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ABSTRACT

Distribution Matching Distillation (DMD) distills score-based generative models
into efficient one-step generators, without requiring a one-to-one correspondence
with the sampling trajectories of their teachers. However, limited model capacity
causes one-step distilled models underperform on complex generative tasks, e.g.,
synthesizing intricate object motions in text-to-video generation. Directly extend-
ing DMD to multi-step distillation increases memory usage and computational
depth, leading to instability and reduced efficiency. While prior works propose
stochastic gradient truncation as a potential solution, we observe that it substan-
tially reduces the generation diversity of multi-step distilled models, bringing it
down to the level of their one-step counterparts. To address these limitations,
we propose Phased DMD, a multi-step distillation framework that bridges the
idea of phase-wise distillation with Mixture-of-Experts (MoE), reducing learning
difficulty while enhancing model capacity. Phased DMD is built upon two key
ideas: progressive distribution matching and score matching within subinter-
vals. First, our model divides the SNR range into subintervals, progressively re-
fining the model to higher SNR levels, to better capture complex distributions.
Next, to ensure the training objective within each subinterval is accurate, we
have conducted rigorous mathematical derivations. We validate Phased DMD by
distilling state-of-the-art (SOTA) image and video generation models, including
Qwen-Image (20B parameters) and Wan2.2 (28B parameters). Experimental re-
sults demonstrate that Phased DMD preserves output diversity better than DMD
while retaining key generative capabilities. We will release our code and models.

1 INTRODUCTION

Recently, state-of-the-art (SOTA) diffusion models have made significant progress in image and
video generation. In image generation, SOTA models (Wu et al., 2025; OpenAI, 2025; Team, 2025b;
GoogleAI, 2025a) demonstrate precise prompt control, enabling complex text-to-image rendering
and accurate layout specification. In video generation, these models (Wan et al., 2025; Kong et al.,
2024; GoogleAI, 2025b; OpenAI, 2024) exhibit substantial improvements in dynamic scene genera-
tion, such as fast-moving objects in sports and complex camera movements like ego-centric videos.
Simultaneously, the increasing parameter sizes and computational demands of base models highlight
the importance of accelerating diffusion model sampling.

Several techniques have been proposed to accelerate diffusion models, including classifier-free guid-
ance (CFG) distillation (Meng et al., 2023), step distillation (Song et al., 2023; Wang et al., 2024;
Salimans & Ho, 2022; Yin et al., 2024a; Luo et al., 2023; Luo, 2024; Zhou et al., 2024; Huang et al.,
2024; Lin et al., 2024; 2025; Frans et al., 2024; Geng et al., 2025), SVDQuant (Li* et al., 2025),
Mixture-of-Expert (MoE) models (Balaji et al., 2022; Feng et al., 2023; Wan et al., 2025), and par-
allel computation (Fang et al., 2024). Among these, step distillation methods based on Variational
Score Distillation(VSD), including diff-instruct (Luo et al., 2023), DMD (Yin et al., 2024a), SID
(Zhou et al., 2024), achieve high-quality generation by distilling models into single-step generators.
However, the limited network capacity (Lin et al., 2024) of single-step distilled models hinders their
ability to handle complex tasks like intricate text rendering or dynamic scene generation, which are
critical for the widespread adoption of these foundational models.
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Figure 1: Schematic diagram of (a) Few-step DMD (Yin et al., 2024a), (b) Few-step DMD with
stochastic gradient truncation strategy (SGTS) (Huang et al., 2025), (c) Phased DMD and (d) Phased
DMD with SGTS .

Few-step distillation balances computational cost and generation quality (Luo et al., 2025). Yet,
as shown in Fig. 1a, directly applying VSD to few-step distillation (Yin et al., 2024a) introduces
challenges such as increased computational graph depth and higher memory overhead. Further-
more, the lack of explicit constraints on intermediate generator steps reduces training stability and
leads to suboptimal performance in few-step models. To address these issues, Huang et al. (2025)
proposed a stochastic gradient truncation strategy (SGTS), where multi-step sampling may termi-
nate at a random step and the gradient backpropagation is restricted to the final denoising step (see
Fig. 1b). This approach improves training convergence and stability by supervising all intermediate
steps while enhancing memory efficiency via gradient detachment for non-final steps. However,
SGTS can terminate sampling after just one step during training, distilling a one-step generator for
that iteration. Consequently, the generative diversity of few-step generators trained with SGTS is
reduced to a level akin to that of one-step generators.

The diffusion theory (Song et al., 2020) suggests the existence of infinitely many neural networks
as score estimators across a range of signal-to-noise ratios (SNR), spanning from zero to infinity.
During the generation process, diffusion models exhibit distinct temporal dynamics (Balaji et al.,
2022). Specifically, the low-SNR stage focuses on modeling image structures and video dynamics,
while the high-SNR stage refines visual details. In practice, a single neural network is typically em-
ployed throughout the denoising process, requiring the model to simultaneously learn and perform
a variety of denoising tasks. Recent studies (Balaji et al., 2022; Feng et al., 2023; Wan et al., 2025)
have introduced an MoE architecture into diffusion models. By assigning specialized experts to
different SNR levels, MoE enhances model capacity and generative performance without increasing
inference cost. The performance improvement is particularly pronounced in video generation (Wan
et al., 2025), where the low-SNR expert excels at capturing dynamic content.

