will
show that fully saturated FP-SRNs fulfill these properties) then the gradient will be rounded to zero before
reaching the target.

Theorem 16 Let G be the set of all float numbers representable in a given finite precision configuration
(B,M,Ex). Let S = {(ω1, y1), . . . (ωN , yN )} be a training set with N samples. For 1 ≤ l ≤ N , ωl =
{xk}Tk=1 ⊂ Gu is a finite sequence of length T where xk are vectors verifying ∥xk∥ ≤ 1 for 1 ≤ k ≤ T and
T ≥ 1 is the integer representing the length of the word ωl. We set L : G × G → G to be a differentiable
loss function. Let α > 0 the learning rate as used in Definition 10. Let Rp be an FP-SRN with hidden
dimension h, input dimension u and output dimension o = 1 i.e. Rp is shaped for binary classification on
strings. We recall that the row vectors of the matrix Mh are denoted mi for 1 ≤ i ≤ h, and that since the
output dimension o = 1 it means that the matrix Mo is of dimension (1, h). We set

m∗ := max
{

|m| : m ∈ p
}

m := min {|m| : m ∈ p and |m| > 0},

that is m∗ is the largest parameter in absolute value and m is the smallest, in absolute value, non zero
parameter. We set ε = BD with D = ⌊logB(m)⌋ − (M + 1). We suppose that:

1. For all y ∈ {0, 1} the function [0, 1] ∋ x 7→
∣∣ ∂
∂xL(x, y)

∣∣ is bounded by a constant ρL.

10
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2. ∃ η > 0 such that Rp is (ζ + η)-saturated where

ζ = ln
(

1 +
√

1 − 4z
1 −

√
1 − 4z

)
, z = 4

ψhρL

ε

1 + ε
, ψ := α · max{(m∗ + η/2), ∥W∥}

Then with ∆ := σ′(ζ + η
2 ) and with W (the transition kernel extracted from Mh) , for all ϑ ∈ Rdim(p) such

that ∥ϑ[Encoder]∥ ≤ η
2 · (1−∆∥W∥)

(2+
√
h) the FP-SRN Rp+ϑ will experience a stationary gradient for all non zero

parameters on the training data set S.

Note that this result does not include the parameters in the decoder’s part of the FP-SRN. The assumptions
on ζ overcome the information transmitted through the decoder gradient. The consequence of this is that one
can change the decoders parameters completely, it will have no effect on the Encoder parameters gradient.

A few words to comment on the assumptions and quantities used in the theorem. The idea behind this
result is that a FP-SRN R satisfying hypotheses 1 and 2 will have at least two behaviors of interest to us:
A) robustness to noise, B) stationary gradient. The robustness to noise is essential in this result, as we aim
to exhibit a whole population of RNNs that have similar behavior to R. Quite naturally, when it comes to
perturbation, we have to make assumptions about the Lipschitzian constants ρL of functions that form the
networks. This explains assumption number 1, which ensures that the loss function will not explode if the
networks parameters are perturbed. Assumption 2 is more central to this work. This is the assumption of
saturation of the activation function, i.e. how close the activation function is to its bounds. This assumption
is essential, as it both demonstrates the stability of the RNN with respect of the noise injection, and squashes
the gradient to zero. The ζ quantity acts as a threshold below which the guarantee of behaviors A) and B)
are lost. More precisely, ζ is the solution to the equation σ′(ζ) = 4

ψhρL

ε
1+ε . Since σ′(x) = σ(x)(1 − σ(x))

i.e. an equation of second degree in σ(x) and that σ is function defined with the exponential function, one
can deduce the appearance of a square root and the application of the logarithm function in the definition
of ζ. For a formal proof please refer to Lemma 18 in AppendixA. The desired quantity 4

ψhρL

ε
1+ε to achieve

with σ′(ζ) is built such that it is possible to bound Equation 1 by ε. On the other hand, the constant η has
to be seen as a budget for the perturbation that Rp can handle without loosing the saturation property. All
the proofs articulate around well defining the border ζ, and wisely managing the budget η.

For readability reasons, the complete proof of the theorem is in Appendix A of this paper. Nevertheless we
propose a sketch of the proof. At first we prove that a (ζ + η)-saturated FP-SRN is stable to perturbations
with Theorem 14 proven in Appendix B. Indeed one can disturb the parameter of Rp by adding a noise
vector ϑ to the parameter vector p and be sure that the output of Rp+ϑ will remain within a controllable
distance of Rp. On top of that, for a well chosen ϑ we can be sure that Rp+ϑ will be (ζ + η/2)-saturated
(i.e. for ∥ϑ[Encoder]∥ ≤ η

2
1−∆∥W∥

2+
√
h

). After this first stage we proceed to prove that the gradient will be
rounded to zero (the stationary gradient property), by using the gradient expression in Equation 1. In the
following subsections we provide some concrete examples based on a set of parameters.

4.3 An example of a non learnable FP-SRN
In this section we apply our results on a small example. DFA suit particularly well our case, because they
model binary functions on sequences. Figure 3 is a representation of a DFA accepting the language of all
words that contain an odd number of a’s on the alphabet Σ = {a, b} (the initial state is 1, the sole accepting
state is 2).

Let (B,M,Ex) be the finite precision configuration. We prove in Appendix D Lemma 3 that there exists
a positive float number J such that σ(−J) = 0, σ(J) = 1 and for all positive float number s such that
J − s < J we have σ(−(J − s)) > 0. The number J is called the underflow barrier float.
- Then we define:

h0 :=


1
0
0
0

 ,w1 :=


−3
−1
−1
−3

 ,w2 :=


−1
−3
−3
−1

 ,Mo := J ·
[
−1 −1 1 1

]
and:

11
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Figure 3: An example of a DFA
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We consider the computation of the FP-SRN on the word a and the word b. Their one-hot encoding is
ϕ(a) =

(
1
0

)
and ϕ(b) =

(
0
1

)
.

We have:

Uϕ(a) + Wh0 = J ·
( (

2 0 2 0
)

−
(
3 1 1 3

) )T
= J ·

(
−1 −1 1 −3

)T
.

After applying the activation function we obtain h1 =
(
0 0 1 0

)T due to the overflow and underflow.
The vector h1 is an accepting vector because σ(Moh1) = σ(J) = 1. If we do the same computation for b we
obtain h′

1 =
(
0 1 0 0

)T . The vector h′
1 is not an accepting vector because σ(Moh′

1) = σ(−J) = 0 due
to the underflow. We draw the readers attention to fact that this FP-SRN is J-saturated by construction.
In Section 5 we propose an algorithm that for any DFA, will return a FP-SRN that is J-saturated and that
simulates the DFA. But first we propose to study the example above from the perspective of Theorem 16.

4.4 On the learnability of this FP-SRN
In the following subsections we apply Theorem 16 to the FP-SRN defined just above. We will gradually show
that the FP-SRN of the example respects the assumptions of the Theorem 16 and explain the magnitude of
each variable involved in that theorem.

At first we assume to have (B,M,Ex) = (2, 23, 8) the usual finite precision configuration of 32 bit float
numbers, that we convert to base 10, in order to have readable constants. In this configuration we have
J = 88.7228391117. When we switch from base B = 2 to base B̃ = 10, the number of digits needed to encode
all the floats in G(B,M,Ex) does not exceed 15, so when we switch to base B̃ = 10 we get that M̃ = 15. In
other words we have G(2,23,8) ⊂ G(10,15,6). The constant M is necessary for the definition of ε, the value
that must upper bound the coordinates of the gradient in order for it to be rounded to zero. Therefore, in

12
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the following, since we switched to basis 10, we will use M̃ = 15 to define ε. The FP-SRN presented above
in Section 4.3 is J-saturated by definition. By taking a closer look to the matrix Mh =

[
U W

]
one can

deduce that for all 1 ≤ i ≤ h and all 1 ≤ j ≤ u + h + 1 we have |mi,j | ≤ 3J . Also the smallest non zero
parameter in Mh,Mo is m = J , Therefore we obtain:

m∗ = 3 · J ≈ 2.7 · 102

⌊log10(m)⌋ = ⌊log10(J)⌋ = log10(102) = 2
ε = 102−(15+1) = 10−14 .

We remind that ε defined above represents the threshold such that for all float numbers m ≤ ε will have no
effect when added to non zero parameters of the FP-SRN Rp.

4.5 How h, ε, and ρL affects ζ ?

In Theorem 16 the quantity ζ has a central role, it delimits a region where we have the guarantee that
Rp is stable to noise and will experience a stationary gradient. In the case that we consider now, Rp is
J-saturated with ζ + η = J , knowing ζ allows us to know exactly η (a constant that represents the budget
for the perturbation) and thus the size of the Euclidean ball containing FP-SRNs with stationary gradient.
The variable ζ is directly linked to m∗, ε, ρL and α the learning rate. In our case m∗ = 267. For this study
we will represent the size of the hidden state vector h = 10n for n ∈ [0, 11], because it is the magnitude of
h that will mostly impact the computations. We assume to use Lϵ as the loss function with, ϵ = 10−7, a
default quantity in tensorflow.keras platform for numerical stability. It comes that we have ρL = 107, and
for simplicity we assume to have α = 1.

The first quantity we want to discuss is ψ:

ψ = α · max{(m∗ + η/2), ∥W∥}
= max{(m∗ + η/2), ∥W∥}

≤ m∗ ·
√
h for h ≥ 2

= (267 · 10
n
2 ) ≤ 2.7 · 10

n
2 +2.

The inequality above comes from ∥W∥ ≤ ∥W∥1 ≤ m∗ ·
√
h, and we assume that m∗ ≥ η/2. In the case of

the variable ψ an upper bound is enough for us because it will give us an upper bound for ζ. This allows us
to estimate the magnitude of the quantity z = 4

ψhρL

ε
1+ε , First we have 1 + ε = 1 + 10−14 ≈ 1 hence ε

1+ε ≈ ε.
Then we have:

4
ψhρL

≥ 4
2.7 · 10

n
2 +210n107

= 1.48 · 10−2− 3n
2 ,

4
ψhρL

ε

1 + ε
≈ 4 · 10−14

2.7 · 10
n
2 +210n107

= 1.48 · 10−16− 3n
2 .

