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Abstract
Large Language Models (LLMs) effectively001
leverage common sense knowledge for gen-002
eral reasoning, yet they struggle with person-003
alized reasoning when tasked with interpret-004
ing multifactor personal data. This limitation005
restricts their applicability in domains that re-006
quire context-aware decision-making tailored007
to individuals. This paper introduces Person-008
alized Causal Graph Reasoning as an agen-009
tic framework that enhances LLM reasoning010
by incorporating personal causal graphs de-011
rived from data of individuals. These graphs012
provide a foundation that guides the LLM’s013
reasoning process. We evaluate it on a case014
study on nutrient-oriented dietary recommen-015
dations, which requires personal reasoning due016
to the implicit unique dietary effects. We pro-017
pose a counterfactual evaluation to estimate018
the efficiency of LLM-recommended foods019
for glucose management. Results demonstrate020
that the proposed method efficiently provides021
personalized dietary recommendations to re-022
duce average glucose iAUC across three time023
windows, which outperforms the previous ap-024
proach. LLM-as-a-judge evaluation results in-025
dicate that our proposed method enhances per-026
sonalization in the reasoning process.027

1 Introduction028

Large Language Models (LLMs) have demon-029

strated remarkable capabilities in generic reason-030

ing by leveraging inherent knowledge to general-031

ize across diverse domains. However, they strug-032

gle to incorporate complex, multifactor personal033

data, which is a critical requirement for real-034

world decision-making tasks (Chen et al., 2024;035

Halevy and Dwivedi-Yu, 2023). In domains where036

context-aware reasoning is essential, such as health-037

care, LLMs fail to go beyond broad, population-038

level knowledge and instead produce generic re-039

sponses that overlook individual-specific dependen-040

cies (Tanneru et al., 2024; Yu et al., 2024; Subra-041

manian et al., 2024). This limitation reduces their042

What are some breakfast 
options that won't spike my 

blood sugar

Focus on high-protein, high-fiber, and 
healthy fat-based meals while 

minimizing refined carbs. Here are 
some great choices: Scrambled eggs, 

unsweetened almond milk...

Based on your causal graph indicating 
that carbohydrates have a significant 
impact on your glucose, it's advisable 

to focus on breakfast options: 
Whole wheat toast… we can estimate 
the net effect on your blood sugar as 
follows: Carbohydrate contribution = 

140.08
Fiber contribution = 31.65…

Reasoning on Population Knowledge

Personal Causal Graph Reasoning

Assessed: High Spike Risk

Assessed: Low Spike Risk

Figure 1: Comparison between a standalone LLM and
the proposed Personalized Causal Graph Reasoning for
dietary recommendations. The standalone LLM relies
on generic reasoning and may provide risky advice,
while our method utilizes a personal causal graph to
assess individual metabolic responses for more precise
recommendations.