In this work, we propose Phased DMD, a novel distillation framework for few-step generation. Our
approach is inspired by a broader vision: By decomposing a complex task into learnable phases, each
phase naturally forms an expert, collectively enhancing the model’s capacity in a MoE manner. Our
method is built upon two key components:

• Progressive distribution matching: Conceptually similar to ProGAN (Karras et al., 2017), which
progressively trains a generator to handle higher resolutions, Phased DMD divides SNR into
subintervals and progressively distills models toward higher SNR levels.

• Score matching within SNR subintervals: As each phase is trained within a subinterval, the
training objective undergoes a transformation. To ensure theoretical rigor, we derive the training
objective for the fake score estimator within each subinterval.

As illustrated in Fig. 1c, Phased DMD offers several advantages: First, by partitioning SNR into
subintervals, the model learns complex data distributions incrementally, improving training stability
and generative performance. Second, each phase involves only a single gradient-recorded sampling
step, avoiding additional computational and memory overhead. Third, notably, Phased DMD natu-
rally produces a few-step MoE generative model, regardless of whether the teacher model adopts an
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MoE architecture. Last, as shown in Fig. 1d, Phased DMD can be combined with SGTS , enabling
4-step inference across 2 phases while simplifying the complexity of both training and inference.

We validate Phased DMD by distilling SOTA image and video generation models, including Qwen-
Image (Wu et al., 2025) with 20B parameters and Wan2.1/Wan2.2 (Wan et al., 2025) with 14/28B
parameters. Experimental results demonstrate that Phased DMD better preserves output diversity
compared to standard DMD while maintaining the base models’ key capabilities, such as faithful
text rendering in Qwen-Image and realistic dynamic motion in Wan2.2.

Our contributions are summarized as follows:

• We propose Phased DMD, a data-free distillation framework for few-step diffusion models. This
framework combines ideas from DMD and MoE, achieving higher performance ceilings while
maintaining memory usage similar to single-step distillation.

• We derive the theoretical training objective for subinterval diffusion models without relying on
external information, such as clean samples. We highlight the necessity of this correctness for
DMD distillation.

• Without requiring GAN loss or regression loss, Phased DMD achieves SOTA results on text-
to-image and text-to-video generation models. To the best of our knowledge, this is the largest
reported distillation validation. Experimental results show that our method effectively reduces
diversity loss while preserving the base models’ key capabilities, including complex text rendering
and high-dynamic video generation.

2 METHOD

To clarify the principle of phased DMD, we begin by introducing the theoretical background and
notations related to diffusion models (Kingma et al., 2023), score matching (Song et al., 2020; Karras
et al., 2022), and distribution matching distillation (Yin et al., 2024b;a). We explicitly highlight
why the principle of DMD is applicable only to score-based generative models. Building on this
foundation, we present the motivation behind Phased DMD and explain how it inherently achieves
improved generative diversity. Following this, we detail the two key components of Phased DMD :
progressive distribution matching and score matching within subintervals.

2.1 PRELIMINARY

2.1.1 DIFFUSION MODELS AND SCORE MATCHING

Consider a continuous-time Gaussian diffusion process defined over the interval 0 ≤ t ≤ 1. The
ground-truth distribution is denoted p(x0). For any 0 ≤ t ≤ 1, the forward diffusion process is
described by the following conditional distribution:

p(xt|x0) = N (xt;αtx0, σ
2
t I) (1)

where αt and σ2
t are positive, scalar-valued functions of t. The signal-to-noise ratio (SNR) is defined

as SNR(t) = α2
t /σ

2
t . It is assumed that SNR(t) is strictly monotonically decreasing over time. No

additional constraints are imposed on the relationship between αt and σt, ensuring the notations
are compatible with different kinds of diffusion models (Ho et al., 2020; Karras et al., 2022; Song
et al., 2022; Podell et al., 2023) and flow models (Liu et al., 2022; Esser et al., 2024). The diffusion
process is Markovian (Kingma et al., 2023), meaning that p(xt|xs,x0) = p(xt|xs). Furthermore,
p(xt|xs) is also Gaussian, and can be expressed as:

p(xt|xs) = N (xt;αt|sxs, σ
2
t|sI) (2)

where αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ

2
s . For any 0 ≤ s < t ≤ 1, the marginal distribution of

xs and xt are given by p(xs) =

∫
p(xs|x0)p(x0)dx0 and p(xt) =

∫
p(xt|x0)p(x0)dx0. If only

p(xs) is observed and not p(x0), the marginal distribution of xt can alternatively be expressed as:

p(xt) =

∫
p(xt|xs)p(xs)dxs. Thus, we have the following equivalence:

p(xt) =

∫
p(xt|x0)p(x0)dx0 =

∫
p(xt|xs)p(xs)dxs (3)

3
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In the training process, αt and σt are predefined functions of t, while x0 is sampled from the dataset
distribution x0 ∼ p(x0). Timestep t is sampled from a predefined distribution over the interval [0,
1], such as a uniform or logit-normal distribution (Esser et al., 2024), i.e., t ∼ T (t; 0, 1). The sample
xt is then given by xt = αtx0 + σtϵ, where ϵ ∼ N (ϵ;0, I). We use t ∼ T and ϵ ∼ N for brevity
in later paragraphs unless otherwise specified. Song et al. (2020) unified diffusion models under
the theoretical framework of score-based generative models and demonstrated that the continuous
diffusion process is fundamentally governed by a Stochastic Differential Equation (SDE). Here, we
adopt flow velocity prediction as an example and demonstrate its connection to score matching. Let
ψθ denote a diffusion model parameterized by θ. The relationship between flow matching and score
matching is expressed below.