13
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By using the Taylor expansion of
√

1 + x = 1 + x/2 + o(x2) for x ≈ 0, we deduce that

ζ = ln
(

1 +
√

1 − 4z
1 −

√
1 − 4z

)
≈ ln

(
2 − 2z

2z

)
≈ ln

(
1

1.48 · 10−16− 3n
2

)
+ ln

(
1 − 1.48 · 10−16− 3n

2

)

≈ ln
(

1
1.48 · 1

10−16− 3n
2

)
+ 0

= ln
(

1
1.48

)
+ (16 + 3n

2 ) ln(10)

≤ (16 + 3n
2 ) ln(10) because ln

(
1

1.48

)
< 0.

If we consider cases where 1 < h = 10n ≤ 1010 then we have that the boundary ζ is in the interval ζ ∈ [38, 72].
We recall that ζ represents a boundary beyond which we have the guarantee that Rp is stable to noise in
parameters and that this FP-SRN will experience a stationary gradient. It is important to note that even
with very hard requirements on the gradient (i.e. the coordinates of the gradient have to be smaller than
10−21), it is sufficient for a FP-SRN to be saturated with values under 72. In other words, by Theorem
16 it is impossible to train FP-SRN by gradient descent such that the linear part will output vectors with
coordinates further than 72 from zero.

4.6 How big is the perturbation radius η
2

1−∆∥W∥
2+

√
h

?

In this part we discuss the quantities 1 − ∆∥W∥ and η
2

1−∆∥W∥
2+

√
h

. All the computations are based on the
hypothesis that Rp is defined as in Section 4.3. Our goal here is to estimate how these quantities affect
the radius of the Euclidean ball around the parameters Mh that fulfill the assumptions of Theorem 16. We
recall that the matrix W is the transition kernel extracted from Mh, and that ∆ := σ′(ζ + η/2), where
ζ + η = J ≈ 88.72. We start by analysing the quantity ∆∥W∥ = σ′(ζ + η/2)∥W∥. Lemma 19 in Appendix
A tells us that

σ′(ζ + η/2) ≤ σ′(ζ) + (η/2)e−(ζ−η/2) .

This result is based on the Taylor expansion of σ′. From the computations above one can deduce that:
ζ ≈ (16 + 3n

2 ) ln(10)

η/2 = 1
2(J − ζ)

≈ 25.68 − 3n
4 ln(10).

We have also ∥W∥ ≤ m∗ · h ≈ 2.7 · 10n+2, leading us to:
∆∥W∥ = σ′(ζ + η/2)∥W∥

≤ σ′(ζ)∥W∥ +m∗ · h(η/2)e−(ζ−η/2) .

By Lemma 17 we have that σ′(ζ) = 4
ψhρL

ε
1+ε . We recall that ψ = max{(m∗ + η/2), ∥W∥} Therefore:

σ′(ζ)∥W∥ ≤ 4
ψhρL

ε

1 + ε
∥W∥ ≤ 4

hρL

ε

1 + ε
≈ 4ε

hρL
= 4 · 10−21−n

The quantity m∗ · h(η/2)e−(ζ−η/2) requires to plug into the exponential function the value of ζ − η/2 that
we have introduced above. We obtain that:

m∗ · h(η/2)e−(ζ−η/2) ≈ 2.7 · 10n+2 · (25.68 − 3n
4 ln(10)) · (10−11.15− 9n

4 )

= 2.7 · (25.68 − 3n
4 ln(10)) · 10−9.15− 5n

4 .
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Clearly the quantity ∆∥W∥ is upper bounded by a sum of quantities negligible with respect to 1. Therefore
we can assume that 1 − ∆∥W∥ ≈ 1, hence η

2
1−∆∥W∥

2+
√
h

≈ η

4+2
√
h

.

The previous results lead us the conclusion that the quantity that influences the most η
2

1−∆∥W∥
2+

√
h

is h = 10n.
From the previously established representations of ζ, η/2 we can deduce that:

η/2
2 +

√
h

≈
25.68 − 3n

4 ln(10)

2 + 10
n
2

.

In order to visualize the evolution of the perturbation radius with respect to h, we define the radius function

r(n) := 25.68− 3n
4 ln(10)

2+10
n
2

and we plot this function with n ∈ R+ in Figure 4. We have highlighted the intersection

of the function r(n) with the line x = 0.602 for the reason that for this value of x we have 10x = 4 i.e.
the number of neurons that the FP-SRN presented in Section 4.3 has. Hence the reader can see that with
our results we obtain that the perturbation radius in this example is 6.16. We will see in a next paragraph
how such perturbation can impact the network performance. Finally, note that SRNs with more than 103

neurons are rarely observed, so this last constraint on the number of neurons is realistic.

n

r(n)

Figure 4: The radius function

4.7 Stationary gradient even with Lϵ ̸= 0
Just above we established that the FP-SRN Rp from Section 4.3, within the requirement of Theorem 16,
has a perturbation radius of 6.16. In other words, for all ϑ ∈ Rdim(p) such that ∥ϑ[Encoder]∥ ≤ 6.16 the
FP-SRN Rp+ϑ will experience a stationary gradient. In Table 5 we present the variables of interest for
Rp. Theorem 16 does not depend on how the perturbation is spread among the parameters of the FP-SRN
and does not depend on the decoders parameters. We present here an example where the noise is spread

h ζ η r(n)
4 ≈ 38.92 ≈ 49.8 ≈ 6.16

Figure 5: Statistics of the FP-SRN from Section 4.3 in usual 32 bit float precision
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randomly across the parameters of the transition kernel:

Ů := U = 2J ·


1 0
0 1
1 0
0 1

 W̊ := −J


3.07 2.90 1.15 0.71
0.49 1.06 3.0 2.88
0.86 0.79 2.93 3.43
3.09 3.24 1.33 0.59

 M̊o := 2 ·
[
−1 −1 1 1

]

By design of the perturbation we have ∥W̊ − W∥Fro = 6.16. We execute this perturbed FP-SRN on the

word a that is one-hot encoded as follows ϕ(a) =
(

1
0

)
. We obtain:

Ůϕ(a) + W̊h0 = J ·
( (

2 0 2 0
)

−
(
3.07 0.49 0.86 3.09

) )T
= J ·

(
−1.07 −0.49 0.86 −3.09

)T
After applying the activation function σ we obtain the hidden state vector h̊1 =

(
0 α 1 0

)T , with
α ≈ 1.316 · 10−19. Now we apply the decoder on h̊1, and obtain:

σ(M̊oh̊1) = σ(2 · (1 − α))
≈ 0.88

By definition of the DFA in the example, it accepts all the words that end with an a, Therefore the word a
is labeled with 1. One can compute the loss in this particular case and obtain that:

Lϵ((Rp+ϑ(ϕ(a)), 1)) = −1 · log(σ(M̊oh̊1) + 10−7) ≈ − log(0.88 + 10−7) ≈ 0.1269

This means that the FP-SRN Rp+ϑ can experience a stationary gradient even though the loss is not 0.
In this example the classification is still correct if one sets a threshold of 0.5, indeed 0.88 > 0.5 thus the
classification would be correct. However, since Theorem 16 does not depend on the Encoder parameters, one
could set all the Encoders parameters to 0 while maintaining the theorems validity. In this extreme case,
the SRNs output would be constantly 0.5, i.e. no classification and the gradient would be stationary.

5 A non learnable class
In the previous sections we have developed a series of arguments towards the fact that saturated FP-SRNs
cannot be learned by gradient descent with a fixed learning rate. In order to exemplify the result we have
exhibited a FP-SRN that simulates the DFA accepting all words containing an odd number of a’s on the
alphabet {a, b}. In this section we argue that the example of Section 4.3 is not an isolated case. We present
an algorithm that, for any given DFA, outputs a saturated FP-SRN that simulates the DFA. We call this
algorithm DFA2SRN, and it is an adaptation of the algorithm proposed by Minsky (1967) to FP-SRNs.
Indeed the authors of Minsky (1967) work with RNN based on a non differentiable activation function
H : R → {0, 1} with H(x) = 1 if x ≥ 0 and 0 otherwise. This algorithm demonstrates that the non
attainable region by gradient descent for FP-SRN contains a large class of interesting functions.

5.1 DFA2SRN
Let D = (Σ, Q, q1, δ, F ) be a DFA. We suppose that the alphabet Σ = {e1, . . . , eu} is a set of one-hot vectors.
We recall that Q = {q1, . . . , q|Q|} is the set of states, q1 is the initial state, δ : Σ ×Q → Q is the transition
function, and F ⊂ Q is the set of final states. In order to simulate the DFA by a FP-SRN we have to: 1)
simulate the transition function, 2) encode every state such that it can be read by the FP-SRN, 3) simulate
the function discriminating between elements of F and Q\F . The encoding of the states of the DFA follows
the spirit of one-hot encoding. The transition function is simulated by the encoder and the discrimination
function will be simulated by the decoder.

The main idea is to make the hidden states ht, t ≥ 1, be an encoding of the state q reached in the DFA
while parsing a sequence up to its tth element. Thus Mh has to encode the transition function, and Mo

has to encode the q ∈ F relation. In the rest of this section we will refer to the FP-SRN Definition 13 and
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use formalism W, the transition kernel U the input kernel and v the output kernel (the output kernel is a
vector because the output that we need is a scalar in {0, 1}).

We set |Q| := Card(Q), |Σ| := Card(Σ). We assume that Q = {q1, q2, . . . , q|Q|} and we define IF ⊂
{1, . . . , |Q||Σ|} with:

({i, i+ 1, . . . , (i+ |Σ|) − 1} ⊂ IF ⇐⇒ qi ∈ F ).
The linear parts of the SRN are defined by:

W ∈ G|Q||Σ|×|Q||Σ| ; U ∈ G|Q||Σ|×|Σ|

h0 ∈ G|Q||Σ| with h0[1] = 1,h0[j] = 0 if j ̸= 1;
v ∈ G1×|Q||Σ| with v[j] = J if j ∈ IF and − J if j /∈ IF .

J is the smallest float number saturating the activation function as defined in Lemma 3.

We define U := 2J ·

I|Σ|
...