practicality when required to align with a user’s 043

unique characteristics and needs. 044

This limitation arises from LLMs’ reasoning pro- 045

cess that relies solely on population-level knowl- 046

edge, which impairs their ability to model re- 047

lationships between personal factors (Hu et al., 048

2024; Yang et al., 2024a). For comparison, hu- 049

man decision-making is inherently contextual in 050

its understanding of how personal factors inter- 051

act (Weiner, 2004). For instance, in nutrient-based 052

health interventions, the effectiveness of dietary 053

changes depends on a combination of an individ- 054

ual’s metabolic history, underlying conditions, spe- 055

cific nutrient deficiencies, and general nutritional 056

1



principles. As demonstrated in Figure 1, standalone057

LLM often fails in such settings because they do058

not have a structured mechanism to reason over per-059

sonal causal understanding of dietary effects from060

data (Yang et al., 2024b).061

To address this challenge, we introduce Personal-062

ized Causal Graph Reasoning that enhances LLMs’063

personalized reasoning within an agentic frame-064

work. The framework constructs a personalized065

causal graph for each user based on longitudinal066

health data for capturing the unique user character-067

istics. LLMs then reason over this structured repre-068

sentation by dynamically exploring causal graphs069

and retrieving relevant external knowledge to gen-070

erate personalized recommendations. Unlike con-071

ventional LLMs that process user queries under a072

generic reasoning paradigm, our approach provides073

a structured foundation that allows LLMs to per-074

form personalized inference over explicit causal075

relationships.076

To evaluate the effectiveness of the proposed077

framework, we conduct a case study on dietary078

recommendations. Using a dataset comprising con-079

tinuous glucose monitoring data, food intake logs,080

and physical activity records, we construct personal081

causal graphs that capture the relationship between082

nutrient intake and glucose regulation. The LLM083

utilizes these graphs to simulate dietary interven-084

tions and recommend foods that are expected to085

improve glucose stability. We propose counterfac-086

tual evaluation to assess whether the model’s rec-087

ommended foods would have led to actual health088

improvements (Mahoney and Barrenechea, 2019).089

Additionally, we employ LLM-as-a-judge to as-090

sess whether our method improves the reasoning091

process by making it more personalized.092

This paper’s contribution is two-fold:093

• We introduce Personalized Causal Graph Rea-094

soning that enables LLMs to perform per-095

sonalized reasoning by incorporating causal096

graphs derived from personal data.097

• We evaluate the proposed framework through098

a case study on personalized dietary recom-099

mendations. To assess its effectiveness, we100

introduce a counterfactual evaluation method101

that estimates the potential glucose impact of102

LLM-generated food recommendations.103

2 Related Works 104

2.1 LLMs and Reasoning 105

Several techniques were proposed to elevate LLMs’ 106

general reasoning tasks. Chain-of-Thought (CoT) 107

as a classic prompting method enhances problem- 108

solving by enabling the generation of intermediate 109

reasoning steps (Wei et al., 2022). Building upon 110

CoT, approaches such as Tree of Thoughts (ToT) 111

and Graph of Thoughts (GoT) have been proposed 112

to further refine LLM reasoning in a more struc- 113

tured manner (Yao et al., 2024; Besta et al., 2024). 114

ToT allows models to explore multiple reasoning 115

paths, while GoT models information as an arbi- 116

trary graph, to combine various reasoning paths 117

into cohesive outcomes. By incorporating struc- 118

tured reasoning techniques, LLMs have demon- 119

strated promising performance in decision-making 120

tasks that require dietary knowledge(Azimi et al., 121

2025). 122

Beyond prompting techniques, studies have ex- 123

plored iterative reasoning refinements. These in- 124

clude generating multiple reasoning paths and se- 125

lecting the most consistent one, applying step- 126

wise verification, and integrating feedback mech- 127

anisms to improve logical consistency (Havrilla 128

et al., 2024; Li et al., 2022; Nathani et al., 2023). 129

Additionally, Gao et al. propose meta-reasoning, 130

where LLMs dynamically select and apply dif- 131

ferent reasoning strategies based on the prob- 132

lem context (Gao et al., 2024). The Reasoning 133

on Graphs (RoG) synergizes LLMs with knowl- 134

edge graphs to enable faithful and interpretable 135

reasoning (Luo et al., 2023). RoG employs a 136

planning-retrieval-reasoning framework, where re- 137

lation paths grounded in knowledge graphs are gen- 138

erated as faithful plans. These plans are then used 139

to retrieve valid reasoning paths from the graphs. 140

Their reliance on large-scale, population-level 141

data limits the applicability in contexts requiring 142

precise, personalized reasoning. This limitation 143

arises because they primarily operate on unstruc- 144

tured text prompts and lack mechanisms to incor- 145

porate structured representations of personal infor- 146

mation. Consequently, they struggle to model the 147

intricate interplay of personal factors necessary for 148

tailored decision-making. However, approaches 149

like RoG offer promising directions to overcome 150

these challenges by using graphs as a bridge to 151

connect personal data to LLM reasoning. 152
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2.2 Nutrition-Oriented Recommendations153