Jflow(θ) = Ex0∼p(x0),ϵ∼N ,t∼T ,xt=αtx0+σtϵ[∥ψθ(xt)− (ϵ− x0)∥2] (4)

= Ex0∼p(x0),t∼T ,xt∼p(xt|x0)[∥ψθ(xt) + xt/αt + (σt + σ2
t /αt)∇xt log(p(xt|x0))∥2]

= Et∼T ,xt∼p(xt)[∥ψθ(xt) + xt/αt + (σt + σ2
t /αt)∇xt log(p(xt))∥2] (5)

Eq. 5 is derived based on the equivalence between denoising score matching (DSM) and explicit
score matching (ESM), as originally proven in Vincent (2011). In Supp. A, we provide the detailed
derivation of Eq. 5. Additionally, we demonstrate the connection between sample prediction (a.k.a.
x-prediction) and score matching in Appendix A.

2.1.2 DISTRIBUTION MATCHING DISTILLATION

LetGϕ denote the generator parameterized by ϕ. The objective of DMD is to minimize the reverse
Kullback-Leibler (KL) divergence between the real data distribution preal(x0) and the generated
data distribution pfake(x0), produced byGϕ.

DKL(pfake∥preal) = Eϵ∼N ,x0=Gϕ(ϵ)[log pfake(x0)− log preal(x0)] (6)

We use DKL to abbreviate DKL(pfake∥preal) in later paragraphs. To leverage the pretrained diffu-
sion models as score estimators, the generated samples are diffused and the objective becomes:

DKL = Eϵ∼N ,x0=Gϕ(ϵ),t∼T ,xt∼p(xt|x0)[log pfake(xt)− log preal(xt)] (7)

By combining Eq. 5 and Eq. 7, we can approximate the objective as:

DKL ≈ Eϵ∼N ,x0=Gϕ(ϵ),t∼T ,xt∼p(xt|x0)[λt(Tθ̂(xt)− Fθ(xt))] (8)

where λt = 1/(σt + σ2
t /αt), Fθ denotes the fake diffusion model and Tθ̂ denotes the teacher dif-

fusion model. θ is initialized from θ̂ and Fθ is updated on pfake(x0) according to Eq. 4. The
derivation from Eq. 7 to Eq. 8 is valid under the condition that the models are score-based gener-
ative models. Formally, this approximation holds if Fθ(xt) ≈ at∇xt log(pfake(xt)) + btxt and
Tθ̂(xt) ≈ at∇xt log(preal(xt))+btxt, where at is any non-zero function of t and bt is any function
of t. Taking the gradient of Eq. 8 with respect to the generator parameters, we have:

∇ϕDKL ≈ Eϵ∼N ,x0=Gϕ(ϵ),t∼T ,xt∼p(xt|x0)[wt(Tθ̂(xt)− Fθ(xt))]dG/dϕ (9)

where wt = λtαt. Similar to GANs (Goodfellow et al., 2014), DMD employs an adversarial training
process consisting of two stages in each iteration. In the fake diffusion optimization stage, Fθ is
optimized on the generated distribution using Eq. 4, allowing it to serve as a score estimator for
pfake(xt). In the generator optimization stage, Gϕ is updated according to Eq. 9, encouraging the
generated distribution to more closely approximate the real distribution. For training stability, Fθ

receives more frequent updates, enabling it to accurately estimate the score of the evolving generated
distribution (Yin et al., 2024a).

2.2 FROM ONE-STEP DISTILLATION TO FEW-STEP DISTILLATION

In N -step distillation, we have a scheduler S with N + 1 timesteps, t = {t0, t1, t2, ..., tN}, where
0 = tN < ti < ti−1 < t0 = 1 for any i ∈ {2, ..., N − 1}. The sampling process begins with
xt0 = ϵ ∼ N (ϵ;0, I). The sample x0 is then generated iteratively: for i = 0, 1, ..., N − 1, we
computexti+1 = S(Gϕ(xti),xti , ti, ti+1). Let pipeline(Gϕ, t, ϵ,S) denote this iterative sampling
procedure. Eq. 9 is thus adapted as follows:

∇ϕDKL ≈ Eϵ∼N ,x0=pipeline(Gϕ,t,ϵ,S),t∼T ,xt∼p(xt|x0)[wt(Tθ̂(xt)− Fθ(xt))]dG/dϕ (10)
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As shown in Fig. 1a, the depth of the computational graph during generator optimization increases
linearly with N , which reduces training stability and increases memory overhead. To address this
issue, Huang et al. (2025) introduced a stochastic gradient truncation strategy (SGTS), depicted
in Fig. 1b. In this strategy, an index j is randomly selected from {1, 2, ..., N}, the corresponding
timestep tj is set to 0. The sampling pipeline is then executed only for steps i = 0, 1, ..., j − 1.
Crucially, when j = 1, the training iteration reduces to a one-step distillation. Consequently, while
SGTS improves memory efficiency and training stability, it reduces the generative diversity of the
few-step models, as the generated distribution is biased toward that of a one-step generator.