I|Σ|

}|Q| identity matrices I|Σ| piled up. -

For the construction of W, we start by defining for every state qk, 1 ≤ k ≤ |Q|, a column vector wk ∈ G|Q||Σ|

by the following rules:

R1: For 1 ≤ s ≤ |Σ| if δ(qk, as) = qj then wk[r] = −1 with r = (j − 1)|Σ| + s,

R2: All the other coordinates of wk are set to −3.

Note that by definition of a DFA every vector wk has exactly |Σ| coordinates set to −1 and (|Q| − 1)|Σ|
coordinates set to −3. The rule R1 defines an encoding for (qk, as, δ(qk, as)) Therefore the vector wk contains
all the transitions starting at qk.

Afterward we generate, for every qk ∈ Q, the matrix:

W := J ·
[
W1 W2 · · · W|Q|] ∈ G|Q||Σ|×|Q||Σ|

where for 1 ≤ k ≤ |Q|
Wk :=

[
wk wk · · · wk

]︸ ︷︷ ︸
|Σ| times

∈ G|Q||Σ|×|Σ|.
(2)

In the definition of Wk the vector wk is repeated |Σ| times.

In the appendix C we give a formal proof that this construction simulates the given DFA on one-hot encoded
symbols.

6 Experimental section
The theory that we discuss in this work is based on several abrupt upper bounding. Therefore we wanted to
see how the gradient would evolve empirically. We set up experiments illustrated in Figures 6, 7 and 8. The
first experiment represents the best case scenario regarding the parameter path in the parameter space i.e.
we create a hypothetical ideal scenario where the gradient follows a straight line starting at the randomly
initialized parameters and finishing at the parameters of interest defined by the algorithm DFA2SRN. The
statistics that we observe during this experiment are: the loss, the norm ∥ · ∥∞ of the gradient, and the
distance to the target parameters. The graphs of these statistics are displayed in blue in Figure 6. We halted
the experiment when ∥∇L(R(ω), y)∥∞ < 10−14, because it ensured us as this represents a stronger stopping
criterion than the one requested in the theorem. To illustrate the relevance of the stopping criterion stated
above, the pie chart in Figure 6 represents the proportion of network parameters affected by the stationary
gradient. The plot of the loss during this experiment shows that the set of target parameters is a local
minimum for the loss. We also observe with this plot that all the coordinates of the gradient ∇L(R(ω), y)
will be smaller than 10−14 but the distance to the target parameters is grater then 500. For more details
about the data and the experiment setup please refer to Appendix E.
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Figure 6: Two versions of the gradient vanishing experiment, line 1 gradient vanishing when moving in a
straight line through parameter space towards the target parameters. Line 2 same experiment except that
the decoder parameters are not updated.

In order to back up empirically the claim that decoders parameters have little effect on the gradient, we
reproduced a similar experiment with frozen decoder parameter (i.e. we applied only one step of GD for the
decoders parameters). Besides the decoder parameters freeze, we reproduced the same protocol on a SRN
on the same size. The graphs of this experiment are represented in orange in Figure 6.

The "Loss" and "∥Gradient∥∞" graphs appear to have portions resembling thick lines, but it is in fact a high
frequency oscillations. The graphs representing "distance to the target" are staircase-shaped, this shape is
induced by our choice to compute and display ∇L(Rp(ω), y) for every (ω, y) in the training set S, while
updating the parameters p once all the gradients were computed.

This experiment validates the theorem and highlights the considerable gap between theory and practice, since
the theory announces gradient stagnation starting from a distance of 6.16, but we observe this phenomenon
from before 500. We illustrate this gap in Figure 7. In this figure, we represented by the green dot the
randomly initialized parameters and by the red dot the target parameters that would provide a J-saturated
SRN. The violet scattered line represents the smallest path towards the parameters of interest on which we
evaluated the gradient. We represented by the green disc the region where the gradient is guaranteed to be
stationary, and we represented by the blue disc the region from where the infinite norm of the gradient went
empirically below 10−14.

Figure 8 represents our attempt to learn a model with the same data by applying regular SGD. The statistics
we observed in this experiment are: the Loss, the Euclidean distance between two consecutive parameter
vectors ∥pt − pt−1∥2, ∥∇L(R(ω), y)∥∞, and the euclidean distance to the target, the target being the same
set of parameters as in the experiment described just above. In a gradient descent learning scenario, the
nature of the data is not known a priori, so the distance to the target makes little sense. For this reason, we
use the Euclidean distance between two consecutive parameter vectors, in order to track down some kind
of convergence through the Cauchy criterion. Of course, in our experimental context, we know the data
precisely, and thus the associated DFA. We therefore also displayed the distance to the goal parameters.
We carried out this experiment to show that learning SRN on this type of task by SGD was not conclusive.
Indeed, in the course of training over the 20,000 batches, loss has not stabilized, and the sequence of parameter
vectors has not reached any kind of equilibrium. Even if the sequence of parameters gives the impression of
tending towards the parameters of interest, the reduction in distance is negligible and we have no guarantee
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Figure 7: Parameter path in 2D.

Figure 8: Regular SGD training
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that the gradient is pointing in the direction of the target parameters, or just a region containing vaguely
the target parameters.

Despite the apparent simplicity of the DFA used as an example in this work 4.3 (two states and an alphabet
composed of two symbols), this DFA belongs to the most complex subclass of regular languages. According
to van der Poel et al. (2023) the subclass of in question is called Zp. For this reason we tried to train SRNs
on languages from lower complexity classes in order to ensure that there is no bias in the experience of SGD
learning from Figure 8. In addition to the classification of sub-regular languages, van der Poel et al. (2023)
provides a benchmark of 1,800 languages covering all levels of complexity. To carry out this experiment, we
selected 9 languages that closely match the benchmark’s complexity spectrum. The details of this experiment
are in Appendix E.

7 Discussion

A first element of discussion is that our result stands only for the gradient descent algorithm with fixed
learning rate α. In fact it is automatically extendable to the case of a variable learning rate {αl}Dl=1 where
D > 1, as long as {αl}Dl=1 is bounded. By setting α := max1≤j≤D αj the result remains true for any
αj . A second element of discussion is that our result, though stated for a classical gradient descent, is
applicable to the widely used stochastic gradient descent: as all gradients are null under the assumptions of
Theorem 16, so is their mean on any batch. In this work we have considered the case of binary classification
which can effortlessly be extended to multilogit classification. Indeed a Decoder with output dimension
o > 1 can be seen as a concatenation of o different Sub-Decoders of dimension 1. Since our result stands
independently from the Decoders parameters none of the Sub-Decoders gradient will influence the Encoders
parameters. Another straightforward extension of our result concerns other activation functions. Indeed,
a similar argument can be made concerning any bounded function, like the hyperbolic tangent: the only
difference being the value that saturates the activation, and a different expression of the boundary ζ. The
same goes for the algorithm DFA2SRN, the modifications to realise are in matrices W and V. The saturation
of the tanh will produce vectors in {−1, 1}h so instead of having a one-hot encoded vector the decoder will
produce vectors with a unique 1, and −1. This family F{−1,1} of vectors forms a basis in Rh, hence one can
define an invertible matrix P that maps F{−1,1} to the canonical basis formed of one-hot encoded vectors.
By defining W̃ = WP and Ṽ = VP we will obtain a FP-SRN with tanh activation function and that will
simulate the DFA.

One can wonder the interest of the class of SRN that we exhibit as an example of a non-learnable class.
Notice first that any RNN behaves like a finite state machine in a finite precision configuration (Pozarlik,
1998): its hidden state can only store a (huge) finite number of configurations. It is thus relevant to use
the simplest finite state machines, the DFA, as a starting point. Then, even if its construction is not
trivial, it covers a large class of functions thus assessing the interest of the theorem. Finally, the algorithm
constructing a SRN from any DFA is of interest by itself. The algorithm of Minsky (1967) is designed for
RNN with non continuous activation functions, i.e. RNN that are not used nowadays. The closest paper on
the subject (Siegelmann, 1996) shows that for a given DFA with Q states operating on an alphabet of size s
there exists an SRN with 3Qs neurons that simulates the computation of the DFA. However its proof is not
constructive and thus does not provide an algorithm to build such models.

After discussing some direct extensions to our work, we would like to discuss the perspectives. The first
direction is to relax the saturation hypothesis, indeed as it is formulated the β-saturation is a strong hy-
pothesis. Mitarchuk et al. (2024) propose a relaxation to the β-saturation that they call DS-β-saturation
standing for Desynchronised Sliding β-saturation. The idea of this definition is that with in a sliding window
of F iterations, every Encoder neurons has to saturate at least once. The authors demonstrate that with
this hypothesis a SRN can sill be robust to perturbations. Hence we want to explore a potential extension
our work in this direction. Another direction of work would be to extend this result that stands for sequence
classification corresponding to many-to-one, to problems where we need to produce sequences many-to-many
situations.
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7.1 Related work
Sum et al. (2019) study the gradient descent algorithm for feed forward networks. They study the behavior of
the algorithm when the network weights are noisy. They assume that the network weights and the arithmetic
are based on finite precision, and two cases are distinguished: 1) fixed-point arithmetic, 2) floating-point
arithmetic. They show that even slight noise in the case of floating-point arithmetic can deviate the learning
algorithm. Karner et al. (2022) consider training a feed-forward network with ReLU activation under the
assumption of finite precision. Since the type of network studied in this paper is a piece-wise affine function,
they tackle the established fact that network depth causes an exponential increase in affine parts. They
show that it is highly unlikely that the network obtained after training exhibits an exponential amount of
affine parts if the network is trained in finite precision. Colbrook et al. (2022) consider the class of inverse
problems, and show that for any finite precision set up with M digits of precision there exists an infinity
of inverse problems that cannot be learned by neural networks. Their work is of a greater scope, because
they do not focus on a specific learning algorithm. Fono et al. (2022) address the problem of the limits of
artificial neural network with even a higher-level. The authors go back to the limits of Turing machines
as digital machines, thus positioning neural networks as a subset of digital machines unable to cope with
non-computable signals.
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A General results on σ and proof of Theorem 16
A.1 General results about σ
In this section we state and prove a series of results about the sigmoidal function σ.