Nutrition recommendation systems aim to provide154

dietary advice tailored to individual health needs.155

Traditional systems often use collaborative filter-156

ing, leveraging user interactions and preferences to157

generate suggestions (de Hoogh et al., 2023; Ab-158

hari et al., 2019; Nijman et al., 2007). However,159

they fail to capture the complex causal relation-160

ships between dietary factors and health outcomes161

and struggle to adapt dynamically to changes in an162

individual’s health status (Luo et al., 2024; Verma163

et al., 2018).164

We focus on recent advancements that have ex-165

plored the performance of LLMs on personalized166

dietary recommendations (Xue et al., 2024; An-167

janamma et al., 2024; Yang et al., 2024b). For in-168

stance, ChatDiet combines personal and population169

models to generate tailored food suggestions (Yang170

et al., 2024b). It employs Retrieval-Augmented171

Generation (RAG) to retrieve triplets from a pre-172

constructed causal graph, then structures them into173

prompts that guide the LLM in recommendation174

generation. While this approach enhances person-175

alization, it relies on a fixed pattern of retrieving176

specific triplets to inform the LLM’s responses. De-177

spite its promise, further improvements are needed178

to enable more structured, adaptive reasoning in179

LLM-based nutrition systems.180

3 Personalized Causal Graph Reasoning181

for Dietary Recommendations182

This section introduces the Personalized Causal183

Graph Reasoning framework. The objective of the184

proposed framework is to enable an LLM agent185

to reason over a personal causal graph, which en-186

codes the individual’s dietary-health interactions.187

Figure 2 illustrates the workflow of this reasoning188

process on dietary recommendation. Unlike con-189

ventional LLM-based recommendation approaches190

that rely purely on text-based correlations, our191

method focuses on guiding the LLM’s reasoning by192

leveraging the structured causal dependencies be-193

tween nutrients, biomarkers and health outcomes.194

We define an individual’s personal causal graph195

Gi = (Vi, Ei,Wi), where Vi represents the set196

of nodes (dietary factors, biomarkers, metabolic197

conditions), Ei denotes the directed causal edges198

between variables, and Wi encodes the strength of199

causal relationships. Given the graph, the LLM200

agent performs a structured reasoning process that201

consists of five key stages: goal identification,202

Impactful 
Nutrient Paths

Food Nutrient Database

Food Item 
Candidates

Large Language Model

1. Identify

2. Traverse 3. Rank

4. Retrieve Food Items 6. Generate

Goal

5. Verify

Personal 
Data

ConstructPersonal Causal Graph

Fiber Carb

Protein

Glucose

TimeMET

Food 
Recommendation

Figure 2: Demonstration of the workflow of the pro-
posed Personalized Causal Graph Reasoning framework
on dietary recommendation.

graph traversal, external knowledge retrieval, veri- 203

fication, and structured response generation. 204

3.1 Goal Identification 205

When a user submits a query q, the LLM first iden- 206

tifies the primary objective and map it to a cor- 207

responding node y in the personal causal graph. 208

Formally, given the query q, the LLM applies a 209

mapping function fgoal to determine the target vari- 210

able: 211

y = fgoal(q), y ∈ Vi (1) 212

For instance, if the user asks, "How can I prevent 213

glucose spikes?", the target y would correspond to 214

the glucose incremental area under the curve in the 215

personal causal graph. 216

3.2 Personal Causal Graph Traversal and 217

Paths Ranking 218

Once the target variable is identified, the LLM 219

agent traverses the personal causal graph to iden- 220

tify relevant dietary factors. The objective is to 221

find upstream nodes (nutrient intake variables) that 222

causally influence y. The model retrieves the sub- 223

graph G
(q)
i consisting of all relevant causal paths 224

leading to y: 225

G
(q)
i = {vj ∈ Vi |(vj , y) ∈ Ei or

(vj , vk) ∈ Ei ∧ vk ∈ G
(q)
i }

(2) 226

The traversal process prioritizes paths based on 227

causal effect strength. Each retrieved path p = 228

{v1, v2, ..., y} is assigned a causal relevance score 229
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S(p) computed as:230