2.3 PHASED DMD

In contrast to DMD with SGTS, which can degenerate into one-step distillation in certain iterations,
Phased DMD avoids this issue by partitioning the distillation process into distinct phases and apply-
ing supervision at intermediate timesteps. In each phase except the last, the generator is optimized
to minimize the reverse KL divergence at an intermediate timestep, while the fake diffusion model
is updated via score matching within a subinterval of the diffusion process.

2.3.1 DISTRIBUTION MATCHING AT INTERMEDIATE TIMESTEPS

The motivation for Phased DMD can be understood by revisiting Eq. 10. To sample xt, prior meth-
ods (Yin et al., 2024a; Huang et al., 2025) first generate x0 and then diffuse it to xt according
to Eq. 1. In phased DMD, the pipeline is modified to generate intermediate samples xtk , where
0 < k ≤ N , instead of x0. The sample xtk is then diffused according to Eq. 2, with s = tk and
t is sampled from the subinterval (tk, 1), i.e., t ∼ T (t; tk, 1). As illustrated in Fig. 1c, Phased
DMD progressively distills the generator toward higher SNR levels. In each phase k, only a sin-
gle expert Gϕk

is trained. This expert maps the distribution p(xtk−1
) to p(xtk). The generator

optimization objective for the k-th phase is given by:

∇ϕkDKL ≈ Eϵ∼N ,xtk
=pipeline(Gϕ1

,Gϕ2
,...,Gϕk

,{t1,t2,...,tk},ϵ,S),t∼T (t;tk,1),xt∼p(xt|xtk
)

[wt(Tθ̂(xt)− Fθi
(xt))]dG/dϕk (11)

Empirically, we find that sampling t ∼ T (t; tk, 1) instead of t ∼ T (t; tk, tk−1), aligns better with
the progressive design of Phased DMD and yields superior performance. At the onset of each phase,
the fake diffusion model Fθk

is re-initialized from the pretrained teacher model Tθ̂ and is trained
independently of the models from previous phases.

Although the resulting MoE generator requires more GPU memory than a single-network generator,
the overhead is manageable for three reasons. First, an optimizer is required only for the k-th
trainable expert. Second, this overhead can be substantially reduced using Low-Rank Adaptation
(LoRA) (Hu et al., 2021). Specifically, all experts can share a common backbone network, with
individual experts activated by switching their respective LoRA weights. Finally, Phased DMD can
be combined with SGTS (as shown in Fig. 1d), and the number of distillation phases can be less
than the number of sampling steps.

2.3.2 SCORE MATCHING WITHIN SUBINTERVALS

A key challenge in Phased DMD is that clean data samples x0 are inaccessible in all but the final
phase. Consequently, the training objective for the fake diffusion model Fθk

in Eq. 4 is no longer
applicable. To address this, we derive a training objective based on score matching within subinter-
vals. Assume we have observations xs ∼ p(xs) at an intermediate timestep s where 0 < s < 1.
The diffusion modelψθ can be optimized within the subinterval (s, 1) using the following objective,
derived from Eq. 5:

Jflow(θ) = Et∼T (t;s,1),xt∼p(xt)[∥ψθ(xt) + xt/αt + (σt + σ2
t /αt)∇xt log(p(xt))∥2]

= Exs∼p(xs),t∼T (t;s,1),xt∼p(xt|xs)[∥ψθ(xt) + xt/αt + (σt + σ2
t /αt)∇xt log(p(xt|xs))∥2]

= Exs∼p(xs),ϵ∼N ,t∼T (t;s,1),xt=αt|sxs+σt|sϵ[∥ψθ(xt)− ((α2
sσt + αtσ

2
s)/(α

2
sσt|s)ϵ− (1/αs)xs)∥2]

(12)

In the k-th phase of Phased DMD, the distribution p(xs) is approximated using the output of the
MoE generator pipeline Gϕ1 ,Gϕ2 , ...,Gϕk

. As σt|s → 0 when t → s, the formulation in Eq. 12

5
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(c) Biased within a Subinterval

Figure 2: Sampling trajectories for 200 samples in a 1D toy experiment. (a) Training with the
full-interval objective (Eq. 4). (b) Training on 0.5 < t < 1 with the correct subinterval objective
(Eq. 13). (c) Training on 0.5 < t < 1 with an incorrect target: ∥(ψθ(xt)− (ϵ− xs)∥2.

encounters singularity and numerical instability. To mitigate this, we apply a clamping function,
resulting in the final objective:

Jflow(θ) = Exs∼p(xs),ϵ∼N ,t∼T (t;s,1),xt=αt|sxs+σt|sϵ

[clamp(1/(σt|s)
2)∥σt|sψθ(xt)− ((α2

sσt + αtσ
2
s)/α

2
s)ϵ− (σt|s/αs)xs)∥2] (13)

Here, clamp(1/(σt|s)
2) restricts the value within a predefined range to prevent overflow.