Lemma 17 Let σ : R ∋ x 7→ 1
1+e−x . For all c ≥ 1/4 we have σ′(x) ≤ c and for 1/4 ≥ c > 0 such that

|x| ≥ ln
(

1+
√

1−4c
1−

√
1−4c

)
we have: σ′(x) ≤ c

Proof Of the lemma

At first we recall some properties of the functions σ and σ′. We have:

∀ x ∈ R σ(x) = 1 − σ(−x)

σ′ is symmetric:
∀ x ∈ R σ′(x) = σ′(−x)

and
σ′(x) = σ(x)(1 − σ(x)).

Moreover the maximum of σ′ is attained on x = 0 and is equal to 1/4, thus the first claim of the lemme is
trivial. Now we assume that 0 < c ≤ 1/4 and we are going to solve the equation:

σ(x)(1 − σ(x)) = c.

This is a quadratic equation if we substitute σ(x) by y and write the equation as:

y − y2 − c = 0.
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By hypothesis 0 < c ≤ 1/4, thus the above equation admits two solutions:

y1 = 1 −
√

1 − 4c
2 , y2 = 1 +

√
1 − 4c
2 .

The sign of the dominant factor is negative thus all the real numbers y that satisfy:

y − y2 ≤ c,

are outside the open interval ] 1−
√

1−4c
2 , 1+

√
1−4c
2 [. In our case we have a supplementary restriction on y, that

is y ∈ [0, 1], since y = σ(x). In order to obtain a bound for x, it is sufficient to apply σ−1 on 1+
√

1−4c
2 .

Hence:

σ−1
(

1 +
√

1 − 4c
2

)
= ln

(
1+

√
1−4c
2

1 − 1+
√

1−4c
2

)

= ln
(

1 +
√

1 − 4c
1 −

√
1 − 4c

)
.

Thus if x > ln
(

1+
√

1−4c
1−

√
1−4c

)
then σ′(x) < c. The symmetry of σ′ extends the result: for all x such that

|x| > ln
(

1+
√

1−4c
1−

√
1−4c

)
we have σ′(x) < c.

The following lemma is a more specific version of the previous lemma.

Lemma 18 Let z > 1, a ≥ 4 and 0 < ε ≤ 1 be tree real numbers. We have for all |x| ≥ ln
(

1+
√

1− 4ε
za(1+ε)

1−
√

1− 4ε
za(1+ε)

)
we have:

zaσ′(x) ≤ 1 and zaσ′(x)
1 − zaσ′(x) ≤ ε

Proof Let z > 1, a ≥ 4 and 0 < ε ≤ 1 be three real numbers and x ≥ ln
(

1+
√

1− 4ε
za(1+ε)

1−
√

1− 4ε
za(1+ε)

)
. By Lemma 17,

just above, we have that:

σ′(x) = ε

za(1 + ε)

because 0 < ε ≤ 1 and za ≥ 4. And we obtain that:

zaσ′(x) = ε

(1 + ε) < 1 .

We set c := aσ′(x) and from the previous equality one can deduce:

zc = ε

(1 + ε) ⇐⇒ (1 + ε)zc = ε

⇐⇒ zc+ εzc = ε

⇐⇒ zc = ε(1 − zc)

⇐⇒ zc

1 − zc
= ε

Lemma 19 is a result about the convergence rate and approximation of σ′
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Lemma 19 Let x, a ∈ R+ two positive real numbers such that a ≤ x− 1.5, and let σ : R ∋ x 7→ 1
1+e−1 , the

sigmoidal function. Then:
σ′(x− a) ≤ σ′(x) + ae−(x−a)

Proof Let x, a ∈ R+ two positive real numbers such that a ≤ x− 1.5, and let σ : R ∋ x 7→ 1
1+e−x . We recall

that the sigmoidal function is at least twice differentiable, with for all t ∈ R

σ′(t) = σ(t)(1 − σ(t))
σ′′(t) = σ′(t)(1 − 2σ(t)).

One can observe that σ′′(t) ≤ 0 for t ≥ 0, because σ′ > 0 and (1 − 2σ(t)) ≤ 0 on positive real numbers t.
Moreover, it is easy to see that (1 − 2σ(t)) ∈ [−1, 1] for all real numbers t. Hence 0 ≤ −(1 − 2σ(t)) ≤ 1. On
the other side, from the definition of σ(t)we have another expression of its derivative :

σ′(t) = e−t

(1 + e−t)2 ≤ e−t.

From the mean value theorem we obtain that there exists c ∈]x− a, x[ such that:

σ′(x− a) = σ′(x) − a · σ′′(c).

The function σ′′ reaches its global minimum in the interval ]1, 1.5[, and by assumption we have x− a ≥ 1.5,
Therefore by summoning the fact that σ′′ is a strictly increasing function on the interval ]1.5,+∞[ (i.e. −σ′′

is a strictly decreasing function on ]1.5,+∞[) we can deduce that:

σ′(x− a) ≤ σ′(x) − a · σ′′(x− a)

= σ′(x) − a · σ′(x− a)
(

1 − 2σ(x− a)
)

≤ σ′(x) + a · σ′(x− a)
≤ σ′(x) + a · e−(x−a)

We finish this subsection with a result about the convergence of a geometric series involving σ′. This lemma
is very handy for the proof of Theorem 16 and Theorem 14.

Lemma 20 Let a > 1, z = 1
a , ζ = ln

(
1+

√
1−4z

1−
√

1−4z

)
and σ : R ∋ x 7→ 1

1+e−x ∈ [0, 1] the sigmoidal function.
Then for all t > 0 we have:

σ′(ζ + t)a < 1.

Proof Let a > 1, z = 1
a , ζ = ln

(
1+

√
1−4z

1−
√

1−4z

)
and σ : R ∋ x 7→ 1

1+e−x ∈ [0, 1]. By Lemma 17 we know that
σ′(ζ) = z, thus σ′(ζ)a = 1. To conclude, we know that σ′ is a strictly decreasing function on the interval
[0,+∞[ Therefore, for any t > 0 we can assert that:

σ′(ζ + t)a < 1.

A.2 Proof of Theorem 16

Definition 21 Let Rp be a SRN with Mh = [U W b] Mo = [V c] and T ≥ 1 an integer. For a parameter
mi,j in the matrix Mh we define a path γ = (γ1, . . . , γk) of length k for 1 ≤ k ≤ T as a finite sequence of
(Mh,Mo) parameters, such that for k = 1 we have γ1 = Mo[i], for k = 2 we have γ1 = Mo[v] and γ2 = mv,i

for some 1 ≤ v ≤ h. For the case k ≥ 3 we define γ such that γk = mv,i for some 1 ≤ v ≤ h, for all
1 < s < k γs−1 = ml,t, γs = mt,r and γs+1 = mr,w. Finally, we define the set Γi,j containing all such paths.
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This section is dedicated to the proof of the criterion for BPTT failure. To do this we are going to prove
that, under the hypotheses of Theorem 16, the update generated by GD is rounded to zero for every
parameter in the SRN. We position ourselves in the context of binary classification on sequences, S =
{(ω1, y1), . . . , (ωN , yN )} is the labeled training dataset where ωi = {xk}Tk=1 ⊂ Gu i.e. the data is vector
embedded in dimension u ≥ 1. Rp is a FP-SRN with in hidden dimension h ≥ 1, input dimension u and
output dimension o = 1. We fix a parameter mi,j in the encoder weight matrix Mh, and compute recursively
the gradient on the word ω with |ω| = T . We already established in Equation 1 that:

∂L(Rω, y)
∂mi,j

= ∂L(Rω, y)
∂x

· σ′
Mo

(hT )
∑
γ∈Γi,j

k∏
s=1

γs · σ′
γs

(xT−s ⊕ hT−s−1 ⊕ 1) (3)

- By the BPTT technique ∂L(Rω,y)
∂x ·σ′

Mo
(hT )

∑
γ∈Γi,j

∏k
s=1 γs ·σ′

γs
(xT−s ⊕ hT−s−1 ⊕ 1) contains the update

for a parameter mi,j in every layer of the unrolled neural network Rω. The following lemma deals with the
number of paths in Γi,j depending on their length.

Lemma 22 Let R be a FP-SRN and ω a word of length T ≥ 1. Let mi,j be a parameter in Mh and Γi,j the
set of all paths as in Definition 21. Then we have:

Γi,j =
T⋃

ϖ=1
{γ ∈ Γ : |γ| = ϖ}

Card(Γi,j) =
T∑

ϖ=1
Card({γ ∈ Γ : |γ| = ϖ})

=
T∑

ϖ=1
hϖ

Proof Let R be a FP-SRN and ω a word of length T ≥ 1. Let mi,j be a parameter in Mh and Γi,j the set
of all paths as in Definition 21. The identity

Γi,j =
T⋃

ϖ=1
{γ ∈ Γ : |γ| = ϖ}

is trivially true. Now it also clear the for ϖ ̸= ϖ̃ we have

{γ ∈ Γ : |γ| = ϖ} ∩ {γ ∈ Γ : |γ| = ϖ̃} = ∅

because a path cannot have two distinct length. This proves that:

Card(Γi,j) =
T∑

ϖ=1
Card({γ ∈ Γ : |γ| = ϖ}) .

Now let γ ∈ Γi,j be a path of length ϖ, we know that γϖ = mt,i for some 1 ≤ t ≤ h meaning that we have h
possible choices for the index t. Once we have fixed t, we know that γϖ−1 = mr,t for some 1 ≤ r ≤ h. Once
again we have h possible choices for the variable r. This argument is true for all γs in γ, hence we have hϖ
possible choices for γ of length ϖ.

Now we proceed to prove the claim of Theorem 16, but first for convenience we recall the statement:

Theorem 16 Let G be the set of all float numbers representable in a given finite precision configuration
(B,M,Ex). Let S = {(ω1, y1), . . . (ωN , yN )} be a labeled training set with N samples and where ωl =
{xk}Tk=1 ⊂ Gu is a finite sequence of vectors such that all vector xk respect ∥xk∥ for 1 ≤ l ≤ N and T ≥ 1
an integer representing the length of the word ωl. We set L : G×G → G to be a differentiable loss function.
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Let α > 0 the learning rate as used in Definition 10. Let Rp be an FP-SRN with hidden dimension h, input
dimension u and output dimension o = 1 i.e. Rp is shaped for binary classification on strings. We recall
that the row vectors of the matrix Mh are denoted mi for 1 ≤ i ≤ h, and that since the output dimension
o = 1 it means that the matrix Mo is of dimension (1, h). We set

m∗ := max
{

|m| : m ∈ p
}

m := min {|m| : m ∈ p and |m| > 0},

i.e. m∗ is the largest parameter in absolute value and m is the smallest, in absolute value, non zero parameter.
We set ε = BD with D = ⌊logB(m)⌋ − (M + 1). We suppose that:

1. For all y ∈ {0, 1} the function [0, 1] ∋ x 7→
∣∣ ∂
∂xL(x, y)

∣∣ is bounded by a constant ρL.