S(p) =
∑

(vj ,vk)∈p

WjkR(vj) (3)231

where Wjk represents the causal strength between232

vj and vk, and R(vj) captures the individual’s233

historical consumption of vj . Paths with higher234

causal scores are given greater weight in generating235

recommendations. For instance, if an individual236

has consistently consumed high-glycemic carbohy-237

drates, those pathways might be ranked lower in238

favor of fiber-rich interventions.239

3.3 External Knowledge Retrieval240

The personal causal graph identifies key dietary fac-241

tors, but it does not specify which foods to recom-242

mend. To bridge this gap, the LLM agent queries a243

food database from Yang et al. (Yang et al., 2024b)244

to retrieve relevant nutritional information:245

R(G
(q)
i ) = {Dj | Dj contains vj ∈ G

(q)
i } (4)246

where R(G
(q)
i ) represents the set of foods with a247

high concentration of impactful nutrients, and Dj248

denotes an individual food item. The retrieved food249

items are ranked based on their concentration of250

the identified nutrient.251

3.4 Verification by Simulating Dietary Effects252

After selecting a food item and its corresponding253

nutrient composition, the LLM agent simulates hy-254

pothetical dietary interventions using the personal255

causal graph. Given the ranked causal paths influ-256

encing y the agent estimates the expected change257

in y under different dietary adjustments. The in-258

tervention effect of modifying nutrient intake vj is259

computed as:260

∆y =
∑

vj∈G
(q)
i

I(y, vj) · F (vj) (5)261

where I(y, vj) represents the aggregated causal in-262

fluence of vj on y, and F (vj) models the individual263

response function:264

F (vj) = βj ·∆vj + ϵ (6)265

where βj is the personalized response coefficient266

estimated from historical glucose responses, ∆vj is267

the proposed change in (e.g., increasing fiber intake268

by 15g), ϵ accounts for errors in predictions with269

expectation E[ϵ] = 0. Through this process, the270

LLM agent predicts the potential benefit of dietary 271

adjustments before finalizing a recommendation. 272

To ensure that the proposed intervention is causally 273

valid, the LLM conducts a counterfactual reasoning 274

step using the calculated effect to assess whether 275

alternative dietary modifications would yield more 276

effective outcomes. If the predicted impact of the 277

initial recommendation aligns with the user’s goal 278

y, the agent reiterates through the reasoning pro- 279

cess to select alternative recommendations with 280

valid causal justifications. 281

3.5 Response Generation 282

To generate the final recommendation, we construct 283

a structured prompt that integrates the retrieved 284

causal graph information, food-nutrient associa- 285

tions, and supporting evidence. The prompt ex- 286

plicitly states the target health outcome y, presents 287

the causal pathways derived from G
(q)
i in natural 288

language, includes ranked dietary factors based on 289

their relevance, and appends the retrieved food- 290

nutrient content data. The LLM is prompted to 291

first explain the causal reasoning before presenting 292

the recommendation to keep responses personal- 293

ized, interpretable, and grounded in causal infer- 294

ence rather than relying on generic correlations. 295

4 Case Study on Dietary 296

Recommendations 297

4.1 Dataset and Pre-Processing 298

We utilize a publicly available dataset comprising 299

49 participants aged 18 to 69 years with a BMI 300

range of 21–46 kg/m², collected between 2021 and 301

2024 (Gutierrez-Osuna et al., 2025). The cohort 302

includes 15 individuals without diabetes (HbA1c 303

< 5.7%), 16 with prediabetes (5.7% ≤ HbA1c 304

≤ 6.4%), and 14 with type 2 diabetes (HbA1c > 305

6.4%). The dataset spans approximately ten days 306

per participant. We select data from 34 participants 307

who have complete MET recordings. For each par- 308

ticipant, we select the data of continuous glucose 309

monitoring (CGM) and fitness tracker readings 310

recorded at 1-minute intervals, along with detailed 311

meal records, including total caloric intake and 312

macronutrient composition (carbohydrates, protein, 313

fat, fiber) for each meal (breakfast, lunch, and din- 314

ner), and daily average MET. 315

In this case study, we define the objective as 316

the incremental area under the curve (iAUC) of 317

postprandial glucose levels. The iAUC quanti- 318

fies the body’s glycemic response to dietary intake 319
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and captures both the magnitude and duration of320