We design a one-dimensional toy experiment to validate the effect of this training objective, as
shown in Fig. 2. The close overlap of the sampling trajectories in Fig. 2b demonstrates that, within
the defined subinterval, the flow model trained with Eq. 13 is equivalent to one trained with the
standard objective in Eq. 4. Conversely, Fig. 2c illustrates how an incorrect formulation of the
objective leads to a biased estimation. Refer detailed settings of toy example to Appendix D.

3 EXPERIMENTS AND RESULTS

We apply Phased DMD to state-of-the-art (SOTA) image and video generative models. All experi-
ments are conducted using a 4-step, 2-phase configuration, as illustrated in Fig. 1d. Consequently,
each base model is distilled into two expert networks. To demonstrate that the performance improve-
ment stems primarily from our novel distillation paradigm rather than merely an increase in trainable
parameters, we include the Wan2.2-T2V-A14B model (Wan et al., 2025) in our experiments. This
model already features an MoE structure, and both standard DMD and our Phased DMD distill it
into two experts. This allows for a direct comparison under equivalent parameter budgets. Ow-
ing to its computational demands, the vanilla DMD (Yin et al., 2024a) method was applied only to
the smallest model configuration, namely the Wan2.1-T2V-14B. An overview of the experimental
configurations is provided in Tab. 1, with detailed descriptions available in Appendix C.

Table 1: Overview of Experimental Setup.

Base Model Task DMD DMD with SGTS Phased DMD (Ours)
Wan2.1-T2V-14B T2I ✓ ✓ ✓

Wan2.2-T2V-A14B T2I, T2V × ✓ ✓
Qwen-Image-20B T2I × ✓ ✓

6
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3.1 PRESERVATION OF GENERATIVE DIVERSITY

To evaluate generative diversity, we constructed a text-to-image test set comprising 21 prompts.
Each prompt provides a short description of the image content without detailed specifications. For
each prompt, we generated 8 images using seeds from 0 to 7. For the base model, images are
sampled using 40 steps with a CFG scale of 4. All distilled models are sampled using 4 steps and
a CFG scale of 1. As shown in Fig. 3b, images generated by the 4-step DMD model exhibit a
loss of fine details. While the 4-step DMD model with SGTS improves image quality, this comes
at the cost of reduced diversity. Fig. 3c reveals that the generated images often adopt a similar
close-up view and demonstrate limited variation in composition across different random seeds. In
contrast, Phased DMD better preserves diversity, producing images with a wider range of natural
compositions, as illustrated in Fig. 3d. Generative diversity is evaluated using two complementary
metrics: (1) the mean pairwise cosine similarity of DINOv3 features (Siméoni et al., 2025), where
lower values indicate higher diversity, and (2) the mean pairwise LPIPS distance (Zhang et al.,
2018), where higher values denote greater diversity. Both metrics are computed across images
generated from the same prompt using different seeds. The quantitative results are presented in
Tab. 2. As expected, the base models achieve the highest diversity. Notably, DMD with SGTS yields
slightly lower diversity than vanilla DMD. Our Phased DMD outperforms both distillation baselines,
demonstrating its superior capability for preserving the generative diversity of the original model.
The diversity improvement on Qwen-Image is marginal. We argue this stems from the base model’s
own limited output diversity.

Table 2: Two metrics for quantitative diversity evaluation: average pairwise DINOv3 cosine simi-
larity (lower is better) and LPIPS distance (higher is better). Phased DMD outperforms the vanilla
DMD and DMD with SGTS in preserving generative diversity of the base models.

Method Wan2.1-T2V-14B Wan2.2-T2V-A14B Qwen-Image
DINOv3 ↓ LPIPS ↑ DINOv3 ↓ LPIPS ↑ DINOv3 ↓ LPIPS ↑

Base model 0.708 0.607 0.732 0.531 0.907 0.483

DMD 0.825 0.522 - - - -
DMD with SGTS 0.826 0.521 0.828 0.447 0.941 0.309

Phased DMD (Ours) 0.782 0.544 0.768 0.481 0.958 0.322

3.2 RETAIN BASE MODELS’ KEY CAPABILITIES

Wan2.2 video generation models exhibit remarkable capabilities in motion dynamics and camera
control. However, we observe that DMD with SGTS degrade these properties, as they do not specif-
ically address the low-SNR base expert. Phased DMD inherently resolves this issue by dividing
distillation into phases and explicitly eliminating dependency on x0 except in the final phase. In
the first phase, only the low-SNR expert attends and is distilled according to Eq. 11 and Eq. 13.
Since the pre-trained low-SNR expert is also trained on the low-SNR subinterval, this alignment
better preserves its capabilities. As shown in Fig. 6, DMD with SGTS generates slower motion
dynamics compared to the base model and Phased DMD. Similarly, Fig. 7 show that DMD with
SGTS tends to produce close-up views, while Phased DMD and the base model better adhere to the

Table 3: Comparison of motion dynamics preservation across distillation methods, measured by
mean absolute optical flow and VBench dynamic degree. Phased DMD demonstrates superior per-
formance in maintaining the base model’s motion quality.