2. ∃ η > 0 such that Rp is (ζ + η)-saturated where

ζ = ln
(

1 +
√

1 − 4z
1 −

√
1 − 4z

)
, z = 4

ψhρL

ε

1 + ε
, ψ := α · max{(m∗ + η/2), ∥W∥}

Then with ∆ := σ′(ζ + η
2 ) and W the transition kernel extracted from Mh, for all ϑ ∈ Rdim(p) such that

∥ϑ[Encoder]∥ ≤ η
2 · (1−∆∥W∥)

(2+
√
h) the FP-SRN Rp+ϑ will experience a stationary gradient for all non zero

parameters on the training data set S.

Proof [Theorem 16] We assume that Rp is a FP-SRN satisfying the assumptions 1 and 2 of Theorem 16.
By Theorem 14 we know that for ϑ ∈ Rdim(p) such that ∥ϑ∥ ≤ η

2
(1−∆∥W∥)

(2+
√
h) , the FP-SRN Rp+ϑ is (ζ + η/2)-

saturated. Indeed we are applying Theorem 14 in the case where t = 1/2. We select a vector ϑ ∈ Rdim(p)

such that ∥ϑ∥ ≤ η
2

(1−∆∥W∥)
(2+

√
h) and we will prove that Rp+ϑ will experience a Stationary Gradient on all one

hot encoded sequences. We recall that for a sequence (ω, y) ∈ S, |ω| = T , the gradient back propagated in
order to update the parameter m̊i,j can be expressed as follows:

∂L(Rp+ϑ(ω), y)
∂m̊i,j

= ∂L(Rp+ϑ(ω), y)
∂x

· σ′
M̊o

(h̊T )
∑
γ∈Γi,j

|γ|∏
s=1

γs · σ′
γs

(ωT−s ⊕ h̊T−s−1 ⊕ 1).

We set F := ∂L(Rp+ϑ(ω),y)
∂x · σ′

M̊o
(h̊T ). We will discus the variable F later. As stated above the FP-SRN

Rp=ϑ is (ζ + η/2)-saturated Therefore, meaning that for all 1 ≤ s ≤ h and for all 1 ≤ k ≤ T we have:∣∣∣⟨m̊s, ωk ⊕ h̊k−1⟩
∣∣∣ ≥ ζ + η/2

implying by the properties of σ′ that:

σ′(⟨m̊s, ωk ⊕ h̊k−1⟩) ≤ σ′(ζ + η/2).

Moreover, by hypothesis on ϑ, for all parameters m̊r,t in the matrix M̊h we have

|m̊r,t| ≤ m∗ + η

2
(1 − ∆∥W∥)

(2 +
√
h)

≤ m∗ + η

2 .

Let γ ∈ Γi,j be a path, from the (ζ + η/2)-saturation of Rp+ϑ we can deduce that:

|γ|∏
s=1

γs · σ′
γs

(eT−s ⊕ h̊T−s−1 ⊕ 1) ≤
|γ|∏
s=1

(m∗ + η/2) · σ′(ζ + η/2)

=
(
(m∗ + η/2) · σ′(ζ + η/2)

)|γ|
.
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This allows us to derive a bound on ∂L(Rp+ϑ(ω),y)
∂m̊i,j

:

∑
γ∈Γi,j

|γ|∏
s=1

γs · σ′
γs

(eT−s ⊕ h̊T−s−1 ⊕ 1) ≤
∑
γ∈Γi,j

(
(m∗ + η/2) · σ′(ζ + η/2)

)|γ|

By Lemma 22 we know the exact number of paths in Γi,j . We set C :=
(
(m∗ + η/2) · σ′(ζ)

)
. The function

σ′ is strictly decreasing on [0,∞[ Therefore one can derive the following bound:∑
γ∈Γi,j

(
(m∗ + η/2) · σ′(ζ + η/2)

)|γ|
<
∑
γ∈Γi,j

(
(m∗ + η/2) · σ′(ζ)

)|γ|

=
T∑

ϖ=1

∑
γ∈Γi,j ,|γ|=ϖ

Cϖ

=
T∑

ϖ=1
hϖCϖ

= hC

(
1 − hTCT

1 − hC

)
We know that C ≤ max{(m∗+η/2), ∥W∥}·σ′(ζ) Therefore in virtue of Assumption 2 and with the application
of Lemma 17 we can assert that:

hC < 1 and hC

1 − hC
= ε

αρLρσ
.

This leads us to the fact that:

hC

(
1 − hTCT

1 − hC

)
<

hC

1 − hC
= ε

αρLρσ
.

By definitions of F = ∂L(Rp+ϑ(ω),y)
∂x · σ′

M̊o
(h̊T ) we have on one side that :

σ′
M̊o

(h̊T ) ≤ 1/4

because for all x ∈ R σ′(x) ≤ 1/4. And on the other side by Assumption 1 we have:
∂L(Rp+ϑ(ω), y)

∂x
≤ ρL .

We can conclude that: ∣∣∣∣∂L(Rp+ϑ(ω), y)
∂m̊i,j

∣∣∣∣ < ε

α
.

Hence Rp+ϑ will experience a stationary gradient on all of its non zero parameters in the gradient descent
with α as learning rate.

B Stability of saturated SRNs
Our reasoning is based on certain facts concerning the saturation of the sigmoidal function. Indeed, a FP-
SRN R respecting the assumptions of Theorem 16 is found to be stable to perturbations. These may well be
perturbations in the data, or perturbations in the parameters. We are interested in parameter perturbations,
because we want to exhibit a Euclidean ball in the parameter space centered on the parameters of R such
that all FP-SRN R̃ whose parameters come from this ball, will behave closely to R. This stability is due
to the fact that the tanh and sigmoidal functions have small variations near the edges of their target sets.
Moreover, because of the exponential in the definition of these functions, they reach the edges of their target
sets rapidly.

The aim of this section is to show that it is sufficient to noise only the bias of the parameters. This simplifies
the proofs in the sequel, as fewer parameters need to be controlled.
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B.1 Propagation of the noise through the iterations.

Definition 23 (Perturbed SRN) Given a SRN RP as in Equation 13, and ϑ ∈ Rdim(P), we define the
perturbed SRN RP+ϑ by the following set of equations:h̊k = σ

(
(U + ϑU)xk + (W + ϑW)h̊k−1 + b + ϑb

)
ẙk = σ

(
(V + ϑV)h̊k + c + ϑc

) ,

where ϑ = vec(ϑU , ϑW , ϑV , ϑb, ϑc), and h̊0 = h0.

Perturbed SRNs are central to our analysis. We will show that robustness to perturbations can be translated
to generalization guarantees by leveraging tools from the PAC-Bayesian theory. A particular case is the one
where the matrices ϑU , ϑW and ϑV are zero matrices:

Lemma 24 (Vector variant of the mean value theorem) Let y, τ ∈ Rd and let f : Rd → Rd be a
differentiable function such that f(y) = (f1(y[1]), . . . , fd(y[d])) where every fi is differentiable. We define
∇f = (f ′

1, . . . , f
′
d). Then there exists c ∈ Rd such that:

f(y + τ) = f(y) + f∇(c) ⊙ τ

and ∈ y[j] < c[j] < (y + τ)[j] for all 1 ≤ j ≤ d.

Proof Let y, τ ∈ Rd, and let 1 ≤ j ≤ d. By the mean value theorem there exists cj , y[j] < cj < (y + τ)[j]
such that:

f
(
(y + τ)[j]

)
= fj(y[j]) + f ′

j(cj) · τ [j].

We can repeat this operation for any coordinate 1 ≤ j ≤ d and create a vector c = (c1, . . . , cd) such that:

f(y + τ) = f(y) + f∇(c) ⊙ τ.

The following lemma is very handy in the expression of the hidden state vector of a fuzzy SRN.

Lemma 25 Let x,y ∈ Rd for d ≥ 1, then:

Diag(x)y = x ⊙ y

Proof Let x,y ∈ Rd for d ≥ 1, and let 1 ≤ j ≤ d. We define D = Diag(x), we have:

Dy[j] =
d∑
i=1

Dj,iy[i]

= Dj,jy[j] by definition of a diagonal matrix
= x[j]y[j]
= (x ⊙ y)[j]

Lemma 26 (Expression of the perturbed hidden state vector) Let RP be a SRN and RP+ϑ a per-
turbed SRN with ϑ ∈ Rdim(P). For all {xk}Tk=1 ∈ X there exists a sequence {ck}Tk=1 ∈ Rh such that for
1 ≤ k ≤ T :

h̊k = hk +
k−1∑
s=1

Λ(ck)
(
k−s∏
l=1

WΛ(ck−l)
)

ns + Λ(ck)nk

where :
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• Λ(ck) = Diag
(
σ′(ck)

)
with ck provided by Lemma 24

•
∏k−s
l=1 WΛ(ck−l) = WΛ(ck−1)WΛ(ck−2) · · · WΛ(cs).

• nk =
(
ϑUxk + ϑWh̊k−1 + ϑb

)
Proof Following the notations introduced in the statement of the lemma, we prove the result by induction
on k. We analyze the execution of the perturbed SRN Rε

P. By Lemma 24, there exists c1 ∈ Rh such that:

h̊1 = σ ((Ux1 + ϑUx1) + (Wh0 + ϑWh0) + (b + ϑb))
= σ ((Ux1 + Wh0 + b) + (ϑUx1 + ϑWh0 + ϑb))
= σ (Ux1 + Wh0 + b) + σ∇(c1) ⊙ (ϑUx1 + ϑWh0 + ϑb).

By definition of the perturbed FP-SRN we have h̊0 = h0 which gives us the following equality:(
ϑUx1 + ϑWh0 + ϑb

)
=
(
ϑUx1 + ϑWh̊0 + ϑb

)
=: n1.