postprandial glucose excursions (Zeevi et al., 2015;321

Reynolds et al., 2020; Floch et al., 1990).322

We compute the iAUC over three distinct inter-323

vals: 30 minutes, 1 hour, and 2 hours following324

food intake. The 30-minute interval captures the325

initial glucose rise, which reflects absorption kinet-326

ics and early insulin dynamics. The 2-hour interval327

represents the full postprandial phase and charac-328

terizes prolonged glycemic effects and glucose reg-329

ulation efficiency. The 1-hour interval serves as330

an intermediate measure to distinguish between331

transient fluctuations and sustained metabolic re-332

sponses. For baseline glucose estimation, conven-333

tional approaches define the baseline as the fasting334

glucose level measured immediately before food335

intake. This definition may not fully account for in-336

dividual variability in glycemic patterns. To obtain337

a more representative baseline, we use the average338

glucose level over the 24 hour period preceding the339

meal (Chkroun et al., 2023).340

4.2 Personal Causal Graph Construction341

To enable personalized causal graph-based reason-342

ing, we construct a personal causal graph using343

dietary intake, glucose monitoring, and MET data344

for each user. The construction process consists of345

two key steps: inferring the causal structure using346

a causal discovery method and estimating causal347

effects.348

4.2.1 Inferring Causal Structure349

The first step in constructing the causal graph is350

to determine the structure of causal relationships351

between dietary factors, metabolic biomarkers, and352

external modulators. We apply the Peter-Clark (PC)353

algorithm (Spirtes et al., 2001) to infer a directed354

acyclic graph that represents the direct causal de-355

pendencies between these variables. We use the356

first half of each user’s data for the causal graph357

construction.358

The PC algorithm first detects conditional in-359

dependence relationships to eliminate non-causal360

edges, ensuring that only direct dependencies are361

retained. It then orients the edges by leveraging362

causal constraints, ensuring that dietary intake vari-363

ables precede metabolic changes in a physiolog-364

ically meaningful manner. Finally, it adjusts for365

confounders such as physical activity and baseline366

glucose levels to prevent spurious associations. The367

output of this step is a causal graph Gi = (Vi, Ei),368

where nodes Vi represent dietary intake variables,369

metabolic biomarkers, and external modulators, 370

while edges Ei encode directed causal relation- 371

ships between these variables. We employ the 372

Causal Discovery Tool library to conduct PC al- 373

gorithm (Kalainathan et al., 2020). At this stage, 374

the edges indicate causal influence but do not yet 375

quantify the strength of these effects so there are 376

no weights for edges. 377

4.2.2 Estimating Causal Effects 378

Once the causal structure is identified, we estimate 379

the causal effect strengths of the edges in the graph, 380

quantifying how changes in dietary intake influ- 381

ence metabolic outcomes. We employ Structural 382

Causal Models (SCMs), where each variable is ex- 383

pressed as a function of its direct causes and an 384

independent noise term (Elwert, 2013). To assign 385

causal effect strengths, we assume a linear SCM 386

that models the impact of each dietary factor on a 387

metabolic outcome as a weighted relationship. We 388

then apply regression-based inference to estimate 389

the magnitude of these effects with the first half of 390

each user’s data, and use the resulting values as the 391

edge weights Ei in the personalized causal graph 392

Gi. 393

4.3 Counterfactual Evaluation 394

In order to qualitatively determine whether the rec- 395

ommended food intake truly contributes to achiev- 396

ing the user’s goal, we propose to simulate the 397

counterfactual outcome using a ground truth causal 398

graph and validate the recommendation against it. 399

To obtain a reliable reference graph, we construct 400

a causal graph using the full personal dataset to 401

serve as the ground truth for validation. Since this 402

graph is inferred from more data, it provides a more 403

robust representation of the individual’s nutrient- 404

glucose interactions to approximate whether the 405

model’s recommendations hold under real-world 406

conditions. 407

For each recommendation, we conduct a counter- 408

factual simulation based on the ground truth graph 409

to estimate its expected impact on the user’s target 410

y, which is the glucose iAUC in this case study. 411

Given a user query, the LLM selects a food item 412

through the estimated graph in section 4.2.1 and 413

4.2.2. To eliminate scale bias, the recommended 414

food portion is standardized to 500 kcal. We then 415

introduce this food into the ground truth causal 416

graph and use the estimated causal effects to com- 417

pute the predicted change in glucose iAUC. This 418

5



follows the inference:419

ˆiAUC = E[y | do(vj)] (7)420

where y refers to the user’s goal, vj denotes the421

nutrient content, and Xc refers to the relevel con-422

founding variables such as MET. How the food423

consumption would have affected the user’s goal424