Method Optical Flow ↑ Dynamic Degree ↑
Base model 10.66 79.35 %

DMD with SGTS 5.27 72.90 %
Phased DMD(Ours) 7.76 78.71 %
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Prompt: “A chef meticulously plating a dish.”

seed 0

seed 1

seed 2

seed 3
Prompt: “A mother braiding her daughter’s hair, sunlight warming the room.”

seed 0

seed 1

seed 2

seed 3
(a) Base (b) DMD (c) DMD with SGTS (d) Phased DMD

Figure 3: Samples (seeds 0-3) from the Wan2.1-T2V-14B base model (40 steps, CFG=4) and its
distilled variants (4 steps, CFG=1): (a) Base, (b) DMD, (c) DMD with SGTS, (d) Phased DMD.

prompt’s camera instructions. We evaluate motion quality on a set of 155 prompts, generating one
video per prompt with a fixed seed 42. Motion intensity is quantified using the mean absolute optical
flow computed with Unimatch Xu et al. (2023) and the dynamic degree metric from VBench (Zhang
et al., 2024). As Tab. 3 shows, Phased DMD produces significantly stronger motion dynamics than
DMD with SGTS, confirming its superior ability to preserve the base model’s motion capabilities.
Additional comparative videos are provided in the supplementary material. We encourage readers
to view these videos to better appreciate the contrasts in motion dynamics and camera control.

Figure 4: Examples generated by the Qwen-Image distilled with Phased DMD.
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Qwen-Image is recognized for its faithful adherence to prompts and high-quality text rendering. To
evaluate the preservation of these capabilities after distillation, we applied Phased DMD to Qwen-
Image and generated images using prompts from its official website (Team, 2025a). As shown in
Fig. 4, the model distilled with Phased DMD exhibits well-preserved capabilities, producing high-
quality images with accurate text rendering.

3.3 MERIT OF MOE

Our empirical findings reveal that during the distillation process, DMD initially captures structural
information before learning finer textural details. Before the complete acquisition of textural de-
tails, the generated images and videos tend to exhibit overly smooth features, such as blurry hair
and plastic-like skin textures. On the other hand, the mode-seeking nature of reverse KL divergence
leads to a decline in generative diversity as training iterations increase. Phased DMD addresses
the trade-off between quality and diversity by dividing DMD into distinct training phases. In the
low-SNR phases, the composition of images and videos is effectively established. During the sub-
sequent high-SNR phases, the low-SNR expert is frozen, allowing for extended training to enhance
generation quality without degrading the structural composition of the outputs. As illustrated in
Fig. 5, extending the training of high-SNR experts primarily affects lighting and textural details,
while leaving the overall structural composition of the images unchanged.

Figure 5: Samples generated with high-SNR experts from different training stages (top: 100 itera-
tions; bottom: 400 iterations) and a shared low-SNR expert. Each column uses identical prompts
and seeds.

4 RELATED WORKS

Our work builds on Variational Score Distillation (VSD), comprising a trainable generator, a fake
score estimator, and a pretrained teacher score estimator. The closest related work is TDM (Luo
et al., 2025), which also extends DMD to few-step distillation. Yet, Phased DMD differs in three
key ways: (a) TDM lacks theoretical grounding, leading to incorrect fake flow training; (b) our
framework inherently produces MoE models; and (c) we use reverse nested SNR intervals, unlike
TDM’s disjoint intervals. Full discussions about related work are presented in Appendix B.

5 CONCLUSION AND DISCUSSION

Phased DMD primarily enhances structural aspects of generation, such as image composition diver-
sity, motion dynamics, and camera control. However, for base models like Qwen-Image, whose out-
puts are inherently less diverse, the improvement is less pronounced. While this work demonstrates
phased distillation within the DMD framework, the approach is generalizable to other objectives like
Fisher divergence in SiD (Zhou et al., 2024), which we leave for future exploration. It is conceivable
that other methods for enhancing diversity and dynamics, such as incorporating trajectory data pre-
generated by the base model, could be integrated. However, this would compromise the data-free
advantage central to DMD. While we may explore such directions in the future, this work prioritizes
the data-free paradigm.

9
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6 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. The proposed method follows DMD and is a
data-free distillation framework. However, the base model used for distillation may generate human
figures due to the presence of human data in the training set, potentially raising concerns about
privacy and consent. To address this, we focus solely on human motion dynamics, with no use of
personally identifiable information. Regarding the video generation model, while it offers positive
applications in content creation, it also carries risks of misuse for deceptive content or surveillance.
We acknowledge these risks and emphasize that our model is intended strictly for scientific research
and positive use cases.

7 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure reproducibility. To reproduce Phased DMD, the core
equations are provided in Sec.2 of the main text, with detailed derivations in Appendix A. For
the toy example to verify the effectiveness of score matching with subintervals, relevant details
can be found in the Appendix D. To replicate our experiments, details of the experimental setup,
hyperparameters, evaluation metircs and implementation choices are available in Sec. 3 of the main
text and Appendix 3. Code and models will also be released.
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A DETAILED DERIVATION OF METHOD

We show the detailed derivation of Eq. 5 as follows:

Jflow(θ) = Ex0∼p(x0),ϵ∼N ,t∼T ,xt=αtx0+σtϵ[∥ψθ(xt)− (ϵ− x0)∥2]
= Ex0∼p(x0),ϵ∼N ,t∼T ,xt=αtx0+σtϵ[∥ψθ(xt)− (ϵ− (xt − σtϵ)/αt))∥2]
= Ex0∼p(x0),ϵ∼N ,t∼T ,xt=αtx0+σtϵ[∥ψθ(xt) + xt/αt − (1 + σt/αt)ϵ∥2]
= Ex0∼p(x0),t∼T ,xt∼p(xt|x0)[∥ψθ(xt) + xt/αt + (σt + σ2

t /αt)∇xt log(p(xt|x0))∥2]
= Et∼T ,xt∼p(xt)[∥ψθ(xt) + xt/αt + (σt + σ2

t /αt)∇xt log(p(xt))∥2]

In the derivation, we use the the score of p(xt|x0), i.e., ∇xt log(p(xt|x0)) = −(1/σt)ϵ, and the
equivalence between DSM and ESM (Vincent, 2011).

We show the detailed derivation of Eq. 12 as follows:

Jflow(θ) = Et∼T (t;s,1),xt∼p(xt)[∥ψθ(xt) + xt/αt + (σt + σ2
t /αt)∇xt log(p(xt))∥2]

= Exs∼p(xs),t∼T (t;s,1),xt∼p(xt|xs)[∥ψθ(xt) + xt/αt + (σt + σ2
t /αt)∇xt log(p(xt|xs))∥2]

= Exs∼p(xs),ϵ∼N ,t∼T (t;s,1),xt=αt|sxs+σt|sϵ[∥ψθ(xt) + xt/αt − ((σt + σ2
t /αt)/σt|s)ϵ∥2]

= Exs∼p(xs),ϵ∼N ,t∼T (t;s,1),xt=αt|sxs+σt|sϵ[∥ψθ(xt) + (αt|sxs + σt|sϵ)/αt − ((σt + σ2
t /αt)/σt|s)ϵ∥2]

= Exs∼p(xs),ϵ∼N ,t∼T (t;s,1),xt=αt|sxs+σt|sϵ[∥ψθ(xt)− ((α2
sσt + αtσ

2
s)/(α

2
sσt|s)ϵ− (1/αs)xs)∥2]

The relationship between sample prediction (x-prediction) and score matching is derived as follows:

Jsample(θ) = Ex0∼p(x0),ϵ∼N ,t∼T ,xt=αtx0+σtϵ[∥µθ(xt)− x0∥2]
= Ex0∼p(x0),ϵ∼N ,t∼T ,xt=αtx0+σtϵ[∥µθ(xt)− (xt − σtϵ)/αt)∥2]
= Ex0∼p(x0),ϵ∼N ,t∼T ,xt=αtx0+σtϵ[∥µθ(xt)− xt/αt + (σt/αt)ϵ∥2]
= Ex0∼p(x0),t∼T ,xt∼p(xt|x0)[∥µθ(xt)− xt/αt − (σ2

t /αt)∇xt log(p(xt|x0))∥2]
= Et∼T ,xt∼p(xt)[∥µθ(xt)− xt/αt − (σ2

t /αt)∇xt log(p(xt))∥2] (14)

The training objective for x-prediction diffusion models within a subinterval is as follows:

Jsample(θ) = Et∼T ,xt∼p(xt)[∥µθ(xt)− xt/αt − (σ2
t /αt)∇xt log(p(xt))∥2]

= Exs∼p(xs),t∼T (t;s,1),xt∼p(xt|xs)[∥µθ(xt)− xt/αt − (σ2
t /αt)∇xt log(p(xt|xs))∥2]

= Exs∼p(xs),ϵ∼N ,t∼T (t;s,1),xt=αt|sxs+σt|sϵ[∥µθ(xt)− xt/αt + ((σ2
t /αt)/σt|s)ϵ∥2]

= Exs∼p(xs),ϵ∼N ,t∼T (t;s,1),xt=αt|sxs+σt|sϵ[∥µθ(xt)− (αt|sxs + σt|sϵ)/αt + ((σ2
t /(αtσt|s)ϵ∥2]

= Exs∼p(xs),ϵ∼N ,t∼T (t;s,1),xt=αt|sxs+σt|sϵ[∥µθ(xt)− ((1/αs)xs − (αtσ
2
s/α

2
sσt|s)ϵ)∥2] (15)

Optimizing within the subinterval according to Eq. 15 gives an unbiased estimation of x-prediction.
In contrast, the objective [∥µθ(xt)− xs∥2] yields a biased estimation.

B RELATED WORKS

Our work is situated within the framework of Variational Score Distillation (VSD). VSD involves
three components: a trainable generator, a fake score estimator, and a pretrained teacher score es-
timator. The generator is optimized to produce a distribution that approximates the real data distri-
bution. Concurrently, the fake score estimator learns to estimate the score of the generator’s output
distribution. The update direction for the generator is then determined by the discrepancy between
the teacher’s score (for the real distribution) and the fake score estimator’s score.

Similar to GANs, the VSD framework is adversarial. The fake score estimator must be precisely
optimized to learn the score of the current generated distribution. This accurate estimation is crucial,
as it combines with the fixed teacher model (which provides the score for the real data) to produce
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a correct guidance signal for the generator. This principle explains why DMD2 (Yin et al., 2024a)
operates successfully without external real data, in contrast to its predecessor DMD (Yin et al.,
2024b).