Hence we deduce the equality:

h̊1 = h1 + Λ(c1)n1,

where in the last line we set Λ(c) = Diag(σ∇(c)) and leverage the linearity of the Hadamard product proved
by Lemma 25.

We proved the initialisation step (i.e. k = 1) but for comprehensibility we prove the statement for k = 2.
By reapplying the same argument we can find a vector c2 ∈ Rh such that:

h̊2 = σ ((U + ϑU)x2 + (W + ϑW)(h1 + Λ(c1)n1) + (b + ϑb))

= σ
(

Ux2 + W(h1 + Λ(c1)n1) + b + (ϑUx1 + ϑWh̊1 + ϑb)
)

= σ (Ux2 + Wh1 + b) + σ∇(c2) ⊙ (WΛ(c1)n1) + σ∇(c2) ⊙ (ϑUx1 + ϑWh̊1 + ϑb)
= h2 + Λ(c2)WΛ(c1)n1 + Λ(c2)n2

= h2 +
2−1∑
s=1

Λ(c2)
(2−s∏
l=1

WΛ(c2−l)
)

n1 + Λ(c2)n2.

Let us assume now that for k ≥ 1 we have the following expression:

h̊k = hk +
k−1∑
s=1

Λ(ck)
(
k−s∏
l=1

W Λ(ck−l)
)

ns + Λ(ck)nk.

By Lemma 24 there exists a vector ck+1 ∈ Rh such that:

h̃k+1 = σ

(
(U + ϑU)xk+1 + (W + ϑW)

(
hk +

k−1∑
s=1

Λ(ck)
(
k−s∏
l=1

WΛ(ck−l)
)

ns + Λ(ck)nk
)

+ (b + ϑb)
)

= σ

(
Uxk+1 + W

(
hk +

k−1∑
s=1

Λ(ck)
(
k−s∏
l=1

WΛ(ck−l)
)

ns + Λ(ck)nk
)

+ b + nk+1

)
,
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where nk+1 := ϑUxk+1 + ϑWh̊k + ϑb. Now by applying Lemma 24 we obtain:

h̊k+1 = σ (Uxk+1 + Whk + b) + σ∇(ck+1) ⊙

(
W

k−1∑
s=1

Λ(ck)
(
k−s∏
l=1

WΛ(ck−l)
)

ns + WΛ(ck)nk + nk+1

)

= hk+1 + Λ(ck+1)
k−1∑
s=1

(
k−s+1∏
l=1

WΛ(ck−l+1)
)

ns + Λ(ck+1)WΛ(ck)nk + Λ(ck+1)nk+1

= hk+1 +
k∑
s=1

Λ(ck+1)
(
k−s+1∏
l=1

WΛ(ck−l+1)
)

ns + Λ(ck+1)nk+1.

Thus by induction Lemma 26 is true for all {x1, . . . ,xT } ∈ X .

The following result is on the resilience to noise that saturated FP-SRN exhibit. This result is based on
saturation, but the ζ border is different from the one defined in Theorem 16. To avoid confusion in this
result, we have chosen to write ζ̃ and η̃.

Theorem 27 Let RP be a ζ̃ + η̃-saturated FP-SRN, with z = 1
∥W∥ and ζ̃ = ln

(
1+

√
1−4z

1−
√

1−4z

)
, for some η̃ > 0.

We assume that Rp is operating on one-hot encoded data. We select any real number t such that 0 < t < 1,
then for all ϑ := vec(ϑU, ϑW, ϑV, ϑb, ϑc) ∈ Rdim(P) such that ∥ϑ∥ ≤ (1− t)η̃ · (1−∆∥W∥)

(2+
√
h) , with ∆ = σ′(ζ̃+ tη̃)

and for all {x1, . . . ,xT } ∈ X we have:

1. ∥h̊k − hk∥∞ ≤ (2+
√
h)

1−∆∥W∥ ∥ϑ∥ where 1 ≤ k ≤ T.

2. Rp+ϑ is (ζ̃ + tη̃)-saturated.

The sequence of hidden state vectors h̊k is produced by the perturbed FP-SRN RP+ϑ.

This theorem proves, by induction, that saturated FP-SRNs can be stable to parameter perturbations.

Proof Let RP be a ζ̃ + η̃-saturated FP-SRN, with z = 1
∥W∥ and ζ̃ = ln

(
1+

√
1−4z

1−
√

1−4z

)
, η̃ > 0. We assume

that Rp operates on one-hot encoded data. Let ϑ := vec(ϑU, ϑW, ϑV, ϑb, ϑc) ∈ Rdim(P) such that ∥ϑ∥ ≤
(1 − t)η̃ · (1−∆∥W∥)

(2+
√
h) with ∆ := σ′(ζ̃ + tη̃). We also fix a sequence {x1, . . . ,xT } ∈ X . Before we start with the

induction proof, we summon Lemma 20 in order to validate the assertion that 0 ≤ ∆∥W∥ < 1. We start the
proof by induction naturally with k = 1 i.e. ∥h̊1 − h1∥ ≤ (2+

√
h)

(1−∆∥W∥) ∥ϑ∥. By Lemma 26 we know that one
can find c1 ∈ Rh such that:

h̊1 − h1 = Λ(c1)n1, (4)

with n1 = ϑUx1 + ϑWh̊0 + ϑb. We will prove that ∥Λ(c1)∥ ≤ ∆ and ∥n1∥ ≤ (1 − t)η̃, and we start with the
second inequality. One can observe:

∥n1∥ = ∥ϑUx1 + ϑWh̊0 + ϑb∥
≤ ∥ϑUx1∥ + ∥ϑWh̊0∥ + ∥ϑb∥
≤ ∥ϑU∥∥x1∥ + ∥ϑW∥∥h̊0∥ + ∥ϑb∥.

We have assumed that RP operates on one-hot encoded data, thus ∥xk∥ ≤ 1 for all elements of the alphabet.
Moreover, by definition of FP-SRNs and SRNs the norm of the hidden state vector is always bounded by
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√
h, leading us to the bound:

∥n1∥ ≤ ∥ϑU∥∥x1∥ + ∥ϑW∥∥h̊0∥ + ∥ϑb∥

≤ ∥ϑU∥ +
√
h∥ϑW∥ + ∥ϑb∥

≤ ∥ϑU∥Fro +
√
h∥ϑW∥Fro + ∥ϑb∥Fro

≤ ∥ϑ∥ +
√
h∥ϑ∥ + ∥ϑ∥

= (2 +
√
h)∥ϑ∥

≤ (2 +
√
h)

(1 − ∆∥W∥)∥ϑ∥ because 0 < (1 − ∆∥W∥) ≤ 1

Since by definition ∥ϑ∥ ≤ (1 − t)η̃ (1−∆∥W∥)
(2+

√
h) we can assert that ∥n1∥ ≤ (1 − t)η̃. Consequently for 1 ≤ j ≤ h:

|n1[j]| ≤ η̃
2 . We bring the Readers attention on the fact that the bound:

∥n1∥ ≤ ∥ϑU∥ +
√
h∥ϑW∥ + ∥ϑb∥

is independent of the iteration, i.e. for all {x1, . . . ,xT } ∈ X we know that for 1 ≤ k ≤ T ∥xk∥ ≤ 1 because
xk are one-hot encodings of a finite alphabet, and h̊k ∈

[
− 1, 1

]h
thus ∥h̊k∥ ≤

√
h. By extension we are

going to able to bound all ∥nk∥ by (2 +
√
h)∥ϑ∥. Now we discus the inequality ∥Λ(c1)∥ ≤ ∆. Lemma 24

describes the location of the vector c1, which is for 1 ≤ j ≤ h, c1[j] is in the interval
]
x, x+ n1[j]

[
, x being

defined by x :=
(

Ux1 + Wh0 + b
)

[j]. Therefore |x+ n1[j]| ≥ ζ̃ + tη̃ because |n1[j]| ≤ tη̃, thus by extension:

c1[j] ∈
]

− ζ̃ − η̃,−ζ̃ − tη̃
[

∪
]
ζ̃ + tη̃, ζ̃ + η̃

[
.

We draw the Reader’s attention to the fact that

|σ−1(h̊1[j])| ≥ ζ̃ + tη̃

In order to bound ∥Λ(c1)∥, the quantity of interest for us is:

sup
x∈S

σ′(x), S :=
]

− ζ̃ − η̃,−ζ̃ − tη̃
[

∪
]
ζ̃ + tη̃, ζ̃ + η̃

[
which is easy to determine because σ′ is symmetric and is strictly decreasing on the interval [0,+∞[. We
obtain, quite simply, that:

sup
x∈S

σ′(x) = σ′ (ζ̃ + tη̃
)
.

This reasoning does not depend on 1 ≤ j ≤ h, Therefore we can assert that:

∥Λ(c1)∥ = ∥σ∇(c1)∥∞ ≤ σ′(ζ̃ + tη̃).

To sum up, we have proved that:

• ∥h̊1 − h1∥∞ ≤ (2+
√
h)

(1+∆∥W∥) ∥ϑ∥,

• the first iteration of Rp+ϑ is (ζ̃ + tη̃)-saturated,

• ∥Λ(c1)∥ ≤ ∆,

now we pursue with the induction hypothesis which is :
for all l ∈ {1 . . . , k} we have:

• ∥h̊l − hl∥∞ ≤ (2+
√
h)

(1+∆∥W∥) ∥ϑ∥,

• the lth iteration is (ζ̃ + tη̃)-saturated,
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• ∥Λ(cl)∥ ≤ ∆.

By Lemma 26 we have an expression of the difference between h̊k+1 and hk+1 which is:

h̊k+1 − hk+1 =
k∑
s=1

Λ(ck+1)
(
k−s+1∏
l=1

WΛ(ck−l+1)
)

ns + Λ(ck+1)nk+1

= Λ(ck+1)
[

k∑
s=1

(
k−s+1∏
l=1

WΛ(ck−l+1)
)

ns + nk+1

]
︸ ︷︷ ︸

=:g

.