is estimated by conditioning on Xc. Given the425

counterfactual estimate ˆiAUC, we compare it with426

the expected glucose response under the user’s his-427

torical dietary pattern, denoted by ¯iAUCi, which428

corresponds to the iAUC when the user consumes429

a meal with an average nutrient composition based430

on their past intake. We report the Mean Glucose431

Reduction (MGR) of the food recommendation,432

which is computed as :433

MGR =
ΣN
i=1

¯iAUCi − ˆiAUCi

N
(8)434

where N is the number of food recommendations435

evaluated. Note that it is not an absolute value.436

A positive MGR indicates that, on average, the437

LLM-recommended foods lead to lower glucose438

responses compared to the user’s typical dietary439

choices.440

4.4 Experiment Settings441

To generate personalized food recommendations,442

we employ GPT-4o as the LLM agent. The LLM443

is instructed to follow the process outlined in Fig-444

ure 2. The prompt combines these components:445

instruction, the user’s query, the retrieved causal446

paths in a structured format, and the retrieved food-447

nutrient data. As we retrieve the most influential448

causal paths, these paths are then summarized into449

a natural language description. For instance, if the450

graph indicates that carbohydrate intake strongly451

increases postprandial glucose levels, while fiber452

consumption reduces glucose spikes, the extracted453

causal summary would be formatted as: "Carbo-454

hydrates have a strong positive causal effect on455

glucose levels (ranked 1). Fiber has a moderate456

negative effect, reducing glucose spikes (ranked457

2)." Additionally, LLM is instructed to first analyze458

the causal relationships, use the retrieved nutrient459

information to generate a food recommendation,460

and then verify the food recommendation.461

For testing, we query the agent five times per462

participant, requesting food recommendations for463

glucose management across three time windows464

(30 minutes, 1 hour, and 2 hours), using the base-465

line glucose levels from the past 2 hours. To ensure466

diversity in recommendations, we impose a con- 467

straint preventing the agent from suggesting any 468

food items that were previously recommended in 469

earlier queries for the same participant. 470

5 Results 471

We compare the proposed method against several 472

baseline models. The baselines include RAG ap- 473

proaches, such as ChatDiet (Yang et al., 2024b) 474

and vanilla RAG models augmented with gen- 475

eral dietary guidelines, leveraging either Chain- 476

of-Thought (CoT) prompting or Tree-of-Thought 477

(ToT) reasoning. We also include non-RAG base- 478

lines, where a vanilla LLM is tested with and with- 479

out CoT or ToT prompting. The performance of 480

each method is assessed based on MGR and its 481

standard deviation, as reported in Table 1. 482

As shown in the results, our approach outper- 483

forms the baselines over longer time horizons (1 484

hour and 2 hours), achieving significantly higher 485

MGR (p < 0.05) with a lower standard devia- 486

tion. Among the baselines, ChatDiet, a retrieval- 487

augmented model, performs competitively in the 488

short-term window but remains less effective in 489

longer time frames compared to our method. The 490

effect of dietary intake over short durations is in- 491

herently variable, making it difficult to determine a 492

significant performance difference. However, over 493

extended time windows, where the physiological 494

impact of food consumption can be estimated with 495

greater confidence, the superior performance of 496

our approach more reliably demonstrates the added 497

value of personalized causal reasoning over static 498

retrieval-based systems. 499

Models that rely solely on general dietary guide- 500

lines or prompting techniques such as CoT and ToT 501

exhibit highly unstable performance, with some 502

configurations even leading to an increase in glu- 503

cose levels. This instability arises because these 504

models lack access to personalized context, mak- 505

ing it impossible to capture an individual’s unique 506

metabolic patterns. These findings reinforce the 507

necessity of explicit causal modeling for effective 508

personalized nutrition recommendations. Overall, 509

our results highlight the crucial role of personal- 510

ized causal graph reasoning, particularly in dietary 511

interventions. Our framework enables the model 512

to generate more effective, stable, and context- 513

aware dietary recommendations tailored to indi- 514

vidual metabolic responses. 515
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30 mins MGR 1hr MGR 2hr MGR

Proposed 19.84 (31.00) 158.21 (61.73) 411.56 (77.21)
ChatDiet(Yang et al., 2024b) 33.92 (36.01) 120.45 (88.64) 307.12 (123.84)

LLM + General Diet Guidelines + CoT 16.38 (57.28) -45.72 (252.71) -79.61 (217.99)
LLM + General Diet Guidelines + ToT -18.70 (78.42) 62.19 (229.45) 13.88 (179.41)

LLM + CoT -10.59 (65.12) -49.23 (208.57) -64.11 (254.30)
LLM + ToT 8.77 (81.64) -6.43 (173.90) 63.40 (251.85)
Sole LLM 21.40 (51.93) 44.83 (226.57) -149.89 (308.46)

Table 1: MGR and standard deviation for baseline models and the proposed Personalized Causal Graph Reasoning
framework