A key advantage of VSD over GANs for distilling pre-trained diffusion models is initialization. The
pre-trained model serves a dual role: it is a powerful multi-step generator and an accurate estimator
of the real data distribution’s score. This allows it to effectively initialize all three components in
the VSD framework, leading to significantly enhanced training stability.

Several methods are built upon the VSD framework, including Diff-Instruct (Luo et al., 2023), DMD
(Yin et al., 2024a), SID (Zhou et al., 2024), and FGM (Huang et al., 2024). The fundamental dis-
tinction between these approaches lies in the specific divergence they minimize. DMD, for instance,
optimizes the reverse KL divergence between the real and generated distributions. A key advantage
of this choice is its computational efficiency compared to alternatives like the Fisher divergence used
in SID (Zhou et al., 2024). Specifically, during generator optimization, DMD does not require gra-
dients to be backpropagated through the fake and teacher score estimators, whereas SID does. This
does not imply the two estimators are trainable in this stage for SID, but rather reflects a difference in
the computational graph. This property makes DMD more amenable to engineering implementation
and scalable to large base models.

Similar to our work, TDM (Luo et al., 2025) also aimed to extend DMD to few-step distillation.
However, our approach differs from TDM in three key aspects: (a) The lack of proper theoretical
grounding in TDM renders its fake flow training formulation incorrect, undermining the foundations
of DMD. (b) Our framework inherently produces MoE models for few-step generation. (c) While
TDM uses disjoint SNR intervals, our method employs reverse nested intervals, where each interval
is a subset of the subsequent one.

C EXPERIMENTAL DETAILS

We conduct experiments on two tasks: text-to-image and text-to-video generation. The following
global settings are applied across all experiments: a batch size of 64; a fake diffusion model learning
rate of 4e-7 with full-parameter training; a generator learning rate of 5e-5 using LoRA with a rank
of 64 and an alpha value of 8. The AdamW optimizer is used for both the fake diffusion model and
the generator, with hyperparameter β1 = 0, β2 = 0.999. The fake diffusion model is updated five
times for every generator update.

For the Wan2.x base models, distillation for the text-to-image task is performed at a data resolution
of frame = 1,width = 1280, height = 720.

For the Wan2.2-T2V-A14B model, distillation for the text-to-video task uses a mixture of data res-
olutions: (81, 720, 1280), (81, 1280, 720), (81, 480, 832), (81, 832, 480).

For the Qwen-Image model, distillation for the text-to-image task uses a mixture of data resolutions:
(1, 1382, 1382), (1, 1664, 928), (1, 928, 1664), (1, 1472, 1104), (1, 1104, 1472), (1, 1584, 1056),
(1, 1056, 1584).

D TOY EXAMPLE DETAILS

We construct a toy example where x0 takes only four values: {-1, 0, 1, 2}. A minimal model is
designed, consisting of four MLPs with dim=512, conditioned solely on t. Fig. 1a shows training
on the full interval using Eq. 4, Fig. 1b shows training on subintervals using Eq. 13, and Fig. 1c
shows training on subintervals using Eq. 4, simply replacing x0 with xs. As shown in Fig. 4b, when
the correct objective is used, the trajectories on subintervals perfectly align with those on the full
interval. In contrast, using an incorrect objective introduces trajectory deviations, as illustrated in
Fig. 4c. Such a trajectory deviation signifies that the trained model no longer satisfies the score-
matching objective (i.e., Eq. 5 is violated), thus contravening a core principle of DMD.
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(a) Base (b) SGTS DMD (c) Phased DMD

Figure 6: Comparison of video frames generated by the Wan2.2-T2V-A14B base model and its
distilled versions using DMD with SGTS and Phased DMD. Each video consists of 81 frames and
frames with indices {0, 10, ..., 80} are combined as a preview. The base model was sampled with
40 steps and CFG of 4, while the distilled models used 4 steps and CFG of 1 (seed fixed at 42).
The prompt is “A parkour athlete swiftly runs horizontally along a brick wall in an urban setting.
Pushing off powerfully with one foot, they launch themselves explosively into a twisting front flip.
The camera tenaciously stays with them in mid-air as they tuck their legs tightly to their chest to
rapidly accelerate the rotation, then extend them forcefully outwards again, precisely spotting their
landing on the concrete below. The dynamic movement is vividly captured against a backdrop of
city lights and shadows.”

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Base (b) SGTS DMD (c) Phased DMD

Figure 7: Comparison of video frames generated by the Wan2.2-T2V-A14B base model and its
distilled versions using DMD with SGTS and Phased DMD. Each video consists of 81 frames and
frames with indices {0, 10, ..., 80} are combined as a preview. The base model was sampled with
40 steps and CFG of 4, while the distilled models used 4 steps and CFG of 1 (seed fixed at 42).
The prompt is “Day time, sunny lighting, low angle shot, warm colors. A dynamic individual in a
vibrant, multi-colored outfit and a red helmet executes a fast-paced slalom on roller skates through
a bustling urban park. The camera starts focused on the skates carving sharp turns on the pavement
and tilts up to reveal their entire body leaning into the motion. Their face shows a mix of joy and
deep concentration. The warm afternoon sun filters through the lush greenery, with the azure sky
visible above, creating a scene bursting with energy.”
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