To simplify the notations we regrouped all the disturbances in the FP-SRN encoder, before activation, in
g. We have to prove that ∥g∥ ≤ (2+

√
h)

(1+∆∥W∥) ∥ϑ∥. We recall that ∆ = σ′(ζ̃ + tη̃), by induction hypothesis we
know that ∥Λ(cl)∥ ≤ ∆ for all l ∈ {1, . . . , k} Therefore we can assert that :

∥g∥ =
∥∥∥∥∥
k∑
s=1

(
k−s+1∏
l=1

WΛ(ck−l+1)
)

ns + nk+1

∥∥∥∥∥
≤

k∑
s=1

(
k−s+1∏
l=1

∥W∥∥Λ(ck−l+1)∥
)

∥ns∥ + ∥nk+1∥

≤
k∑
s=1

(
k−s+1∏
l=1

∆∥W∥

)
∥ns∥ + ∥nk+1∥

=
k∑
s=1

(∆∥W∥)k−s+1 ∥ns∥ + ∥nk+1∥

=
k∑
s=1

(∆∥W∥)s ∥ns∥ + ∥nk+1∥

=
k∑
s=1

(∆∥W∥)s ∥ns∥ + (∆∥W∥)0 ∥nk+1∥

=
k∑
s=0

(∆∥W∥)s ∥ns∥

≤
k∑
s=0

(∆∥W∥)s
(
(2 +

√
h)∥ϑ∥

)
≤

∞∑
s=0

(∆∥W∥)s
(
(2 +

√
h)∥ϑ∥

)
=
(
(2 +

√
h)∥ϑ∥

) 1
1 − ∆∥W∥

,

yet by hypothesis on ϑ we know that(
(2 +

√
h)∥ϑ∥

)
≤ (1 − ∆∥W∥)(1 − t)η̃.

Hence one can deduce that:
∥g∥ ≤ (1 − t)η̃.

For the location of ck+1 we apply the exact same argument as for c1, i.e. :
h̃k+1 = σ (Uxk+1 + Whk + b + m)

= σ (Uxk+1 + Whk + b) + Λ(ck+1)m.
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We established that for all 1 ≤ j ≤ h, |g[j]| ≤ ∥g∥ ≤ (1 − t)η̃, Therefore:

ck+1[j] ∈
]

− ζ̃ − η̃,−ζ̃ − tη̃
[

∪
]
ζ̃ + tη̃, ζ̃ + η̃

[
.

Hence by the properties of σ′ function, and of the Λ(ck+1) matrix we can assert that ∥Λ(ck+1)∥ ≤ σ′ (ζ̃ + tη̃
)
.

We conclude that the proof by induction is valid.

Lemma 28 Let Rp by a (ζ̃ + η̃)-saturated FP-SRN with ζ = ln
(

1+
√

1− 4
∥W∥

1−
√

1− 4
∥W∥

)
and η̃ > 0. Let ζ ≥ 0

and η > 0 be two real numbers such that ζ + η = ζ̃ + η̃ and ζ̃ ≤ ζ, then for all ϑ ∈ Rdim(p) verifying
∥ϑ∥ ≤ η

2
(1−∆∥W∥

2+
√
h

with ∆ = σ′(ζ + η/2) the FP-SRN Rp+ϑ is (ζ + η/2)-saturated.

In Theorem 16 and Theorem 14 we use a notion of thresholds ζ, ζ̃ in the saturation of the activation function
σ. Moreover, in Theorem 16 these two values are interacting, leaving ambiguity as to whether they can
interact. The following lemme is there to clear this ambiguity.

Proof Let Rp by a (ζ̃ + η̃)-saturated FP-SRN with ζ̃ = ln
(

1+
√

1− 4
∥W∥

1−
√

1− 4
∥W∥

)
and η̃ > 0. Let ζ ≥ 0 and η > 0

be two real numbers such that ζ + η = ζ̃ + η̃ and ζ̃ ≤ ζ. Let ϑ ∈ Rdim(p) verifying ∥ϑ∥ ≤ η
2

(1−∆∥W∥
2+

√
h

. From
the hypothesis ζ + η = ζ̃ + η̃ one can deduce that

ζ = ζ̃ + η̃ − η

η/2 = 1
2 (ζ̃ + η̃ − ζ) .

The hypothesis ζ ≥ ζ̃ implies that η̃ ≤ η Therefore there exists t ∈ [0, 1] such that η
2 = (1 − t) · η̃. In the

same way, the quantity ζ + η/2 can be transformed into ζ̃ + t · η̃, indeed:

ζ + η/2 = ζ̃ + η̃ − η + η/2
= ζ̃ + η̃ − η/2
= ζ̃ + η̃ − (1 − t) · η̃
= ζ̃ + t · η̃

Hence ∆ = σ′(ζ+ η/2) = σ′(ζ̃+ t · η̃) and η/2 = (1 − t) · η̃ with t ∈]0, 1[, allowing us to conclude by Theorem
14 that the claim of Lemma 28 is true.

C DFA2SRN algorithm
In this appendix we provide a proof that the algorithm presented in Section 5 is well defined. We start by
recalling the definition of the Euclidean division, than the algorithm DFA2SRN, followed by the proof of it’s
well definition.

Definition 29 (Euclidean division) Let (l, j) two positive integers greater than one. There exists a unique
couple (a, b) of positive integers such that:

l = aj + b where 0 ≤ b < j .

We call a the quotient and b the rest. We denote the quotient l//j := a.

Now we recall the algorithm DFA2SRN.

Let D = (Σ, Q, q1, δ, F ) be a DFA. We suppose that the alphabet Σ = {e1, . . . , eu} is set of one-hot vectors.
We recall that Q = {q1, . . . , q|Q|} is the set of states, q1 is the initial state, δ : Σ ×Q → Q is the transition
function, and F ⊂ Q is the set of final states.. In order to simulate the DFA, we have to simulate the
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transition function, to encode every state such that it can be read by the FP-SRN, and then the model has
to simulate the function discriminating between elements of F and Q \ F . The encoding of the states of
the DFA follows the spirit of one-hot encoding. The transition function is simulated by the encoder and the
discrimination function will be simulated by the decoder.

The main idea is to make the hidden states ht, t ≥ 1, be an encoding of the state q reached in the DFA while
parsing a sequence up to its tth element. By construction, using the saturation float J , the FP-SRN Rp will
produce a One-hot hidden vector at each iteration. In order to perform the simulation we need to set the
dimension h of the hidden vector to h = |Σ| · |Q|, and groups of |Σ| One-hot encoded vectors will represent a
unique state q ∈ Q. For example, if Σ = {a, b} an alphabet with two symbols, the vector

(
1 0 0 . . . 0

)
will correspond to the state q1, but so will

(
0 1 0 . . . 0

)
. More generally, vectors where only one of

the first |Σ| coordinates is equal to 1, and the others are nil, will represent the q1 state. In this construction,
Mh will encode the transition function, and Mo will encode the q ∈ F relation. In the rest of this section
we will refer to the FP-SRN definition version 2 and use the formalism of kernels W the transition kernel U
the input kernel and v the output kernel (the output kernel is a vector because the output that we need is
a scalar in {0, 1}).

We set |Q| := Card(Q), |Σ| := Card(Σ). We assume that Q = {q1, q2, . . . , q|Q|} and we define IF ⊂
{1, . . . , |Q||Σ|} with

({i, i+ 1, . . . , (i+ |Σ|) − 1} ⊂ IF ⇐⇒ qi ∈ F )

The linear parts of the SRN are defined by:

W ∈ G|Q||Σ|×|Q||Σ| ; U ∈ G|Q||Σ|×|Σ|

h0 ∈ G|Q||Σ| with h0[1] = 1,h0[j] = 0 if j ̸= 1;
v ∈ G1×|Q||Σ| with v[j] = J if j ∈ IF and − J if j /∈ IF

J is the smallest float number saturating the activation function as defined in Lemma 3.

We define U := 2J ·

I|Σ|
...

I|Σ|

}|Q| identity matrices I|Σ| piled up. - For the construction of W, we start by

defining for every state qk, 1 ≤ k ≤ |Q|, a column vector wk ∈ G|Q||Σ| by the following rules:

R1: For 1 ≤ s ≤ |Σ| if δ(qk, as) = qj then wk[r] = −1 with r = (j − 1)|Σ| + s

R2: All the other coordinates of wk are set to −3

Note that by definition of a DFA every vector wk has exactly |Σ| coordinates set to −1 and (|Q| − 1)|Σ|
coordinates set to −3. Also by definition of a DFA, every state is reached by exactly |Σ| transitions. The
rule R1 defines an encoding for (qk, as, δ(qk, as)) Therefore the vector wk contains all the transitions starting
at qk.

Afterward we generate, for every qk ∈ Q, the matrix:

Wk :=
[
wk wk · · · wk

]︸ ︷︷ ︸
|Σ| times

∈ G|Q||Σ|×|Q||Σ|

W := J ·
[
W1 W2 · · · W|Q|] ∈ G|Q||Σ|×|Q||Σ|.

(5)

In the definition of Wk the vector wk is repeated |Σ| times.

Proof In the following paragraph we prove that the constructed FP-SRN is simulating the functioning of
the fixed DFA. For this purpose, in first place, we have to prove that, for any word ω = e1 · · · eT ∈ Σ∗ of
length T , there exists a well defined correspondence between[

σ
(

Ue1 + Wh0

)
, . . . , σ

(
UeT + WhT−1

))]
f7−→ [δ∗(q1, e1), δ∗(q1, e1e2), . . . , δ∗(q1, ω)] (6)
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The correspondence f will be explicitly defined later. Secondly we will prove that we have:[
δ(q1, ω) ∈ F

]
⇐⇒

[
σ
(
vhT

)
= 1
]

(7)

The proof is by induction on k ∈ {1, . . . , T}, and we naturally start with k = 1. Let es ∈ Σ with 1 ≤ s ≤ |Σ|,
and h0 the initial hidden state vector as defined above. We are going to compute h1 = σ (Ues + Wh) and
show that h1 will have a unique non zero coordinate whose position encodes the state δ∗(q1, es) = δ(q1, es).
We start with Ues:

Ues[k] = 2J if (k ≡ s modulo |Σ|) and 0 otherwise.
We obtain this because of the structure of U (|Σ| identity matrices piled up and multiplied by 2J) and es
is a one-hot encoded vector. Then we proceed to the computation of Wh0:

Wh0 = J · w1 by construction of W and definition h0.