5.1 Ablation Study516

We conduct an ablation study by progressively re-517

moving key components and evaluating their im-518

pact. Specifically, we examine the effect of remov-519

ing the verification step, disabling the path ranking520

mechanism, and completely excluding the personal521

causal graph, thereby testing the model’s perfor-522

mance when relying solely on the LLM. The results523

are summarized in Table 2.524

The full model achieves the highest glucose re-525

duction, particularly in the more stable 1-hour and526

2-hour time windows. Removing the verification527

step results in only a slight decline in performance,528

indicating that while it is not the primary driver529

of improvement, it helps refine recommendations530

in certain corner cases. In contrast, disabling path531

ranking leads to a substantial increase in variance,532

as it plays a core role in prioritizing the most in-533

fluential nutrients, which is essential for stabiliz-534

ing glucose impact predictions. Removing the per-535

sonal causal graph entirely prevents the agent from536

performing personalized reasoning, rendering the537

model ineffective at generating meaningful dietary538

recommendations.539

5.2 Evaluating Reasoning Personalization540

with LLM-as-a-Judge541

To assess the personalization level of our Personal-542

ized Causal Graph Reasoning framework, we em-543

ploy LLaMA-3 70B (Dubey et al., 2024) as an544

LLM-as-a-judge (Zheng et al., 2023) to compare545

its reasoning process against the previous method.546

The evaluation follows a blind comparison setup,547

where the judge is presented with two outputs548

in a random order without knowing their source.549

The judge is instructed to select the response that550

demonstrates a higher degree of personalization551

of the reasoning process, considering factors such552

as whether the reasoning incorporates the user’s 553

unique metabolic patterns, past dietary responses, 554

and personalized causal dependencies; whether the 555

response adapts to the specific health context of the 556

user rather than relying on generic dietary princi- 557

ples; and whether the explanation leverages struc- 558

tured causal insights instead of relying on general 559

nutritional heuristics. 560

Each comparison is conducted across multiple 561

test cases, and the LLM-as-a-judge selects the more 562

personalized reasoning in each instance. The fi- 563

nal win rate reflects the percentage of cases where 564

our model was preferred over ChatDiet. The re- 565

sults, presented in Table 3, show that our Personal- 566

ized Causal Graph Reasoning framework achieves 567

a dominant win rate of 98.43%. 568

6 Limitations 569

Our current framework constrains LLM reason- 570

ing to a single, well-defined objective. While this 571

ensures a focused decision-making process, real- 572

world dietary planning often involves multiple, un- 573

certain health goals, such as cardiovascular health, 574

weight management, and micronutrient balance. 575

The model does not yet support multi-objective 576

reasoning, limiting its applicability to users with 577

diverse and evolving dietary needs. 578

The method also lacks an early stopping mech- 579

anism in personal causal graph traversal. As the 580

graph grows in complexity, the LLM agent does 581

not have a mechanism to determine when sufficient 582

causal evidence has been gathered, potentially lead- 583

ing to redundant or inefficient reasoning. This is 584

sufficient for the specific case study, but a more 585

adaptive traversal strategy is needed to dynami- 586

cally assess when to terminate search paths based 587

on confidence in the retrieved causal relationships. 588

Regarding the case study on LLM dietary rec- 589
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30 mins MGR 1hr MGR 2hr MGR