Indeed, we have h0[1] = 1 and for 2 ≤ i ≤ |Q||Σ| h0[i] = 0. There is a unique q ∈ Q such that δ(q1, es) = q.
We assume that δ(q1, es) = qj for 1 ≤ j ≤ |Q|. By construction of w1, we have:

w1[r] = −1 with r = (j − 1)|Σ| + s

referring to the rule R1. By definition of a DFA, it is not possible to have j̃ ∈ {1, . . . , |Q|}, j̃ ̸= j and
δ(q1, es) = qj̃ , Therefore for all r̃ ∈ {1, . . . , |Q||Σ|} such that w1[r̃] = −1 we have:

(r̃ ≡ s modulo |Σ|) ⇐⇒ r = r̃.

This last point is important for the computation Ues + Wh0, indeed we will have:

(Ues + Wh0) [r] = 2J − J = J

(Ues + Wh0) [t] = 2J − 3J or 0 − 3J or 0 − J

with t ∈ {1, . . . , |Q|} t ̸= r. Most importantly, the vector Ues+Wh0 has only one coordinate with the value
J , and the other coordinates are less than −J . Hence when we apply σ in finite precision to Ues + Wh0 we
obtain the vector h1 with the property:

h1[r] = 1 and for t ̸= r h1[t] = 0.

Since r = (j−1)|Σ|+s, by Definition 29 we get that r//|Σ|+1 = j, corresponding to the state qj = δ∗(q1, es).
Hence we can explicitly define the correspondence f as follows:

f : R|Q||Σ| ∋ h 7→ g(h)//|Σ| + 1 ∈ {1, . . . , |Q|},

where g is the function that returns the index of the greatest coordinate of the vector h.

We proved that the FP-SRN R successfully simulates the DFA D on all words of length k = 1. We make
the induction assumption that for all words ω ∈ Σ∗ such that |ω| = T ≤ k we have:

• We have
(
h1, . . . ,hT

) f7−→
(
δ∗(q1, e1), . . . , δ∗(q1, ω)

)
.

• The hidden state vectors h1, . . . ,hT are all one-hot encoded.

We are going to show that induction hypothesis is true for k + 1.

Let ω ∈ Σ∗, such that |ω| = k + 1, let
(
h1, . . . ,hk+1

)
the sequence of hidden state vectors produced by R

from the execution on ω. We know that ω = ω̃ · es̃, where ω̃ is a prefix of ω, of length k. We know for sure
that |ω̃| ≥ 1 because by assumption k ≥ 1. By induction assumption we have that:(

h1, . . . ,hk
) f7−→

(
δ∗(q1, e1), . . . , δ∗(q1, ω̃)

)
,

and all hidden vectors ht, for 1 ≤ t ≤ k, are one-hot encoded. We also know by the induction hypothesis
that for j := f(hk) we have qj = δ∗(q1, ω̃). It is sufficient to apply the same arguments as in the case k = 1
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in order to conclude the proof by induction. Indeed by construction of the matrices U and W we know that
there exists a unique r̃ ∈ {1, . . . , |Q||Σ|} such that:

(Ues̃ + Whk)[r̃] = J

(Ues̃ + Whk)[t̃] ≤ −J for t ̸= r̃

and by the construction of U and W, and more particularly by construction of the vector wj , a vector
encoding all possible transitions from the state qj , we know that j̃ := r̃//|Σ|+1 corresponds to qj̃ = δ∗(q1, ω).
From the identity just above we can deduce that after the application of the activation function σ, the
saturation will occur and the outputted vector hk+1 will be one-hot encoded, with a 1 at the position j̃. We
can thus conclude that the proof by induction is valid.

D Finite precision arithmetic’s results
Lemma 30 (smallest increment) Let (B,M,Ex) be a finite precision configuration and a ∈ G(B,M,Ex).
We define LM as the largest positive numbers in G(B,M,Ex). If 0 ≤ a < LM there exists r ∈ G(B,M,Ex) such
that in finite precision arithmetic’s:

a+ r > a and ∀ 0 ≤ s < r , a+ s = a

Proof Let (B,M,Ex) be a finite precision configuration and a ∈ G(B,M,Ex). We define LM as the largest
positive numbers in G(B,M,Ex). We assume that 0 ≤ a < LM and we write the float a in its normal form:

a = a1.a2 · · · aMBλa

with ai ∈ {0, . . . , B − 1} for 1 ≤ i ≤ M and a1 > 0. Now we define the minimal increment

r := Bλa−M+1 .

By hypothesis we have a < LM Therefore a+ r ≤ LM and:

a+ r = a1.a2 · · · aMBλa +Bλa−M

=
(
M−1∑
i=1

aiB
(−i+1) + (aM + 1)B(−M+1)

)
Bλa

> a .

Now if one considers a float number 0 ≤ s < r with s = s1.s2 · · · sMBλs , from the definition of r one can
deduce that λs < λa −M + 1 and Therefore λs ≤ λa −M . Hence a+ s will be rounded to a.

Lemma 31 (Underflow boundary) Let (B,M,Ex) the finite precision configuration. We define u :=
⌊B

Ex

2 ⌋ and l := BEx − u. If M < min{u, l} then there exists J such that σ(J) = 1 and σ(−J) = 0 and for
all positive float numbers s such that J − s < J we have σ(−(J − s)) ̸= 0

Proof The total number of exponents obtainable in this configuration is: The configuration (B,M,Ex)
allows to have u := ⌊B

Ex

2 ⌋ positive exponents and l := BEx − u negative exponents based on Definition
1. Let K := ln(B)l we have on one side: σ(K) = 1

1+e− ln(B)l ≤ 1
1+B−l = 1 because 1 + B−l will be

rounded to 1 in virtue of the Hypothesis 31 we know that M < min{u, l}. On the other side we get
σ(−K) = 1

1+eln(B)l = 1
1+Bl = 1

Bl = B−l the smallest number we can have in the finite precision setup
(B,M,Ex). Consequently if we set J := K + r we get:

e−K−r = B−le−r < B−l
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Figure 9: Experimenting the gradient failure

Hence we will have σ(J) = 1 and σ(−J) < B−l Therefore σ(−J) will be inevitably rounded to zero.

Note that in the EEEI 754 norm the exponent of the 32 bit float numbers we have l = 128, u = 127, and
the assumption M < min{u, l} is satisfied.

E Numerical experiments
This appendix is dedicated to more in-depth explanations of the numerical experiments described in section
6.

For our vanishing gradient experiment we randomly generated a labeled training set of 458 words on the
alphabet {a, b}. Words with label 1 are those containing an odd number of a, and the other words are
labeled by 0. We defined a set of goal parameters ptarg corresponding to the parameters of the example
Section 4.3, and we randomly defined initial parameters pinit. In order to simulate the best case scenario
where the training of the FP-SRN would lead from pinit to ptarg in a strait line, we defined a sequence of
parameter vectors {pk}k≥0 with

p0 := pinit

pk+1 := pk + α · (ptarg − pinit)

where 0 < α is a predefined learning rate. The goal of this setup is to calculate ∇L (Rpk
(ω), y) over the

whole training dataset, for k = 0, 1, . . . until ∥∇L (Rpk
(ω), y)∥∞ < 10−14 for all (ω, y) ∈ S. Once the

stopping criterion was reached at ps, we reproduce the same procedure with a more refined sequence of
vector {p′

k′}k′≥0 defined by:

p′
0 := ps−1

p′
k′+1 := p′

k′ + α′ · (ptarg − pinit)

where 0 < α′ < α is a strictly smaller learning rate. The refining, as we repeat it, allows us to find a better
approximation of the point where the gradient becomes stationary. In our experiment we applied the strait
line gradient evaluation with learning rates α ∈ {0.1, 0.01, 0.001}.

Two version of the strait line gradient evaluation are displayed in Figure 9, one where all the parameters
are updated represented by the blue graphs, and the second one where only the Encoders parameters are
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Figure 10: Regular SGD training

updated and the Decoders parameters are frozen after one update. Figure 9 displays, from left to right,
the graphs of: the Loss, the distance to the target, the ∥Gradient∥∞ infinite norm of the gradient, and the
proportion of the parameters affected by the stationary gradient. We recall that a parameter mi,j experiences
a stationary gradient if in finite precision

∀ (ω, y) ∈ S mi,j − lr · ∂L
∂mi,j

(R(ω), y) = mi,j .

In other words, for the setup where all the parameters are updated, 64,9% of the parameters are experiencing
the stationary gradient once the experiment is halted.

Figure 10 represents our attempt to learn a model with the same data by applying regular SGD. We used the
same training data set as for the previous experiment, and we trained the a SRN on 20,000 batches of size
32 words. We adopted a slightly different method from that usually used with pytorch or keras frameworks,
since for each iteration between 1 and 20,000 we randomly selected 32 words from the 458-word training
dataset. Usually the dataset is shuffled like a deck of cards, after which the batches are trained and fixed for
the entire training run. The statistics we observed in this experiment are: the Loss, the Euclidean distance
between two consecutive parameter vectors ∥pt−pt−1∥2, ∥∇L(R(ω), y)∥∞, and the euclidean distance to the
target, the target being the same set of parameters as in the experiment described just above. In a gradient
descent learning scenario, the nature of the data is not known a priori, so the distance to the target makes
little sense. For this reason, we use the Euclidean distance between two consecutive parameter vectors, in
order to track down some kind of convergence through the Cauchy criterion. Of course, in our experimental
context, we know the data precisely, and thus the associated DFA. We therefore also displayed the distance
to the goal parameters. With these experiences, we can conclude that SGD cannot even push FP-SRN
parameters into stationary gradient regions.

As argued in Section 6, the language on the alphabet {a, b} formed of all words containing an odd number
of a’s falls into the highest complexity subclass of regular languages. To avoid any kind of bias linked to
the complexity of the formal language, we have selected a set of 9 languages in the van der Poel et al.
(2023) benchmark. The 9 selected languages cover the entire complexity spectrum of the benchmark. We
reproduced the same learning framework, with learning samples for each 1000-word language and the same
learning algorithm as for the experiment illustrated in Figure 10 . The learning results for all 9 are shown in
Figure 11 with each row labeled with the name of the language as specified in the benchmark. We observe
the same behavior as for the experiment 10.
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Figure 11: Regular SGD training on 9 formal languages39
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