Full 19.84 (31.00) 158.21 (61.73) 411.56 (77.21)
Remove Verification step 19.16 (32.46) 1163.98 (67.51) 402.74 (86.54)

Remove Path Ranking 23.88 (38.52) 952.34 (77.96) 367.02 (92.03)
Remove Personal Graph (Sole LLM) 21.40 (51.93) 44.83 (226.57) -149.89 (308.46)

Table 2: Ablation study results on removing key components.

Win Rate

Proposed 98.43%
ChatDiet(Yang et al., 2024b) 1.57%

Table 3: LLM-as-a-Judge Results on Reasoning Person-
alization

ommendations, the limited amount of nutrient in-590

take and glucose response data presents another591

challenge. Inferring causal relationships requires592

a sufficient number of observations and interven-593

tions, but the available dataset is relatively small,594

leading to the uncertainties in causal estimation as595

we can see in the high standard deviation of the596

results. The reliance on short-term observational597

data may not fully capture the complex, long-term598

metabolic effects of dietary interventions. Incorpo-599

rating larger datasets, or self-reported dietary logs600

could improve the reliability of causal inference.601

The causal graph construction does not explicitly602

model all potential confounders. While glucose603

regulation is influenced by macronutrient intake604

and physical activity, other physiological factors605

such as gut microbiome composition, hormonal606

fluctuations, and sleep patterns play critical roles.607

The current framework does not account for these608

influences, which may affect the accuracy of its609

dietary recommendations. Expanding the causal610

model to incorporate a broader range of physio-611

logical variables would provide a more complete612

understanding of individual dietary responses.613

Finally, the evaluation relies on counterfactual614

simulation rather than in vivo validation. While615

causal inference techniques estimate the potential616

impact of dietary changes, real-world outcomes are617

influenced by adherence variability, behavioral re-618

sponses, and external lifestyle factors. Without619

real-world validation, there is a risk that LLM-620

generated recommendations may not translate into621

actual health improvements or could lead to unin-622

tended dietary imbalances if misinterpreted or ap-623

plied inconsistently. Conducting controlled trials to624

measure the actual impact of LLM-recommended 625

dietary interventions would be necessary to validate 626

the model’s real-world effectiveness and ensure its 627

safety and reliability. 628

7 Conclusion 629

We presented Personalized Causal Graph Reason- 630

ing to address the need for personalized LLM rea- 631

soning in real-world scenarios. A case study was 632

conducted by integrating the proposed framework 633

into personalized dietary recommendations. A 634

counterfactual evaluation method was employed 635

to assess performance without requiring human 636

experts. The results showed that the proposed ap- 637

proach improved glucose management compared 638

to retrieval-augmented and prompt-based baselines. 639

LLM-as-a-judge results indicated that the proposed 640

method provided more personalized reasoning than 641

existing approaches. 642

Overall, we have demonstrated the importance 643

of personalized LLM reasoning and the effective- 644

ness of personalized causal graph reasoning in a do- 645

main where complex personal data plays a critical 646

role-dietary recommendation. A deeper analysis is 647

needed for developing more refined personalized 648

reasoning mechanisms to handle multi-objective 649

decision-making and large-scale personal graph 650

reasoning. The dietary recommendation study 651

could be extended to incorporate additional con- 652

founders and include real-world trials to evaluate 653

its practical effectiveness, which we leave for fu- 654

ture works 655
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